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ABSTRACT 

 

 

Flexible printed circuit (FPC) is one of the promising components in the electronic 

industries. The advantages of FPC are that its fabrication process is environmentally 

friendly, low cost, and efficient, which makes it a favourable choice for applications in 

industrial and medical. The conductive ink and substrate are the main components of FPC 

and they need to perform with good flexibility as that indicates that it is able to withstand a 

degree of deformation before occurring loss in conductivity. Nonetheless, issues that arise 

are interfacial adhesion strength between conductive ink and substrate, and reliability of 

conductive ink upon exposure to a stretchable type of deformation. Therefore, this study 

aims to investigate two different adhesion-enhancing techniques, which are thermal control 

and self-assembled monolayer of adhesion promoter. In addition, reliability of the 

conductive ink when exposed to stretchable type of deformation is also investigated. The 

silver conductive ink and thermoplastic polyurethane (TPU) were used in this study. The 

thermal control technique involved curing printed silver conductive ink at selected 

temperatures: room temperature, 60oC, 80oC, 100oC, 120oC, 130oC, and 140oC. The TPU 

underwent thermal analysis by using Differential Scanning Calorimetry (DSC) to study 

thermal properties of TPU. Meanwhile, self-assembled monolayer technique involved the 

construction of adhesion promoter layer onto the surface of TPU by dipping it in the adhesion 

promoter solution. Adhesion promoter used in this study was 3-aminopropyltrimethoxy 

silane (APTS). The success of the APTS construction was evaluated through Fourier 

Transform Infrared Spectroscopy (FTIR) and water contact angle (WCA) analysis. The 

evaluation of adhesion performance was assessed according to the cross-cut test (ASTM 

D3359) and 180o peel-test. The changes in electrical, mechanical, and surface energy 

characteristics were carried out within this research to investigate whether these techniques 

would cause changes in the mentioned properties. The experimental results showed an 

improvement in adhesion when both methods were executed. The thermal control has 

4B/0.22 N/mm to 5B/0.55 N/mm rating when curing started at 100oC to 140oC. APTS-

treated TPU showed adhesion was improved to 3B/0.17 N/mm. An increase in conductivity 

of printed silver with lower hardness was observed when the temperature was elevated. 

However, insignificant changes in conductivity and hardness were observed for APTS-

treated TPU. The surface energy of TPU changed when it was exposed to thermal, showing 

an insignificant effect in promoting the adhesion. The improvement of adhesion was 

described as influenced by the changes in thermal properties of TPU. Meanwhile, surface 

energy of APTS-treated TPU showed polar properties due to the presence of polar head 

functional groups that allowed affinity bond with the silver particles. Reliability of silver ink 

was tested by printing with different geometrical patterns (straight, square, sinusoidal, and 

zig-zag), and different widths (1 mm, 2 mm, and 3 mm). The electromechanical 

measurement was carried out by manually stretching the pattern until it lost its conductivity. 

Zig-zag with 3 mm width showed excellent electromechanical performance with 7.78% 

maximum strain.  
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PELEKATAN ANTARAMUKA ANTARA DAKWAT PERAK DENGAN 

POLIURETENA TERMOPLASTIK DAN KEBOLEHHARAPAN 

ELEKTROMEKANIKAL LITAR CETAK FLEKSIBEL  

 

 

ABSTRAK 

 

 

Litar bercetak fleksibel (FPC) adalah salah satu komponen yang diyakini dalam industri 

elektronik. Kelebihan seperti proses mesra alam, murah dan prosess pembuatan yang efisien 

menjadikannya digemari dalam sektor industri dan perubatan. Dakwat konduktif dan 

substrat merupakan komponen utama dalam FPC perlu bersifat fleksibel agar mampu 

menahan tahap ubah bentuk sebelum kehilangan kekonduksiannya. Namun, terdapat 

masalah timbul iaitu kekuatan lekatan antara dakwat dan substrat serta kebolehpercayaan 

dakwat konduktif apabila perubahan bentuk jenis regangan dikenakan. Oleh itu, kajian 

dijalankan bagi menyiasat dua teknik peningkatan lekatan iaitu kesan haba dan monolayer 

dipasang sendiri. Selain itu, kebolehpercayaan dakwat konduktif apabila terdedah kepada 

jenis ubah bentuk yang boleh diregangkan juga disiasat. Dakwat konduktif perak dan 

termoplastik poliuretana (TPU) digunakan di dalam kajian. Teknik kesan haba melibatkan 

pengawetan dakwat konduktif perak pada suhu yang terpilih (suhu bilik, 60oC, 80oC, 100oC, 

120oC, 130oC dan 140oC). Analisi haba terhadap TPU dijalankan menggunakan 

Calorimetri Pengimbasan Berbeza (DSC). Sementara itu, teknik monolayer dipasang 

sendiri melibatkan pembinaan lapisan penggalak lekatan. Penggalak lekatan digunakan 

dalam kajian ini adalah 3-aminopropyltrimethoxy silane (APTS). Kejayaan pembinaan 

APTS dinilai menggunakan Spektroskopi Inframerah Transformasi Fourier (FTIR) dan 

sudut sentuhan air (WCA). Penilaian prestasi lekatan dinilai berdasarkan ujian rentas 

(ASTM D3359) dan ujian lucutan 180o. Perubahan elektrik, mekanikal dan tenaga 

permukaan dianalisis bagi menyiasat kedua-dua teknik boleh menyebabkan perubahan pada 

sifat-sifat tersebut. Hasil eksperimen menunjukkan lekatan yang lebih baik oleh kedua-dua 

kaedah. Kesan haba mempunyai kekuatan lekatan 4B/0.22 N/mm hingga 5B/0.55 N/mm 

ketika pengawetan dilakukan pada suhu 100oC hingga 140oC. TPU yang mempunyai lapisan 

APTS menunjukkan lekatan meningkat kepada 3B/0.17 N/mm. Kekonduksian dakwat 

konduktif perak meningkat dan kekerasan yang lebih rendah apabila suhu meningkat. 

Manakala perubahan kekonduksian dan kekerasan tiada perubahan ketara oleh dakwat 

konduktif dicetak diatas TPU yang mempunyai lapisan APTS. Perubahan tenaga permukaan 

TPU disebabkan kesan haba tidak memainkan peranan penting dalam meningkatkan 

lekatan. Peningkatan lekatan dipengaruhi oleh perubahan sifat terma TPU. Sementara itu, 

TPU yang mempunyai lapisan APTS menunjukkan sifat polar kerana wujudnya kumpulan 

fungsian kepala kutub yang membenarkan ikatan pertalian dengan zarah perak. 

Kebolehpercayaan dakwat perak dilaksanakan dengan mencetak pelbagai corak geometri 

(lurus, persegi, sinusoidal dan zig-zag) yang dibezakan dengan lebar (1 mm, 2 mm dan 3 

mm). Pengukuran elektromekanikal dilakukan dengan meregangkan corak secara manual 

sehingga hilang kekonduksian. Corak zig-zag dengan lebar 3 mm menunjukkan prestasi 

elektromekanikal yang sangat baik dengan regangan maksimum 7.78%. 
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1. CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research background 

Nowadays, improper electronic waste (e-waste) management has been drawing 

environmental and social concerns globally as it is reported to create threat towards  public 

health and the environment (Baibergenova et al., 2003; Grant et al., 2013; Fu et al., 2018; 

Esenduran et al., 2019). According to the Global E-waste Monitor, the continued growth of 

waste amount has resulted in it being exceeded the recycled one by 44.7 million metric 

tonnes  and is expected to gradually increase to 52.2 million metric tonnes by 2021 (Baldé 

et al., 2017). Besides that, estimation on the global level made by UN Environment 

Programme indicates that the amount of e-waste dramatically rises three times faster than 

other forms of municipal waste by generating 20-50 million tonnes per annum (Burke, 2007). 

This serious upstream of e-waste is because of the large consumption of electrical and 

electronic equipment (EEE) in daily life due to the urbanisation and industrialisation events. 

(Huang et al., 2009; Grant et al., 2013). 

Generally, printed circuit boards (PCBs) are core integral components in almost all 

EEE with their percentage usage varying from 3% to 6% (Zhou and Qiu, 2010). According 

to IPC’s World PCB Production Report, PCB industry achieved an estimated real growth of 

13.9% in 2017 and China reportedly dominated more than half of the world's production 

value (52.7%) (IPC, 2018). Huang et al. (2009) reviewed that the presence of advanced 

technology and intense marketing by China caused a rapid update rate of EEE and shortened 

its average lifespan, and lead to a dramatic increase in the amount of e-waste. Besides that, 
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several components exist in PCB wastes (brominated flame retardants (BFR), PVC plastic, 

and heavy metals) of which improper discarded activities can contribute to the generation of 

hazardous by-products, such as dioxins, furans, polybrominated organic pollutants, and 

polycyclic aromatic hydrocarbons, and the effects can get worse if these by-products leach 

into groundwater or soil (Huang et al., 2009). 

Consequently, environmental policies like Directive 2002/96/EC of the European 

Union (EU) for all EU member states, were established to ensure end-of-life (EOL) recovery 

system operated for e-waste recovery, and similar legislations have been adopted in non-EU 

member states as well (Directive, 2002). Moreover, the end destination of all e-wastes is 

controlled according to The Basel Convention of 1989, which was designed to minimise the 

globalised transboundary movement of hazardous waste and ensure environmentally sound 

management through reduction of generated waste by all parties (Kummer, 2017; Zoeteman 

et al., 2010). All the mentioned environmental policies on the waste of electrical and 

electronic equipment (WEEE) had been imposed globally to restrict disposal practices to 

non-Organisation for Economic Co-operation and Development (OECD) countries, yet the 

e-waste streams ended up in cheap waste disposable sites like China, India, and West Africa, 

and this has caused difficulty in achieving the sustainable objective (Zoeteman et al., 2010). 

Since a few years, recycling and recovery movement have been part of the solution in the 

management of e-waste at a global level. However, reusing and recycling printed circuit 

boards (PCBs) offered challenges in the separation of components and materials, due to the 

variety of attached components to serve their functions in the appliances. Electronic 

components need to be separated from the solder, which involved a complex process, and 

the application of temperature during dissembling makes components impossible to be 

reused. An improvement was introduced trough recycling process that was more efficient 

and had a less complex operation.  However, the implementation of this recycling process 
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still depended on awareness from various parties (such as industrial and consumer), which 

made the implementation of this effort difficult. Therefore, a continuous push for a better 

solution requires a way that can prevent any continuous adverse effects on the environment, 

and this can be achieved by substituting the traditional PCB with a new alternative 

(Esfandyari et al., 2015). 

Therefore, the effective alternative to replace PCB became centre attention among 

the researchers, and the most promising solution is the introduction of a flexible printed 

circuit (FPC) (Esfandyari et al., 2015; Leong et al., 2012; Tsai, 2014). Thermoplastics, as a 

part of flexible printed circuit components, has become an attractive material due to its 

advantageous features; it is non-toxic, lightweight, easy to process, has low production cost, 

and most importantly, recyclable (which is an important factor that resolves the 

environmental concern). The conductive ink that can directly cure on the substrate gives an 

advantage as it can eliminate the soldering processes that cause harmful effects on the 

environment. The general environmental aspects of printable electronics have been reviewed 

by Kunnari et al.  (2009). They concluded that the material exhibits good efficiency during 

the production as no extra material is involved, which eventually leads to less produced 

waste. Furthermore, its development stage promises minimum involvement of hazardous 

substances compared to the traditional electronic production as all material used ends up on 

the surface of the substrate. In addition, recyclability is possible as the fabricated component 

is a printed electronic, which is more environmentally friendly compared to the conventional 

one (Kunnari et al., 2009).  

Flexible printed circuit (FPC) is a component that comprises the patterned 

arrangement of printed circuits and components on the flexible base substrate, which is 

layered up by optional flexible coverlay (IPC, 1996). FPC allows new prospects to be 

introduced in the field in which future electronics will be tolerant under large deformation 
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of bending. Furthermore, the research and development (R&D) efforts within this field will 

ultimately create potential in facilitating extreme device applications, which will pave the 

way for medical applications such as conformable healthcare applications and conventional 

consumer electronics such as sensor and displays. The flexibility properties displayed by 

FPC are mainly gained from polymer substrate as an underlayer, for example, polyimide (PI) 

(Bouhamed et al., 2017), thermoplastic polyurethane (TPU) (Cruz et al., 2016), and 

polydimethylsilane (PDMS) (Chun-Yi and Ying-Chih, 2016), which  has recently gained 

interest among researchers. Their  properties, which are good tensile strength, low moisture 

absorption, low cost, and excellent dimensional stability, make them the best candidates for 

the designation of microelectronic devices (Bennet and Kim, 2014; Cardoso et al., 2001; 

Couty et al., 2012; Inagaki et al., 1996). Besides that, the conductive ink that will be printed 

on FPC, should have a certain extent property that shows the capability to withstand several 

degrees of deformation. Stretchable conductive ink is the ideal conductor material that is 

used to fabricate flexible printed circuit, with metallic-type filler being one of the best 

electrical conductors (Harris et al., 2015; S. Park et al., 2013).  

In the electronic industry, the conductive circuit is an essential part of the printing 

circuit board (PCB) (Kim et al., 2007). Therefore, the fabrication of conductive patterns on 

flexible substrate is necessary for the manufacture of flexible printed electronic devices. 

Advances in flexible materials and electronics have resulted in the printing technology 

starting to take over the conventional manufacturing processes, such as photolithographic 

and electroless deposition, of conductive circuits. The processes which involved complex, 

high-cost processing, and generation of a large quantity of chemical waste are causing 

drawback in industry line. On the contrary, the rise of printing technology in electronic 

industries simplify the processes by enabling fast and cost-saving electronic fabrication 

(Wade et al., 2018). The success of this technology is reflected through the development of 




