
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a posprint version of the following published document: 

 

Beltrametti, M.C., Sendra, J.R., Sendra, J. & Torrente, M. 2020, “Moore-

Penrose approach in the Hough transform framework”, Applied 

Mathematics and Computation, vol. 375, art. no. 125083. 

 

 

Available at https://dx.doi.org/10.1016/j.amc.2020.125083 

 

 

© 2020 Elsevier 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://dx.doi.org/10.1016/j.amc.2020.125083


The final version of this paper appears in [M.C. Beltrametti,
J.R. Sendra, J. Sendra and M. Torrente. Applied Mathemat-
ics and Computation 375 (2020) 125083] and it is available at
https://doi.org/10.1016/j.amc.2020.125083.

This article is dedicated to the memory of our friend and colleague Pro-
fessor Mauro C. Beltrametti who passed away unexpectedly on November,
2019; he introduced us in the exciting field of the Hough Transform.

Moore–Penrose approach in the Hough transform framework
Abstract

Let F (x,a) be a real polynomial in two sets of variables, x, a. Assume
that the polynomial is linear with respect to one set, say a, of variables. Given
a data set of points D in the real affine space Ax, we use the Moore–Penrose
pseudo inverse real matrices approach to address the question of finding a point
a? in the affine set Aa of parameters such that the algebraic locus of equation
F (x,a?) = 0 provides the best fit of D. This allows us to deal with the questions
of finding a region in the parameter space and bounding the sampling distance
of the discretization of the region, which in turn consititute main issues in the
Hough transform framework, a standard pattern recognition technique to detect
loci in images.

keywords: Mutivariate polynomial, pesudo-inverse matrix, perturbed system, Hough
transform, parameter region detection, parameter region discretization
MSC 2010: 15A09,14Q10, 68W30, 68T10

Introduction

Let F (x,a) ∈ R[x,a] be a real polynomial in two sets of variables x = (x1, . . . , xn) and
a = (a1, . . . , at), let An

x (the image space) and At
a (the parameter space) be real affine

spaces of coordinates x and a, respectively. In this paper, we address the following
question.

Assume that we are given a data set D of N points in the image space An
x,

with N � t, such that F (x0,a) is not constant for every x0 ∈ D. We
then want to determine a point a? ∈ At

a such that the algebraic locus of
equation F (x,a?) = 0 provides the best fit of D.

A strong motivation comes from the Hough transform framework, a standard pat-
tern recognition technique to detect curves in images. In this regard, specializing x and
a in given points p ∈ An

x and λ ∈ At
a, respectively, the polynomial F := F (x,a) gives
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rise to polynomials fp(a) := F (p,a) ∈ R[a] and fλ(x) := F (x,λ) ∈ R[x], whence one
has two families of zero loci

F := {Γλ := fλ(x) = 0}λ∈At
a
⊂ An

x and H := {Γp := fp(a) = 0}p∈An
x
⊂ At

a.

For sufficiently general points p ∈ An
x and λ ∈ At

a, it turns out that Γλ and Γp are
hypersurfaces in An

x and At
a, respectively. Moreover, according to the Hough transform

terminology, Γp is called Hough transform of p w.r.t. the family F .

Let’s highlight the Hough transform technique. Given a profile of interest P in
the image space (typically, either a curvilinear profile in A2

x or a superficial profile in
A3
x, pointed by a data set D of points), the aim is to detect a hypersurface from the

family F best fitting the profile P . A distinguished peculiarity of the Hough transform
technique consists of being quite robust against the noise that, in general, affects the
data set D. Two crucial steps of the method are made up of finding a region T in the
parameter space (where looking for the point a? ∈ At

a we aim to determine), and a
discretization δ of T (since, in most cases, it happens that ∩pj∈DΓpj = ∅). A voting
procedure then provides the cell, or cells, of the discretization achieving the maximum
number of crossing among the Hough transforms Γpj of the points pj belonging to D.
Depending on the goodness of the choice of both the region T and the discretization δ
(and, of course, of the family F , that is, of the polynomial F (x,a)), the center of the
cell a? = (a?1, . . . , a

?
t ) ∈ At

a gives rise to the hypersurface Γa? from the family F best
approximating the profile P .

Indeed, under the crucial assumption we made all over throughout the paper that
the polynomial F (x,a) is linear in the set of variables a, if the points of the data
set D we start from are either exact (that is, the data set D is given with absence
of noise) or only affected by small perturbations, then the standard Moore–Penrose
approach applies to answer the question posed above. However, in general, specially
in applications, one cannot expect to receive the data set exactly. Thus, in this case,
the Hough transform technique plays a crucial role.

The paper is organized as follows. In Section 1 we recall some basic results on
Moore–Penrose pseudo-inverse real matrices. In Section 2 we address the question
posed above assuming that the points of D are either exact or non-exact with no
background noise. In Section 3, we consider the general and abstract setting made up
of a multivariate polynomial F := F (x,a) ∈ R[x,a], x = (x1, . . . , xn), a = (a1, . . . , at),
linear in the variables a, together with a given data set of exact points D ⊂ An

x. Via
the Moore–Penrose method we detect a region T in At

a corresponding (w.r.t. the
variety V (F )) to the data set D. We also provide a goodness criterion for the region
T (see Subsection 3.1). Section 4 is devoted to the more general non-exact case in
presence of background noise. In such a generality the Moore–Penrose method is not
anymore suitable to address the question of optimally fitting the data set D, so one
needs to employ the Hough transform technique. However, a specialization of our
previous results discussed in Section 3 applies to detect a suitable region T in the
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parameter space, offering this way an answer to one of the typical problems in the
Hough transform setting. In Subsection 4.2 we validate the result providing as well
illustrative examples (e.g., see Example 4.2). Finally, in Subsection 4.3, we consider a
further task in the Hough transform framework, by suggesting an upper bound for the
discretization of the region T needed to perform the voting procedure, as previously
highlighted. Throughout the paper some illustrative examples are provided.

An up to date list of references covers the considered topics. The computations in
this paper were performed using Maple 2018 and CoCoA [1].

1 Background material

In this section we fix some terminology and we recall general facts on the Moore–
Penrose solution of a linear system. As far as the Hough transform framework is
concerned we refer for instance to [21, Section 5], [11] and [17].

1.1 General setting

Let K be either the field of complex numbers C or the field of real numbers R (in
the applications, K = R). Let F := F (x,a) ∈ K[x,a] be a polynomial in two set of
variables x = (x1, . . . , xn) and a = (a1, . . . , at), let An

x(K) and At
a(K) be affine spaces

over K of coordinates x and a, and let V (F ) be the algebraic locus (the incidence
variety) defined in An

x(K)× At
a(K) by the equation F = 0.

From now on, we will call An
x(K) and At

a(K) the image space and the parameter
space, respectively. We will denote by p = (x1(p), . . . , xn(p)) ∈ An

x(K) and λ =
(λ1, . . . , λt) ∈ At

a(K) given points in An
x(K) and At

A(K), respectively. We put

fp(a1, . . . , at) := F (x1(p), . . . , xn(p)); a1, . . . , at) ∈ K[a],

and
fλ(x1, . . . , xn) := F (x1, . . . , xn;λ1, . . . , λt) ∈ K[x].

We will assume that both fp(a1, . . . , at), fλ(x1, . . . , xn) are non-constant polynomials.
According to the nowadays well known terminology in the Hough transform setting

(see [3], [4]), we say that the Hough transform of p (w.r.t. V (F )) is the locus

Γp := {fp(a1, . . . , at) = 0} ⊂ At
a(K). (1)

We also set
Γλ := {fλ(x1, . . . , xn) = 0} ⊂ An

x(K),

and we consider the familly

F := {Γλ}λ∈At
a(K) ⊂ An

x(K). (2)
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If K = C, the algebraic loci Γp and Γλ are of course hypersurfaces in At
a(K) and

An
x(K), respectively. In the real case K = R, the same is true for sufficiently general

points in At
a(K) and An

x(K) (see [22, Prop. 2.25]).
Clearly, the following duality condition holds true

p ∈ Γλ ⇐⇒ f(p;λ) = 0⇐⇒ λ ∈ Γp. (3)

Corollary 1.1 Let F be the familiy of hypersurfaces as above. Then for any fixed
point p ∈ An

x(K), one has ⋂
p∈Γλ

Γp 3 λ.

Proof. It immediately follows from condition (3).
From now on through the paper, unless otherwise specified, we assume that K = R.

1.2 Moore–Penrose pseudo-inverse

Moore–Penrose pseudo-inverses were introduced simultaneously by Moore in [16], and
by Penrose in [19]. Since then, this type of generalized inverses has been extensively
studied and applied in many different contexts (see e.g. [5], [6], [14]). In this paper, we
will use Moore–Penrose inverses of real matrices (for Moore–Penrose pseudo-inverses
over other fields we refer to [23]), and we are specially interested in the Moore–Penrose
inverse property of providing the best approximate solution of linear matrix equations
(see [20] and [14, pp. 257–258]).

Let A ∈ M(m,n;R) be an m × n matrix with real entries. The Moore–Penrose
pseudo-inverse A† is the n×m matrix defined by the conditions

1. AA†A = A

2. A†AA† = A†

3. (AA†)T = AA†

4. (A†A)T = A†A

Moreover, in the case when m ≥ n and the matrix A is of full rank n (that is, A
has linearly independent columns, the situation we will find in the applications), the
matrix A† can be expressed by the algebraic formula:

A† = (AA)−1AT . (4)

The pseudo-inverse matrix A† provides the least squares solution to a system of
linear equations

Ax = b

as follows (here x, b denote column vectors (x1, . . . , xn)T , (b1, . . . , bm)T , respectively):

z = A†b. (5)
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Under the assumptions made, the system may have no solutions or, if it does, the
solution is unique. The following inequality of the Euclidean distances holds true:

‖Ax− b‖2 ≥ ‖Az − b‖2, (6)

for each x ∈ Rn and z = A†b. In the sequel, we also refer to z = A†b as the “Moore–
Penrose solution” of Ax = b.

1.3 Perturbed linear system

In the sequel we use the following general fact. With the notation and assumptions as
in Subsections 1.2, let Ax = b be a linear system with A ∈M(n× n;R) of rank n and
b ∈M(n× 1;R). Let

(A+ ∆A)(x+ ∆x) = b+ ∆b (7)

be a perturbed linear system, where ∆A ∈ M(n × n;R) and ∆b ∈ M(n × 1;R) are
perturbations of A and b, respectively, and x+ ∆x denotes the solution of (7). Then,
the following fact holds true (see [13, p. 383]).
Theorem 1.2 let Ax = b be a full rank square linear system, and let (A+ ∆A)(x̃) =
b + ∆b be a perturbed system, where x̃ = x + ∆x. Let p > 1 be a real number. If
‖A−1‖p ‖∆A‖p < 1, then

‖∆x‖p
‖x‖p

≤ cp(A)

1− cp(A)‖∆A‖p‖A‖p

(
‖∆A‖p
‖A‖p

+
‖∆b‖p
‖b‖p

)
,

where cp(A) := ‖A‖p‖A−1‖p.

2 A fitting problem

With the notation as in Subsection 1.1, let F (x,a) ∈ R[x,a] be a polynomial in the two
series of variables x = (x1, . . . , xn) (coordinates in the image space An

x), a = (a1, . . . , at)
(coordinates in the parameter space At

a). From now on, we need the polynomial F (x,a)
to be linear w.r.t. the set of variables a. Furthermore, we assume that we are given a
data set D of N points in the image space, with N � t, such that for every x0 ∈ D it
holds that F (x0,a) is not constant.
Question 2.1 The problem essentially consists in determining a point a? ∈ At

a such
that the hypersurface defined by F (x,a?) from the family F as in (2) provides the best
fit of D.

In general, in practice, one cannot expect to receive the data set D exactly. More
precisely, we will consider two different types of noises in the data set:

(a) perturbation noise, consisting in random perturbations of the points’ location
of the elements in D. That is, perturb each coordinate of each point (x, y) in
this database by means of a Gaussian distribution N (0, σ2) with zero mean and
standard deviation σ (see Figure 1, left panel).
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(b) background noise, consisting in points on the image space that appear in D,
according to a uniform distribution, and, or, points in D that do not follow, in
the sense of not being closed to, the shape sought (see Figure 1, right panel).

Figure 1: Ellipsoid E of equation f(x, y, z) = x2 − 2x + 13
9

+ 1
4
y2 + y + 1

9
z2 − 4

9
z = 0

with data set consisting of small perturbation noise (green points, left panel), and with
background noise (blue points, right panel).

We will distinguish among the exact case (none noise, neither perturbed nor back-
ground) and the the non-exact case. Within the non-exact case, we still may distinguish
between two different situations depending on the existence, or not, of background noise
in the data set. We will say that D has background noise if there exists a significant
(w.r.t. some threshold depending on the context) subset of points in D of type (b) as
above, and that D has no background noise otherwise (see also Section 4). Both the
exact case and the non-exact case without background noise can be treated via the
Moore–Penrose approach.

2.1 The exact case

In this context, we assume the ideal situation where there exists a particular tuple
a0 ∈ At

a such that F (x,a0) is not constant and such that for all x0 ∈ D it holds that
F (x0,a0) = 0; that is, D is included in the variety defined by F (x,a0). Let Γx0 denote
the Hough transform of x0 ∈ Rn (w.r.t. V (F )), i.e., Γx0 is a hyperplane in the affine
parameter space At

a defined by F (x0,a) (see Subsection 1.1). In this situation, the
following regularity property holds true (see [4], [3]):⋂

x0∈D

Γx0 = {a0}. (8)
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Therefore, in this ideal case, to compute the tuple a0 providing the hypersurface in
the image space, described by D, one simply needs to compute the intersection of the
hyperplanes in (8), that is, to solve the linear system

{F (x0,a) = 0}x0∈D. (9)

Let us illustrate this claim by the following toy example.

Example 2.2 We consider the ellipsoid E given by

f(x, y, z) = x2 − 2x+
13

9
+

1

4
y2 + y +

1

9
z2 − 4

9
z.

Using a rational parametrization of E we randomly generate a data set D of 100 exact
points on E (see Figure 2). Now, we consider the polynomial

Figure 2: Data set D (red points) and ellipsoid E in Example 2.2.
.

F (x,a) = x2 + a1y
2 + a2z

2
2 + a3xy + a4xz + a5yz + a6x+ a7y + a8z + a9 (10)

representing all quadrics normalized in x2. Of course, in general, one may lose infor-
mation if the correct answer is not of the form (10). Nevertheless, this is not really
a difficulty since one can either work projectively in a or use two different normaliza-
tions. Then {Γx0}x0∈D provides a linear system of 100 equations in the 9 unknowns
{a1, . . . , a9}. The system however has a unique solution, namely

a0 =

(
1,

1

4
,
1

9
, 0, 0, 0,−2, 1,−4

9
,
13

9

)
,

and hence f(x, y, z) = F (x, y, z,a0) is the solution. �
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2.2 The non-exact case without background noise

Let D be a non-exact data set without background noise in the sense previously stated.
Then, as in the exact case, the Hough transform {Γx0}x0∈D provides the linear system
(9) of N equations in t unknowns. Let us write (9) as:

AaT = A(a1, . . . , at)
T = b, where A ∈M(N, t;R), b ∈M(N, 1;R). (11)

In general, the data set D is big enough to ensure that N � t and that the points in D
are “sufficiently general”, that is, the coefficient matrix A associated to the system (11)
is of full rank t. We then compute a “solution” via the Moore–Penrose pseudo-inverse,
say

a† = A†b. (12)

In this situation, as pointed out in Section 1.2, the method returns F
(
x, (a†)T

)
as the

best fitting variety for D within the family F (x,a). Let us illustrate by two examples
the case of data sets without background noise.

Example 2.3 We consider the same ellipsoid E as in Example 2.2 and we take a
non-exact data set D, without background noise, with 200 points. Indeed, it is the
one shown in Figure 1 (left). Applying the Moore–Penrose approach w.r.t. to the

Figure 3: Ellipsoid E as in Example 2.2 and ellipsoid E† of equation (13), respectively.
Data set as D in Example 2.3 (green points).

polynomial F (x,a) as in (10) we get the ellipsoid E† defined by

x2 − 4305xy

407698
− 1539xz

1088650
+

11121 y2

45770
− 473 yz

1237796
+

8261 z2

75728

−65424x

32437
+

8033 y

8148
− 10868 z

24879
+

19951

13780
.

The usual Euclidean distance in R9 between the coefficients of the defining polyno-
mials of E and E† is ≈ 0.026 (see Figure 3). �
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In the previous examples, the data set was generated artificially from a particular
ellipsoid. In the next example, the data set is taken from the AIM@SHAPE repository
[24].

Figure 4: Left panel: data set (blue and red points) of the ant. Right panel: data set of
the ant head.

Figure 5: Ellipsoid E† and data set D in Example 2.4 (blue points).

Example 2.4 We consider the data set taken from the AIM@SHAPE repository, and
representing an ant (see Figure 4). Our goal here is to detect the best ellipsoid fitting
the head of the ant. Moreover, we consider D as the corresponding subset of points
defining the head (see Figure 4). We note that #(D) = 308. Since there is no back-
ground noise we apply the Moore–Penrose method described above to get the ellipsoid
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E† defined by the polynomial (see Figure 5):

x2 +
20327xy

124120
− 66581xz

75703
+

27881y2

33037
+

2380yz

28481

+
66837z2

36527
+

12472x

43717
+

28343y

35136
+

11666z

65967
+

12459

71767
.

�

To treat the non-exact case in presence of background noise we need some more
results. We discuss this in the next section.

3 Detecting a region in the parameter space

In this section, we use the same notation and assumptions as in Section 2. Here we
address the following question.

Assume that we are given a data set D of N points in the image space
An
x , with N � t, such that for every x0 ∈ D it holds that F (x0,a) is

not constant. The goal is to find a region in At
a corresponding (via the

variety V (F )) to the cloud of points D ⊂ An
x, that contains a good fitting

parameter value a?0.

To this end we consider the following method based on the Moore–Penrose pseudo-
inverse notion.

(1) Randomly choose ν subsets Dk of D of cardinality Mk ≥ t, k = 1, . . . , ν.

(2) For each subset Dk consider the linear system of size Mk × t in the variables
a = (a1, . . . , at) defined by

Sk := {F (x0,a) = 0}x0∈Dk
, k = 1, . . . , ν. (13)

Since the points have been randomly chosen, we can assume the associated coef-
ficients matrix Ak is of full rank t.

(3) Apply the Moore–Penrose approach described in Section 1.2 to each data set Dk,
to compute the corresponding Moore–Penrose solution zk as in (5) of the linear
system Sk, k = 1, . . . , ν. This way, we find ν points z1, . . . , zν in the parameter
space At

a.

Let’s consider the following “extreme” example.
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Example 3.1 (Data set of points on a plane curve) Consider the polynomial
F (x, y; a1, a2) in the variables x = (x, y), a = (a1, a2), linear in the variables a. Fix a
curve C(a1,a2) : f(a1,a2)(x, y) = 0 (for instance, a line of equation x+ a1y + a2 = 0), and
consider a data set D of (distinct) points belonging to C(a1,a2). Thus, the region in the
parameter space corresponding to D reduces to the single point (a1, a2) ∈ A2

a, since all
the solutions zk as in (13) coincide with that point. �

We note that property (6) certifies the goodness of the choice of the points zk we
found, implying that

• F (x, zk) would provide the best fitting of Dk, k = 1, . . . , ν.

Then we can conclude that, given a data set of points D in the image space, the Moore–
Penrose approach provides the optimal solution zk via the polynomial F w.r.t. each
single subset Dk ⊂ D in the parameter space. Thus, it is natural to ask how good the
Moore–Penrose approach is w.r.t the whole data set of points D. To this purpose, we
suggest a measure to certify the goodness of the choice of the points as follows.

3.1 Convex hull goodness criterion

We require here the further assumption that {D1, . . . ,Dν} is a partition of D, that is,
D = ∪νk=1Dk and Di ∩ Dj = ∅ for i 6= j.

• Letting Dk = {p1, . . . , pMk
}, we consider the linear system

F (p1,a) = · · · = F (pMk
,a) = 0,

that we rewrite in the form Aka
T − bk = 0, where Ak ∈MMk×t(R), k = 1, . . . , ν.

• For k = 1, . . . , ν, we compute the Moore–Penrose solution zTk = A†kbk of Aka
T −

bk = 0. Inequality (6) yields

‖AkzTk − bk‖2 ≤ ‖AkaT − bk‖2, for each a ∈ At
a.

• Consider the convex hull ∆ = 〈z1, . . . , zν〉 defined by the generated set of points
z1, . . . , zν . Each point a0 belonging to ∆ can be expressed as linear combination
of the points z1, . . . , zν , that is

a0 = α1z1 + · · ·+ ανzν

for non-negative real numbers (depending on a0) α1, . . . , αν such that
∑ν

k=1 αk =
1.
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• Letting D = {q1, . . . , qN}, we consider the linear system

F (q1,a) = · · · = F (qN ,a) = 0,

that we rewrite in the form AaT − b = 0, where A ∈ MN×t(R), aT ∈ Mt×1(R)
and b ∈MN×1(R).

• Up to reordering the data set D, we can assume that:

A =

A1
...
Aν

 and b =

b1
...
bν


• For any given point a0 ∈∆ let us compute

‖AaT0 − b‖2 ≤
ν∑
k=1

‖AkaT0 − bk‖2

=
ν∑
k=1

‖Ak (α1z
T
1 + · · ·+ ανz

T
ν )− bk‖2

=
ν∑
k=1

∥∥∥∥∥
ν∑
j=1

αjAkz
T
j −

ν∑
j=1

αjbk

∥∥∥∥∥
2

=
ν∑
k=1

∥∥∥∥∥
ν∑
j=1

αj(Akz
T
j − bk)

∥∥∥∥∥
2

≤
ν∑
k=1

(
ν∑

j=1, j 6=k

αj‖AkzTj − bk‖2 + αk‖AkzTk − bk‖2

)

≤
ν∑
k=1

(
ν∑

j=1, j 6=k

αj max
j=1...ν,j 6=k

‖AkzTj − bk‖2

)
+

ν∑
k=1

αk‖AkzTk − bk‖2

≤
ν∑
k=1

max
j=1,...,ν, j 6=k

‖AkzTj − bk‖2 +
ν∑
k=1

αk max
k=1,...,ν

‖AkzTk − bk‖2 =

=
ν∑
k=1

max
j=1,...,ν, j 6=k

‖AkzTj − bk‖2 + max
k=1,...,ν

‖AkzTk − bk‖2 =: B (14)

• We then conclude that the evaluation F (x,a0) of the polynomial F (x,a) at each
given point a0 ∈ ∆ is bounded by∥∥∥∥∥∥∥

F (q1,a0)
...

F (qN ,a0)


∥∥∥∥∥∥∥

2

≤ B, (15)

where B is the quantity, only depending on z1, . . . , zk and F , defined as in (14).
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Definition 3.2 (Convex hull goodness criterion) In the situation as above, let ε > 0
be some threshold depending on the context. We say that the generated set of points
z1, . . . , zν is optimal w.r.t. the whole data set of points D, or that the region ∆ is good,
if the inequality (15) holds true with B < ε.

We illustrate the convex hull criterion in the following example.

Example 3.3 We consider the data set D of Example 2.4 and we fix ε = 0.75.
Following the steps outlined above, we compute the convex hull ∆ in the param-
eter space and we apply to it the convex hull goodness criterion. We work with
ν ∈ {5, 10, 15, 20, 25} subsets Dk of D of cardinality #(Dk) = Mk ≥ b#D

ν
c, where b·c

denotes the floor function. In particular, we choose Mk = b#D
ν
c, for k = 1, . . . , ν − 1,

and Mν = #(D)− (ν−1)b#D
ν
c so that

∑ν
k=1Mk = #(D). For each data set, we repeat

the computation of the convex hull ∆ and the quantity B defined in (14) for N = 1000
different choices of the partition {D1, . . . ,Dν} of D. We gather the results in Table
1, where Bav denotes the arithmetic average of the quantity B computed for the N
random partitions of the set D. According to Definition 3.2, one sees that the regions
∆ are good for ν = 5, 10, 15.

ν 5 10 15 20 25
Bav 0.2508 0.3508 0.5980 1.2400 1.8202

Table 1: The arithmetic average Bav of the quantity B computed for N = 1000 random
partitions of cardinality ν of the data set D, in the cases ν = 5, 10, 15, 20, 25.

4 The non-exact case in presence of background

noise

In this section, we use the same notation as in Section 2. So, we are given a polynomial
F (x,a), in two different sets of variables x and a, describing different shapes for each
particular tuple a ∈ Rt, as well as a data set D ⊂ An

x that contains both perturbation
noise and background noise. Let us express D as

D = DP ∪ DB, (16)

where DB contains the background noise points, and DP the perturbation noise. Also,
let us denote by NP = #(DP ) and NB = #(DB) the cardinalities of DP and DB,
respectively. If

NB/(NP +NB) ≤ ε (17)

for a certain tolerance ε depending on the context, we may consider the data set without
background noise and hence the direct Moore–Penrose approach, described in Section
1, can be applied. In the sequel, we assume that the presence of background noise
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is relevant, so, from now on, we need a different method, especially robust against
background noise, based on the notion of the Hough transform of a point of the image
space w.r.t. the variety V (F ).

Clearly, in presence of background noise, the Moore–Penrose approach is not suit-
able to solve Question 2.1. In this case, the method based on the Hough transform, a
standard pattern recognition technique for detection of profiles in images, turns to be
a quite accurate and robust method (we refer to [10], [3, Section 6], [15, Section 4], [21,
Section 5], [27, Section 6] and [11] for full details and further references with special
regard to a 2-dimensional image plane, and to [4] for a more general view).

4.1 Highlighting the Hough transform technique

To give an idea of the technique, let us consider the well established case of detection
of curves in 2D images (e.g. see [3], [15]). Then, let P be a profile of interest in the
image plane A2

x, x = (x, y), pointed by a data set D ⊂ A2
x of points pj’s. The Hough

transform technique detects a curve from a family F = {fa(x, y)} best approximating
the profile. A pre-processing step of the method consists of a standard edge detection
technique on the image (see [8] for full details). This step reduces the number of points
of which one has to compute the Hough transform (see Subsection 1.1). Because of the
presence of noise and approximations (due to the floating point numbers representation
encoding the real coordinates) of the points pj’s extracted from a digital image, and
consequently on their Hough transforms Γpj(F), in practice in most cases it happens
that ∩jΓpj(F) = ∅; though we notice that there are regions in the parameter space
with high density of Hough transform crossings. Then a discretization of a bounded
region of the parameter space At

a is required, which possibly exploit bounds on the
parameters values a. To find such bounds detecting the region of the parameter space
to be considered is indeed one on the more critical issues of the method; in Subsection
4.2 we propose how to choose a suitable region. A last step is usually performed using
the so called “voting procedure” which allows us to constructs the accumulator function
in the discretized parameter space, such that the value of the accumulator in a cell of
such a space corresponds to the number of times the Hough transforms of the points in
the data set reach that cell. As a final outcome of the algorithm, the parameter values
a? characterizing the hypersurface from the family F := {Γλ}λ∈At

a
(see equation (2))

to be detected in the image space is given by the parameter values identifying the cell
where the accumulator function reaches its maximum. A further critical issue is then
to find a suitable sampling distance for the discretization; an upper bound for it is
discussed in Subsection 4.3.

4.2 Certifying points in the parameter space

Notation and assumptions as in Section 3. We aim to find a t-dimensional hyper-
rectangle in At

a corresponding (via the variety V (F )) to the given data set of points
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D = {p1, . . . , pN} ⊂ An
x. Note that the minimal number of points in general position

in At
a whose convex hull is a t-dimensional hyperrectangle is t + 1, while the number

of its vertices is 2t. We specialize our generating points procedure as in Section 3 to
the case t+ 1 ≤ ν ≤ 2t, as follows.

(1) Randomly choose ν subsets Dk of D of cardinality Mk ≥ t, k = 1, . . . , ν, with
t + 1 ≤ ν ≤ 2t. Then apply the Moore–Penrose approach described in Section
1.2 to each data set Dk to compute the corresponding Moore–Penrose solution
zk of the linear system Sk as in (5), k = 1, . . . , ν. In this way, we find ν points
z1, . . . , zν in the parameter space At

a.

(2) Consider the axis-aligned minimum bounding box H of the points z1, . . . , zν , that
is, the minimal t-hyperrectangle containing z1, . . . , zν subject to the constraint
that its edges are parallel to the (Cartesian) coordinate axes. Let h = (h1, . . . , ht)
be the vector of the edge distances of H along the a1, . . . , at axes, and let a0 be
the center of H . Set

hmin := min{h1, . . . , ht} and hmax := max{h1, . . . , ht}.

(3) We proceed by certifying the quality of a point by means of a voting pro-
cess. Several voting procedures are nowadyas present in the literature. A
main reference is a Matlab-based software freely available at the following URL:
http://mida.dima.unige.it/g−software−htbone.html, described in [7].

Our voting process is different and it is based on the results in [25], [28, Section
5] (see also [27, Section 6]. Let’s us briefly recall our procedure in the present
context.

Consider the following steps.

• Let ε > 0 be fixed, let a0 ∈ At
a and let Γx0 be the hyperplane defined by

f(a) := F (x0,a) for a given x0 ∈ D. Then:

(a) Theorem 3.2 and Remark 3.3 in [28] provide a bound, B1, that depends
on ε, a0 and f(a), such that if |f(a0)| > B1 then Γx0 does not pass
through the ∞-ball centered at a0 and of radius ε.

(b) Theorem 4.6 and Remark 4.7 in [28] provide a bound, B2, that depends
on ε, a0 and f(a), such that if |f(a0)| < B2 then Γx0 does pass through
the ∞-ball centered at a0 and of radius ε.

• Set fi(a) := F (pi,a), and let the hyperplanes Γ1, . . . ,ΓN of At
a be the voters,

where Γi := {fi(a) = 0}, i = 1, . . . , N .

• For i = 1, . . . , N , apply item (a) with ε :=
hmax

2
and item (b) with ε :=

hmin

2
.

Precisely,

(a) If |fi(a0)| > B1, then Γi votes no, and its vote value is vi = 0.
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(b) If |fi(a0)| < B2, then Γi votes yes, and its vote value is

vi =
|B2 − |fi(a0)||

B2

.

Note that the vote increases when the difference between B2 and |fi(a0)|
increases, being the maximum value of the vote 1, which is achieved
when fi(a0) = 0, i.e., when a0 ∈ Γi.

(c) If none of the above conditions are satisfied, the vote is vi = 0.

Let us denote by Vote(a0) the final scrutiny of votes:

Vote(a0) :=
N∑
i=1

vi. (18)

In other words, Vote(a0) is a weighted average of the number of hyperplanes
crossing the ∞-ball centered at a0 and of radius hmin

2
.

Following [15, Subsection 5.1], where a different voting procedure was used (see
also [27, Section 6]), we measure the goodness of the point a0 as follows. Fix a
percentage, say p%.

Definition 4.1 (Points goodness criterion) In the situation as above, we say that the

point a0 is good if Vote(a0) >
pN

100
.

In the following we illustrate the method by some further examples.

Example 4.2 In Example 2.4 we have worked with a data set DP of 308 points with
only perturbation noise representing the head of an ant. Now, we take this set DP , and
we introduce a new data set DB with background noise. Then we apply our method to
the new data set D := DP ∪ DB to determine a region of interest H in the parameter
space. We choose ν subsets Dk of D of cardinality Mk, with ν = d0.4× 29e = 205 and
we fix Mk = 15, k = 1, . . . , ν. In order to verify whether the output hyperrectangle H
is valid, we will check whether the coefficients tuple E† of the solution ellipsoid as in
Example 2.4 of equation

x2 +
20327xy

124120
− 66581xz

75703
+

27881y2

33037
+

2380yz

28481
+

66837z2

36527

+
12472x

43717
+

28343y

35136
+

11666z

65967
+

12459

71767

belongs to H . Furthermore, we repeat the experiment for different cardinalities of DB
satisfying condition (17) with ε = 0.8, in the first three cases of Table 2, and with
ε = 0.9 in the fourth case of the table (see also Fig. 6). The region H generated for
each of the cases treated in these examples are shown below. For this purpose, instead
of giving the 29 vertices of T we provide the center a0 of H and the vector h of its
edge distances, as follows.
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NP +NB NP = #(DP ) perturbation noise NB = #(DB) background noise

514 308 60% 206 40%
770 308 40% 462 60%
1540 308 20% 1232 80%
3080 308 10% 2772 90%

Table 2: Percentages of perturbation and background noises treated in Example 4.2.

• Background noise = 40% (Figure 6, panel (a)):
a0 = (−0.440,−1.21,−0.292,−0.567,−1.01,−0.0250,−0.250,−0.871,−0.0739)
h = (4.55, 8.71, 6.08, 6.47, 8.78, 3.55, 5.17, 5.46, 1.60)
It holds that E† ∈H and ‖E† − a0‖2 = 3.04

• Background noise = 60% (Figure 6, panel (b)):
a0 = (−0.854, 0.283,−0.194, 1.18,−0.0333, 0.0667,−0.743, 0.260,−0.121)
h = (4.96, 6.43, 6.61, 7.51, 6.07, 3.47, 5.09, 4.34, 1.21)
It holds that E† ∈H and ‖E† − a0‖2 = 2.06

• Background noise = 80% (Figure 6, panel (c)):
a0 = (−0.103, 0.659, 0.333,−0.896, 0.0757, 0.384,−0.149,−0.0649, 0.0444)
h = (2.24, 3.54, 3.62, 5.54, 2.90, 2.48, 2.45, 2.42, 1.02)
It holds that E† ∈H and ‖E† − a0‖2 = 1.17

• Background noise = 90% (Figure 6, panel (d)):
a0 = (−0.139, 0.164,−0.134,−0.0476,−0.0521, 0.286,−0.125, 0.0417,−0.135)
h = (1.94, 2.53, 3.23, 4.76, 2.23, 2.29, 2.25, 1.92, .930)
It holds that E† 6∈ H , but the distance ‖E† − a0‖2 = 1.67 is not too big with
respect to the context. �

Remark 4.3 (Goodness of fit) Related to the general Question 2.1, a crucial task in
detection of curves (hypersurfaces) in images in presence of noise is, of course, to certify
the goodness of fit in the image space An

x. Let’s add a comment for the general case
n ≥ 3.

Following a nowadays standard procedure on which the Hough transform technique
is founded, one first constructs the bounding box H in the parameter space At

a, for
instance as described in Subsection 4.2. Next, one considers a discretization δ (a
regular grid of points samples) of the region of interest H , where δ = (δ1, . . . , δt) is the
vector of the sampling distances along the a1, . . . , at axes. Let C(λ) be a cell of the
discretization δ, i.e., C(λ) is the∞-ball of center a point λ ∈H and of radii δ1

2
, . . . , δt

2

along the a1, . . . , at axes. Then the region H is partitioned into a finite set of cells
C = {C(λ)}. Now, with the notation as in definition (18), set

µ(C(λ)) := #{i ∈ {1, . . . , N} | Γi ∩C(λ) 6= ∅}.
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(a) Background noise = 40%. (b) Background noise = 60%.

(c) Background noise = 80%. (d) Background noise = 90%.

Figure 6: Data set D = DP ∪ DB with different percentages of background noise as in
Example 4.2, Table 2: DP , perturbation noise (green points); DB, background noise,
(blue points).

We then choose C(a?) ∈ C such that µ(C(a?)) is maximum, and we output as optimal
fitting of the data set D the hypersurface Γa? from the family F defined by F (x,a?)
as in (2).

In the case n = 2, a measure of the goodness of fit, based on a notion of “good
point” analogous to Definition 4.1, was proposed in [15, Subsection 5.1] and [27, Section
6]. In particular, the goodness of fit criterion from [15] verbatim extends to n ≥ 3 as
follows.

Consider the subregion H ′ ⊂ H consisting of the union of the cells C(λ), of the
given discretization λ of H , whose centers λ are good in the sense of Definition 4.1
(w.r.t. a fixed percentage p). First, extract from the original data set D the points
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whose Hough transforms cross H ′, that is, set

D′ := {pi′ ∈ D, i′ ∈ {1, . . . , N ′} | Γp ∩H ′ 6= ∅}.

Next, for each index i′, compute the minimum Euclidean distance di′ between the point
pi′ ∈ D′ and the recognized hypersurface Γa?

di′ := min
x∈Γa?

{‖pi′ − x‖2}.

Finally, define the GoF measure

GoF :=
1

N ′

N ′∑
i′=1

di′ .

For a fixed familly F = {Γa} of hypersurfaces as in (2) and for the detected hypersur-
face Γa? from the family, the GoF measure provides a quantitative evaluation of the
detection error (see [15, Subsection 5.1] for more comments and illustrative examples
in the case n = 2). �

4.3 An upper bound for the sampling distance of the dis-
cretization

We provide here an upper bound for the discretization step of the region H of the
parameter space At

a(R) constructed as in Subsection 4.2 (we also refer to [27, Section
5] for a different approach based on the results of [29]). We proceed as follows.

(1) Since the polynomial F (x,a) ∈ R[x,a] is linear in the parameters a =
(a1, . . . , at), it can be written in the form

F (x, a1, . . . , at) = f1(x)a1 + · · ·+ ft(x)at − ft+1(x),

for some fr(x) ∈ R[x], r = 1, . . . , t+ 1.

(2) Let X = {p1, . . . , pt} be a set of t points from the data set D in the image space
An
x(R) as in (16) of Section 4 such that the linear system

f1(p1)a1 + · · ·+ ft(p1)at = ft+1(p1)
...

...
...

f1(pt)a1 + · · ·+ ft(pt)at = ft+1(pt)

(19)

is of full rank t.
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(3) Write the system (19) in the form A(a1, . . . , at)
T = b, where

A =

f1(p1) . . . ft(p1)
...

...
f1(pt) . . . ft(pt)

 and b =

ft+1(p1)
...

ft+1(pt)

 ,

so that the solution is
a = A−1b.

(4) Consider perturbations ∆p1, . . . ,∆pt of the points of X such that, for some pos-
itive real value ε < 1,

‖∆pj‖∞ ≤ ε, j = 1, . . . , t. (20)

(5) We search for the solution of the perturbed linear system in the variables ar+∆ar,
r = 1, . . . , t,

f1(p1 + ∆p1)(a1 + ∆a1) + · · ·+ ft(p1 + ∆p1)(at + ∆at) = ft+1(p1 + ∆p1)
...

...
...

f1(pt + ∆pt)(a1 + ∆a1) + · · ·+ ft(pt + ∆pt)(at + ∆at) = ft+1(pt + ∆pt).

(21)
For r = 1, . . . , t + 1, j = 1, . . . , t, consider the formal Taylor expansion of the
polynomial fr(x) at pj + ∆pj,

fr(pj + ∆pj) = fr(pj) + grad(fr)(pj)∆pj + O(ε2),

that is, fr(pj + ∆pj) = fr(pj) + grad(fr)(pj)∆pj neglecting contributions of order
O(ε2). Thus, by a first-order error analysis, the system (21) can be written in
the form

(A+ ∆A)

a1 + ∆a1
...

at + ∆at

 = b+ ∆b,

where

∆A =

grad(f1)(p1)∆p1 . . . grad(ft)(p1)∆p1
...

...
grad(f1)(pt)∆pt . . . grad(ft)(pt)∆pt


and

∆b =

grad(ft+1)(p1)∆p1
...

grad(ft+1)(pt)∆pt

 .
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(6) By using standard relations between norms and the sub-multiplicative property
(see [14, §2.3.1]), compute

‖∆A‖∞ = max
j=1,...,t

{ t∑
r′=1

∣∣grad(fr′)(pj)∆pj
∣∣}

≤ max
j=1,...,t

{ t∑
r′=1

‖grad(fr′)(pj)‖1 ‖∆pj‖∞
}
.

Whence, recalling bound (20),

‖∆A‖∞ ≤ ε
(

max
j=1,...,t

{ t∑
r′=1

‖grad(fr′)(pj)‖1

})
=: ε B′. (22)

Similarly, compute

‖∆b‖∞ = max
j=1,...,t

{∣∣grad(ft+1)(pj)∆pj
∣∣}

≤ max
j=1,...,t

{
‖grad(ft+1)(pj)‖1 ‖∆pj‖∞

}
≤ ε

(
max
j=1,...,t

{
‖grad(ft+1)(pj)‖1

})
=: ε B′′. (23)

From now on, we need to assume

ε < min

{
1

B′‖A−1‖∞
, 1

}
. (24)

Hence, in particular,

‖A−1‖∞ <
1

ε B′
.

Then, from bound (22), we get

‖A−1‖∞ ‖∆A‖∞ < 1.

Therefore, Theorem 1.2 applies to give, for the solution a of the linear system (19),

‖∆a‖∞
‖a‖∞

≤ c∞(A)

1− c∞(A)‖∆A‖∞‖A‖∞

(
‖∆A‖∞
‖A‖∞

+
‖∆b‖∞
‖b‖∞

)
, (25)

where c∞(A) := ‖A‖∞‖A−1‖∞. Thus, by combining (25) with bounds (22), (23), and
recalling that ε < 1, we find
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‖∆a‖∞
‖a‖∞

≤ c∞(A)

1− c∞(A)
ε B′

‖A‖∞

(
ε B′

‖A‖∞
+
ε B′′

‖b‖∞

)

≤ c∞(A)

1− c∞(A)
B′

‖A‖∞

(
ε B′

‖A‖∞
+
ε B′′

‖b‖∞

)

= ε

 c∞(A)

1− c∞(A)
B′

‖A‖∞

(
B′

‖A‖∞
+
B′′

‖b‖∞

) =: ε B. (26)

Finally, we then obtain the bound

‖∆a‖∞ ≤ ε
(
‖a‖∞ B

)
, (27)

with the quantity B defined as in (26).
To conclude, as final step, we randomly choose N sets Xα = {p1

α, . . . , pt
α}, α =

1, . . . , N , of t points from the data set D in the image space An
x(R), as done in step (2)

of the procedure described above. Therefore, with clear meaning of the symbols, our
argument provides N bounds

‖∆aα‖∞ ≤ ε
(
‖aα‖∞ Bα

)
, α = 1, . . . , N.

One then may consider as candidates for the discretization δ = (δ, . . . , δ) in the
parameter space, with the same sampling distance δ along the a1, . . . , at axes, one the
following:

1. Up to renaming the indices α’s, we can assume that

‖a1‖∞ B1 ≤ · · · ≤ ‖aα‖∞ Bα ≤ · · · ≤ ‖aN‖∞ BN .

Then take the discretization δ of sampling distance

δmedian := ε
(
‖as‖∞ Bs

)
if N = 2s+ 1 is odd,

and

δmedian := ε
(‖as‖∞ Bs + ‖as+1‖∞ Bs+1

2

)
if N = 2s is even.

2. Consider the discretization δ of sampling distance δmean := ε
(∑N

α=1 ‖aα‖∞ Bα
N

)
.

Practical examples show that δmedian is a more suitable discretization step (clearly
enough, other possible values as either δmin := ε

(
minα=1,...,N

{
‖aα‖∞ Bα

})
or δ =

δmax : ε
(

maxα=1,...,N

{
‖aα‖∞ Bα

})
does not look appropriate).

To conclude this section, we provide some illustrative examples.
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Example 4.4 In the affine plane A2
(x,y)(R) we consider the family F = {Ca}, a =

(a1, a2, a3, a4), of cubic curves of equation

Ca : x2 = −a3y
3 + a4y

2 − a1y + a2,

for t = 4 real parameters a1, a2, a3, a4, with a3 positive. The general curve of the
family is non-singular, so that it is an elliptic curve.

In the image plane A2
(x,y)(R) we consider a set D of 636 points represented in

Figure 7. The data set D has been taken from [25, Example 6.4] and from [15] (see
Figure 3, upper panels, in [15]), after an edge detection processing and extracting the
set of points lying in the box [−3, 3] × [−3, 3]). We note that the points of the set

-4,4 -4 -3,6 -3,2 -2,8 -2,4 -2 -1,6 -1,2 -0,8 -0,4 0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4

-2,4

-2

-1,6

-1,2

-0,8

-0,4

0,4

0,8

1,2

1,6

2

2,4

Figure 7: Data set D in Example 4.4.

D are given with four exact decimals, so that the component-wise difference between
two points of D has to be (if not zero) greater than 10−4. This suggests that the
quantity ‖∆pj‖∞ as in formula (20) has to be of the order ‖∆pj‖∞ ≈ 10−4

2
= 5× 10−5,

j = 1, . . . , t.
We use the procedure described in Subsection 4.3, where the polynomial F (x,a) ∈

R[x,a], x = (x, y), is now

F (x, y, a1, a2, a3, a4) = x2 + a3y
3 − a4y

2 + a1y − a2.

We then randomly choose N = 2000 subsets Xα = {p1
α, p2

α, p3
α, p4

α}, α = 1, . . . , N ,
of t = 4 points from the data set D in the image space A2

(x,y)(R) and we compute the

corresponding bound ε
(
‖aα‖∞ Bα

)
, α = 1, . . . , N , distributed as in the histograms

represented in Figure 8. We observe that more than 88% of the subsets satisfy the
assumption (24).

The value of δmedian is shown in the Table 3, where for completeness and comparison,
we include the candidates δmin, δmean, δmax for the sampling distance of the discretization
in the parameter space.

In Figure 9 we consider a profile of interest P highlighted by the data set D as in
Figure 7, and the curve (in red) from the family F best approximating P and detected
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(a) (b)

Figure 8: (a) Histogram of the distribution of the bounds ε
(
‖aα‖∞ Bα

)
, α = 1, . . . , N =

2000, computed in Example 4.4. (b) Plot of histogram (a) obtained by using the bounds
values that fall in the interval [0, 10]. The red line shows where the discretization step
candidate δmedian is located.

ε value δmin δmedian δmean δmax

ε = 5× 10−5 0.0026 0.2337 247.2576 9.0291× 104

Table 3: Values of δmin, δmedian, δmean, δmax for the sampling distance of the discretiza-
tion in the parameter space.

via the Hough transform technique by using the RECOGNITION algorithm as in [25],
with discretization δ = (0.1, 0.1, 0.1, 0.1) (see Section 6, Figure 6.4). We then compare
such a curve with the elliptic curve from the same family (in green) obtained in the
same way by using the discretization δ of sampling distance δmedian = 0.2337 as in
Table 3.

Example 4.5 In the affine space A3
(x,y,z)(R) we consider the family F = {Ea}, a =

(a1, . . . , a9) of ellipsoids of equations

Ea : x2 + a1y
2 + a2z

2
2 + a3xy + a4xz + a5yz + a6x+ a7y + a8z + a9 = 0

for t = 9 parameters a1, . . . , a9, as in Example 2.2. In the image space A3
(x,y,z)(R) we

consider a set D of 514 points represented in Figure 6, high-left panel. We note that
the points of the set D are given with ten exact decimals, so that the component-wise
difference between two points of D has to be (if not zero) greater then 10−10. This
would suggest that the quantity ‖∆pj‖∞ as in formula (20) has to be of the order

‖∆pj‖∞ ≈ 10−10

2
= 5× 10−11, j = 1, . . . , t.

Again, we use the procedure described in Subsection 4.3, where the polynomial
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5
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5000
y + 7237

2500
.

F (x,a) ∈ R[x,a], x = (x, y, z), is now

F (x, y, z,a) = x2 + a1y
2 + a2z

2
2 + a3xy + a4xz + a5yz + a6x+ a7y + a8z + a9.

We then randomly choose N = 2000 subsets Xα = {p1
α, p2

α, . . . , p8
α, p9

α}, α =
1, . . . , N , of t = 9 points from the data set D in the image space A3

(x,y,z)(R) and

we compute the corresponding bound ε
(
‖aα‖∞ Bα

)
, α = 1, . . . , N . The value of δmedian

is shown Table 4, where for completeness and comparison, we include the candidates
δmin, δmean, δmax for the sampling distance of the discretization in the parameter space.
For the threshold ε we consider bigger values than the “expected” order ≈ 10−11 men-
tioned above, since otherwise the value of δmedian looks probably too small and therefore
producing a too big number of cells, with a consequent too high computational burden
in the voting procedure of the Hough transform technique.

ε value δmin δmedian δmean δmax

10−10 4.1761× 10−8 3.6263× 10−6 0.2500× 10−3 2.9658
10−8 4.1973× 10−6 3.3565× 10−4 5719× 10−1 72725× 102

10−6 3.8398× 10−4 3.780× 10−2 3.0459× 10 1.9627× 104

10−4 2.5700× 10−2 2.9408 1.2368× 102 4.7188× 104

Table 4: Values of δmin, δmedian, δmean, δmax for the sampling distance of the discretiza-
tion in the parameter space.
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