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Abstract: Nanomaterials have demonstrated a wide range of applications and recently, novel biomed-
ical studies are devoted to improving the functionality and effectivity of traditional and unmodified
systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for
wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile
tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes
hold outstanding physiochemical characteristics, such as high specific area and porous structure
that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological
systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have
been combined with several polymers and employed for various nano-treatments for specific human
diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in
the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing.
Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.

Keywords: iron oxide nanoparticles; nanomaterials; nanotreatment; nanocarrier; drug delivery;
tissue engineering; wound dressing

1. Introduction

Transferring from the macro-sized world to nano-sized materials seems to change the
world immensely, and the fast-growing advances in nanotechnology have led to excellent
clinical achievements [1]. Nanotechnology offers tremendous applications in biomedical
engineering for loading therapeutic cures, specifically in cancer treatments. Thanks to their
unique surface features, nanoparticles (NPs) can offer a promising platform for loading
therapeutic agents in drug delivery systems [2–8]. The interaction of NPs with biological
systems has offered the simultaneous possibility of targeted drug delivery, monitoring, and
therapy. Anti-cancer loaded Nanocarriers could escape from the recognition of the reticu-
loendothelial system (RES), increasing circulation time makes them more preferable than
the traditional cancer therapies, such as chemotherapy, by enhancing drug accumulation at
tumor sites to reduce systemic toxicity. Free anti-cancer drugs damage health cells which
cause harmful side effects [9,10]. Additionally, nanomaterial-based carriers improve the
oral bioavailability and solubility of the chemotherapeutic agents and lessen the required
administrated doses of drugs [11–14]. Another merit of nano delivery systems is their
ability to decrease drug resistance, which could be employed to treat resistant cancers by
utilizing co-delivery systems [15]. Hence, nanocarriers could be used in drug delivery
systems to load the therapeutic agent, protect it from physicochemical degradation, target
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ligands because of their functional groups, enter the cells, and release the anti-cancer agent
with high therapeutic efficiency.

In contrast with other inorganic NPs (e.g., gold and carbon-based NPs), magnetic
NPs can be decomposed to Fe, especially in acidic cell compartments (such as lysosomes),
declining the potential long-term toxicity of NPs [16]. Additionally, iron oxide nanoparticles
(IONPs) can be coated in a core-shell structure to prevent their agglomeration as a cluster.
In this way, they could be gradually eliminated from the bloodstream [17]. The surface
coating also improves the vascular permeability of the drug and facilitates its transport
across the endothelial barrier [18]. It can also attach to particular aptamers or antibodies
to target specific cells. The modified surfaces could offer diverse targeted moieties such
as peptides, antibodies, and small molecules that can be conveniently coated on magnetic
nanoparticles’ surfaces thanks to the intrinsic magnetic features [19,20].

Iron oxide has unique properties that make it an attractive nanoparticle in biomedical
applications [21–23]. Especially, Fe2O3 nanoparticles can enhance the stability and perme-
ability of therapeutic agents through tissues, bringing about a high circulation time [24].
Consequently, applying Fe2O3-based nanocarriers presents an efficient treatment with less
drug dosage requirement. Additionally, according to their capacity for loading drugs,
they would provide controlled release of drugs, which minimizes toxicity and eliminates
overdosage by increasing the accumulation of the medicine in non-healthy sites [25]. Hence,
these advantages, alongside the biocompatibility of Fe2O3 NPs, have attracted a signifi-
cant amount of attention among the researchers during past few decades. Characteristics
of these NPs depend on their morphology and crystal structure, size, and preparation
route [26].

As a transition metal oxide, iron oxide possesses a variety of stoichiometric and
crystalline structures, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), Hematite (α-Fe2O3),
Barite, (β-Fe2O3) maghemite, and (ε-Fe2O3) magnetite wüstite (FeO) [27]. Hematite (α-
Fe2O3) has shown the highest stability at ambient conditions due to its small bandgap
(2.0–2.2 eV). A hematite crystal consists of iron atoms surrounded by six oxygen atoms
(hexagonal). Two-thirds of the hexagonal interstices in α-Fe2O3 are occupied by Fe3+ cations
in the (001) basal planes, leaving the tetrahedral sites unoccupied, while oxide ions (O2−)
reside along the (001) plane of a hexagonal closed-packed lattice. This cationic arrangement
would lead to the formation of pairs of FeO6 octahedrons, whose edges are shared by three
neighboring octahedrons of the same plane and one face with an octahedron in an adjacent
plane along the (001) direction [28]. With C3v symmetry, Hematite exhibits two Fe-O bond
lengths. Tauc plot reveals the indirect bandgap for the α-Fe2O3 involving d-d transitions
and a direct transition from O (2p) to Fe (3d) occurring for Eg > 3.2 eV [29]. Hematite is an
environmentally friendly n-type semiconductor (Eg = 2.1 eV) with diverse applications in
lithium-ion batteries, water treatment, gas sensors, photocatalysis, and water splitting for
H2 generation.

The fundamental of targeted delivery of anti-cancer agents is enhancing permeability
and retention (EPR), and one of its techniques is taking advantage of the physiological
differences between normal and tumor cells. For example, cancerous sites have lower pH
(5.4) in comparison with healthy ones’ (pH 7.4). Facilitating pH-responsive systems is an
amazing way to enhance the accumulation of drugs in tumors. Surface modifications of
Iron oxide nanoparticles, mainly because of their high specific area and porosity, make
them a great candidate for being used as pH-sensitive vehicles in drug delivery systems
(DDSs) [30]. Furthermore, the magnetic properties of iron oxide NPs can be applied as a
novel route for delivering drugs and optimizing their dispensation through an exterior
magnetic field to guide iron oxide-based nanocarriers to deliver drugs into a specific
location in the body. Magnetic guidance can also boost the drug release at the tumor
site [31].

In addition, magnetic nanoparticles have electrocatalytic features that give rise to
rapid readout in redox-responsive delivery systems [32]. Controlled disassembly of
redox-responsive drug delivery system results in rapid release of encapsulated medicines.
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Nanocarriers can be functionalized by enzyme-labile connections to achieve an on-demand
enzyme-sensitive drug release system to decrement the adverse effects of therapeutic agents.
An efficient enzyme-sensitive nanosystem can penetrate tumor tissues with odd features
such as leaky vasculature and various enzyme expression profiles. Relevant enzymes can be
employed to prepare Fe2O3 NPs with promising features. Due to their endogenous nature,
enzymes exhibit superior selectivity and catalytic features in various biological processes.
Therefore, they have been widely explored as target agents in diverse endogenous and
exogenous stimuli-sensitive systems [33]. Moreover, enzyme sensitivity increases both
the rate of drug release into the tumor and the amount of drug that accumulates within
it. Thus, redox responsive dual-stimuli responsive DDSs can enhance anti-cancer therapy
by raising drug accumulation, promoting tumor targeting, and accelerating drug release.
Further stimuli can be incorporated into redox reactive delivery systems to control release
and minimize the side effects effectively [34].

In addition, to enhance mechanical and biological performances, nanoparticles, be-
cause of their small size that helps them to simulate extracellular matrix components of
tissues, have been used recently in tissue engineering as substitutes for damaged and
diseased tissues [35].

Specifically, different structures of iron oxide nanocomposites have a high surface-to-
volume ratio, which has increased their application in this field of biomedical engineering.
This feature can increase drug loading and entrapment efficiency and can cause a gradual
drug release pattern [36,37]. It should be noticed that the extended surface area is pro-
duced in iron oxide nanocomposites due to the addition of iron oxide nanoparticles to the
prepared hydrogels, in other words, by adding iron oxide nanoparticles to the fabricated
hydrogel, these nanoparticles introduce porosity to the system and the final iron oxide
nanocomposites would be a porous platform with a considerable ratio of surface area
to volume. The BET assessment that has been carried out by Nurul Hidayah et al. [38],
revealed a significant increase in the specific surface area of reduced graphene oxide from
25 m2/g to 51 m2/g after incorporation with iron oxide nanoparticles.

For example, the physical and chemical properties of Fe2O3 nanoparticles can apply
growth factors are applied to scaffolds to induce bone-forming cell regeneration that
would overcome the difficulties of producing complicated organs such as bones [39,40].
Furthermore, for tissue engineering applications, scaffolds needed to be porous for better
mass transportation of O2, CO2, and other nutrients with extended surface area [41,42].
These requirements can be perfectly fulfilled by employing iron oxide nanoparticles in the
structural fabrication of the scaffolds.

In addition, iron oxide nanoparticles benefit shapes and non-toxic nature that make
them applicable for wound healing, too. They could be used in wound dressing materials
to stimulate the movements through the different healing phases in acute and chronic
wounds [43]. Moreover, some characteristics of IONPs including spacious surface, high
specific area, and porous structure give the Fe2O3-based nanocomposites and hydrogel
higher absorption capacity, water, and oxygen permeability [44–46]. These special features
of IONPs can introduce an applicable wound dressing for biomedical applications.

Potential of Fe2O3 for being functionalized and coated by suitable polymers for making
these NPs non-toxic, super magnetic, biocompatible, and biodegradable, introducing
them as the best materials for biomedical applications including drug delivery (magnetic-
sensitive), tissue engineering (bone tissue regeneration), and wound dressing. In this study,
different structures and specific characteristics of IONPs were examined, and previous
investigations on their advanced biomedical applications were reviewed.

2. Structure of Iron oxide Nano Particles

Fe2O3 and Fe2O3-based materials with diverse sizes and shapes (NPs, nanotubes,
nanorods, spindles, hollow, and porous nanostructures) were prepared by hydrothermal,
chemical precipitation, sol-gel, anodization, and thermal decomposition approaches. The
hydrothermal method is desirable as it offers efficient control of size, morphology, and
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agglomeration while lower impurities enter the hydrolyzed product. It also benefits from
relatively low reaction temperature, cost-effectiveness, and environmental compatibility.
Moreover, Fe2O3 possesses two interchangeable crystalline forms (α-Fe2O3 and γ-Fe2O3).
The structure of α-Fe2O3 is represented in Figure 1. At higher temperatures, γ-Fe2O3
(maghemite) can be transformed to α-Fe2O3 (Hematite) as α-Fe2O3 is the most thermo-
dynamically stable phase. The transition from α-Fe2O3 to γ-Fe2O3 requires a nitrogen
atmosphere with adequate temperature control or the application of a reducing agent. The
morphology generally remains unchanged by the transition between α-Fe2O3 and γ-Fe2O3,
which could be an applicable approach to provide the controllable preparation of Fe2O3
with a modulated crystalline structure. There are a variety of magnetic phenomena in the
α-Fe2O3, which is due to the exchange bias and memory effects. Furthermore, in small
Fe2O3 nanoparticles (smaller than 10 nm), superparamagnetic behavior and spin-glass
properties are observed [47]. These hexagonal-structured nanoparticles are chemically
active, avoid clearance by immune cells, and have a noticeable retention time, electri-
cal conductivity, and biocompatible nature, all of which make them good candidates for
biomedical applications [48,49].
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3. Drug Delivery Application of Fe2O3-Based Nanocomposites

In biomedical settings, pH-responsive systems may benefit from inducing physio-
chemical alterations due to the wide range of pH values seen in the human body [27,50,51].
Gastric passage elevates pH in oral medication delivery systems, including insulin admin-
istration, causing acrylic-based polymers to expand and discharge the medicine [52]. A
negatively charged surface would be formed in pH 7.4 settings, causing the nanoparticle to
discharge the loaded medicine. This is another advantage of functionalized nanoparticles
with positively charged surfaces that trigger anionic drug loading at lower pH [53]. By
covering Eudragit-S100 polymer using ibuprofen-loaded Fe2O3 magnetic mesoporous
silica nanocomposites tablets, Xing et al. [54] create a dual-stimulus-responsive platform.
Nanoparticles with tailored releasing capability were created by the magnetic characteris-
tics of Fe2O3 when used in conjunction with an externally applied magnetic field. More
medication was delivered into modeled proximal intestinal fluid when the pH-sensitive
polymer was used, as opposed to modeled stomach fluid.

pH-responsive mechanisms may also be used at the cellular level. DNA and other ther-
apeutic compounds are damaged when the pH of early endosomes, sorting endosomes, and
multivesicular bodies drops rapidly following endocytosis [55]. Injury caused by intracellu-
lar distribution may be avoided using polymers that safeguard endosomal compartments.
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A group led by Alexander et al. [56] using γ-Fe2O3@polymerized 2-(dimethyl amino) ethyl
methacrylate developed dual-responsive core-shell nanoparticles for plasmid DNA delivery
throughout CHO-K1 cells. Researchers found that, compared to polyethyleneimine, mag-
netic core-shell nanoparticles might experience bidirectional pH-dependent temperature-
induced aggregation and enhanced efficacy of gene transport with no extra cytotoxic effects.
Chemotherapy, which is the typical cancer treatment strategy, can assault both diseased and
normal cells due to the application of nonspecific targeting medicines [57]. By increasing
the specificity of drug-loaded NPs and ameliorating permeability and retention (EPR)
events, intelligent pH-responsive platforms can help reduce complications [58,59].

Tumors develop rapidly, accumulating lactic acid and lowering the pH of these areas
(pH 4–6) in comparison to physiological status (pH 7.4) [50,60]. The highly expanded
surface area, appropriate porosity, and capacity to be coated by polymers as core-shell
nanoparticles make Fe2O3 NPs such an ideal carrier for pH-responsive drug delivery
platforms, moreover, there is a potential for the reduction of Fe2O3 based nanocarriers for
loading biomolecules (Figure 2) [61–66]. These characteristics provide sufficient room for
loading antitumor medications. Regarding the delivery of doxorubicin, Sheng et al. [67]
created polyethylene glycol-functionalized γ-Fe2O3 nanoparticles, then tested for pH
influences on drug distribution and alternating magnetic field treatment. They observed
that total discharges were 32 and 63% at pH levels of 7.2 and 5.5, respectively. Daunorubicin
hydrochloride was loaded into a γ-Fe2O3/ZnO nanocomposite by Maiti et al. [63], and then
drug delivery was measured at pH 5.5 and 7.5. When used as a model for tumor locations,
the acidic setting aided in the drug delivery. To make things even better for medication
distribution, mesoporous ZnO can load large amounts of medicines. With curcumin
anticancer medication, Patil and colleagues created functionalized chitosan-coated γ-Fe2O3
nanomaterials activated by a change in pH [68]. They found that the discharge frequency at
pH 6.0 was approximately 20% higher than at pH 7.4, suggesting the nanocarrier’s capacity
for cancer treatment. Various proportions of oxidized pectin/chitosan were loaded in nano
γ-Fe2O3 to improve the antitumor properties of the 5-FU medication by Li et al. [69] pH
levels below 7 and temperatures greater than 36.5 ◦C demonstrated the system’s pH and
thermo-sensitivity by showing a larger swelling frequency. The MMT test against L929 and
MCF-7 cell cultures was used to determine the synthesized composite’s biocompatibility
and cancer-killing abilities. Due to this, 5-FU may be more effectively targeted, and its
anticancer capabilities are enhanced when the oxidized pectin/chitosan/γ-Fe2O3 NPs
are used.
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The exceptional electrochemical redox capabilities of magnetic nanoparticles may be
attributed to their substantial electrocatalytic characteristics in a single structure and their
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composites. It may be formed by optimizing factors, including the transmission of ions by
solid NPs because of their high penetration, which accelerates internal dispersion’s phase
changes [32]. With the help of their redox capabilities, magnetic nanomaterials can gather
and concentrate the desired electrochemical data for quick reading [70].

The most often employed NPs in this sector are γ-Fe2O3 (oxidized state, Fe3+) and
Fe3O4 (two oxidized states, Fe2+ and Fe3+) in MNMs-based composites, respectively [71,
72]. Magnetic nanoparticles and targets discovered by cyclic voltammetry influence the
electrodes’ predicted redox potential [73].

Poly (ethylene glycol) and poly(ε-caprolactone) disulfide bonds (PEG SS PCL) were
used to create biodegradable reduction-responsive micelles for the administration of super-
paramagnetic iron oxide (SP IO) nanoparticles and doxorubicin (a chemotherapeutic drug).
In the main chain of disulfide bonds, the amphiphilic deblock copolymer has redox reaction
characteristics. Doxorubicin (DOX) was loaded 32% throughout magnetic nanomicelles.
Consolidation of self-assembled PEG-PCL micelles with oleic acid and water was achieved
using coarse-grained molecular dynamics (CG-MD) modeling. In comparison, the hy-
drophobic and hydrophilic proportions of each copolymer block were identical, and each
oleic acid was similarly attached to magnetic nanomaterials [74].

To modulate camptothecin pharmaceutical discharge from the mesoporous silica
pathways and achieve a dynamic dual-mode MRI contrast, researchers employed su-
perparamagnetic iron oxide nanoparticles (SPION) coated by acid, oxidation stress, and
redox-sensitive manganese oxide (MnOx). The efficiency of responsive therapy has been
tested throughout pancreatic tumor cells and tumor-bearing animals, and results have
supported the performance of Non-vehicle MnOx-SPION@MSn@CPT fighting cells [75].
To further improve biodistribution and efficacy for convection-enhanced delivery (CED)
of BG to GBM, iron oxide superparamagnetic nanomaterials were developed. The nano-
materials (NPCP-BG-CTX) consist of a magnetic core surrounded by a surface coating of
redox-responsive chitosan-PEG copolymer altered by BG covalent attachment and peptide
chlorotoxin tumor (CTX). NPAC-BG-CTX demonstrated precise in vitro BG transport in
human GBM cells under decreased intracellular circumstances, allowing for controlled and
targeted BG discharge. MGMT activity and TMZ toxicity were significantly reduced in
cells administered with NPCP-BG-CTX. Animal studies in mice with primary human GBM
xenografts showed that CED from NPCP-BGCTX had good in vivo distribution volume
(Vd). When NPCP-BG-CTX and NPCP-CTX were used in conjunction, the mean survival
rate in both medicated and unprotected animals increased by three times [76].

Enzymes are widely used by internal stimulus-responsive nanocarriers since they
are involved in a wide range of biochemical and physiological mechanisms. Enzyme
transcription at specific places is critical in a variety of pathological processes. In addition
to indicating a sick condition, it may also be modified to transport medications with more
safety to the appropriate region and serves as a possible screening tool [33]. In contrast to
other stimuli, enzymatic processes are more powerful, efficient, and accurate, providing ex-
tra benefits by intracellularly participating in various metabolic reactions. The transcription
of enzymes, including proteases, phospholipases, hydrolases, and glucosidase, increases in
a variety of malignancies that use growth factors to increase cell populations. These specific
enzymes detect and split intelligent nanocarriers comprised of substances such as Fe2O3
to deliver the payload, namely the medicine, to the targeted place. Multifunctioning is
typically supported by adding more than one molecule to the surface of a material [77]. The
overexpression of MMP-14 in MMTV-PyMT cells was shown to be much more hazardous
than the downregulation of MMP-14 throughout fibroblasts. CLIO-ICT (a platform for iron
oxide nanocarrier) was produced by Ansari et al. [78], to be used as theragnostic nanoma-
terials for magnetic resonance imaging (MRI) and medication administration. CLIO-ICT
was created by linking an azademethylcolchicine (ICT) conjugator to an MMP-14-cleavable
region. MMP-14 overexpression caused considerable toxicity among MMTV-PyMT cells, as
seen by comparison to fibroblasts with modest frequencies of MMP-14 transcription.
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Furthermore, in MR imaging of MMTV-PyMT tumor-bearing mice given by CLIO-
ICT, preferential accumulation of nanomaterials in the cancerous site was detected. An
enzyme-response, multifunctional DOX-SMNP combination was produced employing
clicking chemical properties. Due to the upregulation of a specific enzyme in these live cells,
the chemotherapeutic drugs released by this SMNPs-combined medication are selectively
controlled. For the detection of intracellular drug delivery and tumor cell scanning, this
drug-loaded nanoparticle combination demonstrates a potential mixture of fluorescence
and magnetic resonance imaging methods performed in real time. Prospective uses of the
multipurpose drug-coated nanostructures include tumor-targeted medication delivery and
concurrent diagnostic or detection of therapeutic effects [79].

4. Fe2O3 in Magnetic-Responsive Drug Delivery Systems

Site-specific drug distribution may be achieved by directing IONs caused by a con-
fined external magnetic field, which makes use of the magnetic characteristics of iron
oxide nanomaterials. Several illnesses, including tumors and inflammation, have been
shown to benefit from this strategy [80]. To govern the nanomaterials’ passage through
the circulation and their concentration at the intended places, the magnetic reaction of
IONs is highly associated with their physicochemical qualities; more precisely, the satura-
tion magnetization of the manufactured nanostructures should be significant [81]. Some
scientific teams are creating magnetic nanocarriers with unique structural properties that
have examined this site-directed function. There was a publication in 2012 by the group of
Wagstaff et al. [82] about how to make gold-covered iron oxide nanomaterials loaded with
a platinum-containing chemotherapeutic agent (cisplatin). Coprecipitation and oxidation
of iron oxide nanocrystals resulted in the formation of maghemite during this investigation.
A technique known as “incremental hydroxylamine seeding” was used to cover the nano-
materials with gold [83]. Subsequently, thiolation was used to coat the particles. Earlier,
the same group discovered substances such as thiolated polyethylene glycol (PEG) link-
ers [84,85]. Eventually, robust coordination linkages involving the PEG linker were used to
load cisplatin onto the magnetic nanocarriers. Using a naked magnet, the nanocarriers were
tested in vitro and shown to have a 110-fold enhancement in cytotoxic effects on human
ovarian cancer cell lines A2780, as well as particular cell development suppression.

Unterweger et al. [86] created IONs coated with dextran/hyaluronic acid, which have
cisplatin-carrying IONs66. The loading of medications, including cisplatin, and the target-
ing of overexpressed CD44 receptors throughout malignant cells, were made possible by
applying hyaluronic acid (HA) [87]. Following the dextran-coated IONs amination, they
were covered by lower-molar mass HA (acquired via enzymatic breakdown of HA) [88]. Af-
ter forming a polymer-metal combination with HA, cisplatin was successfully incorporated
into the resultant nanocarriers, which were noted for their effective drug entrapment (43.2
± 0.2%). A beginning 30-minute explosive discharge was accompanied by an ongoing dis-
charge for 48 h, which was described by the researchers as being typical for surface-bound
drugs in their study. A substantial enhancement in drug delivery has also been evidenced
in the availability of hyaluronidases, which are extensively discovered in tumors and make
these nanostructures especially encouraging for tumor-targeted drug delivery [89]. This is
made even more promising by their regulation through magnetic power illustrated by the
uptake of nanomaterials containing a neodymium magnet. PVA-coated iron oxide nanos-
tructures loaded with doxorubicin have also been explored by Nadeem et al. [90], who
investigated the magnetic manipulation of IONs for specific drug delivery purposes. These
nanocarriers exhibited good management for magnetically directed medication delivery by
providing a magnetic flux. The antineoplastic medication mitoxantrone was adsorbed on
the HSA shell of iron oxide nanostructures (average inorganic diameter of around 7 nm)
synthesized by Zaloga et al. [91] using lauric acid (LA) and HSA coatings. Over 72 h, such
nanocarriers showed improved durability and linear discharge pharmacokinetics. Using
an in vitro magneto-guided approach, researchers were able to convincingly demonstrate
the site-specific curative impact of these nanocarriers [92].
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In a recent study, Jeon et al. [93] demonstrated the synthesis of polymerized β-
cyclodextrin covered IONs that, via host-guest association, were capable of loading poly-
merized paclitaxel (a chemotherapeutic medication renowned for its limited solubility in
water). Due to the strong magnetism of the produced nano assemblies, they may be used as
magnetically directed drug delivery platforms. The improved antitumor efficacy of these
platforms was shown in vivo throughout CT26-bearing mice due to magnetically-mediated
targeting.

Normal cells suffer adverse effects when the body’s temperature is elevated during
tumor hyperthermia therapy. An external magnetic field would allow for targeted hyper-
thermia, which reduces the damage to healthy tissues and reduces the needed medication
dosage [94,95]. External signals may act as a guide for transporting the medicine to the
tumor location and initiating pharmaceutical discharge [96]. Since malignant cells are less
resistant to temperature rise than healthy ones, utilizing MNPs in the carrier generates a
thermal flow that aids in the destruction of diseased cells [97,98]. An external source’s prox-
imity to the targeted region influences the magnetic-responsive drug delivery platform’s
precision; as tissue profundity increases, the required intensity magnetic flux decreases [99].
As a consequence, this technique is confined to surface organs and so cannot be used to treat
pulmonary or hepatic tumors [100]. Aside from that, frequencies greater than 8–16 kA.m−1

generate eddy currents that are damaging to normal organs [101,102]. Owing to their super
magnetic capabilities, biocompatibility, high specialized region, appropriate nano-sized
particulates, and lower toxic effects, Fe2O3 nanomaterials are one of the most promising
alternatives for magnetic-responsive devices according to the researchers [31,103,104] (Fig-
ure 3). Improved drug loading potential, increased carrier durability, and opportunity for
future functionalization might be achieved by coating iron oxide NPs using appropriate
polymers [67,105–108]. In vitro experiments using human hepatocarcinoma SMMC-7721
cells, Yan et al. [109] employed a combination of Fe2O3 nanomaterials and magnetic fluid
hyperthermia (MFH) and found that apoptosis was dose-dependent, and proliferation was
inhibited. Due to their absorption capabilities, Fe2O3 nanomaterials have magnetic sensitiv-
ity, which causes the magnetic fluid temperature to rise by around 7 ◦C. An AC magnetic
field was used to study the emission of heat from the nanohydroxyapatite matrix-encased
γ-Fe2O3 NPs. Investigations on the cytotoxic effects of human (sarcoma osteogenic) SAOS-2
cell lines in vitro demonstrated minimal toxicity, indicating that they may be employed in
magnetic hyperthermia [110].
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Due to low viral concentration in the targeted tissue, gene therapy faces a key draw-
back: delayed vector deposition [111]. The specificity can be improved by attaching targeted
ligands to viral particles; however, this is insufficient [112]. The difficulty may be solved
by introducing an exterior alternating current magnetic field to gene vectors. For this
technique of gene delivery, Scherer et al. [113] attached gene vectors to superparamagnetic
nanoparticles. Transduction effectiveness was shown to be great in vivo, and the delivery
time of genes was lowered to minutes, supporting the idea that magnetic field guidance
may be used to overcome fundamental obstacles. Fe2O3 uses in magnetic-responsive
biological devices are listed in Table 1.

Table 1. Some few biological uses of the newly developed magnetic-responsive devices containing Fe2O3.

Nanoparticles Usage Target Ref.

Fe2O3 Magnetic hyperthermia
human hepatocarcinoma SMMC-7721

cells in vitro and xenograft liver
cancer in nude mice

[109]

γ-Fe2O3 NPs (NPs) embedded in a
nanohydroxyapatite matrix Magnetic hyperthermia Human (Sarcoma osteogenic) SAOS-2

line-cells [110]

Phosphatidylcholine coated γ-Fe2O3 Magnetically-induced cell mobility colon cell lines [114]

a- Fe2O3 Drug carrier human lung fibroblasts (MRC5) cell
line [115]

SiO2/γ-Fe2O3 Magnetic hyperthermia BRL-3A cells [116]
γ-Fe2O3 nanosheets surface-modified

containing polyethylene glycol Ibuprofen delivery [117]

polyethyleneimine coated with iron oxide gene delivery [113]
hyaluronic acid– Fe2O3 Peptides delivery [118]

5. Biocompatibility and Toxicity of Fe2O3-Related Drug Carriers

The immunological system reaction after delivery and the inherent toxicity of the
carrier and/or biodegradation of metabolites are all variables that impact the biocompat-
ibility of a drug nanocarrier. Due to alterations in cell/tissue bioavailability and clear-
ance/metabolization related to the nanocarrier, the toxic effects pattern of the medication
may be raised or lowered. In physiological enclaves where the medication cannot disperse
on its own, aggregation may develop.

After drug delivery, there must be a rapid removal of drug-related colloids and their
breakdown products to minimize toxicological effects. Dosage, chemical constitution,
size, shape, solubility, surface chemistry, mode of prescription, biodegradability, phar-
macokinetics, and bioavailability are a variety of parameters affecting magnetic particle
toxicity [119].

The structure of the NP surface has a major role in the NP–cell association, as previ-
ously stated. The effectiveness of IONP cell absorption and internalization is a precondition
for enhanced medication administration, enhanced diagnostic efficiency, and other usages
of IONPs. When nanoparticles are incubated in a cell culture environment, it is possible
that they could change the pattern of cell attachment, which will have consequences for the
cell’s shape and cytoskeleton and its multiplication, differentiation, motility, and longevity
(Figure 4) [120–122].

When exposed to physiological circumstances, bare Fe2O3 nanocrystals create dam-
aging free radicals [123,124]. The cores of the magnets should be coated with additional
particles to circumvent this limitation. In this method, not only would the colloidal dura-
bility of the nanocomposite improve, but the performance probability of the experiment
would also rise. Throughout drug delivery platforms, low-toxicity coated iron oxides may
have an EPR impact on certain cells [125]. Particle accumulation may also be prevented by
using an appropriate covering [126].
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Figure 4. Fibroblasts were cultured on the surface of gel-based substrate (a), with 1.2% Al2O3 (b),
and with 1.2% Fe2O3 NPs (c). Cell nuclei and the cytoplasm were stained with DAPI and pyrazolone
yellow, respectively [122].

Magnetic Fe2O3-based nanomaterials were manufactured by Dumitrache et al. [127]
and contrasted to l-DOPA-coated nanostructures. Thermal conductance and distribution in
biological medium (physiologic pH) were much enhanced following coating. Dopamine
was used as a biocompatible surfactant in the research of Li et al. [128] to boost the durability
of a nanocomposite with a nucleus of α-Fe2O3. α-Fe2O3@dopamine was administered
to a mouse and was shown to be non-toxic to live cells when incubated with NIH3T3
cells. Furthermore, the PA indication of the mouse’s cerebral vascular system increased
when the created theragnostic platform was administered, compared to commercialized
contrast compounds. In vitro grown primary human fibroblasts (hTERT-Bj1) were used to
test the biocompatibility of IONPs with and without a PEG surface coating [129]. Without
PEG coatings, relative to the controls, the 50 nm diameter uncoated IONPs decreased
cell adherence by 64%; however, a significant alteration was not seen with PEG-coated
nanoparticles. Several cytoplasmic vacuoles with the disordered cytoskeleton and defective
and disrupted cell membrane were seen throughout the NP-incubated cells without coating.

Even though that they exhibited a greater cell absorption relative to uncoated NPs,
PEGylated MNPs, on the other hand, did not disrupt the fibroblast cytoskeleton. If PEG is
present on the particle surface, the NP/cell interaction will be altered, and this might be
due to variations in the kinetics of NP metabolic activities.

Comparable apoptosis and cytotoxicity were seen in hTERT-BJ1 primary human fi-
broblasts incubated with dextran-coated IONPs relative to those incubated with uncoated
IONPs [130]. There was no difference in cell absorption between dextran-coated and un-
coated NPs; however, the dextran-coated NPs were more likely to produce cellular mobility
and membrane rupture. In contrast to dextran-coated and uncoated NPs, albumin-coated
IONPs did not affect cell survival [131,132]. Since albumin interacts with membrane phos-
pholipids/fatty acids, the albumin-coated NPs just marginally disrupted the membrane.
Nonetheless, in comparison to the uncoated and dextran-coated nanoparticles, the toxicity
of such NPs was much reduced totally. A remarkable finding was that the albumin-coated
nanoparticles were internalized at a lesser rate compared to the uncoated and dextran-
coated particulates. This raises the possibility that the NP toxicity outlined above may
be influenced by the various amounts of intracellular particulate. In vitro studies have
shown that various particle sizes may have diverse impacts on cells. For example, relative
to 0.5-m-sized IONPs, 30-nm-sized types had much larger harmful impacts [133]. An effect
on cellular destruction was detected depending on cell size and dosage whenever the A549
alveolar epithelial cells were incubated.

Some of the changes in cell culture caused by NP incubation may be responsible for the
in vitro cytotoxic effects of MNPs M [134]. For example, the absorption of OH– ions onto
the surface of naked (uncoated) iron oxides causes these materials to be negatively charged
throughout the aqueous solution. Counterions may be attracted to the resultant electric
field, which may aid in protein adhesion. Furthermore, the presence of Cl– ions throughout
the cell culture media may potentially compete with the Fe, resulting in a change in the
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pH of the medium and the surficial properties of the nanoparticles. As a consequence of
these connections with the cell culture medium, which result in modifications, including
fluctuations in the ionic concentration and protein activity, cells may become detached
from the medium and die as a result. MNPs coated with a surface layer, on the other hand,
exhibit low interaction with their surrounding environment in the cell culture medium,
which is most likely since there are fewer sites available on the particle surface for protein
attachment [134].

The form and behavior of cells may be influenced by the IONP surficial charge or other
nanomaterials [135]. Endocytosis by multiple cell lines was boosted through the coating
of 10-nm-sized IONPs containing DMSA (anionic charge) [136,137], which decreased
cell adherence and survival of the PC12 pheochromocytoma cell line in a concentration-
dependent manner [138]. PC12 spherical cells start to develop into neuronal cells following
48 h of treatment with nerve growth factor (NGF), resulting in mature neuritis that reaches
the peripheral areas. The disruption of the cytoskeleton caused by anionic NPs, on the
other hand, prevented neurite development and resulted in a significant reduction in
the frequency of neurites formed per cell, as well as in the neuritis extent. Toxicities
associated with these anionic MNPs may be depending on concentration, as seen by a
reduction in GAP-43 protein production, which is linked to neuronal budding and neuronal
functioning. Besides, Figure 5 represents the scratch morphology altering with time for
a Fe2O3 based nanocomposite and shows the production impairment of endothelial cell
caused by PSC-Fe2O3.
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Figure 5. ROS scavenger AA conversed the function of endothelial cells happening EndMT. (a) AA
conversed tubule production impairment of endothelial cell caused by PSC-Fe2O3. (b) measurement
of endothelial meshes (n = 3). (c) pictures of scratch morphology altering with time. (d) Relative
scratch width alteration (n = 2). Data are mean ± SD, one-way ANOVA with LSD-t, ** p < 0.01 [139].

On the other hand, it has been shown that the anionic IONPs’ cytotoxicity varies
depending on the kind of surface coating used. Cell lines from the SK-MEL-37 melanoma
were cytotoxic to DMSA, citric acid, or lauric acid in distinct ways. DMSA-coated, citric
acid-coated, and lauric acid-coated nanoparticles had IC50 (half-maximal inhibitory con-
centration) values of 2260, 433, and 254 g Fe/mL, correspondingly. Cellular death was
seen when lauric acid-coated NPs were utilized at higher levels, including 800 g Fe/mL,
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as shown by morphological characteristics of the apoptosis profile, notably surficial bleb-
bing, severe vacuolization, and chromatin contraction [140]. Therefore, even though the
generated NPs have a comparable surface charge, the surface coatings may significantly
modify their toxicity dose-dependently. Due to the variable nature of the intended use, it is
necessary to conduct an individual cytotoxicity test for each sample.

Although early data on the security of MNPs may be revealed using in vitro toxicity
assessments on different cell types; however, these tests may have restricted applicability
since they do not match the real-life situations. Since under cell culture conditions, the NPs
and their breakdown products (which might impair cell survival) stay in near the cells and
may operate as a repository with a continual influence, the cytotoxic activity may be more
severe in vitro compared to in vivo. On the contrary, if they are biodegradable, NPs are
continually removed from the body [141]. Regarding pharmacological purposes, it is clear
that the evaluation of in vivo security of MNPs is critical, as shown above.

Macrophages in the reticuloendothelial tissues remove intravenously administered
IONPs from the systemic circulation, as previously stated and generally nanoparticles
can induce diverse effects on cells (Figure 6) [142]. A lower pH, hydrolytic enzymes, and
proteins involved in iron metabolic processes are among the features that allow these NPs
to be picked by cells through receptor-mediated endocytosis and probably digested in the
lysosomal compartment [143]. The liberated free iron is subsequently integrated into the
body’s iron storage, where it is eventually discovered as hemoglobin and in part attached
to transferrin before being removed mostly via the feces [144,145]. For an average adult
male, the entire bodily iron storage is about 4000 mg. Small doses of iron infusion may not
cause iron-related toxicity complications; however, larger concentrations may cause a rise
in plasmatic iron levels due to the exceeded transferrin iron-binding capability. Oxidative
stress and different toxicities, such as heart and liver damage, might be the result [146].
As a result, the cytotoxicity of MNPs has been investigated using a variety of delivery
methods, including intravenous, intraperitoneal, and subcutaneous injection.

The security of IONPs stabilized using OA and Pluronic F-127 coatings after admin-
istration to rats at a dosage of 10 mg Fe/kg was studied [147]. Alanine aminotransferase,
aspartate aminotransferase, and alkaline phosphatase concentrations in the blood did not
change significantly or for a long period after the iron administration, although 55% of the
administered iron had been deposited in the hepatocytes 6 h after the infusion. IONPs may
produce oxidative harm to the phospholipidic cell membrane. Therefore, it was decided to
assess the amounts of lipid hydroperoxide to determine the extent of the oxidative injury.
The tissue-specific variations in lipid hydroperoxide concentrations were discovered. They
were somewhat greater for the hepatic, splenic, and renal tissues compared to the other
sites, including pulmonary, cerebral, and cardiac tissues. Nevertheless, even after one-week
post injection, the elevated lipid hydroperoxide concentrations did not affect tissue shape
or cellular stability, showing that the oxidative stress was modest and negligible at the
administered dosage. MNP dosage and dosing duration are critical to ensuring the safety
of this medication, as will be addressed more below.

To be sure, in several animal species, the MNPs exhibited an acceptable level of safety
when supplied at various doses. As an example, rats given Ferumoxtran-10 at the 2.6
mg Fe/kg i.v. dosage was found to be protected, with no alterations in hemodynamic
variables, whereas rats given 13 mg Fe/kg dosage had a gentle enhancement in aortic blood
circulation; however, there were no arrhythmias or adjustments in the electrocardiogram,
and no breathing toxicities were identified. Just very high single dosages of Ferumoxtran-
10, including 126 mg Fe/kg and 400 mg Fe/kg, were treatment-related clinical symptoms
in rats found to remain for 24 h post administration. There were modest alterations in body
weight and hematological markers throughout rats after continuous intravenous treatment
of 17.9 mg Fe/kg Ferumoxtran-10 (3–5 dosages). Ferumoxtran-10 was neither mutagenic
nor hazardous to the maternal rats or rabbits given doses as high as 15 mg Fe/kg/day
or repetitive administrations (up to < 50 mg Fe/kg/day throughout rabbits) [148]. Up to
a dosage of 20 mg Fe/kg i.v. administration throughout dogs, Ferumoxtran-10 showed
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no treatment-related heart or kidney toxicities, but at elevated dosages, including 200 mg
Fe/kg (75 times greater than the level employed in humans as an MRI contrast agent),
modest cardiac toxic effects, hypotension, increased respiratory level, increased heart rate,
as well as a significant rise in urinary discharge and salt excretion in the urine, were
seen. Singular dosages of up to 25 mg Fe/kg throughout monkeys did not result in any
significant evidence of cardiac toxicity or changes in blood parameters. Once treatment
with iron infusion, blood iron concentrations were shown to be significantly elevated
among rats, dogs, and monkeys; however, normal concentrations were restored following
the therapy was stopped. It was shown that the dose-dependent toxicity of IONPs could
be characterized whereas, at a higher dosage, the toxicity of the toxicological reactions was
identical throughout all animal groups.
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According to the results of comparative acute toxicity research (intravenous singular
dosage) conducted in mice utilizing IONPs that were either uncoated or coated with various
materials,

Including dextran, polyethylene glycol (PEG), albumin, and polylactic acid (PLA),
the IC50 values were found to be 355, 355, 232, and 559 mg/kg, correspondingly. As a
consequence of these tests, it seems that PLA coatings are more tolerable for NPs than
the other coating substances. Pulmonary toxicity, cardiac black material, and moderate
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splenomegaly were found during the pathological examination of the deceased mice [149].
There was no information provided in this paper on the various NPs’ particle size and
coating degree, and this information is critical to understanding the toxic effects of NPs. It
was discovered that the mean lethal dosage (LD50) of the aforementioned NPs was more
than 2000 mg/kg following oral administration, indicating that oral consumption is more
tolerable than a single intravenous infusion of the same dose. When administered intra-
venously, anhydroglucose polymer (50–150 nm diameter) was shown to be biocompatible
since no clinical symptoms of toxicity were noticed throughout rats or mice following the
delivery of the IONPs [150]. Dextran stabilized IONPs (AMI-25, Feridex) showed excellent
endurance throughout rats and dogs up to 3000 mol Fe/kg, which is about 150 times greater
than the dosage necessary for diagnostic hepatic MRI [142]. This suggests that these NPs
have a wide security window, which is consistent with previous studies.

Intravenous injections of IONPs (100-nm-sized nanoparticles covered by anhydroglu-
cose polymer) throughout human tumor individuals were proven to be safe and effective,
also IONPs can be applied efficiently for regenerative tissue engineering (Figure 7). NPs
administered using doxorubicin (Dox) (overall iron infused per therapeutic session, 132
to 468 mg) were used to treat cancer. The serum iron concentrations were temporarily
elevated; however, no hazardous manifestations were noticed, and the quantities of iron
in the urine were confirmed to be within the acceptable limit. Toxicological events were
not seen in this clinical study, where a magnetic field was given to the upper layer of the
skin, and only a small cutaneous discoloration was noticed [151,152]. On the other hand,
intravenously administered Ferucarbotran (between 5- and 40-mM Fe/kg) was shown to be
safe, except for a transitory reduction in platelet clotting factor XI function, which did not
result in any medically meaningful complications. It was also discovered that there were
no alterations in cardiac parameters such as blood pressure and cardiac pulse [153–157].
Several mild complications involving the central nervous system (CNS), such as dimin-
ished or enhanced voluntary locomotion, rearing, exophthalmos, or mydriasis, have been
identified in another research investigation [158]. Human chronic iron toxicity (cirrhosis or
hepatocellular cancer) has been reported throughout the publications when large dosages
of iron have been administered, with hepatic iron levels above 4 mg Fe/g liver wet weight
being seen in certain cases [159].
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The connections of NPs with the physiological system and, therefore, their security is
influenced by the surface features of NPs, including surficial charge. Nonspecific binding
may occur, and cells can be destroyed when neutral or negatively charged NPs bind less
effectively with blood constituents and plasma polypeptides than positively charged NPs.
The fast elimination from the circulatory system of positively charged NPs also results in
nonspecific tissue absorption, as previously stated [160,161].

6. Tissue Engineering Applications of Fe2O3-Based Nanocomposite

Creating substitutes to maintain, restore, or augment the function of injured or dam-
aged tissues is the main goal of tissue engineering [162]. To induce and guide tissue growth,
tissue engineering has attempted to utilize scaffolds that mechanically support structure
and cells that drive the regeneration process, and bioactive molecules that regulate cell
differentiation and functionality [163,164]. Among the polymorphic forms of iron oxides,
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including γ-Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite), while γ-Fe2O3 and
Fe3O4 nanoparticles are the most studied ones in tissue engineering due to their exceptional
properties, such as paramagnetic, high specific surface area, biocompatibility, nontoxicity,
etc., at the nanoscale. Due to these materials’ magnetic response abilities, research in
biodegradable magnetic nanocomposites is a rapidly growing topic for biomedical ap-
plications (Figure 8), particularly tissue regeneration and musculoskeletal issues such as
osteoarthritis [165–168].
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hydrogel [168].

Fe2O3-Based Nanocomposites in Bone Tissue Regeneration

The Bone has a special architecture; a more detailed look at the bone structure reveals
that it comes into two main parts: compact bone (includes the osteon structures and os-
teoblast) and spongy bone (the highly porous part) [169]. The bone regeneration procedure
begins with the migration and recruitment of osteoprogenitor cells to a flawed section,
where they differentiate into osteoblasts and form bone’s ECM mineral part, also known
as hydroxyapatite (HA). Magnetic nanoparticles solely or in combination with a magnetic
field can help improve and accelerate this process by affecting the three main components
of tissue regeneration: (1) Scaffolds (2) Stem cells and (3) Growth factors.

Aside from blood cells, most, if not all, normal cells in human tissues are anchorage-
dependent and reside in a solid matrix known as extracellular matrix (ECM). One strategy
for bone regeneration is using scaffolds to mimic the natural bone tissue condition. An
applicable scaffold must possess a surface that is appropriate for cell attachment, and also
should be made with biocompatible substances that act as temporary support to tolerate
mechanical forces in the injured zone until the host tissue is completely recuperated.
In particular, the biodegradation rate should be matched to the rate of bone formation
operation, and the interconnectivity of the porous structure for vascularization is crucial
for scaffold design [170].

Figure 9 describes how a bone tissue scaffold works in the bone regeneration process.
The particular scaffold that has been represented in the Figure 9 is made of carbon nanotube
as the base component with combination of polymers. Afterward, mesenchymal stem cell
(MSC) with accompanying of appropriate growth factor, antibiotic, and organic molecules
was cultured and its effects on bone healing process demonstrated step by step.
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The use of magnetic nanoparticles in bone tissue engineering is a growing approach
to designing a scaffold. Indeed, magnetic fields have been shown to improve implant inte-
gration, and the mineral density of Neotissue, and fasten the defect healing process [172].
These properties associated with the potential of magnetic nanoparticles serving as drug
delivery and gene transfection vessels have compelled scientists to conduct extensive
research on them in recent years [173]. In a study by Saber-Samandari et al. [174] a com-
bination of these properties was shown. They synthesized bifunctional nanocomposite
scaffolds for photothermal therapy and tissue engineering using magnetic nanoparticles as
photothermal conversion agents. The incorporation of carboxyl-functionalized multiwalled
carbon nanotubes and magnetic iron oxide nanoparticles into the porous matrix of the
scaffold caused an increase in BSA (Bovine Serum Albumin) surface adsorption. They
also discovered that the presence of magnetic nanoparticles enhanced biocompatibility,
as demonstrated by an osteoblastic cell line, as well as the compressive strength of the
scaffolds. Świętek et al. [175] created a multifunctional system that allows for multiway cell
stimulation by combining hydroxylated MWCNTs with magnetic iron oxide nanoparticles
embedded into a porous PCL matrix. Coprecipitation was used to create these hybrid
nanoparticles, and the solvent casting/porogen leaching method was used to create the
scaffolds. The carbon nanotubes positively affected cell adhesion, according to preliminary
research conducted with an osteoblastic cell line. In another study, Hu et al. [176] used
poly (lactic-co-glycolic acid)/polycaprolactone/beta-tricalcium phosphate (PPT) scaffolds
in another study with γ-Fe2O3 encapsulation. The γ-Fe2O3 scaffolds were coated with
polyglucose sorbitol carboxymethyl ether. PPT–Fe scaffolds exhibited homogeneous iron
distribution and long-term iron release while encapsulated within resorbable PPT scaffolds.
Wettability, superparamagnetic, hardness, tensile strength, and elasticity modulus were
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also observed in that scaffold. Experiments with rat adipose-derived mesenchymal stem
cells (rADSCs) in scaffolds revealed an increase in the expression of integrin 1, alkaline
phosphatase, and osteogenesis-related genes. Furthermore, improved in vivo bone regen-
eration was observed after implanting PPT–Fe scaffolds in rat calvarial bone defects. In
addition, Meng et al. [177] also developed a novel magnetic nanofibrous composite scaffold
by combining γ-Fe2O3 nanoparticles, hydroxyapatite nanoparticles, and polymer (lactide
acid). Under the influence of a static magnetic field, this magnetic scaffold accelerated the
formation of new bone tissue in a rabbit model.

A growing number of studies have revealed that IONPs influence BMSC differentia-
tion. On the one hand, the magnetic scaffold itself can induce osteogenesis, as evidenced
by data that polymer/IONP (iron oxide nanoparticles) scaffolds can enhance bone regen-
eration in the presence and absence of a constant magnetic field (CMF) [178–181]. Cells
in interaction with magnetic scaffolds can experience nanoscale stresses analogous to me-
chanical forces, stretching cell membranes and activating channels and receptors [182].
Furthermore, under cytoplasmic neutral circumstances, IONPs display catalase-like activity,
breaking H2O2 to produce H2O with no cytotoxicity [183]. This distinct feature of IONPs
increases cell proliferation and accelerates cell cycle progression in MSCs by stimulating the
p38 mitogen-activated protein kinase (MAPK) signaling pathway [184,185]. In the acidic
environment of endosomes or lysosomes, IONPs break down into Fe3+ and PSC molecules.
Since these two components will not increase MSC development into osteoblasts, the pro-
motion effect needs the presence of integral IONPs. The studies conducted in this regard
are not limited to BMSC differentiation. For instance, Ishmukhametov et al. studied differ-
entiation of adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts
on DNA/Magnetic nanocomposites [186].

Magnetic fields, on the other hand, may be capable of stimulating membrane phos-
pholipid rearrangement and activating the material sensing system of cells, for instance, by
activating Ca2+ channels on the cell membrane and stimulating various signaling pathways
such as the BMP-2, integrin, and MAPK pathways [185].

Kim et al. [187] investigated the effects of electromagnetic fields (45 Hz, 1 mT intensity)
and MNPs (50 mg/mL Fe3O4) on hBMSCs alone or in combination and discovered that
both electromagnetic fields and MNPs can enhance osteogenic differentiation, but that
using MNPs in combination with electromagnetic field exposure is more operative for
enhancing osteogenic differentiation.

In addition, a CMF can impact the shape and orientation of ECM proteins. It has
been reported that a unique protein complex (magnetoreceptor, MagR) with an inherent
magnetic moment may detect the direction of the magnetic field and deviate from it. MagR
is made up of two proteins: iron-sulfur cluster assembly protein (ISCA1) and cryptochrome
(human homologous gene Cry1) [188]. According to research, the ISCA1 protein alone
is insufficient to cause the cell to react to a magnetic field, hence the protein complex’s
stability is critical [189]. The actin cytoskeleton, focal adhesions, integrin binding, stress
fibers, and cell responses to mechanical stimulation are all associated with magnetically
sensitive proteins. As the MagR protein compound in the cell lines up in the direction
of a magnetic field, torque or pressure produce toward the mechanical force receptors
such as actin fibers, adhesion sites, and integrins that go along with actin redispersion or
integrin-mediated MAPK signaling pathway activation. Thereby, mechanical signals can
be transferred to the nucleus to influence the expression of osteogenic genes [190].

The findings of Wang et al. [191] indicated that magnetic IONPs encouraged os-
teogenic differentiation of MSCs as whole particles and that the IONP-driven magneto
genetic response resulted in gene deregulation in their experimental system. The lncRNA
INZEB2 is important for osteogenic differentiation because it controls ZEB2 expression
as well as the BMP/Smads pathway. Their findings showed how IONPs influence MSC
osteogenic differentiation and how lncRNAs contribute to the regulation of magnetic IONP
cellular effects.
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7. Wound Healing Applications of Fe2O3-Based Nanocomposite

Wound healing is a highly systematic procedure of repairing defected tissue, which is
consisted of four consecutive, but overlapping, biological phases: hemostasis, inflammation,
proliferation, and remodeling [192,193]. Any disruption by both extrinsic and intrinsic
factors in any of the aforementioned phases may cause each phase to be prolonged and
result in a dissatisfying result, leading to chronic wound status. The colonization of
contaminating pathogens at the spot of damage during the natural wound-healing process
is the most commonly occurring issue with complete wound healing [194]. At the spot
of a wound, the bacteria that constituted the skin microbiota protect against pathogen
colonization. When pathogenic bacteria hit the critical level and generate a large amount of
biofilm, the healing process slowed. Staphylococcus aureus is the most widely recognized
colonizing pathogen influencing the early stages of wound healing, while Pseudomonas
aeruginosa and Escherichia coli are commonly seen in chronic wounds and impact downward
layers of the skin [195]. This pathogen-associated bare skin infection may cause acute
inflammatory reactions and delayed wound healing. To prevent bacterial infections and
assist in the natural wound-healing process, a suitable antimicrobial wound dressing must
be used.

However, the proliferation of antimicrobial-resistant bacteria slows the healing process,
entailing the development of new wound-dressing substances that are non-toxic or resistant
to employment and ameliorating the efficiency of the wound-healing procedure.

In other words, the primary goal of wound dressing is to keep the wound free of
extrinsic contamination. It also keeps the wound hydrated, promoting regeneration and
preventing the wound’s origin from being exposed [196]. As a result, wound-healing
materials must be biocompatible, semi-permeable to water and oxygen, hypoallergenic, and
economical. As a result, wound dressing necessitates the use of technologically progressed
dressing substances instead of traditional wound-dressing materials such as cotton and
wool.

The new materials can preserve the wound environment and also transfer active
compounds to facilitate the wound-healing process [197].

Diverse wound-dressing products, including ointments, hydrogels, and antibacte-
rial agents combined with polymers, are recently accessible and are made primarily of
biodegradable substances including chitosan, hyaluronic acid, collagen, silicon, cellulose,
and gelatin [198–203].

Due to their capability to prevent bacterial proliferation, quinolones [204], cephalosporins [205],
polymyxin B [206], neomycin [206], and tetracyclines [207] are the most typically utilized
antibiotics in wound dressing.

However, repeated and ineffective antibiotic administration would hasten the emer-
gence of antibacterial resistance. To prevent such resistance, treatments based on alternative
antibiotics, non-antibiotic materials, and a combination of antibiotics and non-antibiotic
materials such as essential oils, honey, and nanomaterials (e.g., Ag and Au) have been
recommended for wound dressings [207].

The usage of nanomaterials in wound healing is growing quickly and is being studied
in clinical trials [192,208–210] (Figure 10). The primary reason for this increase is their
physiochemical characteristics, which include nano size, and extended surface with a high
specific area. Furthermore, because nanomaterials play a role in active drug delivery,
penetrability, and cellular responses, their size and shape are favorable to their use in
wound healing [197] In wound therapy, two types of nanomaterials are widely being
used (Table 2): (1) nanomaterials with inherent characteristics that typically boost wound
treatment, and (2) nanomaterials as carriers for drug delivery.



Nanomaterials 2022, 12, 3873 19 of 29

Nanomaterials 2021, 11, x FOR PEER REVIEW 21 of 32 
 

 

Electrospinning 
poly(vinyl alcohol) filled by γ-

Fe2O3 nanoparticles 

maximum Young’s modulus (273.51 MPa) 

cell viability and cell growth rate 
[215] 

Magnetic Hydrogel 

Poly(vinyl alcohol)/ nano-

hydroxyapatite (n-HA)/ 

magnetic nanoparticles (Fe2O3) 

fibers 

Enhancing scaffold’s mechanical properties 

Uniform and enhanced growth of BMSCs on the 

surface 

High rates of proliferation 

Significant simulated chondrocyte-related gene 

expression 

[216] 

Due to their inherent nature, metal and metal oxide nanomaterials are more effective 

in the wound-healing treatment and antibacterial action than traditional materials. 

Metallic nanoparticles' size, structure, surface modification, zeta potential, porosity, and 

thermal stability typically influence their efficacy in biological applications 

[217,218,219,220]. Considering their favorable physiochemical properties and 

antibacterial activity, Silver (Ag) [83], gold (Au) [84], and zinc oxide (ZnO) [85] are the 

most investigated metallic nanoparticles. Other metals and metal oxides, such as iron 

oxide (Fe2O3), are also being studied in this regard [195]. 

 

Figure 10. CSMA/PECA/GO hybrid scaffold in bone tissue engineering application (cartilage 

repairing) [210]. 

Harandi et al. [45] studied the antimicrobial activity of Fe2O3 nanoparticles as coating 

for polyvinyl alcohol-prebiotic gum arabic-polycaprolactone (PVA-GA-PCL) electrospun 

nanofibers for wound dressing applications. Their findings revealed spherical Fe2O3 NPs 

with a mean size diameter of 100 nm that contained LAB and demonstrated significant 

antimicrobial potential against pathogens such as E. coli, Staphylococcus aureus, 

Pseudomonas aeruginosa, and Candida albicans. These results demonstrated both the 

biocompatibility of coated nanofibers with mouse embryonic fibroblast cell lines and their 

antimicrobial and antibiofilm efficacy against pathogens. C. Albicans exhibited the 

greatest growth inhibition by Fe2O3 NPs-LAB@PVA-GA-PCL. Intriguingly, combining 

probiotic Lactobacillus and prebiotic GA as a symbiotic hybrid revealed synergistic 

antimicrobial effects, implying the therapeutic potential for wound healing applications. 

Figure 10. CSMA/PECA/GO hybrid scaffold in bone tissue engineering application (cartilage
repairing) [210].

Table 2. The scaffolds fabrication methodology, their characteristics and the effect of the presence of
IONPs on their properties, and potential clinical translations have been discussed.

Scaffold Type Scaffold Fabrication Method Effects of IONPs on the Scaffold Ref.

Magnetic hydrogels
nanohydroxyapatite-coated
γ-Fe2O3(around 10 wt%)/PVA

composite hydrogels

remarkable influence on the porous structures
average pore diameter of: 1.6 ± 0.3 µm

enhancing compressive strength: 29.6 ± 6.5 MPa
positive impact on osteoblasts adhesion and

proliferation

[211]

Magnetic hydrogels
hyaluronic acid/chondroitin
sulfate/Fe2O3/nHAP/PVA

hydrogels

Promotion of chondrocyte adhesion, proliferation, and
growth [212]

Electrospinning
electrospun PCL incorporated by

dendrimerized
superparamagnetic nanoparticles

Significantly decreases the PCL nanofibers size to 495
± 144 nm and improves cell attachment and growth [213]

Electrospinning γ-Fe2O3 nanoparticles filled
polyvinyl alcohol

higher fiber diameter and surface roughness
higher cells proliferation rate [214]

Electrospinning

A novel nanofibrous composite
scaffold composed of

super-paramagnetic γ-Fe2O3
nanoparticles (MNP),

hydroxyapatite nanoparticles
(nHA) and poly lactide acid (PLA)

MNPs accelerates new bone tissue formation and
remodeling in the rabbit defect. [177]

Electrospinning poly(vinyl alcohol) filled by
γ-Fe2O3 nanoparticles

maximum Young’s modulus (273.51 MPa)
cell viability and cell growth rate [215]

Magnetic Hydrogel

Poly(vinyl
alcohol)/nano-hydroxyapatite

(n-HA)/magnetic nanoparticles
(Fe2O3) fibers

Enhancing scaffold’s mechanical properties
Uniform and enhanced growth of BMSCs on the

surface
High rates of proliferation

Significant simulated chondrocyte-related gene
expression

[216]

Due to their inherent nature, metal and metal oxide nanomaterials are more effective
in the wound-healing treatment and antibacterial action than traditional materials. Metallic
nanoparticles’ size, structure, surface modification, zeta potential, porosity, and thermal
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stability typically influence their efficacy in biological applications [217–220]. Considering
their favorable physiochemical properties and antibacterial activity, Silver (Ag) [83], gold
(Au) [84], and zinc oxide (ZnO) [85] are the most investigated metallic nanoparticles.
Other metals and metal oxides, such as iron oxide (Fe2O3), are also being studied in this
regard [195].

Harandi et al. [45] studied the antimicrobial activity of Fe2O3 nanoparticles as coating
for polyvinyl alcohol-prebiotic gum arabic-polycaprolactone (PVA-GA-PCL) electrospun
nanofibers for wound dressing applications. Their findings revealed spherical Fe2O3
NPs with a mean size diameter of 100 nm that contained LAB and demonstrated signif-
icant antimicrobial potential against pathogens such as E. coli, Staphylococcus aureus,
Pseudomonas aeruginosa, and Candida albicans. These results demonstrated both the
biocompatibility of coated nanofibers with mouse embryonic fibroblast cell lines and their
antimicrobial and antibiofilm efficacy against pathogens. C. Albicans exhibited the greatest
growth inhibition by Fe2O3 NPs-LAB@PVA-GA-PCL. Intriguingly, combining probiotic
Lactobacillus and prebiotic GA as a symbiotic hybrid revealed synergistic antimicrobial
effects, implying the therapeutic potential for wound healing applications.

Another study by Raisi et al. [46] fabricated a nanocomposite dressing (NCD) made
up of carboxymethyl chitosan (CMC) with various content of Fe2O3 nanoparticles (0, 2.5,
5, and 7.5 wt%) by a method called freeze-drying (FD) technique to study its potential
for wound healing applications. The results showed that the wound dress was porous
with micron-sized interconnections. Indeed, the results show that as the amount of Fe2O3
nanoparticles increases, so does the porosity. Tensile strength was 0.32 MPa for the pure
sample and 0.85 MPa for the sample with the highest percentage of magnetic nanoparticles,
respectively.

Furthermore, the cytotoxicity of this nanocomposite revealed no cytotoxicity toward
fibroblast cell growth and suitable biocompatibility. The results indicated that NCD had
exceptional biodegradability, biocompatibility, and mechanical properties. As a result,
NCD made of CMC and Fe2O3 nanoparticles were proposed as a promising candidate for
wound healing applications.

The positive effects of Fe2O3 NPs on the rapid blood coagulation in wounds with
excessive bleeding were proved by a study by Rubtsov et al. [221] in 2019. They synthesized
a novel nanoparticle-hydrogel composite as a potential hemostatic wound-healing agent
composed of Poly (sodium acrylate) cross-linked by aluminum ions and nanoscale boehmite
(γ-AlOOH) and Fe2O3 as fillers.

8. Conclusions

In advanced biomedical systems, scientists are looking for some special features such
as good mechanical and thermal stability, biocompatibility, porosity, and biodegradability.
These specific characteristics have been fulfilled by employing Fe2O3 in nanocomposite
structures. Thus, IONPs increased drug loading capacity in novel drug delivery and
efficiency of tissue engineering applications due to their extended surface area and porosity.
In addition, in wound dressings, IONPs have enhanced the permeability of water and
oxygen in a more controllable manner.

Due to their incredible superparamagnetic properties, IONPs have been used widely in
biomedical engineering applications, especially novel targeted drug delivery systems. This
review extensively was devoted to the structural characteristics, and potential applications
of IONPs in the areas such as drug delivery, tissue engineering, and wound healing.
Different methods of utilizing IONPs in each of those areas have also been discussed
and supplied outcomes from recent studies on Fe2O3-based nanocomposites revealed the
applicability of this metal oxide for advanced biomedical purposes.
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