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Abstract

This thesis deals with problems and applications of discrete and computa-
tional geometry in the plane, concerning polygons, point sets, and graphs.

After a first introductory chapter, in Chapter 2 we study a generaliza-
tion of a famous visibility problem in the framework of O-convexity. Given
a set of orientations (angles) O, we say that a curve is O-convex if its in-
tersection with any line parallel to an orientation in O is connected. When
O = {0◦, 90◦}, we find ourselves in the case of orthoconvexity, considered of
special relevance. The O-kernel of a polygon is the subset of points of the
polygon that can be connected to any other point of the polygon with an
O-convex curve. In this work we obtain, for O = {0◦} and O = {0◦, 90◦}, an
algorithm to compute and maintain the O-kernel of a polygon as the set of
orientations O rotates. This algorithm also provides the angles of rotation
that maximize the area and perimeter of the O-kernel.

In Chapter 3, we consider a bichromatic version of a combinatorial prob-
lem posed by Neumann-Lara and Urrutia. Specifically, we prove that every
set of n blue and n red points in the plane contains a bichromatic pair of
points such that every circle having them on its boundary contains at least
n(1 − 1√

2
) − o(n) points of the set in its interior. This problem is closely

related to obtaining the higher order Voronoi diagrams of the point set. The
edges of these diagrams contain, precisely, all the centers of the circles that
pass through two points of the set. Therefore, our current line of research
on this problem consists on exploring this connection by studying in detail
the properties of higher order Voronoi diagrams.

In Chapters 4 and 5, we consider two applications of graph theory to
sensory analysis and air traffic management, respectively. In the first case,
we introduce a new method which combines geometric and statistical tech-
niques to analyze consumer opinions, collected through projective mapping.
This method is a variation of the method SensoGraph. It aims to capture
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the essence of projective mapping by computing the Ecuclidean distances
between pairs of samples and normalizing them to the interval [0, 1]. We ap-
ply the method to a real-life scenario and compare its performance with the
performance of classic methods of sensory analysis over the same data set.
In the second case, we use the Spectrum Graph Coloring technique to pro-
pose a model for air traffic management that aims to optimize the amount
of fuel used by the airplanes, while avoiding collisions between them.



Resumen

Esta tesis trata sobre problemas y aplicaciones de la geometría discreta y
computacional en el plano, relacionados con polígonos, conjuntos de puntos
y grafos.

Después de un primer capítulo introductorio, en el capítulo 2 estudiamos
una generalización de un famoso problema de visibilidad en el ámbito de la
O-convexidad. Dado un conjunto de orientaciones (ángulos) O, decimos que
una curva es O-convexa si su intersección con cualquier recta paralela a una
orientación de O es conexa. Cuando O = {0◦, 90◦}, nos encontramos en el
caso de la ortoconvexidad, considerado de especial relevancia. El O-núcleo
de un polígono es el conjunto de puntos del mismo que pueden ser conectados
con cualquier otro punto del polígono mediante una curva O-convexa. En
este trabajo obtenemos, para O = {0◦} y O = {0◦, 90◦}, un algoritmo para
calcular y mantener el O-núcleo de un polígono conforme el conjunto de
orientaciones O rota. Dicho algoritmo proporciona, además, los ángulos de
rotación para los que el O-núcleo tiene área y perímetro máximos.

En el capítulo 3 consideramos una versión bicromática de un problema
combinatorio planteado por Neumann-Lara y Urrutia. En concreto, de-
mostramos que todo conjunto de n puntos azules y n puntos rojos en el
plano contiene un par bicromático de puntos tal que todo círculo que los
tenga en su frontera contiene en su interior al menos n(1− 1√

2
)−o(n) puntos

del conjunto. Este problema está fuertemente ligado al cálculo de los diagra-
mas de Voronoi de orden superior del conjunto de puntos, pues las aristas
de estos diagramas contienen precisamente todos los centros de los círculos
que pasan por dos puntos del conjunto. Por ello, nuestra línea de trabajo
actual en este problema consiste en explorar esta conexión realizando un
estudio detallado de las propiedades de los diagramas de Voronoi de orden
superior.

En los capítulos 4 y 5, planteamos dos aplicaciones de la teoría de grafos
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al análisis sensorial y al control del tráfico aéreo, respectivamente. En el
primer caso, presentamos un nuevo método que combina técnicas estadísti-
cas y geométricas para analizar las opiniones de los consumidores, recogidas
a través de mapeo proyectivo. Este método es una variación del método
SensoGraph y pretende capturar la esencia del mapeo proyectivo mediante
el cálculo de las distancias euclídeas entre los pares de muestras y su nor-
malización en el intervalo [0, 1]. A continuación, aplicamos el método a un
ejemplo práctico y comparamos sus resultados con los obtenidos mediante
métodos clásicos de análisis sensorial sobre el mismo conjunto de datos.
En el segundo caso, utilizamos la técnica del espectro-coloreado de grafos
para plantear un modelo de control del tráfico aéreo que pretende optimizar
el consumo de combustible de los aviones al mismo tiempo que se evitan
colisiones entre ellos.
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Chapter 1

Introduction

In this work, we consider several questions in the area of discrete and com-
putational geometry. We present a summary of the research that we have
carried out on these questions during the last years, which has produced
the publication of four scientific articles. These articles are reproduced in
Chapters 2, 3, 4, and 5, respectively.

In Chapter 2, we study a classic problem about polygons from the point
of view of restricted orientation convexity. Chapter 3 is related to higher
order Voronoi diagrams of point sets. And Chapters 4 and 5 deal with
applications of graph theory to sensory analysis and air traffic management,
respectively. For an easier reading, each of these chapters is introduced
individually. We start our introduction with some notation.

1.1 Notation

Three main groups of geometric objects appear in this thesis: points in the
plane, polygons, and graphs.

Points in the plane are usually required to be in general position. A set
S of n points in the plane is in general position if no three points of S are
collinear and no four points are cocircular.

A polygon is a closed and connected subset of the plane, bounded by a
finite number of straight-line segments that form a closed broken line. The
segments bounding a polygon are called edges, and their endpoints, vertices.
A polygon is called simple if its edges do not intersect each other except

11



CHAPTER 1. INTRODUCTION 12

at vertices. A simple polygon with k vertices is called a k-gon. A simple
polygon (or a set) is called convex if its intersection with every line in the
plane is either empty or connected; see Figure 1.1.

Figure 1.1: Left: a simple polygon on 7 vertices, or 7-gon. Right: a convex
polygon on 7 vertices, or convex 7-gon.

The symbol O is reserved to denote a set of orientations. An orientation
is an angle α measured with respect to the positive x-axis. Such an angle
is associated with the oriented line ℓα, passing through the origin of coor-
dinates and forming a counterclockwise angle α with the positive x-axis. A
set is O-convex if, for every α ∈ O, the intersection of the set with any line
parallel to ℓα is either empty or connected. When O = {0◦, 90◦}, an O-
convex set is called rectilinear convex or orthoconvex. Observe that, unlike
in the case of usual convex sets, O-convex sets might be disconnected; see
Figure 1.2.

Figure 1.2: Left: a {0◦, 90◦}-convex set or orthoconvex set. Right: a dis-
connected orthoconvex set.

A graph is a pair G = (V,E) where E ⊆ V × V . The elements in the
collection V are usually called vertices and the elements in the collection E
are usually called edges. Two vertices u and v are adjacent if (u, v) ∈ E. A
vertex coloring of G = (V,E) is a map c : V → S, where S is a collection of
colors. A vertex coloring is called proper if, for every two adjacent vertices
u and v, c(u) ̸= c(v).
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The usual way to picture a graph is by drawing vertices as points and
joining two of these points with a curve if the corresponding vertices form
an edge of the graph. This is called a drawing of a graph; see Figure 1.3.

1

2

3

4

5

6
7

Figure 1.3: A drawing of the graph G = (V,E) with V = {1, 2, 3, 4, 5, 6, 7}
and E = {(1, 2), (2, 3), (2, 5), (3, 5), (4, 7)}.

When discussing algorithmic aspects of problems, we will make use of
the asymptotic notation. For two functions f and g of n ∈ N, if we write
f(n) ∈ O(g(n)) it means that there exist constants C > 0 and n0 > 0 such
that for all n ≥ n0, |f(n)| ≤ C |g(n)|. Similarly, f(n) ∈ o(g(n)) means that
for every ε > 0 there exists n0 > 0 such that for all n > n0, |f(n)| < ε |g(n)|.
Finally, f(n) ∈ Θ(g(n)) means that f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

1.2 Preliminaries about restricted orientation
convexity

Chapter 2 concerns restricted orientation convexity, or O-convexity, a gene-
ralization of convexity introduced by Güting [47]. Convexity is a geometric
property connected to multiple areas of mathematics. Its importance arises
from its suitability to model a wide range of real-life interesting problems,
and the fact that it is a great source of simple examples for properties in
different areas of mathematics, including analysis, statistics, and linear al-
gebra [38].

Restricted orientation geometry studies geometric objects whose edges
are parallel to a predefined set of orientations [111]. Orthogonal geometry
and Euclidean geometry can be regarded as particular cases of this when
the set of predefined orientations is, respectively, the set {0◦, 90◦} or the
set of all possible orientations. One example motivating the interest in
restricted orientation geometry is given by the fact that orthogonal objects
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can often be handled more efficiently than general ones, and they appear
in multiple real-life scenearios. For instance, digital picture processing and
VLSI design [111, 112].

Among the real-life concepts that can be studied through convexity, we
note visibility problems, and, among those, the problem of guarding a room
(polygon). In this problem, there is a room shaped like a simple polygon,
where we need to place a number of guards so that they altogether watch
the entire room, that is, without blind spots. A guard in the polygon is
represented by a point. A guard sees those points in the polygon to which
it can be connected with an open straight-line segment lying in the interior
of the polygon [16]; see Figure 1.4.

u

v

w
Kernel(P )

Figure 1.4: Left: Points u and v of polygon P see each other, whereas points
v and w do not. Right: In green, the kernel of polygon P .

It is natural to be interested in finding out if there is any point in the
polygon that can see every other point inside the polygon. If there is such a
point, then it is enough to place a guard on that point to watch the whole
polygon. This leads to the following definition of the kernel of a polygon;
see Figure 1.4.

Definition 1.1. The kernel of a polygon P , Kernel(P ), is the set of all the
points in P that see every other point inside P .

Shamos and Hoey provided the first algorithm for computing the kernel
of a polygon in O(n log n) time, as the intersection of all the interior half-
planes determined by the edges of the polygon [120]. But the complexity
of the problem was later proved to be smaller by Preparata and Lee, who
obtained an optimal linear-time algorithm [105].

In Chapter 2, we study a variation of the problem of computing the kernel
of a polygon in the context of O-convexity. In particular, we reproduce an
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article that was published in 2021 in Journal of Global Optimization, where
we compute and maintain theO-kernel of a polygon as the set of orientations
O rotates.

Our current line of research in the field of restricted orientation convexity
focuses on the framework of orthoconvexity, in which we formulate and
partially solve an Erdős-Szekeres problem. This work appears in the Book
of Abstracts of the XIX Spanish Meeting on Computational Geometry [80].
We include a brief description of this work in Section A.1 of Appendix A.

1.3 Preliminaries about higher order Voronoi
diagrams

Chapter 3 is dedicated to another central area in computational geometry,
proximity, which involves the estimation of distances between geometric
objects. Examples of proximity problems in a point set in the plane S are
finding the closest pair of points in S, finding the largest empty circle inside
CH(S), or finding the nearest neighbor in S for every point of S [106].

One of the main problems in this area is the computation and study of
the Voronoi diagram of S.

Definition 1.2. The Voronoi diagram of a point set in the plane S is a
subdivision of the plane into regions such that the points of the plane that
lie in the same region have the same nearest point from S, also called nearest
neighbor.

Note that the region associated to the neighbor i ∈ S in the Voronoi
diagram of S can be computed as the following intersection of half-planes.
For j ∈ S, j ̸= i, the perpendicular bisector of the points i and j determines
two half-planes, h(i, j) and h(j, i), containing the points of the plane that
are closer to i than to j, and vice versa. Then the region associated to the
neighbor i is f(i) =

⋂
j∈S\{i}

h(i, j); see Figure 1.5.

A Voronoi diagram can be seen as a drawing of a graph which contains
unbounded edges; see Figure 1.5. In addition, faces of a Voronoi diagram are
either convex polygons or unbounded convex regions. Hence, this chapter
is intimately connected with the other main chapters in this thesis.
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Figure 1.5: The Voronoi diagram of a point set in the plane.

Voronoi diagrams are a fundamental data structure in computational
geometry, having applications in a wide range of fields inside and outside
computational geometry [10, 16, 44, 94]. Perhaps their most well-known
application is facility location, which aims to decide where to place a number
of facilities in order to serve a number of customers distributed in a region.

The importance of Voronoi diagrams has produced several generaliza-
tions of this data structure. In some of them, the usual Euclidean distance
is replaced by some other metric, such as the Manhattan distance. In some
others, points are not located on the plane but on some other surface, like
the sphere. And some applications study the Voronoi diagram of sets that
are not formed by points, but other classes of objects, such as segments or
curves. We refer to [10] for further information on these generalizations.

Chapter 3 is intimately connected to another generalization of Voronoi
diagrams: higher order Voronoi diagrams or order-k Voronoi diagrams.

Definition 1.3. Let S be a set of n points in the plane. For 1 ≤ k ≤ n−1,
the order-k Voronoi diagram of the point set S is a subdivision of the plane
into regions such that the points of the plane that lie in the same region
have the same k nearest points from S, also called k nearest neighbors.

Among the applications of higher order Voronoi diagrams, we remark
geometric optimization problems involving sensors or guards that need to
cooperate to monitor a region. In these problems, each point of the region
has to be guarded by (at least) k sensors; see, e.g., [59, 108].

In Chapter 3, order-k Voronoi diagrams are used as a tool towards
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a bichromatic version of the following combinatorial problem, posed by
Neumann-Lara and Urrutia [92]: Prove that every set S of n points in the
plane contains two points p and q such that any circle which passes through
p and q encloses “many” points of S. Our work on this topic produced the
publication of an article in the journal Discrete Mathematics in 2021. This
article is reproduced in Section 3.

As for the monochromatic problem, it is believed that the best current
quantification of the word “many”, obtained back in 1989, still admits room
for improvement [32].

Our interest in this problem has motivated us to make an extensive study
of properties of higher order Voronoi diagrams. This work is available as the
preprint arXiv:2109.13002, submitted in 2021 [24], and has also been sent
to a journal, where it is under review. A brief description of it is included
in Section A.2 of Appendix A.

1.4 Preliminaries about sensory analysis

In Chapter 4 we explore an application of graph theory in the field of sensory
analysis.

Sensory analysis is the scientific discipline that aims to analyze sensory
properties of products and human response to these properties. In addition,
sensory methods are widely used in industry to design or test new products
before commercializing them. In this work, we evaluate consumer opinions
on a number of chocolate chip cookies. These opinions were collected us-
ing the technique of projective mapping [113], which works as follows (see
Figure 1.6). Each consumer is given a piece of paper or a screen, usually
called tablecloth; a set of samples; and instructions to position the samples
on the tablecloth. The only rule is that the more similar they consider two
samples, the closer they should position them, and vice versa. The notion
of similarity is not specified, but let to the consumer criteria. There are
other widely used methods to collect consumers opinions, such as paired
comparisons and sorting, but projective mapping has proved to be a sim-
ple and quick technique providing good results compared to the traditional
methods [123].

In Chapter 4, we introduce a sensory method, that uses graph theory to
analyze the data obtained from projective mapping in a testing with a large
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number of unexperienced consumers. Figure 1.6 pictures an outline of the
main steps of this method, which works as follows.


• 16.2 21.1 19.6 15.0 17.4 20.9 13.6 15.2

16.2 • 17.4 12.3 20.7 11.3 16.9 12.1 14.4
21.1 17.4 • 13.2 12.7 20.1 13.4 11.5 17.9
19.6 12.3 13.2 • 15.8 14.6 12.4 11.1 29.3
15.0 20.7 12.7 15.8 • 13.2 18.6 12.7 20.1
17.4 11.3 20.1 14.6 13.2 • 16.7 15.4 14.9
20.9 16.9 13.4 12.4 18.6 16.7 • 11.6 15.7
13.6 12.1 11.5 11.1 12.7 15.4 11.6 • 20.2
15.2 14.4 17.9 29.3 20.1 14.9 15.7 20.2 •



a

d c

b

the similarity between

1− distance(i,j)−m
M−m

cookies i and j is

For each tablecloth,

8 7

9

The sum of the individual similarity matrices
produces the global similarity matrix.

These similarities are stored in a matrix.


• 1.2 2.1 1.6 1.0 1.4 2.9 1.6 1.2

1.2 • 1.4 1.3 2.7 1.3 1.9 1.1 1.4
2.1 1.4 • 1.2 1.7 2.1 1.4 1.5 1.9
1.6 1.3 1.2 • 1.8 1.6 1.4 1.1 2.3
1.0 2.7 1.7 1.8 • 1.2 1.6 1.7 2.1
1.4 1.3 2.1 1.6 1.2 • 1.7 1.4 1.9
2.9 1.9 1.4 1.4 1.6 1.7 • 1.6 1.7
1.6 1.1 1.5 1.1 1.7 1.4 1.6 • 2.2
1.2 1.4 1.9 2.3 2.1 1.9 1.7 2.2 •



Figure 1.6: Outline of the new sensory method, applied to the evaluation of
8 + 1 cookies (8 different cookies and a blind duplicate).

a Projective mapping: Each consumer allocates the samples on a piece
of paper or a screen, creating their tablecloth. In Figure 1.6 (a), we
represent one tablecloth, where samples are labeled from 1 to 9. In
red, we represent the largest Euclidean distance between samples. In
blue, the shortest distance between samples.

b For each consumer’s tablecloth, we compute all Euclidean distances
between pairs of samples. Then we define the similarity between two
samples of a tablecloth by mapping their distance to the interval [0, 1]
as in Figure 1.6 (b).
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c For each consumer, we store the similarities between samples in a
matrix. The element (i, j) of this matrix is the similarity between the
samples i and j, for i ̸= j. Then, a global similarity matrix is obtained
as the sum of the particular similarity matrices; see Figure 1.6 (c).

d Finally, we use the global similarity matrix to obtain a consensus plot,
showing connections between the samples. This consensus plot was ob-
tained using graph drawing techniques. The more similar two samples
are according to the new method, the closer they will be positioned in
the plot; see Figure 1.6 (d).

The performance of this new method is compared with the performances
of a classic pure statistical method, Multiple Factor Analysis [36], and a
recent geometric method, Sensograph [97].

Our work on this topic produced the publication of an article in the
journal Food Quality and Preference in 2021. This article is reproduced in
Chapter 4.

1.5 Preliminaries about air traffic management

In Chapter 5 we study an application of graph theory to air traffic manage-
ment.

Air traffic management aims to find convenient trajectories for airplanes
to travel along the airspace. There are many criteria that should be taken
into account in order to model this problem. The most important restriction
is that airplanes must never collide, which suggests that they should fly
as far as possible from each other. But there are other considerations,
such as flight duration, fuel consumption, adverse meteorology, airspace
congestion, or pollution. These and other factors make the problem of air
traffic management noticeably complicated [57, 73, 142].

In Chapter 5 we consider a graph model of air traffic management in
which air routes are represented as the vertices of a graph, and two vertices
are joined by an edge when the corresponding routes cross [14]. The goal
is to allocate air routes to vertical flight levels in such a way that crossing
routes are assigned to flight levels as vertically separated as possible.

In this graph model, flight levels are represented by colors and we aim
to assign a color to each route (vertex) to obtain a Spectrum Graph Col-
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Figure 1.7: Left: Matrix of interferences between the three available colors,
and the interferences induced on the possible colorings of an edge. Right:
All proper 3-colorings of the cycle of length four with unlabeled vertices,
and the interferences induced at each vertex. The interference at a vertex
is the sum of all the interferences generated at its adjacent edges.

oring of the graph [98]. This coloring is not required to be proper, but
to minimize some interferences between colors. The closer two flight levels
are, the higher will be the interference between the corresponding colors.
Specifically, a Spectrum Graph Coloring (SPG) of a graph requires a set of
available colors and a matrix of interferences between colors. These inter-
ferences between colors induce interferences on the possible ways to color a
graph; see Figure 1.7.

Our work on this topic produced the publication of an article in the
journal Applied Sciences in 2020, that we reproduce in Chapter 5.



Chapter 2

Optimizing generalized kernels of
polygons

The following article was originally published in 2021 in Journal of Global
Optimization Volume 80, pages 887–920. It was written in collaboration
with David Orden, Leonidas Palios, Carlos Seara and Paweł Żyliński. The
front page of this article can be found in the Appendix B.

2.1 Introduction

The problem of computing or reaching the kernel of a polygon is a well-
known visibility problem in computational geometry [53, 105, 101], closely
related to the problem of guarding a polygon [100, 117, 118], and also to
robot navigation inside a polygon with the restriction that the robot path
must be monotone in some predefined set of orientations [52, 125]. The
present contribution goes a step further in the latter setting, allowing the
polygon or, equivalently, the set of predefined orientations to rotate. Thus,
we show how to compute the orientations that maximize the region from
which every point can be reached following a monotone path.

A curve C is 0◦-convex if its intersection with any line parallel to the x-
axis, called 0◦-line, is connected (equivalently, if the curve C is y-monotone).
Extending this definition, a curve C is α-convex if the intersection of C with
any line forming a counterclockwise angle α with the positive x-axis, called
α-line, is connected (equivalently, if the curve C is monotone with respect

21
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to the direction α⊥).

Let us now consider a set O = {α1, . . . , αk} of k orientations in the plane,
each of them given by an oriented line ℓi, 1 ≤ i ≤ k, through the origin of the
coordinate system and forming counterclockwise angle αi with the positive
x-axis. Then, a curve is O-convex if it is αi-convex for all i, 1 ≤ i ≤ k,
i.e., if the intersection of C with any line forming a counterclockwise angle
αi, 1 ≤ i ≤ k, with the positive x-axis is connected (equivalently, if it is
monotone with respect to all the directions α⊥

i ). From now on, an O-convex
curve will be called an O-staircase. See Figure 2.1 for an illustration.

p

q p′

q′

Figure 2.1: A {0◦}-staircase which is not a {0◦, 90◦}-staircase (left) and a
{0◦, 90◦}-staircase (right).

Observe that the orientations in O are between 0◦ and 180◦. Moreover,
the only [0◦, 180◦)-convex curves are lines, rays or segments. Throughout
this paper, the angles of orientations in O will be written in degrees, while
the rest of angles will be measured in radians.

Definition 2.1. Let p and q be two points inside a simple polygon P . We
say that p and q O-see each other or, equivalently, that they are O-visible
from each other, if there is an O-staircase contained in P that connects p
and q.

In the example in Figure 2.1, p and q are {0◦}-visible, while p′ and
q′ are in addition {0◦, 90◦}-visible. It is easy to see that p and q are not
{90◦}-visible.

Definition 2.2. TheO-Kernel of P , denoted byO-Kernel(P ), is the subset
of points in P which O-see all the other points in P . The O-Kernel of P
when the set O is rotated by an angle θ will be denoted by O-Kernelθ(P ).
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2.1.1 Previous related work

Schuierer, Rawlins, and Wood [117] defined the restricted-orientation visibil-
ity or O-visibility in a simple polygon P with n vertices, giving an algorithm
to compute the O-Kernel(P ) in time O(k+n log k), with O(k log k) prepro-
cessing time to sort the set O of k orientations. In order to do so, they used
the following observation.

Observation 2.3 ([117]). For any simple polygon P , the O-Kernel(P ) is
O-convex, connected, and

O-Kernel(P ) =
⋂
αi∈O

αi-Kernel(P ).

The computation of the O-Kernel has been considered by Gewali [41] as
well, who described an O(n)-time algorithm for orthogonal polygons without
holes and an O(n2)-time algorithm for orthogonal polygons with holes. The
problem is a special case of the one considered by Schuierer and Wood [119]
whose work implies an O(n)-time algorithm for orthogonal polygons without
holes and an O(n log n +m2)-time algorithm for orthogonal polygons with
m ≥ 1 holes. More recently, Palios [100] gave an output-sensitive algorithm
for computing the O-Kernel of an n-vertex orthogonal polygon P with m
holes, for O = {0◦, 90◦}; his algorithm runs in O(n + m logm + ℓ) time,
where ℓ ∈ O(1 +m2) is the number of connected components of {0◦, 90◦}-
Kernel(P ). Additionally, a modified version of this algorithm computes the
number ℓ of connected components of the {0◦, 90◦}-Kernel in O(n+m logm)
time [100].

2.1.2 Our contribution

We consider the problem of computing and maintaining the O-Kernel of P
while the set O rotates, that is, computing and maintaining O-Kernelθ(P )
under variation of θ. For a simple polygon P and θ varying in [−π

2
, π
2
), we

propose algorithms achieving the complexities in Table 2.1, where α(n) is
the extremely-slowly-growing inverse of Ackermann’s function [3]. In addi-
tion, for the case of a simple orthogonal polygon P , we propose improved
algorithms to achieve the complexities in Table 2.2. Note that looking for
the minimum area or perimeter only makes sense where the kernel is non-
empty.
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Get the intervals of θ where Get a value of θ where Get a value of θ where
the kernel is non-empty the kernel has max/min area the kernel has max/min perimeter
Time Space Time Space Time Space

{0◦}-Kernelθ(P )
O(n log n) O(nα(n)) O(n2α(n)) O(nα(n)) O(n2α(n)) O(nα(n))

(Theorem 2.11) (Theorem 2.13) (Theorem 2.14)

{0◦, 90◦}-Kernelθ(P )
O(n2α(n)) O(n2α(n)) O(n2α(n)) O(nα(n)) O(n2α(n)) O(nα(n))

(Theorem 2.18) (Theorem 2.20) (Theorem 2.20)

O-Kernelθ(P )
O(kn2α(n)) O(kn2α(n)) O(kn2α(n)) O(knα(n)) O(kn2α(n)) O(knα(n))

(Theorem 2.19) (Theorem 2.21) (Theorem 2.21)

Table 2.1: Results for P a simple polygon.

Get the intervals of θ where Get a value of θ where Get a value of θ where
the kernel is non-empty the kernel has max/min area the kernel has max/min perimeter

Time Space Time Space Time Space

{0◦}-Kernelθ(P )
O(n) O(n) O(n) O(n) O(n) O(n)

(Theorem 2.30) (Theorem 2.32) (Theorem 2.32)

{0◦, 90◦}-Kernelθ(P )
O(n) O(n) O(n) O(n) O(n) O(n)

(Theorem 2.39) (Theorem 2.40) (Theorem 2.40)

O-Kernelθ(P )
O(kn) O(kn) O(kn) O(kn) O(kn) O(kn)

(Theorem 2.41) (Theorem 2.41) (Theorem 2.41)

Table 2.2: Results for P a simple orthogonal polygon.

2.2 The rotated {0◦}-Kernelθ(P ) in a simple
polygon P

Let (p1, . . . , pn) be the counterclockwise sequence of vertices of a simple
polygon P , which is considered to include its interior (sometimes called the
body). In this section we deal with the rotation of the set O = {0◦} by an
angle θ ∈ [−π

2
, π
2
) and the computation of the corresponding O-Kernelθ(P ),

proving the results in the first row of Table 2.1.

2.2.1 The {0◦}-Kernel(P ), its area, and its perimeter

For the case O = {0◦} and θ = 0, i.e., for the {0◦}-Kernel0(P ) or, more
simply, {0◦}-Kernel(P ), the kernel is composed by the points inside P which
see every point in P via a y-monotone curve. Note that if P is a convex
polygon, then the {0◦}-Kernel(P ) is the whole P . Schuierer, Rawlins, and
Wood [117] presented the following definitions, observations, and results.

Definition 2.4. A reflex vertex pi ∈ P is a reflex maximum (respectively
a reflex minimum) if pi−1 and pi+1 are both below (resp. above) pi. Analo-
gously, a horizontal edge with two reflex vertices is a reflex maximum (resp.
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minimum) if its two neighbors are below (resp. above).

Note that, throughout this work, the edges are considered to be closed
and, therefore, containing their endpoints. Let hN be the horizontal line
passing through a vertex pN being a lowest reflex minimum of P or, if
P does not have a reflex minimum, through the highest (convex) vertex
of P . Let hS be the horizontal line passing through a vertex pS being a
highest reflex maximum pS of P or, if P does not have a reflex maximum,
through the lowest (convex) vertex of P . Let S(P ) be the strip defined by
the horizontal lines hN and hS, see Figure 2.2. Note that there are neither
reflex minima nor maxima inside S(P ).

Lemma 2.5 ([117]). The {0◦}-Kernel(P ) is the region defined by the inter-
section S(P ) ∩ P .

Corollary 2.6 ([117]). The {0◦}-Kernel(P ) can be computed in O(n) time.

Moreover, the horizontal lines hN and hS contain the segments of the
north boundary and of the south boundary of the {0◦}-Kernel(P ); see again
Figure 2.2. Lemma 2.5 is straightforward and Corollary 2.6 is trivial by
computing both the lowest reflex minimum and the highest reflex maximum
in linear time and then computing S(P ) ∩ P in additional linear time.

vW

lN

lS

pN

pS

vE

pW
rN

rS

pE

pk+1
pk

hN

hS

S(P )

pN

pS

hN

hS

S(P )

Figure 2.2: Two examples of {0◦}-Kernelθ(P ) for θ = 0. In the left example,
the strip S(P ) is supported by a lowest reflex minimum pN and a highest
reflex maximum pS. In the right example there are no reflex minima and,
therefore, the strip S(P ) is supported by the highest (convex) vertex pN and
the highest reflex maximum pS.

Now, let cl and cr denote the left and the right polygonal chains defined,
respectively, by those parts of the boundary of P which are inside S(P ). Let
|cl| and |cr| denote their number of segments. It follows from the definition of
S(P ) and Lemma 2.5 that both chains are 0◦-convex curves, i.e., y-monotone
chains; see Figure 2.2 once more.
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Corollary 2.7. The area and the perimeter of the {0◦}-Kernel(P ) can be
computed in O(n) time.

Proof. To compute the area of the {0◦}-Kernel(P ) = S(P )∩P , we proceed
as follows. The area can be decomposed into (a finite number of) horizontal
trapezoids defined by pairs of vertices in cl∪cr with consecutive y-coordinate.
The area of these trapezoids can be computed in constant time, so the area
of {0◦}-Kernel(P ) = S(P ) ∩ P can be computed in O(|cl|+ |cr|) time.

Computing the perimeter is even simpler, because we only need the
addition of the lengths of cl and cr plus the lengths of the north and south
boundaries of the {0◦}-Kernel(P ), which can also be done in O(|cl| + |cr|)
time.

2.2.2 The existence of the {0◦}-Kernelθ(P )

In this subsection, we show how to compute the intervals for θ such that
the {0◦}-Kernelθ(P ) is non-empty. First, we observe that we do not need
a complete rotation, since {0◦}-Kernel−π

2
(P ) = {0◦}-Kernelπ

2
(P ). Also,

notice that Definition 2.4, for reflex maxima/minima with respect to the
horizontal orientation, can be easily extended to any orientation θ ∈ [−π

2
, π
2
)

as follows.

Definition 2.8. A reflex vertex pi in a simple polygon P where pi−1 and
pi+1 are both below (respectively, above) pi with respect to a given orien-
tation θ is a reflex maximum (resp. a reflex minimum) with respect to θ.
Analogously, an edge of angle θ with two reflex vertices is a reflex maxi-
mum (resp. minimum) when its two neighbors are below (resp. above) with
respect to the orientation θ.

In order to know the intervals for θ such that the {0◦}-Kernelθ(P ) is
not empty, we need to maintain the boundary of the rotation by angle θ
of the strip S(P ) previously defined, which will be denoted by Sθ(P ); see
Figure 2.3. We need to extend Lemma 2.5 to any orientation θ:

Lemma 2.9. The {0◦}-Kernelθ(P ) is the region defined by the intersection
Sθ(P ) ∩ P .

Proof. The claim follows from Lemma 2.5 and the fact that {0◦}-Kernelθ(P ) =
{0◦}-Kernel(Pθ) and Sθ(P ) = S(Pθ), where Pθ denotes the polygon P ro-
tated by the angle θ. See Figure 2.3.
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Figure 2.3: A rotating {0◦}-Kernelθ(P ) for θ = 0 (left), θ = π
8

(middle), and
θ = π

4
(right).

Now, we describe the main steps of our algorithm to compute the inter-
vals of those values of θ within [−π

2
, π
2
) such that Sθ(P ) ̸= ∅ and, therefore,

such that {0◦}-Kernelθ(P ) ̸= ∅.

Step 1: Angular intervals. For each vertex pi ∈ P , if pi is reflex, we com-
pute the angular intervals [θi1, θ

i
2) and [θi1 + π, θi2 + π) of orientations θ for

which pi is a reflex maximum/minimum, defined when rotating the line con-
taining the edge pi−1pi up to the line containing the edge pipi+1. Otherwise,
if pi is convex, we compute the angular intervals [θi1, θi2) and [θi1 + π, θi2 + π)
of orientations θ for which pi is the lowest/highest vertex of the rotated
polygon Pθ. Thus, in case that for some orientation θ there is no reflex
maximum/minimum, the lowest/highest convex vertex for that orientation
will play the role of reflex maximum/minimum. Note that an angular inter-
val may be split into two, in case it contains the orientation π/2.

Step 2: Dualization. For the sake of efficiently handling the next step,
we do the dualization of the set of vertices together with their relevant non-
empty angular intervals from Step 1. The dualization function ℓ we use is
as follows: If p = (a, b) is a point in the primal, its dual ℓ(p) is the line
ℓ(p) :≡ y = ax − b; if r is the line given by y = ax − b in the primal,
its dual ℓ(r) is the point ℓ(r) := (a, b). Moreover, the point p = (a, b) lies
below/on/above a line l ≡ y = mx+c if and only if the line ℓ(p) ≡ y = ax−b
passes above/through/below the point ℓ(l) = (m,−c), see [16].

In this way, for a vertex pi ∈ P we translate the two lines which contain
the incident edges pipi−1 and pipi+1 of the polygon P into the corresponding
dual points located on the dual line ℓ(pi). In addition, we translate the set
of lines through pi in the angular interval of pi into the corresponding set
of dual points, which define a segment on the line ℓ(pi). For an illustration,
see the objects in red part in Figure 2.4. Thus, the angular interval of a
point pi is translated into the straight line segment on the line ℓ(pi). Again,
note that a vertex pi may contribute two segments in the dual plane, if the
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corresponding angular interval contains the orientation π/2. The dualization
process for all the other cases is done in an analogous way.

The dualization is performed as follows. On one hand, we dualize the
reflex minima with their intervals which, in addition to the dual of intervals
of the upper chain of the convex hull of P , CH(P ), (in blue in Figure 2.4)
results in an arrangement Dmin of line segments. On the other hand, we
dualize the reflex maxima with their intervals (an example in red in Fig-
ure 2.4) which, together with the dual of the intervals of the lower chain
of CH(P ), gives an arrangement Dmax of line segments. Both arrangements
have a linear number of line segments in the dual plane.

`(p1)

`(p2)`(p3)

`(p4) `(p5)

`(p6)
`(p7)

p1

p2

p3

p4

p5

p6

p7

Figure 2.4: In red, dualization of the angular interval corresponding to the
vertex p5 (left) in the primal, which in the dual translates into a segment on
the line ℓ(p5) (right). In blue, the angular intervals of the vertices p7, p1, p2
in the upper chain of the convex hull in the primal (left), translate into the
lower envelope of the arrangement in the dual (right).

Step 3: Event intervals. We compute the sequence of event intervals,
each of which is defined by a pair of orientation values [θ1, θ2) ⊂ [−π

2
, π
2
)

such that for any value θ ∈ [θ1, θ2), the strip Sθ(P ) is supported by the
same pair of vertices of P , in other words, such that the pair of vertices
of P defining the lowest reflex minimum and the highest reflex maximum
does not change for θ ∈ [θ1, θ2), recall Figure 2.3. In order to determine the
sequence of event intervals, we exploit the following observation.
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Observation 2.10. The highest (resp. lowest) segment in Dmin (resp.
Dmax) intersected by the vertical line x = θ corresponds in the primal to the
lowest reflex minimum (resp. the highest reflex maximum) with respect to
the orientation θ.

Proof. It directly follows from the already mentioned fact that the dualiza-
tion reverses the above-below relations between lines and/or points.

Taking into account the above observation, we compute the upper en-
velope of Dmin, denoted by UDmin

, and the lower envelope of Dmax, denoted
by LDmax [51]. Next, by sweeping the arrangement UDmin

∪LDmax , we obtain
the sequence of pairs “lowest reflex minimum and highest reflex maximum”
for all the event intervals [θ1, θ2), as θ varies in [−π

2
, π
2
).

Step 4: Non-empty {0◦}-Kernelθ(P ). Recall that, by Lemma 2.9,
the strip Sθ(P ) is empty if, with respect to θ, the lowest reflex minimum
is below the highest reflex maximum. Therefore, this step relies only on
scanning the relevant pairs from Step 3 and checking whether the lowest
reflex minimum is above the highest reflex maximum, which results in the
angular intervals [θ1, θ2) ⊂ [−π

2
, π
2
) such that {0◦}-Kernelθ(P ) ̸= ∅ for all

the values of θ ∈ [θ1, θ2).

Analysis of Algorithm 1. The correctness of Algorithm 1 follows from the
discussion above, in particular from the concept of dualization together with
Observation 2.10. About the complexity, STEPS 1 and 2 can be done in lin-
ear time and space, in particular, by computing the convex hull of the simple
polygon P [82]. STEP 3 can be done in O(n log n) time, since the computa-
tion of the upper (and the lower) envelope of a set of n possibly-intersecting
straight-line segments can be done in O(n log n) time [51]. Finally, STEP 4
can be accomplished in O(nα(n)), since the upper envelope and the lower
envelope of a set of n possibly-intersecting straight-line segments in the plane
have worst-case size O(nα(n)), where α(n) is the extremely-slowly-growing
inverse of Ackermann’s function [3].

Theorem 2.11. For a simple polygon P with n vertices, the set of event
intervals [θ1, θ2) ⊂ [−π

2
, π
2
) such that {0◦}-Kernelθ(P ) ̸= ∅ for θ ∈ [θ1, θ2)

can be computed in O(n log n) time and O(nα(n)) space.

Proof. The result is a direct consequence of applying Algorithm 1, whose
correctness as well as time and space complexities follow from the analysis
above.
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Algorithm 1 Computing the intervals of θ such that {0◦}-Kernelθ(P ) ̸= ∅

Input: A simple polygon P with n vertices
Output: Set I of event intervals for angles θ such that {0◦}-Kernelθ(P ) ̸=
∅

STEP 1: Angular intervals
1: for i = 1 to n do
2: if pi ∈ P is reflex then
3: compute [θi1, θ

i
2) and [θi1 + π, θi2 + π) such that pi is reflex maxi-

mum/minimum
4: if pi ∈ P is convex then
5: compute [θi1, θ

i
2) and [θi1 + π, θi2 + π) such that pi is the low-

est/highest vertex of Pθ,
6: proceed like pi being a vertex reflex minimum/maximum

STEP 2: Dualization of vertices with their angular events
from Step 1

7: for i = 1 to n do
8: if pi is a reflex maximum then
9: translate the angular interval of pi into the line segment on ℓ(pi)

and include this in an arrangement Dmax

10: if pi is a reflex minimum then
11: translate the angular interval of pi into the line segment on ℓ(pi)

and include this in an arrangement Dmin

12: (Note that a reflex vertex may contribute two segments in the dual.)
13: Include in Dmax the dual of the lower chain of CH(P ) and include in
Dmin the dual of the upper chain of CH(P )

STEP 3: Event intervals
14: Compute the event intervals such that Sθ(P ) is supported by the same

pair of vertices
15: Compute the upper envelope UDmin

of Dmin

16: Compute the lower envelope LDmax of Dmax

17: Sweep UDmin
∪LDmax and compute the “lowest reflex minimum and high-

est reflex maximum” for the event intervals

STEP 4: Non-empty {0◦}-Kernelθ(P )
18: Scan the vertex pairs from STEP 3, checking whether the lowest re-

flex minimum is above the highest reflex maximum and, if so, add the
corresponding interval to an initially empty set I

19: output I
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2.2.3 Optimizing the area of the {0◦}-Kernelθ(P )

Let us consider the problem of optimizing the area of the {0◦}-Kernelθ(P ),
i.e., computing the value(s) of θ such that the area of {0◦}-Kernelθ(P ) is
maximum or minimum (note that the latter only makes sense where the
kernel is non-empty). The idea of our approach is based upon Algorithm 1
for computing the set of event intervals [θ1, θ2) ⊂ [−π

2
, π
2
) such that {0◦}-

Kernelθ(P ) ̸= ∅ for all the values of θ ∈ [θ1, θ2) (Theorem 2.11). Namely,
we do the following:

Step A: {0◦}-Kernelθ(P ) ̸= ∅. Run STEPS 1-4 of Algorithm 1.

Step B: Vertex events. For each event interval [θ1, θ2) from Step 4 (within
which the highest reflex maximum and the lowest reflex minimum do not
change), we subdivide [θ1, θ2) every time that, as θ varies, a vertex of the
simple polygon P either stops or starts contributing to the current boundary
of the {0◦}-Kernelθ(P ). Observe that at, every such subdivision step, the
differential in the area can be decomposed into triangles, as illustrated in
Figure 2.5. In particular, for each of these consecutive subintervals [βj, βj+1)
of [θ1, θ2), we have:

Area({0◦}-Kernelβ(P )) = Area({0◦}-Kernelβj
(P )) + A1(β)

+A2(β)−B1(β)−B2(β).
(2.1)

Thus, for such β ∈ [βj, βj+1), the area of the {0◦}-Kernelβ(P ) can be ex-
pressed, using simple trigonometric relations, as a function A(β) of the angle
of rotation β ∈ [βj, βj+1), as detailed in Section 2.5.1. Thus, it only remains
to obtain the maximum value of that function in the subinterval. In the
mentioned Section 2.5.1 we show how this calculation is reduced to find the
real solutions of a polynomial equation in t of degree 6. The final solu-
tion to the problem is then the best one over all those computed for these
consecutive subintervals [βj, βj+1).

Clearly, Step B requires computing and maintaining the boundary of
{0◦}-Kernelθ(P ), in particular, maintaining the set of vertices of the cur-
rent left and right boundary chains, respectively denoted by clθ and crθ, of
{0◦}-Kernelθ(P ) as θ ∈ [θ1, θ2) varies (also for all the possible consecutive
subintervals [βj, βj+1) of [θ1, θ2)); see again Figure 2.5. For this purpose, we
compute the intersections of the lines hN(θ) and hS(θ) with the boundary
of P , maintaining the information of the first and the last vertices of clθ and
crθ in the current interval [θ1, θ2). Now, as θ varies, the next vertex event
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Figure 2.5: The four triangles A1(β), A2(β) (in green), and B1(β), B2(β)
(in red).

can be computed in constant time by sweeping (and so modifying ad-hoc)
chains clθ and crθ, in particular, using the circular order of the vertices of
the polygon P and taking the smallest among the relevant angles defined
by the current line hN(θ) (resp. hS(θ)), the point pN(θ) (resp. pS(θ)), and
the relevant first polygon vertex on clθ and the first polygon vertex after the
last polygon vertex on crθ (resp. the first polygon vertex on crθ and the first
polygon vertex after the last polygon vertex on clθ).

One can wonder whether the same vertex of a simple polygon P may con-
tribute to a vertex event for several event intervals. Surprisingly enough,
there can be Θ(n) distinct vertices, each of them contributing Θ(n) ver-
tex events, as illustrated in Figure 2.6. By Theorem 2.11 we know that
the number of event intervals is at most O(nα(n)) thus, there may be as
many as O(n2α(n)) vertex events (consecutive subintervals) involving in to-
tal O(n2α(n)) non-empty kernels {0◦}-Kernelθ(P ) having combinatorially
different boundaries, implying the time complexity for computing the angle
θ that maximizes (or minimizes) the area of {0◦}-Kernelθ(P ). To see this,
it is enough to construct a simple polygon P ′ by replicating the set of four
points {p1, p2, p3, p4} in Figure 2.6 a linear number of times, and keeping
the Θ(n) vertices in the corner. As we will see later, this bound also works
for the computation of the maximum (or minimum) value of the perimeter
of {0◦}-Kernelθ(P ). From this discussion we get the following result.

Proposition 2.12. For a simple polygon P with n vertices, the number of
vertex events or consecutive subintervals [βj, βj+1) where Algorithm 2 has to
optimize the area of {0◦}-Kernelθ(P ) is O(n2α(n)).

Proof. The O(n2α(n)) bound comes from the simple polygon P ′ constructed
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Algorithm 2 Computing the maximum area of {0◦}-Kernelθ(P )

Input: A simple polygon P with n vertices
Output: An angle θ such that Area({0◦}-Kernelθ(P )) is maximum and

the maximum value of the area

STEP A: {0◦}-Kernelθ(P ) ̸= ∅
1: Run STEPS 1-4 from Algorithm 1

STEP B: Vertex events.
2: for each [θ1, θ2) from STEP 4 of Algorithm 1 do
3: if a vertex of P stops/starts appearing on the current boundary of

the {0◦}-Kernelθ(P ) then
4: subdivide [θ1, θ2) into consecutive subintervals [βj, βj+1) and de-

compose the differential of the area into triangles
5: for each subinterval [βj, βj+1) and β ∈ [βj, βj+1) do

A(β) = Area({0◦}-Kernelβ(P ))
= Area({0◦}-Kernelβj

(P )) + A1(β) + A2(β)−B1(β)−B2(β)

6: Find the real solutions of a polynomial equation, and maintain the
maximum value of A(β) and the corresponding angle

7: output the maximum value of the area and the corresponding angle

above based on Figure 2.6, taking into account the computation of the
envelopes for obtaining the event intervals in Theorem 2.11.

Analysis of Algorithm 2. The correctness of Algorithm 2 follows from the
discussion above. Namely, STEP A consists on running Algorithm 1, so
it takes O(n log n) time and O(nα(n)) space, obtaining O(nα(n)) event
intervals. By Proposition 2.12, the number of vertex events or consecutive
subintervals can be O(n2α(n)), and STEP B spends constant time for the
optimization in each of them, see Section 2.5.1. Thus, this implies O(n2α(n))
time and O(nα(n)) space in total. Notice that when we change from an event
interval to the next event interval, we might have to manage a situation
like the one illustrated in Figure 2.6, but this can be done in linear time
and space since we translate one side of the kernel in parallel with the
endpoints going through vertices on the boundary of P (vertices in the
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p1

p2

p3

p4

Θ(n) vertices
in the corner

Figure 2.6: For each vertex pi, 1 ≤ i ≤ 4, all the Θ(n) vertices in the corner
will be scanned again.

corner in Figure 2.6). Thus, it does not change the total time complexity
because it implies an additional O(n2α(n)) time; also the space complexity
does not change because the algorithm always reuses the linear space.

Theorem 2.13. For a simple polygon P with n vertices, an angle θ that
maximizes/minimizes the value of the area of {0◦}-Kernelθ(P ) can be com-
puted in O(n2α(n)) time and O(nα(n)) space.

Proof. Again, the correctness of our approach and the time and space com-
plexities follow from the discussion above on the analysis of Algorithm 2 and
Proposition 2.12. The problem of minimizing the area, where meaningful,
is handled in the same way.

2.2.4 Optimizing the perimeter of the {0◦}-Kernelθ(P )

Consider now the problem of optimizing the perimeter of {0◦}-Kernelθ(P ),
denoted by Π(θ), where the goal is to compute the value(s) of θ such that
Π(θ) is maximum or minimum (note that the latter only makes sense where
the kernel is non-empty). Observe that we can apply the same approach as
the one proposed for optimizing the area of {0◦}-Kernelθ(P ) in Algorithm 2,
with the only difference that now, when handling the vertex events (defined
and computed exactly in the same way as in the case of optimizing the area
in Step B), we need to handle the expression for the polygon perimeter.
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Clearly, the differential in the perimeter can be decomposed as adding two
segments and subtracting two other segments, see again Figure 2.5, and thus
the perimeter can then be expressed, using simple trigonometric relations,
as a function Π(β) of the angle of rotation β ∈ [βj, βj+1), see Section 2.5.2.
Then, it only remains to obtain the maximum value of that function in the
interval [βj, βj+1). As detailed in Section 2.5.2, this amounts to finding the
real solutions of a polynomial equation in t of constant degree. Consequently,
we may conclude with the following result, where the minimization of the
perimeter, if meaningful, is handled analogously.

Theorem 2.14. For a simple polygon P with n vertices, an angle θ such
that the value of the perimeter of {0◦}-Kernelθ(P ) is maximum/minimum
can be computed in O(n2α(n)) time and O(nα(n)) space.

2.3 The rotated {0◦, 90◦}-Kernelθ(P ) of a sim-
ple polygon P

We continue our study on the problem of computing the O-Kernel of a
simple polygon P considering the case when O is given by two perpendicular
orientations which rotate simultaneously, for which we prove the results in
the second row of Table 2.1. Notice that the two orientations do not need
to be perpendicular for the proofs nor the algorithm in this section, because
we are using Observation 2.3. Moreover, since the problem for a set O with
k orientations reduces to computing and maintaining the intersection of k
different kernels, the results in the third row of Table 2.1 will follow as well.

2.3.1 The existence of the {0◦, 90◦}-Kernelθ(P )

Taking into account Observation 2.3, one can determine {0◦, 90◦}-Kernelθ(P )
by computing the intersection of the two kernels {0◦}-Kernelθ(P ) and {90◦}-
Kernelθ(P ), respectively. Note that, in fact, the latter equals the {0◦}-
Kernelθ+90◦(P ). In the following, the points pW (θ) and pE(θ) for the {90◦}-
Kernelθ(P ) are analogous to the points pN(θ) and pS(θ) previously defined
for the {0◦}-Kernelθ(P ). Notice that pN(θ+90◦) = pW (θ) and pS(θ+90◦) =
pE(θ), recall Figure 2.2, and see Figure 2.7.
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Figure 2.7: Left: A {0◦, 90◦}-Kernelθ(P ) and the rotated kernel in the next
event, the area leaving (resp. entering) the kernel being depicted in red
(resp. green). Right: A more general {0◦, 90◦}-Kernelθ(P ) and the rotated
kernel in a slightly larger angle β, depicting the entering and leaving areas
as before. Note that, in both cases, pi(γ1) = pi(θ) for any θ ∈ [γ1, γ2),
i ∈ {N,W, S,E}.

2.3.1.1 Floating rectangle

Let θ ∈ [0, π/2) be an angle such that both {0◦}-Kernelθ(P ) and {90◦}-
Kernelθ(P ) are non-empty. In what follows, we refer to the intersection
Sθ(P ) ∩ Sθ+90◦(P ) as a floating rectangle, and denote it by Rθ (recall that
Sα(P ) denotes the strip defined by the lines hN(α) and hS(α) being, respec-
tively, the line with slope tan(α) passing through pN(α) and the line with
slope tan(α) passing through pS(α)). Clearly, by combining Lemma 2.5 with
Observation 2.3, we observe that

{0◦, 90◦}-Kernelθ(P ) = Rθ ∩ P, (2.2)

which immediately results in the following observation.

Observation 2.15. The {0◦, 90◦}-Kernelθ(P ) of a simple polygon P is
empty if, and only if:

(A) either one of the two kernels {0◦}-Kernelθ(P ) or {90◦}-Kernelθ(P )
is empty, or

(B) the floating rectangle Rθ is lying outside P (as in Figure 2.8, left).
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Figure 2.8: Three types of kernel with the arcs for the vertices of the floating
rectangle. Note that the references to the angle θ in pi(θ) and xij(θ) have
been removed for the sake of an easier visualization.

Assume now that, following our approach proposed for the proof of The-
orem 2.11, we have already computed the sequence I0◦ of event intervals
where {0◦}-Kernelθ(P ) ̸= ∅, and in an analogous way the sequence I90◦ of
event intervals where {90◦}-Kernelθ(P ) ̸= ∅. Now, in O(nα(n)) time and
space, we obtain from these two event sequences the sequence I (with com-
plexity O(nα(n)) of the event intervals corresponding to the simultaneous
rotation of both kernels, saving only those non-empty intersections I ′ ∩ I ′′

of event intervals I ′ ∈ I0◦ and I ′′ ∈ I90◦ , where both kernels are non-empty.
Once we have stored this data, as a matter of fact, we have handled Case
(A) in Observation 2.15.

Next, as regards Case (B) in Observation 2.15, the following lemma al-
lows us to check whether the intersection {0◦}-Kernelθ(P )∩{90◦}-Kernelθ(P ) =
{0◦, 90◦}-Kernelθ(P ) is non-empty.

Lemma 2.16. Consider an event interval [γ1, γ2) ∈ I and an angle θ ∈
[γ1, γ2). Then the {0◦, 90◦}-Kernelθ(P ) is non-empty in the following cases:

(B.1) At least one point among the current pN(γ1), pS(γ1), pE(γ1),
pW (γ1) belongs to the floating rectangle Rγ1 (see Figure 2.7).

(B.2) The polygon P contains at least one of the corners of the floating
rectangle Rθ (see Figure 2.8).

Proof. First, if at least one of the cases (B.1), (B.2) holds then the {0◦, 90◦}-
Kernelγ1(P ) is non-empty. Assume now that the kernel is non-empty and
suppose, for contradiction, that neither (B.1) nor (B.2) holds. Then, the fact
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that (B.2) does not hold implies that all 4 corners of the rectangle Rγ1 lie
outside P . Consider two adjacent corners r, r′ of Rγ1 lying on the line hN(γ1)
that goes through pN(γ1). The fact that (B.1) does not hold implies that
pN(γ1) does not belong to the line segment connecting r, r′, But then, if
there were a point q ∈ P on the segment rr′, then the definition of the
{0◦}-Kernelθ(P ) (see Definition 2.2) implies that q should be γ1-visible from
pN(γ1). Then, Definition 2.1 implies that there is a γ1-staircase C in P
connecting pN(γ1) and q; this is a contradiction because the intersection of
C with the line hN(γ1) which has slope tan(γ1) is not connected. Thus, the
entire edge rr′ of Rγ1 lies outside P .

Similarly, the other edges of Rγ1 lie outside P as well. Then, for any
point q′ inside Rγ1 , we can apply the same argument by using a line par-
allel to hN(γ1) that goes through q′ (note that such a line intersects the
strip Sγ1), proving that q′ ̸∈ P . Therefore, the entire Rγ1 lies outside P , in
contradiction to the fact that the {0◦, 90◦}-Kernelγ1(P ) is non-empty.

Clearly, Case (B.1) can be checked in constant time, by the orientation
test with the point considered and the two lines forming the relevant strip.
Notice that the situation of these four points cannot change during the event
interval [γ1, γ2), since pi(γ1) = pi(θ) for any θ ∈ [γ1, γ2), i ∈ {N,W, S,E}.

2.3.1.2 Arc events

For i ∈ {N,S}, let xiW (θ) (resp. xiE(θ)) denote the intersection point of
the line hi(θ) with the line hN(θ + 90◦) (resp. hS(θ + 90◦)), see Figure 2.8.
In other words, the points xij(θ), i ∈ {N,S} and j ∈ {W,E}, are the
relevant four corners of the floating rectangle Rθ. Next, for i ∈ {N,S}
and j ∈ {W,E}, let Cij(θ) denote the circle passing through the points
pi(θ), pj(θ) and xij(θ), again see Figure 2.8. Finally, let ăij(θ) denote the arc
of Cij(θ) between pi(θ) and pj(θ) such that xij(θ) belongs to ăij(θ). Notice
that the angle between points pi(θ), xij(θ) and pj(θ) is the right angle, and
so the point xij(θ) describes the semicircle having as diameter the segment
pi(θ)pj(θ) (see again see Figure 2.8), thus impyling Cij(θ) = Cij(γ1) and
ăij(θ) = ăij(γ1) for any θ ∈ [γ1, γ2). Consequently, as θ varies in [γ1, γ2), the
point xij(θ) continuously moves along the arc ăij(γ1). Moreover, we have
the following observation.

Observation 2.17. As θ varies in [γ1, γ2), the point xij(θ) can change
several times from the exterior to the interior of the polygon P or vice
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versa.

The claim follows from the interval [γ1, γ2) being the intersection of event
intervals and the fact that the boundary of the simple polygon P can be
a polyline of size Θ(n), as the one in Figure 2.6. Taking into account Ob-
servation 2.17, for an event interval [γ1, γ2), we can handle the case (B.2)
in linear time. Because there are at most O(nα(n)) event intervals, the
total complexity for this step will be O(n2α(n)). Therefore, we can outline
Algorithm 3.

Algorithm 3 Computing the intervals of θ such that {0◦, 90◦}-
Kernelθ(P ) ̸= ∅

Input: A simple polygon P with n vertices
Output: Sequence E of intervals for angles θ such that {0◦, 90◦}-
Kernelθ(P ) ̸= ∅

STEP I: Event intervals: Checking Case (A) in Observa-
tion 2.15

1: Apply Algorithm 1 to compute the sequence I0◦ of event intervals where
{0◦}-Kernelθ(P ) ̸= ∅

2: Apply Algorithm 1 to compute the sequence I90◦ of event intervals where
{90◦}-Kernelθ(P ) ̸= ∅

3: Combine I0◦ and I90◦ into the sequence I = {I ′ ∩ I ′′ = [γj, γj+1) | I ′ ∈
I0◦ , I ′′ ∈ I90◦}

STEP II: Floating rectangle: Checking Case (B)
4: for each event interval [γ1, γ2) ∈ I do
5: if pN(γ1) or pS(γ1) or pE(γ1) or pW (γ1) belongs to Rγ1 then
6: Case (B.1) holds and {0◦, 90◦}-Kernelθ(P ) ̸= ∅ for θ ∈ [γ1, γ2).

Insert [γ1, γ2) in an initially empty sequence E
7: else
8: for each vertex event [β1, β2) ⊆ [γ1, γ2) do
9: if xij(θ), i ∈ {N,S}, j ∈ {W,E}, on ăij(γ1) as θ ∈ [β1, β2), is

in the interior of P then
10: Case (B.2) holds and {0◦, 90◦}-Kernelθ(P ) ̸= ∅ for θ ∈

[β1, β2). Insert [β1, β2) in E
11: output E
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Analysis of Algorithm 3. For STEP I we only need to apply twice Algo-
rithm 1, and then do a refinement of two sequences of sizes O(nα(n)), getting
a sequence of size O(nα(n)) in O(n log n) time and O(nα(n)) space. STEP
II has two cases: Case (B.1) takes only constant time to check whether some
of the points belongs to the floating rectangle, and it is done O(nα(n)) times,
giving O(nα(n)) total time complexity. Case (B.2) is also done O(nα(n))
times but in each of them, we might have to check (in constant time) at
most a linear number of vertex events or consecutive subintervals for each
of the four vertices of the current floating rectangle. Therefore the total
complexities of STEP II are O(n2α(n)) time and space. Notice that the
space complexity of the algorithm is O(n2α(n)) because we are storing a
sequence E of (possible) size O(n2α(n)).

Theorem 2.18. For a simple polygon P with n vertices, the sequence of
consecutive intervals for the angles θ such that {0◦, 90◦}-Kernelθ(P ) ̸= ∅
can be computed in O(n2α(n)) time and space.

Proof. The discussion above and the analysis of the complexities in Algo-
rithm 3 provide the proof of this theorem.

2.3.1.3 Generalization to k orientations

One can extend Theorem 2.18 to the case of a set O = {α1, . . . , αk} of k
orientations. In particular, Lemma 2.16 can be extended as follows. Instead
of the four points pN(γ1), pS(γ1), pE(γ1), and pW (γ1), we have 2k high-
est/lowest maximum/minimum reflex vertices according to the k different
orientations. The extended version of Condition (B.1) requires at least one
of them to be inside the convex polygon defined by the intersection of the
k strips, what can be checked in O(k) time and space, whereas Condition
(B.2) holds if at least one vertex of this convex polygon is inside P , what
can be checked in O(kn2α(n)) time and space. Thus, we get the following
result.

Theorem 2.19. For a simple polygon P with n vertices, the sequence of
consecutive intervals for the angles θ such that {α1, . . . , αk}-Kernelθ(P ) ̸= ∅
can be computed in O(kn2α(n)) time and space.
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2.3.2 Optimizing the area and perimeter of {0◦, 90◦}-
Kernelθ(P ) of simple polygons

Let us consider a {0◦, 90◦}-Kernelθ(P ) at some angle θ = γ1 and suppose
that the orientations are rotated to a slightly larger angle β so that the
kernels at angle γ1 and β are defined by the same reflex minima and maxima
pi(γi), i ∈ {N,W, S,E}, and are bounded by the same edges of the polygon.
The differential in the area of the kernels in the case shown in Figure 2.7, left,
can be expressed in terms of 8 triangles similar to the ones we saw for the
{0◦}-Kernelθ(P ). The case we show in Figure 2.7, right, is more general and
we have (for simplicity, we use here pi instead of pi(γi) for i ∈ {N,W, S,E}):

A(β) = A(γ1) + (AT (pS d pE)− AT (pS a pE)) + (AT (pE e pN)
−AT (pE b pN))− AT (pN r t) + AT (pE s u)
−(AT (pE f pS)− AT (pE c pS)),

(2.3)

where by AT (a b c) we denote the area of the triangle with vertices a, b, c.
Thus, the differential in the area can be expressed using the area of at most
8 triangles with 1 edge on a polygon edge and at most 4 differences of two
triangles with common base and whose third vertex moves along a circular
arc. The differential in the perimeter is (see Figure 2.7, right):

Π(β) = Π(γ1) + (ΠT (pS d pE)− ΠT (pS a pE))− (ΠT (pE e pN)
−ΠT (pE b pN)) + ∆Π−

T (pN r t) + ∆Π+
T (pE s u) + (ΠT (pE f pS)

−ΠT (pE c pS))
(2.4)

where ΠT (a b c) is the perimeter of the triangle with vertices a, b, c and
∆Π+

T (a b c) (resp. ∆Π−
T (a b c)) is the sum (resp. difference) of the diffe-

rence of the lengths of the edges at angle β and γ1 plus (resp. minus) the
length of the third edge.

To compute and maintain the optimal values for the area and perimeter
of the {0◦, 90◦}-Kernelθ(P ), we can use the data computed in Section 2.3.1
about the intervals where this kernel is non-empty. Moreover, we can assume
that in each of these intervals there are neither changes in the points of P
defining the kernel, nor changes in the vertices of the intersection rectangle
of the two kernel strips. In particular, following Lemma 2.16 and Observa-
tion 2.17, we compute different intervals for the cases when one, two, three,
or the four vertices of the rectangle lie inside the kernel. This only implies a
multiplicative constant factor in the number of event intervals. Thus, again
a total of O(n2α(n)) intervals arise.
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Next, we can analyze the method and formulas to compute the area or
the perimeter according to the different types of intervals. We can always
assume that we have computed the area or the perimeter of the previous
interval, i.e., if we are going to analyze the interval [γ1, γ2), then we know
the values of the area and the perimeter for the previous interval [γ′

1, γ
′
2).

Thus, for the area or perimeter in Case (B.1) of Lemma 2.16, if these four
points are inside the kernel as illustrated in Figure 2.7, left, then we have to
consider the 8 triangles involved with the formulas for the area or perimeter,
in an analogous way as for the case of one orientation {0◦}-Kernelθ(P ) in
Subsections 2.2.3 and 2.2.4. If there are three, two, or only one of the points
inside the kernel, it is enough to incorporate the corresponding new formulas
for these cases. For the sake of easier reading, and since the complexity of
the algorithm does not increase, the details for those cases are omitted.

An analogous situation arises for Case (B.2) of Lemma 2.16: If all four
rectangle corners are inside the polygon P , then it is easy to describe the
formulas for the area and perimeter. We would have to add new formulas
for the cases where there are three, two, or only one corner of the rectangle,
but again the complexity of the algorithm does not change and details are
omitted.

Thus, it is clear that the relevant issue for the algorithms optimizing
area or perimeter is the total time for computing all of the O(n2α(n))
intervals (each one of them can be handled in constant time), which is
O(n2α(n)). The space complexity is O(nα(n)) because we only maintain
the maximum/minimum values of the area or the perimeter but no all of
the computed values, thus the used space is essentially for computing the
set of event intervals. Notice that when we change from an event inter-
val to the next event interval, we may have to manage a situation like the
one illustrated in Figure 2.6 from Proposition 2.12, but this can be done in
linear time and space since we translate one side of the kernel in parallel
with a endpoint going through vertices on the boundary of P , and it does
not change the total time and space complexities. Therefore, we have the
following result.

Theorem 2.20. For a simple polygon P with n vertices, an angle θ such that
the area or the perimeter of the {0◦, 90◦}-Kernelθ(P ) are maximum/minimum
can be computed in O(n2α(n)) time and O(nα(n)) space.
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2.3.2.1 Generalization to k orientations

In a similar way as above, we can extend Theorem 2.20 to the case of a set
O = {α1, . . . , αk} of k orientations. Thus, we get the following result1.

Theorem 2.21. For a simple polygon P with n vertices, an angle θ such that
the area or the perimeter of {α1, . . . , αk}-Kernelθ(P ) are maximum/minimum
can be computed in O(kn2α(n)) time and O(knα(n)) space.

2.4 Simple orthogonal polygons

In this section, we confine our study to simple orthogonal polygons, showing
how the results in Table 2.1 can be improved to those in Table 2.2 for this
case.

Each edge of an orthogonal polygon is a N-edge, S-edge, E-edge, or W-
edge depending on whether it bounds the polygon from the north, south,
east, or west, respectively. In particular, for D ∈ {N, S,E,W}, a D-dent
is a D-edge whose both endpoints are reflex vertices of the polygon. We
call a sequence of alternating N- and E-edges a NE-staircase, and similarly
we define the NW-staircase, SE-staircase, and SW-staircase; clearly, each of
these staircases is both x- and y-monotone. Additionally, we characterize the
reflex vertices of an orthogonal polygon based on the type of incident edges;
more specifically, each reflex vertex incident to a N-edge and an E-edge is
called a NE-reflex vertex , and analogously we have the NW-, SE- and SW-
reflex vertices. See Figure 2.9, left. The definition of reflex maxima/minima
with respect to some orientation (Definition 2.8) and the angles of the lines L
such that both neighbors of a reflex vertex are both below or both above L
imply the following observation.

Observation 2.22. (i) For θ = 0 (resp. θ = −π
2
), only the S- and N-

dents (resp. W- and E-dents) contribute reflex minima and maxima,
respectively.

(ii) With respect to an orientation θ ∈ (0, π
2
), every SE-reflex vertex of an

orthogonal polygon is a reflex maximum and every NW-reflex vertex
is a reflex minimum, whereas for θ ∈ (π

2
, π), every SW-reflex vertex is

1Actually, we can compute all angles θ maximizing/minimizing the area/perimeter in
of O(kn2α(n)) space.
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a reflex maximum and every NE-reflex vertex is a reflex minimum.
Analogously, with respect to the orientation θ + 90◦, for θ ∈ (0, π

2
),

every SW-reflex vertex is a reflex maximum and every NE-reflex vertex
is a reflex minimum, whereas for θ ∈ (π

2
, π), every SE-reflex vertex is

a reflex maximum and every NW-reflex vertex is a reflex minimum.

As not all SE-reflex and NW-reflex vertices are corners of dents, Observa-
tion 2.22 implies that there may be a discontinuity in the area or perimeter of
the {0◦}-Kernelθ(P ) at θ = 0 and θ = π

2
; these two cases need to be treated

separately. Furthermore, it points out a crucial advantage of the orthogonal
polygons over simple polygons stated in the following observation.

Observation 2.23. In an orthogonal polygon P , for any θ ∈ (0, π
2
) (and

similarly for any θ ∈ (−π
2
, 0)), the set of reflex minima/maxima does not

change, and thus the lines bounding the strip Sθ(P ) rotate in a continuous
fashion.

This directly implies that a situation like the one depicted in Figure 2.6
cannot occur. Finally, statement (ii) of Observation 2.22 implies the follow-
ing corollary.

Corollary 2.24. Let P be a simple orthogonal polygon. If there are a SE-
reflex vertex u = (xu, yu) and a NW-reflex vertex v = (xv, yv) of P such
that xu ≤ xv and yu ≥ yv, then the {0◦}-Kernelθ(P ) is empty for each
θ ∈ (0, π

2
). Similarly, if there are a SW-reflex vertex u′ = (xu′ , yu′) and a

NE-reflex vertex v′ = (xv′ , yv′) of P such that xu′ ≥ xv′ and yu′ ≥ yv′, then
the {0◦}-Kernelθ(P ) is empty for each θ ∈ (π

2
, π).

Proof. To see this, note that for any u, v as in the statement of the corollary,
for any θ ∈ (π

2
, π), the line through u at angle θ is above the line through

v at angle θ; see Figure 2.9, right. Then, because u and v contribute a
reflex maximum and a reflex minimum respectively (Observation 2.22(ii)),
the strip Sθ is empty and so is the {0◦}-Kernelθ(P ) by Lemma 2.9. A similar
argument works for the vertices u′, v′.

Notation. We denote by ϑP (a, b) the counterclockwise (CCW) boundary
chain of polygon P from point a to point b where a and b are located on the
boundary of P .
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θ

ab

c d

u

v

Figure 2.9: Left: The NW-reflex vertex b and the SE-reflex vertex d are
a reflex minimum and a reflex maximum with respect to the orientation θ,
respectively, whereas the NE-reflex vertex a and the SW-reflex vertex c are a
reflex minimum and a reflex maximum with respect to the orientation θ+ π

2
,

respectively. Right: Illustration for Corollary 2.24.

2.4.1 The {0◦}-Kernelθ(P ) of simple orthogonal poly-
gons

We now prove the results in the first row of Table 2.2, focusing on the case
for θ ∈ [0, π

2
) since the case for θ ∈ [−π

2
, 0) is similar. Observation 2.22

implies that for θ = 0, the {0◦}-Kernelθ(P ), if non-empty, is determined
by a lowest N-dent and a highest S-dent and that for θ ∈ (0, π

2
), only the

SE-reflex (NW-reflex respectively) vertices contribute reflex maxima (resp.
minima).

Let P be a simple orthogonal polygon and suppose that there is at least
one SE-reflex vertex in P . Let u be the leftmost SE-reflex vertex of P (in
case of ties, take the topmost such vertex), consider the downward-pointing
ray r⃗ emanating from u, and, among its intersections with S-edges of P
extending to the left of r⃗, let sSE be the closest one to u. Similarly, let u′

be the topmost SE-reflex vertex of P (in case of ties, take the leftmost such
vertex) and let tSE be, among the points of intersection of the rightward-
pointing r⃗ ′ emanating from u′ with an E-edge extending above r⃗ ′, the one
closest to u′; see Figure 2.10, left.

Next, let CSE be the upper hull of the CCW boundary chain ϑP (sSE, tSE);
the chain CSE is the blue dashed line in Figure 2.10, left. Similarly, by
working with the NW-reflex vertices, we locate the (in case of ties, top-
most) rightmost and the (in case of ties, leftmost) bottom-most NW-reflex
vertices and we define the points sNW and tNW , and the lower hull CNW of
the CCW boundary chain ϑP (sNW , tNW ). The definition of the chain CSE

which states that CSE is the upper hull of ϑP (sSE, tSE) and implies that
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all the vertices of CSE except for sSE, tSE are SE-reflex vertices and the
corresponding arguments for the chain CNW imply the following lemma.

Lemma 2.25. Let sSE, tSE, CSE, sNW , tNW , and CNW of a simple or-
thogonal polygon P be as defined earlier. If all SE-reflex vertices belong to
the CCW boundary chain ϑP (sSE, tSE) and all NW-reflex vertices belong to
the CCW boundary chain ϑP (sNW , tNW ), then for any angle θ ∈ (0, π

2
), any

vertex of CSE (resp. CNW ) at which a line at angle θ is tangent to CSE

(resp. CNW ) is a topmost reflex maximum (resp. lowest reflex minimum)
with respect to the orientation at angle θ.

sSE

tSE

sNW

tNW

u

u′CSE

CNW

v

CNW

sNW

tNW

Figure 2.10: Left: An orthogonal polygon and the corresponding convex
chains CSE and CNW . Right: An orthogonal polygon without SE-reflex
vertices in which we can consider that the convex chain CSE degenerates
into vertex v.

Additionally, assuming that the CCW ordering of sSE, tSE, sNW , and
tNW around the boundary of P is precisely sSE, tSE, sNW , tNW , we can prove
the following property of the CCW boundary chains of P from tNW to sSE
and from tSE to sNW .

Lemma 2.26. Let sSE, tSE, sNW , and tNW of a simple polygon P be as
defined earlier, and assume that the CCW ordering of sSE, tSE, sNW , and
tNW around the boundary of P is precisely sSE, tSE, sNW , tNW and that all
SE-reflex vertices belong to the CCW boundary chain ϑP (sSE, tSE) and all
NW-reflex vertices belong to the CCW boundary chain ϑP (sNW , tNW ). Then,
the CCW boundary chain ϑP (tNW , sSE) of P from tNW to sSE is a SW-
staircase and the CCW boundary chain ϑP (tSE, sNW ) from tSE to sNW is a
NE-staircase.
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Proof. Let us consider the case of the CCW boundary chain ϑP (tNW , sSE)
(see Figure 2.10, left); the proof for the chain ϑP (tSE, sNW ) is symmetric.
Since all SE-reflex vertices belong to the CCW boundary chain ϑP (sSE, tSE)
and all NW-reflex vertices belong to the CCW boundary chain ϑP (sNW , tNW ),
the chain ϑP (tNW , sSE) contains neither SE-reflex nor NW-reflex vertices.

Suppose that we start at the W-edge to which tNW belongs (let this
edge be uv with v below u) and proceed in CCW order. The edge following
the W-edge uv is not a N-edge, otherwise the vertex v would be a NW-
reflex vertex, a contradiction. Thus, the edge following the W-edge uv is
a S-edge, let it be vw. If sSE ∈ vw, then we are done and the lemma
holds. Otherwise, if the edge following the edge vw was an E-edge, then
the top vertex of the leftmost edge in the CCW boundary chain ϑP (w, sSE)
would be a SE-reflex vertex (note that the E-edge incident on w belongs to
this chain), a contradiction. Therefore, the edge following the S-edge vw
is a W-edge. Then, the above argument can be repeated until we reach
the point sSE, implying that the CCW boundary chain ϑP (tNW , sSE) is a
NW-staircase.

Lemma 2.26 implies that if the given polygon P has no SE-reflex vertices,
then the CCW boundary chain ϑP (tNW , sNW ) consists of a SW-staircase
followed by a NE-staircase; see Figure 2.10, right. A similar result holds if
there are no NW-reflex vertices.

2.4.1.1 The existence of the {0◦}-Kernelθ(P ) for a simple orthog-
onal polygon P

In this subsection, we give an algorithm to determine when {0◦}-Kernelθ(P )
for a simple orthogonal polygon P is non-empty. First, if no SE-reflex vertex
exists, then no S-dents exist and as mentioned, the chain CSE degenerates
into the rightmost lowest vertex (see Figure 2.10, right) which thus belongs
to the {0◦}-Kernelθ(P ) for all θ ∈ (0, π

2
); thus, the {0◦}-Kernelθ(P ) is non-

empty for all θ ∈ [0, π
2
). A similar argument holds if no NW-reflex vertex

exists. So, in the following, we assume that the polygon P has SE-reflex
and NW-reflex vertices. Then, we show the following lemma.

Lemma 2.27. Let sSE, tSE, CSE, sNW , tNW , and CNW of a simple orthog-
onal polygon P be as defined earlier.

(i) Let QSE be the convex part of the plane bounded from the left and
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above by CSE, the downward-pointing ray emanating from sSE, and
the rightward-pointing ray emanating from tSE. Similarly, let QNW

be the convex part of the plane bounded from the right and below by
CNW , the upward-pointing ray emanating from sNW , and the leftward-
pointing ray emanating from tNW .

(a) If the interiors of QSE and QNW intersect, then {0◦}-Kernelθ(P )
is empty for each θ ∈ (0, π

2
).

(b) If the interiors of QSE and QNW do not intersect but QSE and
QNW touch at a common point z, then the {0◦}-Kernelθ(P ) de-
generates to a line segment for each θ equal to the angle of each
common interior tangent of CSE and CNW at z, and is empty for
all other values of θ.

(ii) If there exists a SE-reflex vertex not belonging to the CCW boundary
chain ϑP (sSE, tSE) or a NW-reflex vertex not belonging to the CCW
boundary chain ϑP (sSE, tSE), then the {0◦}-Kernelθ(P ) is empty for
each θ ∈ (0, π

2
).

Proof. (i.a) Let p be a point in the intersection of the interiors of the un-
bounded convex polygons QSE and QNW . Then, for any angle θ ∈ [0, π

2
), p

lies below the tangent to CSE at angle θ and above the tangent to CNW at
angle θ and thus the strip Sθ(P ) is empty. Therefore, for each θ ∈ [0, π

2
),

the strip Sθ is empty and, by Lemma 2.9, so is the {0◦}-Kernelθ(P ).

p

v

z

sSE

tSE

Qp

Figure 2.11: The quadrant Qp in the proof of Lemma 2.27(ii).

(i.b) If QSE and QNW touch along their horizontal rays, then the {0◦}-
Kernelθ(P ) is a horizontal line segment if θ = 0, otherwise it is empty.
Similarly, if they touch along their vertical rays, then the {0◦}-Kernelθ(P )
is a vertical line segment if θ = π

2
, otherwise it is empty. Next, assume that
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QSE and QNW touch at a point of CSE and CNW . Then, because QSE and
QNW are convex, they touch at a connected portion of CSE and CNW , that
is, they touch at a point or a line segment. In either case, for any angle θ
of any common interior tangent to CSE and CNW , the {0◦}-Kernelθ(P ) is a
line segment, otherwise it is empty.

(ii) Let us concentrate on the case of a SE-reflex vertex of P , say v, not
belonging to the CCW boundary chain θP (sSE, tSE). (The case of a NW-
reflex vertex not belonging to the CCW boundary chain ϑP (sNW , tNW ) is
similar.) Let p be a point infinitesimally to the right and below v so that p
is outside P . Since the chain ϑP (sSE, tSE) is determined by the leftmost and
the topmost SE-reflex vertices, the x-coordinate of v is larger than the x-
coordinate of sSE while the y-coordinate of v is smaller than the y-coordinate
of tSE. This implies that ϑP (sSE, tSE) intersects both the rightward-pointing
horizontal ray r⃗→ emanating from p and the downward-pointing vertical
ray r⃗↓ emanating from p. Let Qp be the closed quadrant delimited by
the rays r⃗→ and r⃗↓ (see Figure 2.11). Consider the set AC of all minimal
boundary chains of P that lie in QP and are delimited by a point on r⃗→
and a point on r⃗↓ (the minimality implies that no point in such a chain
other than its endpoints belongs to either r⃗→ or r⃗↓); these chains do not
intersect, therefore they are totally ordered and the ordering is the same
as the ordering of their endpoints on r⃗→ or r⃗↓. Among the chains in AC ,
let C be the chain with endpoint on r⃗→ closest to p. Since p is outside the
polygon P , then the interior of P is to the left of C as we walk along it from
its endpoint on r⃗→ to its endpoint on r⃗↓; see Figure 2.11. Then, the right
vertex of a lowest horizontal edge in C is a NW-reflex vertex (e.g., vertex z
in Figure 2.11). Since this vertex is below and to the right of the SE-reflex
vertex v, Corollary 2.24 implies that the {0◦}-Kernelθ(P ) is empty for each
θ ∈ (0, π

2
).

So, assume that none of the cases of Lemma 2.27 holds. Then, the
chains CSE and CNW do neither intersect nor touch, and the inner common
tangents to CSE and CNW are well defined; let them be T1 and T2 with
the slope of T1 being smaller than the slope of T2, and let ϕ1, ϕ2 be the
CCW angle with respect to the positive x-axis of T1 and T2, respectively.
If the y-coordinate of tNW is greater than the y-coordinate of tSE, then
we set θmin = 0, otherwise θmin = ϕ1. Similarly, we define θmax to be
equal to π

2
if the x-coordinate of sSE is greater than the x-coordinate of

sNW , otherwise θmax = ϕ2. For example, in Figure 2.10, left, θmin = 0 and
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θmax < π
2
. Then, since for θ ∈ (0, π

2
) the strip Sθ(P ) is non-empty if and

only if θ ∈ [θmin, θmax] ∩ (0, π
2
), by Lemma 2.5 we have:

Lemma 2.28. Let P be a simple orthogonal polygon such that none of the
cases of Lemma 2.27 hold and consider that θ ∈ (0, π

2
). Then, if no SE-

reflex or NW-reflex vertices exist, the {0◦}-Kernelθ(P ) is non-empty for
each θ ∈ (0, π

2
), otherwise the {0◦}-Kernelθ(P ) is non-empty if and only if

θ ∈ [θmin, θmax] ∩ (0, π
2
).

Corollary 2.29. The values of the angle θ ∈ [0, π
2
) for which the {0◦}-

Kernelθ(P ) of a simple orthogonal polygon P is non-empty form a single
interval and potentially the value θ = 0.

Based on the above discussion, we outline our algorithm in Algorithm 4.

Analysis of Algorithm 4. The correctness of Algorithm 4 follows from the
fact that if no SE-reflex or no NW-reflex vertices exist, the {0◦}-Kernelθ(P )
is non-empty for all θ ∈ [0, π

2
), and from Observation 2.22 and Lemmas 2.27

and 2.28.

Computing the SE-reflex and NW-reflex vertices, the N- and S-dents, and
then finding a lowest N-dent and a highest S-dent can be done in O(n) time.
Thus, STEP 1 can be completed in O(n) time and O(1) space. Computing
the points sSE, tSE, sNW , tNW can be done in O(n) time. The chains CSE

and CNW can be computed in O(n) time as well [83]. As the size of CSE

and CNW is O(n) and they are x-monotone, we can check whether they
cross or touch in O(n) time by walking along them from their leftmost to
their rightmost endpoint in lockstep fashion. Computing the angle of the
line supporting the segment I and the angle ranges of the tangents at z can
be done in O(1) time. The inner common tangents to CSE and CNW can
be computed in O(log n) time (in a fashion similar to computing the outer
ones [63]), from which we can compute θmin and θmax in O(1) time. Hence,
STEP 2 requires O(n) time and O(n) space. Finally, STEP 3 takes O(1)
time and space. In summary, we have:

Theorem 2.30. For a simple orthogonal polygon P with n vertices, the
intervals of θ ∈ [−π

2
, π
2
) for which {0◦}-Kernelθ(P ) ̸= ∅ can be computed in

O(n) time and space.
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Algorithm 4 Computing the intervals of θ such that {0◦}-Kernelθ(P ) ̸= ∅
for a simple orthogonal polygon P

Input: A simple orthogonal polygon P with n vertices
Output: The intervals of the angle θ such that {0◦}-Kernelθ(P ) ̸= ∅

STEP 1: Check if {0◦}-Kernelθ(P ) ̸= ∅ for θ = 0
1: if no SE-reflex vertices exist or no NW-reflex vertices exist then
2: output [0, π

2
) and stop

3: compute the N- and S-dents of P and let eN and eS be a lowest N-dent
and a highest S-dent, respectively

4: if the y-coordinate of eN is smaller than the y-coordinate of eS then
5: solution_for_0← ∅
6: else
7: solution_for_0← [0, 0]

STEP 2: Check if {0◦}-Kernelθ(P ) ̸= ∅ for θ ∈ (0, π
2
)

8: compute the points sSE, tSE, sNW , tNW and the convex chains CSE

and CNW

9: check whether CSE and CNW cross, touch, or do not intersect
10: if there exists a SE-reflex vertex not in ϑP (sSE, tSE) or a NW-reflex

vertex not in ϑP (sNW , tNW ) or the chains CSE and CNW cross then
11: solution_for_0-π

2
← ∅

12: else if the chains CSE and CNW share a line segment I then
13: solution_for_0-π

2
← [θI , θI ]∩(0, π2 ) where θI is the angle of the line

supporting the line segment I
14: else if the chains CSE and CNW touch at a single point z then
15: let RSE(z) (RNW (z), resp.) be the angle interval of the tangent to

CSE (to CNW resp.) at z
16: solution_for_0-π

2
← RSE(z) ∩RNW (z) ∩ (0, π

2
)

17: else
18: compute the inner common tangents to CSE and CNW

19: compute angles θmin and θmax as explained in the paragraph preced-
ing Lemma 2.28

20: solution_for_0-π
2
← [θmin, θmax] ∩ (0, π

2
)

STEP 3: Output results
21: output solution_for_0 ∪ solution_for_0-π

2
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2.4.1.2 Optimizing the area and perimeter of the {0◦}-Kernelθ(P )
for a simple orthogonal polygon P

In this subsection, we present an algorithm that computes an angle θ ∈ [0, π
2
)

such that the area (or perimeter) of the {0◦}-Kernelθ(P ) is maximized;
minimization works similarly.

If the {0◦}-Kernelθ(P ) for θ = 0 is non-empty, we compute its area (or
perimeter) and we use these to set the current maximum value and the
current angle of the maximum that we maintain; if the {0◦}-Kernel0(P ) is
empty, then its area and perimeter are set to 0. Next, we work for θ ∈ (0, π

2
).

For the sake of generality, in the following, we consider that the polygon P
has both SE-reflex and NW-reflex vertices; if one of these two vertex types is
missing, then we skip the computations involving that vertex type, whereas
if both vertex types are missing, then the kernel is the entire polygon P and
we simply need to compute the area or perimeter of P .

φ φ

φ′

θ

Figure 1:

1

Figure 2.12: Left: {0◦}-Kernelθ(P ) for θ = ϕ. Right: Optimizing the
area/perimeter of the {0◦}-Kernelθ(P ) for θ ∈ [ϕ, ϕ′).

Next, we check whether the conditions of Lemma 2.27 hold; if they do,
the area of each of the degenerate kernels that arise is equal to 0, whereas,
whenever the kernel is non-empty, its perimeter can be computed in O(1)
time. Otherwise, we compute the interval A = [θmin, θmax]∩[0, π2 ) as in Algo-
rithm 4; we need to maximize the area or perimeter of the {0◦}-Kernelθ(P )
for any angle θ ∈ A. We start at θ = θmin and we explicitly compute
the {0◦}-Kernelθmin

(P ) and its area (perimeter), which is the current area
(perimeter) maximum (we note that if θmin = 0, we compute the area of the
intersection of the polygon P with a horizontal strip defined by the highest
SE-reflex vertex from below and the lowest NW-reflex vertex from above).
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Subsequently, as in Section 2.2.2, we partition the interval A into angular
subintervals, in each of which the following property holds:

Property 1 The kernel involves the same topmost reflex maximum and
lowest reflex minimum and the same edges of the polygon.

For the resulting partition, say PA, the following lemma holds.

Lemma 2.31. For an orthogonal polygon P with n vertices, the size of the
partition Pa of A = [θmin, θmax] ∩ [0, π

2
) is O(n).

Proof. Let PSE be the partition of the interval A = [θmin, θmax]∩[0, π2 ) based
on which vertex of the chain CSE is the current topmost reflex maximum
and on which edges of the polygon bound the lower segment of the strip Sθ.
Then, an angle θ ∈ A is a partition point if it is

• the angle of an edge of the chain CSE (see Lemma 2.25 because at
that angle the topmost reflex maximum changes, or

• the angle of the tangent from a vertex of P to the chain CSE because
at that point the lower segment of the strip Sθ moves to another edge.

Because the segments bounding the strip Sθ rotate in a continuous fash-
ion (Observation 2.23), the number of vertices of the chain CSE and the
polygon is O(n), the size of PSE is O(n). Similarly, the size of the corre-
sponding partition PNW related to the current lowest reflex minimum and
the chain CNW is O(n) as well. Then, the partition PA is the refinement of
the partition PSE by means of the partition PNW , which yields that its size
is O(n).

After the partition PA has been computed, we process the subintervals in
increasing angle value and in each such interval [βj, βj+1), we maximize the
area/perimeter as a function of an angle β ∈ [βj, βj+1) by taking into account
the area/perimeter of {0◦}-Kernelβj

(P ) and of the two green triangles and
the two red triangles in the spirit of Equation 2.1, as shown in Figure 2.12,
right. The area (respectively perimeter) of each of these four triangles de-
pends linearly on tan β and cot β (resp. linearly on (1 ± cos β)/ sin β and
(1± sin β)/ cos β), see Section 2.5.

Based on the above discussion, we outline our algorithm to maximize
the area of {0◦}-Kernelθ(P ) in Algorithm 5.
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Algorithm 5 Computing the maximum area of {0◦}-Kernelθ(P ) for a sim-
ple orthogonal polygon P

Input: A simple orthogonal polygon P with n vertices
Output: A value of the angle θ such that the area of {0◦}-Kernelθ(P ) is

maximum

STEP 1: Check special cases
1: execute Algorithm 4 to compute the set T of values of θ for which {0◦}-

Kernelθ(P ) ̸= ∅, and θmin, θmax, if they can be defined
2: current_angle← 0
3: if 0 ∈ T then
4: compute the area of {0◦}-Kernelθ(P ) for θ = 0
5: current_max← computed area
6: else
7: current_max← 0

8: if any of the conditions of Lemma 2.27 holds then
9: output current_max and stop

STEP 2: Maximize the area of {0◦}-Kernelθ(P ) for θ ∈ A =
[θmin, θmax] ∩ [0, π

2
)

10: compute the area of {0◦}-Kernelθ(P ) for θ = θmin

11: θ ← θmin

12: while θ < θmax do
13: compute the angles for which the highest reflex maximum and the

lowest reflex minimum change
14: compute the angles for each of the segments bounding the strip Sθ

to reach the next vertex of the polygon P
15: δ ← the minimum among the angles computed in the 2 preceding

lines
16: maximize the area of the {0◦}-Kernelθ(P ) for θ ∈ [θ, θ+ δ) by using

the expressions for the area in Section 2.5.
17: update, if needed, the current maximum area value current_max

and the corresponding angle current_angle

18: output current_max and current_angle
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Analysis of Algorithm 5. The correctness of Algorithm 5 follows from Ob-
servation 2.22, Lemmas 2.26, 2.27, and 2.28, and the preceding discussion.
Algorithm 4 requires O(n) time and space, as do the computation of the
{0◦}-Kernelθ(P ) for θ = 0 and its area, and checking the conditions of
Lemma 2.27. Thus, STEP 1 takes O(n) time and space. Computing the
{0◦}-Kernelθ(P ) for θ = θmin can be explicitly done in O(n) time and space.
Each iteration of the while loop in STEP 2 takes O(1) time as it involves
accessing and processing in O(1) time at most 8 neighboring vertices and
maximizing a constant-degree polynomial. Moreover, it is important to note
that the subintervals processed in the while loop precisely form the parti-
tion PA. Since a different subinterval is processed in each iteration of the
while loop and since the number of subintervals is O(n) (Lemma 2.31), the
execution of the while loop in STEP 2 takes O(n) time. Hence, by also
taking into account that minimization, where meaningful, can be handled
analogously, we get:

Theorem 2.32. For a simple orthogonal polygon P with n vertices, the
values of θ such that the area or the perimeter of the {0◦}-Kernelθ(P ) are
maximum/minimum can be computed in O(n) time and space.

2.4.2 The rotated {0◦, 90◦}-Kernelθ(P ) of a simple or-
thogonal polygon P

We now extend our study to O = {0◦, 90◦} for a simple orthogonal poly-
gon P , proving the results in the second row of Table 2.2. Observe that
it suffices to consider θ ∈ [0, π

2
) since {0◦, 90◦}-Kernel0(P ) = {0◦, 90◦}-

Kernelπ
2
(P ). Again, Observation 2.3 and Lemma 2.9 imply that

{0◦, 90◦}-Kernelθ(P ) = {0◦}-Kernelθ(P ) ∩ {90◦}-Kernelθ(P )
= (Sθ(P ) ∩ P ) ∩ (Sθ+90◦(P ) ∩ P )

(2.5)

and therefore {0◦, 90◦}-Kernelθ(P ) = Sθ(P )∩Sθ+90◦(P )∩P , that is, the case
is an extension of the {0◦}-Kernelθ(P ) with two strips Sθ(P ) and Sθ+90◦(P ),
which are perpendicular to each other.

For θ = 0, the {0◦, 90◦}-Kernelθ(P ) is the intersection of the polygon P
with the horizontal strip determined above by the lowest N-dent and below
by the topmost S-dent, and with the vertical strip determined to the left by
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the rightmost W-dent and to the right by the leftmost E-dent. Thus, the
{0◦, 90◦}-Kernel0(P ) may have reflex vertices (but no dents) at the top left,
top right, bottom left or bottom right corners and is orthogonally convex.

Below we consider the case for θ ∈ (0, π
2
). In accordance with Obser-

vation 2.22, all reflex vertices are reflex maxima or minima with respect to
one of the orientations in Oθ; then, the definition of the {0◦, 90◦}-Kernelθ(P )
implies that:

Observation 2.33. For θ ∈ (0, π
2
), the {0◦, 90◦}-Kernelθ(P ) is a convex

polygon.

See Figure 2.13, right for an example. Recall that for θ = 0, the {0◦, 90◦}-
Kernelθ(P ) is not necessarily convex, but it is orthogonally convex.

CSE

CNE

CNW

Figure 1:

1

Figure 1:

1

Figure 2.13: Left: A simple orthogonal polygon P and the convex
chains CSE, CNE, CNW ; no SW-reflex vertices exist. Right: The {0◦, 90◦}-
Kernelθ(P ) for θ = π

4
is shown darker.

As mentioned above, in this case, the kernel is in general defined by
the two perpendicular strips Sθ(P ) and Sθ+90◦(P ). Let us investigate the
cases that may arise for the points of intersection of the lines bounding
these strips. So, consider an angle θ ∈ (0, π

2
) such that there is at least one

reflex maximum in the orientation θ and at least one reflex minimum in the
orientation θ + 90◦, and let ℓθ,↓ (resp. ℓ90◦+θ,↑) be the bottom (resp. top)
segment bounding Sθ(P ) (resp. Sθ+90◦(P )). Moreover, let p (resp. q) be the
right endpoint of ℓθ,↓ (resp. ℓ90◦+θ,↑). Clearly p belongs to a N- or an E-edge,
and similarly, q belongs to a S- or an E-edge. Each of the above possibilities
for p and q may well arise if the segments ℓθ,↓ and ℓ90◦+θ,↑ intersect (see
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p

q

ℓθ,↓

ℓ90◦+θ,↑

Figure 1:

1

p

q

ℓθ,↓

ℓ90◦+θ,↑

z

Figure 1:

1

Figure 1:

1

Figure 2.14: Left: The segments ℓθ,↓ and ℓ90◦+θ,↑ intersect. Middle: For
Lemma 2.34; an impossible configuration. Right: As the angle θ increases,
the segments ℓθ,↓ and ℓ90◦+θ,↑ intersect, later they stop doing so, and later
they intersect again.

Figure 2.14, left); the point of intersection lies in the polygon P and, as
the strips rotate, it moves along an arc of a circle whose diameter is the
line segment connecting the reflex maximum and the reflex minimum about
which ℓθ,↓ and ℓ90◦+θ,↑, respectively, rotate. However, if these two segments
do not intersect, then only one case for the relative location of p and q is
possible, as we show in the following lemma.

Lemma 2.34. Let P be a simple orthogonal polygon and suppose that the
conditions of Lemma 2.27 hold neither for the SE-reflex and NW-reflex ver-
tices, nor for the SW-reflex and the NE-reflex vertices. Let segments ℓθ,↓
and ℓ90◦+θ,↑ and points p, q be defined as above. If ℓθ,↓ and ℓ90◦+θ,↑ do not
intersect, then p and q belong to the same E-edge of P .

Proof. The tangency of the segments ℓθ,↓ and ℓ90◦+θ,↑ to the chains CSE

and CNE, respectively, implies that p, q belong (in fact, in that order) to
the CCW boundary chain ϑP (tSE, sNE) of P . Suppose, for contradiction,
that the point p belongs to a N-edge. Then, no matter whether q belongs
to an E-edge or a S-edge, the left vertex of the topmost edge of the CCW
boundary chain from p to q is a SE-reflex vertex that is higher than p and
thus higher than tSE (see vertex z in Figure 2.14, middle), in contradiction
to the assumption that Lemma 2.27, statement (ii), does not hold for the
chain CSE. Thus, p belongs to an E-edge. The exact same argument enables
us to show that q belongs to an E-edge, and in fact that p, q belong to the
same E-edge.
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Since a circular arc (the locus of the intersection points of the lines
supporting the rotating segments ℓθ,↓ and ℓ90◦+θ,↑) and a line segment (e.g.,
an E-edge) intersect in at most two points (see Figure 2.14, right), the above
lemma implies that we may need to consider at most 3 angular subintervals
for the at most 3 different cases to consider for the pair of ℓθ,↓ and ℓ90◦+θ,↑).
As there are at most 4 such pairs, we have:

Observation 2.35. An angle interval satisfying Property 1 (Section 2.4.1.2)
may need to be broken into at most 12 sub-intervals.

Additionally, Lemma 2.34 readily implies that if the segments ℓθ,↓ and
ℓ90◦+θ,↑ do not intersect, then, in the boundary of the {0◦, 90◦}-Kernelθ(P ),
p and q are connected by a part of an edge of P . Note that the kernel has
one fewer edge if ℓθ,↓ and ℓ90◦+θ,↑ intersect or if exactly one of these segments
rotates around a degenerate chain, that is a point (see Figure 2.13, right);
similar results hold for the remaining 4 pairs of “consecutive" segments and
more occurrences of the above cases result into a kernel of even fewer edges.
Therefore:

Corollary 2.36. For θ ∈ (0, π
2
), the rotated {0◦, 90◦}-Kernelθ(P ) of an

orthogonal polygon P has at most 8 edges.

2.4.2.1 The existence of the {0◦, 90◦}-Kernelθ(P ) of a simple or-
thogonal polygon P

In this subsection, we give an algorithm to determine when the {0◦, 90◦}-
Kernelθ(P ) for a simple orthogonal polygon P is non-empty. The algorithm
relies on the following lemma, which is an extension of Lemma 2.27.

Lemma 2.37. If the conditions of Lemma 2.27 hold for either the SE-reflex
and NW-reflex vertices and the chains CSE and CNW , or the SW-reflex
and NE-reflex vertices and the chains CSW and CNE, then the {0◦, 90◦}-
Kernelθ(P ) either is empty or degenerates to a point or a line segment.

If Lemma 2.37 does not apply, then we work as in Section 2.3.1, namely,
we determine a sequence I of angle intervals such that each interval in I sat-
isfies Property 1 (Section 2.4.1.2). Then, for each such event interval [γ, γ′),
we find the values of θ ∈ [γ, γ′) such that at least one of the corners of the
floating rectangle Rθ lies in P . For a corner r, this computation can be
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easily done by comparing the position of r with the position of the corre-
sponding endpoint, say s, of the line segment that bounds the strip Sθ(P )
and whose supporting line defines r, that is by comparing the locus of the
corner for θ ∈ [γ, γ′) (which is a circular arc) with the edge on which s lies;
see Figure 2.14, left and right. Our algorithm is outlined in Algorithm 6.

Computing the {0◦, 90◦}-Kernelθ(P ) for θ = 0 can be done in O(n) and
space; recall that it is defined by the lowest N-dent, by the topmost S-
dent, by the rightmost W-dent, and by the leftmost E-dent. O(n) time is
also need to check the conditions of Lemma 2.37 and O(n) time and space
suffice to compute the {0◦, 90◦}-Kernelθ(P ) if any one of these conditions
holds. Thus, STEP 1 can be completed in O(n) time ans space. STEP 2 of
Algorithm 5 takes O(n) time and space and hence, and so does the entire
STEP 2 of Algorithm 6; note that the refinement of two interval sequences
of O(n) size each (Lemma 2.31) can be done in O(n) time and produces a
sequence of O(n) size. In STEP 3, checking case (B.1) in Observation 2.16
can be done in O(1) time by locating each of the pN( ), pS( ) against the
strip Sθ+90◦ and each of the pE( ), pW ( ) against the strip Sθ. For case (B.2),
for each of the 4 corners, we determine the values of θ, for which the circular
arc traced by the corner for θ ∈ [δ, δ′) intersects any of the (at most 8) edges
of the polygon that delimit the segments bounding the strips Sθ and Sθ+90◦

(see Figure 2.14); then, by taking into account whether the corner at θ = δ
lies in P or not, we can find the values of the angle θ for which the corner
lies in P . Then, for case (B.2), the values of θ sought are precisely the
union of the angle values computed for each corner of the rectangle Rθ; this
takes O(1) time as well. Moreover, since the sequence I is of O(n) size and
because of Observation 2.35, we have:

Observation 2.38. The total number of subintervals in the sequence E is
O(n).

Finally, since the for-loop in STEP 3 is repeated O(n) times, STEP 3
is completed in O(n) time and space. Thus:

Theorem 2.39. For a simple orthogonal polygon P with n vertices, the
intervals of θ ∈ [0, π

2
) for which {0◦, 90◦}-Kernelθ(P ) ̸= ∅ can be computed

in O(n) time and space.
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Algorithm 6 Computing intervals of θ such that {0◦, 90◦}-Kernelθ(P ) ̸= ∅
for a simple orthogonal polygon P

Input: A simple orthogonal polygon P with n vertices
Output: Sequence E of intervals for angles θ such that {0◦, 90◦}-
Kernelθ(P ) ̸= ∅

STEP 1: Case for θ = 0 and apply Lemma 2.37
1: compute the {0◦, 90◦}-Kernelθ(P ) for θ = 0
2: if {0◦, 90◦}-Kernel0(P ) ̸= ∅ then
3: solution_for_0← [0, 0]

4: if the conditions of Lemma 2.37 hold then
5: apply STEP 2 of Algorithm 4 to the {0◦}-Kernelθ(P ) or {90◦} -

Kernelθ(P ) that is degenerate, compute the values of the angle θ
(if any) for which it is non-empty, and compute the subset solution2 of
these values for which the intersection of these kernels is non-empty

6: output solution_for_0 ∪ solution2 and stop

STEP 2: Compute event intervals
7: compute the sequence I0◦ of subintervals having Property 1 as in STEP 2

of Algorithm 5
8: compute the sequence I90◦ of subintervals having Property 1 as in

STEP 2 of Algorithm 5
9: Refine I0◦ by using I90◦ into the sequence I = {I ′ ∩ I ′′ = [γ, γ′) | I ′ ∈
I0◦ and I ′′ ∈ I90◦}

STEP 3: Check corners of floating rectangle
10: for each angle interval [ϕ, ϕ′) ∈ I do
11: by determining the values of the angle θ ∈ [ϕ, ϕ′) for which at least

one of the cases (B.1), (B.2) in Lemma 2.16 holds, find the values
of the angle θ for which the corner lies in P

12: insert these values, if any, in an initially empty sequence E
13: output E
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2.4.2.2 Optimizing the area and perimeter of the {0◦, 90◦}-Kernelθ(P )
of a simple orthogonal polygon P

Our algorithm for the problem of optimizing the area/perimeter of the
{0◦, 90◦}-Kernelθ(P ) for a simple orthogonal polygon P follows the steps
of Algorithm 6. It treats the case for θ = 0 as a special case and computes
its area or perimeter, which it uses to initialize the current maximum value.
Next, it checks the conditions of Lemma 2.37 and computes the values of
area/perimeter in these degenerate cases (see Lemma 2.37). Subsequently,
it performs STEP 2 of Algorithm 6 and proceeds to STEP 3, except that
in each small angular interval for which at least one corner of the rectan-
gle Rθ lies in P , it works incrementally maximizing the area or perimeter
as in the algorithm in Section 2.3.2, which takes O(1) time; the area (resp.
perimeter) depends linearly on tan β, cot β, and sin β cos β (resp. linearly
on (1± cos β)/ sin β, (1± sin β)/ cos β, and (sin β + cos β)), see Section 2.5.
It is important to note that for each angle interval [γ, γ′) with γ ̸= 0 and
γ′ ̸= π

2
for which the {0◦, 90◦}-Kernelθ(P ) is non-empty such that the kernel

is empty for θ = γ − ε for a small enough ε, the kernel for θ = γ is degen-
erate, i.e., it is a point or a line segment, so that its area and perimeter can
be computed in O(1) time.

The above discussion and the fact that the algorithm for the {0◦, 90◦}-
Kernelθ(P ) is very similar to that for the {0◦}-Kernelθ(P ) lead to the fol-
lowing result.

Theorem 2.40. For a simple orthogonal polygon P , computing the {0◦, 90◦}-
Kernelθ(P ) as well as finding an angle θ such that its area or perimeter is
maximized or minimized can be done in O(n) time and space.

2.4.2.3 Generalization to k orientations

For a set O with k orientations α1, . . . , αk, computing the intervals of the
angle θ such that {α1, . . . , αk}-Kernelθ(P ) ̸= ∅ or an angle θ such that the
area or the perimeter of this kernel is reduced to computing and maintaining
the intersection of P with k different strips. As mentioned in Section 2.3.1.3,
Lemma 2.16 appropriately extends and the incremental construction of the
kernel involves work on O(k) triangles. As a result, Theorems 2.39 and 2.40
extend to the following theorem that leads to the results in the third row of
Table 2.2.
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Theorem 2.41. Given a simple orthogonal polygon P with n vertices, the
intervals of θ such that {α1, . . . , αk}-Kernelθ(P ) ̸= ∅ or an angle such that
the area or perimeter of {α1, . . . , αk}-Kernelθ(P ) are maximum/minimum
can be computed in O(kn) time and space.

2.5 Appendix to the chapter: Trigonometric
formulas

2.5.1 Trigonometric formulas for the area of the {0◦}-
Kernelθ(P ) and the {0◦, 90◦}-Kernelθ(P )

We consider angle β ∈ [θi, θi+1] ⊆ (0, π
2
) and triangles with two edges on

lines forming angles β, θi with the positive x-axis. For the third edge, we
distinguish two cases: it is horizontal or it is on a line forming angle α with
the positive x-axis (see Figure 2.15).

u

pq

θi
β

d

1

u

p

q

h r

θi
β α

Figure 2.15: For the formulas of the area and perimeter of the {0◦}-
Kernelθ(P ).

From Figure 2.15 (left), the area of a triangle T with edges at angles 0
(horizontal edge), θi, and β (0 < θi ≤ β ≤ θi+1 <

π
2
) is equal to

AT =
1

2
d |pq| =

1

2
d (d cot θi − d cot β) =

1

2
d2 (cot θi −

cos β

sin β
). (2.6)

Let us now consider a triangle T with edges at angles θi, β, and α
(0 < θi ≤ β < θi+1 ≤ π

2
) (see Figure 2.15, right). Then, ûpr = α − ϕ and

ûqr = α − θi which imply that |pq| = |rq| − |rp| = h tan(π
2
− α + β) −

h tan(π
2
− α + θi) = h cot(α − β) − h cot(α − θi) where h = |ur| is the

(perpendicular) distance of u from the line through p, q. Then, the area of
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the triangle is equal to

AT = 1
2
h |pq|

= 1
2
h2 (cot(α− β)− cot(α− θi))

= 1
2
h2
(

1+cotα cotβ
cotβ−cotα

− cot(α− θi)
)

= 1
2
h2
(

sinβ+cotα cosβ
cosβ−cotα sinβ

− cot(α− θi)
)
.

(2.7)

Expression of the area of the {0◦}-Kernelθ(P ). By using Equation 2.1
and Equations 2.6 and 2.7 and since θi is fixed, the area A(β) of the {0◦}-
Kernelθ(P ) in terms of β ∈ [θi, θi+1) is

A(β) = A(θi) + (A1(β) + A2(β)−B1(β)−B2(β))

= A(θi) +
4∑

i=1

(
Ci sin β +Di cos β

Ei sin β + Fi cos β
+Gi

)
,

where A(θi) is the known value of the current area, and Ci, Di, Ei, Fi, and
Gi are all constants for every i = 1, . . . , 4.

Then, by setting the derivative equal to zero, we get

A′(β) =
4∑

i=1

CiFi −DiEi

(Ei sin β + Fi cos β)2
= 0,

implying that

4∑
i=1

(CiFi −DiEi)
4∏

j=1
j ̸=i

(Ej sin β + Fj cos β)
2

 = 0.

Expanding the product, we find three types of terms depending on sin2 β,
cos2 β, and sin β cos β. Now using the trigonometric transformations

sin2 β =
tan2 β

1 + tan2 β
, cos2 β =

1

1 + tan2 β
, sin β cos β =

tan β

1 + tan2 β
,
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and making the change tan β = t we get a rational function in t. Then, the
derivative function for the area is now a function on the variable t, A′(t),
and it is a rational function having as numerator a polynomial in t of degree
6 and as denominator a polynomial of degree 12. So we can compute the
real solutions of a polynomial equation in t of degree 6.

Orthogonal polygons: For the case of the {0◦}-Kernelθ(P ) for orthogonal
polygons P , the triangles Ai(β) have a horizontal or a vertical base. Since
for α = π

2
, Equation 2.7 becomes

AT =
1

2
h2

(
sin β

cos β
− cot(0− θi)

)
=

1

2
h2 (tan β − tan θi), (2.8)

Equations 2.6 and 2.8 imply that in this case we have

A(β) = A(θi) + C tan β +D cot β +G

for appropriate constants C,D,G.

u v

p

q

βθi

Figure 2.16: For the formulas of the area and perimeter of the {0◦, 90◦}-
Kernelθ(P ).

Expression of the area of the {0◦, 90◦}-Kernelθ(P ). Consider the case
in which the corner of the floating rectangle Rθ) lies in P (then it is a
vertex of the kernel) and does so for all the angles β ∈ [θi, θi+1). Then,
the corner moves along a circular arc with diameter the distance of the
reflex minima/maxima that define the corner; see Figure 2.16. Then, the
differential in the area is

∆AT = AT (u v q)− AT (u v p) =
1

2
|uq| |vq| − 1

2
|up| |vp|

=
1

2
(|uv| cos β) (|uv| sin β)− 1

2
(|uv| cos θi) (|uv| sin θi)

=
1

2
|uv|2 (sin β cos β − sin θi cos θi) .
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Thus, in this case, for simple polygons, the differential in the area involves
at most 4 terms, each being either

Ci sin β +Di cos β

Ei sin β + Fi cos β
or Ki sin β cos β.

Orthogonal polygons: For the case of orthogonal polygons, similarly we
have at most 4 terms, each being Ci tan β, Di cot β, or Ki sin β cos β and
thus we have we have

A(β) = A(θi) + C tan β +D cot β +K sin β cos β +G

for appropriate constants C,D,K,G.

2.5.2 Trigonometric formulas for the perimeter of the
{0◦}-Kernelθ(P ) and the {0◦, 90◦}-Kernelθ(P )

As in the previous section, let us first consider the case of Figure 2.15, left.
We want to compute ∆Π+

T (∆Π−
T which is the difference of the length of the

edge at angle β minus the length of the edge at angle θi plus (minus resp.)
the length of the side at angle 0. Thus:

∆Π±
T = |uq| − |up| ± |pq|

= d
sinβ
− d

sin θi
± (d cot θi − d cot β)

= d
(

1
sinβ
− 1

sin θi
± cos θi

sin θi
∓ cosβ

sinβ

)
= d

(
1∓cosβ
sinβ

− 1∓cos θi
sin θi

)
.

(2.9)

Next, let us consider a triangle T with edges at angles θi, β, and α
(0 < θi ≤ β < θi+1 ≤ π

2
) (see Figure 2.15, right). Recall that ûpr = α − ϕ

and ûqr = α− θi which imply that

|up| = h

cos(π
2
− α + θi)

=
h

sin(α− θi)
, |uq| = h

cos(π
2
− α + β

=
h

sin(α− β
,
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Then, since |pq| = h (cot(α− β)− cot(α− θi)), the differential ∆Π in the
perimeter is equal to:

∆Π±
T = |uq| − |up| ± |pq|

= h
sin(α−β)

− h
sin(α−θi)

± h (cot(α− β)− cot(α− θi))

= h
(

1±cos(α−β)
sin(α−β)

− 1±cos(α−θi)
sin(α−θi)

)
= h

(
1±cosα cosβ±sinα sinβ
sinα cosβ−cosα sinβ)

− 1±cos(α−θi)
sin(α−θi)

)
.

(2.10)

Expression of the perimeter of the {0◦}-Kernelθ(P ). In Figure 2.5, the
green (red, resp.) triangles which result in an increase (a decrease resp.) in
the perimeter contribute a ∆Π+

T (∆Π−
T resp.) term, and thus we use both the

differentials ∆Π±
T . So, from Equations 2.9 and 2.10, for the perimeter Π(β)

of the {0◦}-Kernelθ(P ) as a function of β ∈ [θi, θi+1) we can write

Π(β) = Π(θi) +
4∑

i=1

(
Ci sin β +Di cos β +Hi

Ei sin β + Fi cos β
+Gi

)
,

where Π(θi) is the known value of the current perimeter, and Ci, Di, Ei, Fi,
Gi, and Hi are all constants for every i = 1, . . . , 4.

Orthogonal polygons: For the case of the {0◦}-Kernelθ(P ) for an orthog-
onal polygons P , the triangles Ai(β) have a horizontal or a vertical base.
Then from Equation 2.10 for α = π

2
, we have

∆Π±
T = h

(
1±sinβ
cosβ

− 1±cos(π
2
−θi)

sin(π
2
−θi)

)
= h

(
1±sinβ
cosβ

− 1±sin θi
cos θi

) (2.11)

and Equations 2.9 and 2.11 imply that in this case the perimeter Π(β) of
the {0◦}-Kernelθ(P ) in terms of β ∈ [θi, θi+1) is equal to

Π(β) = Π(θi) + C
1 + cos β

sin β
+D

1− cos β

sin β
+ E

1 + sin β

cos β
+ F

1− sin β

cos β
+G

for appropriate constants C,D,E, F,G.
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Expression of the perimeter of the {0◦, 90◦}-Kernelθ(P ). In this case,
we may also have corners of the kernel moving along a circular arc as shown
in Figure 2.16. From this figure, we observe that the differential in the
perimeter is

∆ΠM = (|uq|+ |vq|)− (|up|+ |vp|)
= (|uv| cos β + |uv| sin β)− (|uv| cos θi + |uv| sin θi)
= |uv| (sin β + cos β)− |uv| (sin θi + cos θi).

Thus, for simple polygons, the differential in the perimeter involves at most
4 terms, each being

Ci sin β +Di cos β +Hi

Ei sin β + Fi cos β
or Ki (sin β + cos β).

Orthogonal polygons: For the case of orthogonal polygons, similarly we
have at most 4 terms, each being Ci (1± cos β)/ sin β, Di (1± sin β)/ cos β,
or Ki (sin β + cos β) and thus

Π(β) = Π(θi) + C 1+cosβ
sinβ

+D 1−cosβ
sinβ

+ E 1+sinβ
cosβ

+F 1−sinβ
cosβ

+K (sin β + cos β) +G

for appropriate constants C,D,E, F,G,K.

The above expressions of the perimeter Π(β) of the {0◦}-Kernelθ(P ) and
the {0◦, 90◦}-Kernelθ(P ) in terms of the angle β can be maximized as we
showed for the area of the {0◦}-Kernelθ(P ) in Section 2.5 by computing the
real solutions of a polynomial of constant degree.



Chapter 3

On circles enclosing many points

The following article was published in 2021 in Discrete Mathematics Vo-
lume 344, Issue 10, 112541. It was written in collaboration with Mercè
Claverol and Clemens Huemer. The front page of this article can be found
in Appendix B.

3.1 Introduction

Neumann-Lara and Urrutia [92] posed the following problem: Prove that
every set S of n points in the plane contains two points p and q such that
any circle which passes through p and q encloses “many" points of S. The
question is to quantify this number of enclosed points which can always
be guaranteed. We only consider point sets without three collinear points
and without four cocircular points. We say that such a point set is in
general position. Almost all the results on this question date back to the
late 1980’s. The first bound ⌈n−2

60
⌉, by Neumann-Lara and Urrutia [92], was

improved in a series of papers [11, 49, 50]. The best bound was obtained
by Edelsbrunner et al. [32] who proved that any set of n points in the plane
contains two points such that any circle through those two points encloses
at least n(1

2
− 1√

12
)+O(1) ≈ n

4.7
points. Their proof makes use of properties

of higher order Voronoi diagrams. The order-k Voronoi diagram of a point
set S is a subdivision of the plane into convex regions, such that a region
consists of those points of the plane which have the same k nearest points of
S [10]. Twenty years later, Ramos and Viaña [110] made progress on that
problem and proved a stronger statement: There is always a pair of points

68
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such that any circle through them has, both inside and outside, at least
n(1

2
− 1√

12
) +O(1) ≈ n

4.7
points. To prove their result, they transformed the

problem from circles in the plane to planes in R3 and used results on the
number of j-facets of point sets in R3.
The known upper bound on the number of enclosed points is ⌈n

4
⌉ − 1, due

to a construction by Hayward et al. [50]. Urrutia [134] conjectured that
n
4
± c, for some constant c, is the tight bound. For sets of n points in convex

position, a tight bound of ⌈n
3
⌉ − 1 is known [50].

Our contributions to this problem are the following ones:
• In Section 3.2 we present a modified and shorter version of the proof
of Edelsbrunner et al. [32] which also leads to the result of Ramos and
Viaña [110]. As in [32], the proof makes use of properties of higher order
Voronoi diagrams.
• The proposed modification gives rise to the following result, shown in
Section 3.3. Every set of n points in the plane contains two points such that
any circle through those two points encloses at most ⌊2n−1

3
⌋ points of S.

• In Section 3.4 we show that sets S of n red points and m = ⌊cn⌋, for
c ∈ (0, 1], blue points contain a red point and a blue point such that any
circle passing through them encloses at least n+m−

√
n2+m2

2
− o(n+m) points

of S. For n = m this gives the bound n(1− 1√
2
)− o(n) ≈ n

3.4
. The colored

version of the problem was studied by Prodromou [107] for any dimension
d and ⌊d+3

2
⌋ colors. The particular case d = 2 in [107], Theorem 1.1, gives a

lower bound of n+m
36

on the number of enclosed points. Our result improves
this bound. We also present an upper bound construction with n red and
n blue points in convex position such that for every pair of points, one red
and the other blue, there is a circle through them which encloses at most
⌊n
2
⌋ points of S.

• In Section 3.5 we study how many circles passing through two given points
p and q (and a third point of S) enclose the same number of points of S.
This is equivalent to study how many edges of the order-k Voronoi diagram
of S can lie on the same line. Apart from [65], where it is proved that the
order-k Voronoi diagram contains at most min(k, n−k) collinear edges, not
much seems to be known on this question. We present some constructions
with many collinear edges in higher order Voronoi diagrams. We believe
that this line of research can also lead to an improvement for the problem
posed by Neumann-Lara and Urrutia.

As for related works, in [5] the problem of Neumann-Lara and Urrutia
is studied when instead of allowing all possible circles through two points
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of the given point set S, only circles which have two points of S as di-
ametral endpoints are considered. Generalizations of the problem to higher
dimensions are studied in [122].

3.2 An adaption of the proof by Edelsbrunner,
Hasan, Seidel and Shen

Let S be a set of n points in general position. For each pair of points p, q
of S, let bpq be the perpendicular bisector of the segment pq. That is, bpq is
the line equidistant to p and q. Let B be the set of all

(
n
2

)
perpendicular

bisectors defined by the points in S. For each pair of points p, q of S, define
Cpq as the set of circles passing through them. The center of each circle
in Cpq is on bpq. Any line bpq in B is cut into n − 1 open segments (two
of them are unbounded) which are delimited by the center points of the
circles passing through p, q, and one of the n − 2 remaining points of S.
Any circle in Cpq with center on one of these segments encloses the same
subset of points of S; its cardinality is the weight of the segment. Figure 3.1
shows an example with four points p, q, r and s, where the bisector bpq is
divided into three segments. The segments are separated by the centers of
the circles through p, q, r and through p, q, s, respectively (denoted as pqr
and pqs in the figure). Notice that any circle in Cpq with center on one of
these segments encloses the same subset of points (weight of the segment).

It is well known that if the weight of such a segment is k − 1, then the
segment is an edge of the order-k Voronoi diagram; see, e.g., [71]. The order-
3 and order-4 Voronoi diagrams of a set of 8 points are shown in Figure 3.2.
The proof idea of Edelsbrunner et al. [32] is as follows. They show that
the sum of the numbers of edges of the order-k Voronoi diagrams, for k
from 1 up to approximately (1/2− 1/

√
12)n, is less than

(
n
2

)
. This implies

that one of the lines in B, say bpq, does not have any edge of any order-k
Voronoi diagram, for k < n(1/2−1/

√
12)+O(1), among its n−1 segments.

Consequently, for the two points p and q, that define bpq, any circle through
them encloses at least n(1/2 − 1/

√
12) + O(1) points of S. We present a

similar proof.

Observation 3.1. When moving the center of a circle in Cpq along bpq from
one segment to the consecutive one, the number of points contained in the
two corresponding circles differs by ±1. Equivalently: The weights of two
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p

q

r

pqr

pqs

0
1

weight

2

bpq

s

Figure 3.1: Weights of consecutive segments along the perpendicular bisec-
tor bpq of points p and q from the set S = {p, q, r, s}.

consecutive segments on bpq differ by ±1.

For 0 ≤ j ≤ n−2
2

, a segment pq connecting two points p, q of S is a j-edge
of S, if the line through p and q divides the plane into two open half-planes,
such that one of them contains exactly j points of S. The number of j-edges
of S is denoted by ej.

Observation 3.2. Let pq be a j-edge of S, and let bpq be the perpendicular
bisector of pq. Then the two unbounded segments of bpq have weights j and
n− j − 2, respectively. See Figure 3.2.

As a consequence, by an intermediate value argument:

Observation 3.3. Let pq be a j-edge of S, and let bpq be the perpendicular
bisector of pq. For every k with j ≤ k ≤ n− j − 2, the line bpq contains at
least one segment of weight k. See Figure 3.2.

Let ck be the number of circles passing through three points of S that
enclose exactly k points of S. Differing from the proof of [32], we will use the
following property, obtained by Lee [71]; later proofs were given in [9, 23, 72]:

ck + cn−k−3 = 2(k + 1)(n− k − 2). (3.1)

A direct correspondence between the numbers ck and the number of faces of
higher order Voronoi diagrams is given for instance in [72]. The numbers ck−1
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2
3

weight

4
p

q
order-3 VD

bpq

(a)

2
3

weight

4
p

q

order-4 VD

bpq

(b)

Figure 3.2: A 2-edge pq of a set S of eight points, and the circles through
p, q and a third point of S. The two unbounded segments of the bisector
bpq have weight 2 and 4. Also the relation between segments of weight k− 1
on the perpendicular bisector of two points and the edges of the order-k
Voronoi diagram is illustrated: (a) The segments of weight 2 are edges of
the order-3 Voronoi diagram; (b) The segments of weight 3 are edges of the
order-4 Voronoi diagram.

and ck−2 also give the number of vertices of the order-k Voronoi diagram,
denoted as vk, via the following relation [72]

vk = ck−1 + ck−2. (3.2)

More precisely, each vertex of the order-k Voronoi diagram of S is the center
of a circle through three points of S which encloses k − 1 or k − 2 points of
S. The vertices of this Voronoi diagram have degree three (because no four
points of S are cocircular), and its edges are the segments of weight k − 1
(among all the bisectors in B).

Observation 3.4. A circle passing through points a, b, c ∈ S corresponds
to three segments, one on bab, one on bac and one on bbc. In other words, for
each vertex of the order-k Voronoi of S, we count its three incident edges.
Each bounded segment is counted for two such circles, and each unbounded
segment is counted for one such circle.
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Let sk denote the number of segments of weight k, among all
(
n
2

)
lines

in B.

Observation 3.5. The number of edges of the order-(k+1) Voronoi diagram
of S equals sk. The number of unbounded edges (of weight k) of the order-
(k + 1) Voronoi diagram of S equals the number of k-edges of S, ek. The
number of unbounded edges of the order-(n− k − 1) Voronoi diagram of S
(which is the number of unbounded segments of weight n− k− 2 among all
lines in B) is ek, too.

Lemma 3.6. The number of segments of weight k plus the number of seg-
ments of weight n− k− 2, among all

(
n
2

)
lines in B, equals 6(k+1)(n− k−

1)− 3n+ ek.

Proof. By Observations 3.4 and 3.5, we can double count the pairs (v, e),
where v is a vertex of the order-(k + 1) Voronoi diagram and e is an edge
incident to v, obtaining 3vk+1 = 2sk− ek. The same argument for the order-
(n− k − 1) Voronoi diagram gives 3vn−k−1 = 2sn−k−2 − ek. Then,

3vk+1 + 3vn−k−1 = 2sk + 2sn−k−2 − 2ek.

Using Equation (3.2), this further equals

3(ck + ck−1) + 3(cn−k−2 + cn−k−3) = 2sk + 2sn−k−2 − 2ek.

And using Equation (3.1) for k and k − 1 we get

6(k + 1)(n− k − 2) + 6k(n− k − 1) = 2sk + 2sn−k−2 − 2ek.

The result follows.

We are now ready to give another proof of the theorem by Ramos and
Viaña [110], when neglecting sublinear terms.

Theorem 3.7 ([110]). Every set S of n points in general position in the
plane contains two points such that each circle passing through them encloses
at least k and at most n− k − 2 points of S, for k =

(
1
2
− 1√

12

)
n− o(n).

Proof. We first state the proof idea: Using Lemma 3.6, we show that at
least one of the lines in B, say bpq, neither contains a segment of weight
k − 1 nor one of weight n − k − 1, for some fixed value k < n−4

2
to be



CHAPTER 3. ON CIRCLES ENCLOSING MANY POINTS 74

determined. Then, each of the n− 1 segments of bpq has weight between k
and n− k − 2. Therefore, any circle passing through points p and q, which
define bpq, encloses between k and n− k − 2 points of S. It turns out that
k ≈

(
1
2
− 1√

12

)
n is the best choice for k in the proof.

Claim: There exist two points p, q ∈ S such that the perpendicular bisec-
tor bpq of pq neither contains a segment of weight k − 1 nor one of weight
n− k − 1, for k ≤

(
1
2
− 1√

12

)
n− o(n).

Assume towards a contradiction, that every line in B contains a segment
of weight k − 1 or of weight n − k − 1. Partition the lines in B into two
classes: (1) those whose defining points p, q ∈ S form a j-edge for j ≤ k−1,
and (2) those whose defining points p, q ∈ S form a j-edge for j ≥ k.

We show that each line in B contains at least two segments with weight
in the set {k, n− k− 2}. By Observation 3.3, each line of type (1) contains
at least one segment of weight k and at least one of weight n− k − 2.
For any line bpq of type (2), its unbounded segments have weights j ≥ k and
n−j−2 ≤ n−k−2, respectively. By assumption, bpq also contains a segment
of weight k−1 or of weight n−k−1. If bpq contains a segment of weight k−1,
then bpq contains two segments of weight k; indeed, when traversing bpq, we
go from a segment of weight j ≥ k via one of weight k − 1 to one of weight
n− j − 2 ≥ k + 1; since the changes of the weights of consecutive segments
are ±1, we encounter a subsequence of weights k, k − 1, k, k + 1 among the
segments of bpq. In the same way, if bpq contains a segment of weight n−k−1,
we encounter a subsequence of weights n−k−3, n−k−2, n−k−1, n−k−2
when traversing bpq. Hence, in this case bpq contains two segments of weight
n − k − 2. We conclude that each line of type (1) and of type (2) in B
contains at least two segments with weight in the set {k, n− k − 2}.

By Lemma 3.6, the number of segments of weight k or of weight n−k−2
among all lines in B is

6(k + 1)(n− k − 1)− 3n+ ek.

The number of k-edges ek is at most O(n 3
√
k + 1) [31]. We get a contradic-

tion if
6(k + 1)(n− k − 1)− 3n+O

(
n

3
√
k + 1)

)
< 2

(
n

2

)
,

because then there would not be enough segments to cover all the lines in
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B with two segments. The largest value of k which gives a contradiction is
k =

(
1
2
− 1√

12

)
n− o(n). This proves the claim.

Therefore, there exist two points p, q ∈ S such that bpq contains no
segment of weight k− 1 and no segment of weight n− k− 1. It follows from
Observations 3.1, 3.2, and 3.3, that this line bpq is of type (2), and that
bpq cannot contain a segment of weight i for i < k− 1 and for i > n− k− 1
either.

3.3 Circles enclosing not too many points

The following lemma is implied by known results on higher order Voronoi
diagrams and bounds on (≤ k)-sets. A k-set of a point set S is a subset of
k points of S which can be strictly separated from the remaining points of
S by a straight line. And a (≤ k)-set of a point set S is a subset of at most
k points of S which can be strictly separated from the remaining points of
S by a straight line.

Lemma 3.8. Let S be a set of n points and let k < n−3
2

. Then ck ≥
(k + 1)(n− k − 2) and cn−k−3 ≤ (k + 1)(n− k − 2).

Proof. Denote with f∞
k the number of unbounded regions in the order-k

Voronoi diagram of S. Also define f∞
0 = 0 and c−1 = 0. These numbers f∞

k

are related to circles enclosing points via the following relation, when k ≥ 1,
see [72].

k∑
i=1

f∞
i−1 = (k − 1)(2n− k)− ck−2.

On the other hand, it is well known that each unbounded region counted in
f∞
k corresponds to a k-set. The number of (≤ k)-sets of S is known to be

at most k · n for k < n
2

[8]. Therefore,
∑k

i=1 f
∞
i−1 ≤ (k − 1) · n and

ck−2 ≥ (k − 1)(2n− k)− (k − 1)n.

Then, ck ≥ (k + 1)(2n − k − 2) − (k + 1)n = (k + 1)(n − k − 2). Finally,
cn−k−3 ≤ (k + 1)(n− k − 2) follows from Property (3.1).

Lemma 3.9. Let S be a set of n points and let k ≤ n−3
2

. The number of
segments of weight n− k− 3 among all lines in B, is at most 3

2
(2k+3)(n−

k − 2)− 3
2
(k + 2) + ek+1

2
.
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Proof. The number of segments of weight n− k − 3, sn−k−3, is the number
of edges of the order-(n−k−2) Voronoi diagram of S. By Observations 3.4
and 3.5, 3vn−k−2 = 2sn−k−3 − ek+1. By (3.2), vn−k−2 = cn−k−3 + cn−k−4. By
Lemma 3.8, cn−k−3 ≤ (k + 1)(n − k − 2) and cn−k−4 ≤ (k + 2)(n − k − 3).
Then,

sn−k−3 =
3

2
vn−k−2+

ek+1

2
≤ 3

2
((k+1)(n−k−2)+(k+2)(n−k−3))+

ek+1

2

=
3

2
(2k + 3)(n− k − 2)− 3

2
(k + 2) +

ek+1

2
.

A slight variation of the proof of Theorem 3.7, and using the bound on
the number of (≤ k)-sets from [8] leads to the following Theorem 3.10. We
show, using Lemmas 3.8 and 3.9, that there is a line in B such that all its
segments have weight at most n− k− 3, for some k ≤ n−4

2
. The best choice

for k turns out to be k = ⌊n
3
⌋ − 2.

Theorem 3.10. Let S be a set of n ≥ 3 points in general position in the
plane. Then S contains two points such that every circle passing through
them encloses at most ⌊2n−1

3
⌋ points of S.

Proof. The statement is easily verified for n ≤ 5. Then, assume n ≥ 6. The
proof is by contradiction: Suppose that every line in B contains a segment
of weight n − k − 2, for some fixed k ≤ n−4

2
; we will see that the largest

value of k which gives a contradiction is k = ⌊n
3
⌋ − 2.

Partition the lines in B into two classes: (1) those whose defining points
p, q ∈ S form a j-edge for j ≥ k + 1, and (2) those whose defining points
p, q ∈ S form a j-edge for j ≤ k.

Claim: Every line of type (1) contains two segments of weight n− k − 3.

By assumption, each line bpq in B has a segment of weight n−k−2. Let
bpq be of type (1). By Observation 3.2, bpq has an unbounded segment of
weight n− j−2 ≤ n−k−3. When traversing bpq we go from an unbounded
segment of weight j ≤ (n − 2)/2, via a segment of weight n − k − 3 to
a segment of weight n − k − 2 and then to the other unbounded segment
of weight at most n − k − 3. Hence, bpq contains two segments of weight
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n− k − 3. This proves the claim.

Since each line of type (2) contains a segment of weight n − k − 3 and
each line of type (1) contains two segments of weight n− k − 3, we get

3

2
(2k+3)(n−k−2)−3

2
(k+2)+

ek+1

2
≥ sn−k−3 ≥ 1

k∑
j=0

ej+2

((
n

2

)
−

k∑
j=0

ej

)
.

We have ek+1

2
< ek+1 and move this term to the other side of the inequality.

Then,
3

2
(2k + 3)(n− k − 2)− 3

2
(k + 2) ≥ 2

(
n

2

)
−

k+1∑
j=0

ej.

The sum
∑k+1

j=0 ej is at most (k + 2) · n, because the number of (≤ k)-sets
of S is known to be at most k · n [8] and the number of j-edges, ej, equals
the number of (j + 1)-sets [8, 103]. Then,

3

2
(2k + 3)(n− k − 2)− 3

2
(k + 2) ≥ 2

(
n

2

)
− (k + 2) · n.

But this only holds if k ≈≥ n
3
, and gives a contradiction for k ≤ ⌊n

3
⌋ − 2.

Therefore B contains a line bpq that does not contain a segment of weight
n− k − 2, for k = ⌊n

3
⌋ − 2. It follows from Observations 3.1, 3.2, and 3.3,

that every segment on bpq has weight at most n−k−3 = n−
(
⌊n
3
⌋ − 2

)
−3 =

⌊2n−1
3
⌋. Then, every circle through p and q encloses at most ⌊2n−1

3
⌋ points

of S.

3.4 Two-colored point sets

Theorem 3.11. Every set S of n red points and m = ⌊cn⌋, for c ∈ (0, 1],
blue points in general position in the plane contains a red point p and a
blue point q such that any circle passing through them encloses at least
n+m−

√
n2+m2

2
− o(n+m) points of S.

Proof. The proof is very similar to the one of Theorem 3.7. The difference
is that we now only consider perpendicular bisectors bpq for points p and q
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of different color. Let B∗ be this set of nm bichromatic bisectors . Each bpq
in B∗ is cut into n+m−1 open segments, which are delimited by the center
points of the circles passing through p, q, and one of the n+m−2 remaining
points of S. We say that the segments on bpq ∈ B∗ are bichromatic. We then
need a bound on the number of bichromatic segments of weight k plus the
number of bichromatic segments of weight n +m − k − 2, among all lines
in B∗. The following observation is analogous to Observation 3.4.

Observation 3.12. A circle passing through points p1, p2, q ∈ S, with q of
different color than p1 and p2, corresponds to two bichromatic segments, one
on bp1q and one on bp2q. Hence, each vertex of the order-(k+1) Voronoi dia-
gram of S that is the center of one such circle, is incident to two bichromatic
segments of weight k.

Let s∗k denote the number of bichromatic segments of weight k, among
all nm lines in B∗. Then s∗k equals the number of bichromatic segments
of the order-(k + 1) Voronoi diagram of S. Let e∗k denote the number of
unbounded bichromatic segments of the order-(k + 1) Voronoi diagram of
S.

Lemma 3.13. Let S be a set of n red and m blue points. Then,

s∗k + s∗n+m−k−2 ≤ 4(k + 1)(n+m− k − 1)− 2(n+m) + e∗k.

Proof. By Observation 3.12, we can double count pairs (v, e), where v is a
vertex of the order-(k+1) Voronoi diagram of S and e is a bichromatic seg-
ment incident to v. Since each vertex v is incident to zero or two bichromatic
segments, we get the inequality 2vk+1 ≥ 2s∗k−e∗k. The same argument for the
order-(n+m−k−1) Voronoi diagram of S gives 2vn+m−k−1 ≥ 2s∗n+m−k−2−e∗k.
Then,

2vk+1 + 2vn+m−k−1 + 2e∗k ≥ 2s∗k + 2s∗n+m−k−2.

Using Equation (3.2), we further have

(ck + ck−1) + (cn+m−k−2 + cn+m−k−3) + e∗k ≥ s∗k + s∗n+m−k−2.

And using Equation (3.1) for k and k − 1 we get

2(k + 1)(n+m− k − 2) + 2k(n+m− k − 1) + e∗k ≥ s∗k + s∗n+m−k−2.

The result follows.
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Then, following the steps of the proof of Theorem 3.7, we get that each
line of type (1) or of type (2) in B∗ contains at least two segments with
weight in the set {k, n+m− k − 2}. Recall that bpq is of type (1) if pq is a
j-edge for j ≤ k − 1 and it is of type (2) if pq is a j-edge for j ≥ k. We get
a contradiction if

4(k + 1)(n+m− k − 1)− 2(n+m) + e∗k < 2nm,

because then there would not be enough segments to cover all the lines of
type (1) and of type (2) in B∗ with two segments. By [31], the number e∗k
is at most O((n+m) 3

√
k + 1).

Then we can set

k =
n+m−

√
n2 +m2

2
− o(n+m).

Figure 3.3 shows an upper bound construction, for a set S of n red and n
blue points in convex position. It is constructed as follows: Each one of the
four groups of points in the figure is placed very close to a corner of a unit
square, over one of its edges. Then, to prevent degenerate cases, the points
are moved slightly in such a way that convexity is preserved. For every pair
of points, one red and the other blue, there is a circle through them which
encloses at most ⌊n

2
⌋ points of S.

3.5 Many segments of repeated weights

Proposition 3.14. There exists a set S of n points in general position in
the plane which satisfies: Let bk be the number of bisectors among pairs of
points of S that contribute with four edges to the order-k Voronoi diagram
of S. Then

∑2n/7
k=1 bk ≥ 4n

7
− o(n) and bk ̸= 0 for at least n

6
− o(n) values

of k. Further, only a subset of O(log(n)) points is needed to define these
bisectors.

Proof. The set of points S is obtained recursively in the following way. Let
p, q, r be the vertices of an equilateral triangle and consider the supporting
lines through them dividing the plane into seven regions, see Figure 3.4. In
each of these regions there is a group of n/7 points such that the circle by
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Figure 3.3: (a) Convex configuration S of n red points and n blue points,
consisting of four groups of ⌊n

2
⌋ or ⌈n

2
⌉ points. For any choice of a blue point

q and a red point p, there exists a circle passing through them enclosing only
points of one color. (b) Detail of the construction: Red point p′ above p is
placed outside the circle with diameter pq (drawn in black) and such that
p′ and q are on the same side of the line through p that is perpendicular to
segment pq. The point p′ can be arbitrary close to p.

p, q and r only contains points of the central region. We assign the points
p, q and r to the central region. This is the initial configuration.

The (n/7)− 3 points from the interior of the triangle △pqr give rise to
seven other groups of (n− 3 · 7)/72 points, all of them arranged in the same
way as the initial configuration, that is, its central region has again three
points p′, q′ and r′, which delimit another central region and so on. Note
that p′, q′, and r′ are placed very close to the center of the triangle △pqr,
on the lines from this center to p, q and r, respectively. Further, we can
arrange the points symmetrically with respect to the lines through pp′, qq′
and rr′; then we can move the points slightly to guarantee general position.

First, let’s see how many weights are repeated in any of the bisectors
bpq, bpr or bqr. If we go through any of them, we obtain the list of weights
[3n/7, ↓. . ., n/7, ↑. . . (2n/7) − 3, ↓. . ., (n/7) − 3, ↑. . ., (4n/7) − 2], where consec-
utive values differ by one. Therefore, all values between (2n/7) − 3 and
n/7 are repeated four times. This already shows that there exists a bisec-
tor which contributes with four edges to (n/7) − 3 different higher order
Voronoi diagrams. Note that there is an interval of bpq in which the cir-
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bpq

r
q

p

p′

q′ r′

Figure 3.4: A recursive construction with many repeated weights.

cles through p and q that have their centers in this interval do not contain
points outside of the central region defined by p, q and r. The same hap-
pens in the different central regions obtained recursively. Hence, consider-
ing this interval of the bisector bp′q′ (analogously for bp′r′ , bq′r′), the list of
weights is: [. . . , 3((n/7)−3)/7, ↓. . ., ((n/7)−3)/7, ↑. . . (2((n/7)−3)/7)−3, ↓. . .
, ((n/7) − 3)/7 − 3, ↑. . ., 4((n/7) − 3)/7 − 2, . . .], where (((n/7) − 3)/7) − 3
of them are repeated four times. This recursion give a lower bound on the
number of bisectors contributing with at least four edges to different higher
order Voronoi diagrams. After j steps (where the first step j = 1 counts for
bpq, bpr, and bqr) we have

3 (n/7− 3 + (n/7− 3)/7− 3 + ((n/7− 3)/7− 3)/7− 3 + . . .) =

= 3

j∑
i=1

(
n/7i − 3(j + 1− i)/7i−1

)
weights repeated four times.

Second, we consider any of the three perpendicular bisectors of the seg-
ments pp′, qq′, rr′. By construction, these three segments lie on halving
lines. A halving line of S is a straight line which leaves the same num-
ber of points of S on each of its sides. The list of weights on each of the
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three perpendicular bisectors of the segments pp′, qq′, rr′ is [(n/2) − 2, ↓. . .
, 2((n/7)−3))/7, ↑. . . 3((n/7)−3))/7, ↓. . ., 2((n/7)−3))/7, ↑. . ., (n/2)−2], where
((n/7) − 3)/7 values are repeated four times. Considering the correspond-
ing three halving lines in each step of the recursion we obtain after j steps
(where the first step j = 1 counts for bpp′ , bqq′ , and brr′):

3 ((n/7− 3)/7 + ((n/7− 3)/7− 3)/7 + . . .) =

3
∑j

i=1 (n/7
i+1 − 3(j + 1− i)/7i)

weights repeated four times.

Adding up, we obtain

2n/7∑
k=1

bk ≥ 3

j∑
i=1

(
n/7i − 3(j + 1− i)/7i−1

)
+ 3

j∑
i=1

(
n/7i+1 − 3(j + 1− i)/7i

)
= 4n/7− (4n+ 14)/7j+1 − 12j + 2,

which is 4n/7 − o(n); note that we can take j ∈ Θ(log(n)) steps in the
recursion. From the construction we get bk ̸= 0 for at least n/7 + n/72 +
. . .+ n/7Θ(log(n) − o(n) = n/6− o(n) values of k.

For sets of 2n cocircular points, the segments on the perpendicular bi-
sector of any (n− 1)-edge (such a (n− 1)-edge lies on a halving line) have
weight n − 1. Another, not so elementary, construction without four co-
circular points is given in Proposition 3.15, see Figure 3.5.

Proposition 3.15. There exists a set S of 2n points in general position in
the plane such that every pair of points p, q of S which defines a halving
line satisfies: Every circle passing through p and q encloses n− 2, n− 1 or
n points of S.

Proof. The construction is as follows. First, we place two points, p1 and q1;
let m be their midpoint. We consider the lines ℓ1, . . . , ℓn, where ℓ1 is the
supporting line of p1q1, ℓn is bp1q1 , and the remaining ones are obtained from
ℓ1 after successive rotations of angle π/(2n) and center m. In the following
we define the points qi, pi for i = n, . . . , 3, 2 such that all pi are above ℓ1 and
all qi are below ℓ1. Both qi and pi will lie on ℓi. Now we place the points
pn and qn on bp1q1 , in such a way that pn is close to m, and qn is cocircular
with p1, q1 and pn.
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Figure 3.5: A set of 2n points. All 2n − 1 segments on the bisector of any
(n− 1)-edge have weight n− 2, n− 1, or n.

Let 2 ≤ k ≤ n. From Cp1q1 , we denote Ck the circle through p1, q1 and
the point pk on the bisector bp1q1 . Hence, qn is on Cn. Note that these circles
are well defined, once pk is defined.

Next, we place the point qn−1 on line ℓn−1, in the interior of Cn. We
draw a circle through the points qn, pn and qn−1. This circle cuts ℓn−1 in
the point qn−1 and in another one, where we put pn−1. We denote Ci+1,i the
circle through qi+1, pi+1, qi and pi for i = n− 1, . . . , 3, 2.

In a general step of this construction, we place the point qn−i on the line
ℓn−i, in the interior of Cn−i+1 and outside the circle Cn−i+2,n−i+1. Then we
repeat the process to obtain the point pn−i. See Figure 3.5.

Note that the points qi+1, pi+1, qi and pi are cocircular, they belong to
Ci+1,i, by construction. Furthermore, pi and qi are the intersection points of
Ci+1,i with Ci,i−1. These points pi and qi define in Ci,i−1 two arcs, the one
containing qi−1 is exterior to Ci+1,i, the other one is in the interior of Ci+1,i.
Therefore, if we go through any of the bisectors bpiqi , the corresponding
circle is reaching the pairs pi and qi in order. That is, if the circle passes



CHAPTER 3. ON CIRCLES ENCLOSING MANY POINTS 84

through qi−1 it can not reach qj (or pj), where j > i + 1, before qi+1 (or
pi+1) is reached.

Note that we can move the points qi slightly to achieve general position,
while keeping the described properties.

It is easy to check that the line through piqi is a halving line and if we
go through any of the bisectors bpiqi , the corresponding circle contains n−2,
n− 1 or n points.



Chapter 4

Geometric and statistical
techniques for projective
mapping of chocolate chip cookies

In this chapter, we reproduce an article that was published in 2021 in
the journal Food Quality and Preference Volume 87, 104068. This article
was written in collaboration with David Orden, Encarnación Fernández-
Fernández and Marino Tejedor-Romero. The front page of this article can
be found in Appendix B.

4.1 Introduction

Traditionally, the sensory evaluation of foods has been carried out using
generic descriptive analysis with trained panels [68] and consumer sensory
analysis with a 9-point hedonic scale, with different purposes and objec-
tives [136]. As an alternative to QDA and consumer sensory analysis with
hedonic scale, a number of new sensory techniques have arisen in the last
couple of decades [136, 137, 135]. These methods, sometimes called rapid
sensory methods as opposed to the fact that generic descriptive analysis is
quite time consuming, have proved to be useful in order to obtain accurate
and reliable information from consumers.

Among these rapid methods, the present work focuses on Projective
Mapping [113], later used in Napping [99]. Some of the interesting char-

85



CHAPTER 4. TECHNIQUES FOR PROJECTIVE MAPPING 86

acteristics of this method are being a holistic methodology, based on con-
sumers’ perception of the global similarities and differences among a set of
samples, as well as allowing its use both with trained panellists and with
unexperienced consumers. Data from rapid methods are traditionally ana-
lyzed using statistical techniques, with multiple factor analysis (MFA) [99]
being the most common choice for Projective Mapping. Very recently, some
works have also proposed the use of geometric techniques from graph the-
ory [97, 66]. A first contribution of the present work is to deepen in this
recent line of research, introducing a substantial modification of the Sen-
soGraph method proposed in [96] and further comparing the results and
their stability between this new variant, the original SensoGraph, and MFA.
Our hypothesis is that mixing geometric techniques from graph theory with
common tools in statistics, like distances between samples or dendrograms,
would provide further insight in sensory studies.

The number of assessors required to perform Projective Mapping dif-
fers depending upon the study, the products, and the level of expertise of
the participants. Previous research has shown that the minimum number
of consumers needed to obtain stable maps in Projective Mapping using
MFA strongly depends on the number of samples and their degree of diffe-
rence [139, 140]. Although stable configurations might be reached by just
20 assessors, larger numbers are often required [135].

Despite the simplicity of Projective Mapping makes it especially suitable
to be used by unexperienced consumers, to the best of our knowledge no
work seems to have carried out Projective Mapping with significantly more
than 100 consumers, although other techniques like Sorting have been used
with up to 389 consumers [128]. A second contribution of the present work is
to perform a Projective Mapping study with a large number of consumers, in
particular n = 349. This large number properly allows the use of resampling
techniques in order to analyze the stability of both MFA and SensoGraph for
a panel of unexperienced consumers. The data collected are made publicly
available [95], seeking that the community can benefit from a dataset with
such a large number of consumers.

As for the product under study, Projective Mapping has been pre- vi-
ously used to analyze a variety of foods with different sensory complexities,
from white wines [99, 15] to cheeses [13, 90]. For the present work we have
chosen to study commercial chocolate chip cookies. Cookies are one of the
most common snack foods [42] due to their general acceptability, conve-
nience and shelf-life. In particular, chocolate chip cookies are present in
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Sample Brand Private label of supermarket Manufacturer Percentage of Chocolate
1 Hacendado Mercadona Grupo Siro 37% chocolate chips
2 Chips-Ahoy Mondelez España Commercial, S.L. 25.6% chocolate chips
3 Carrefour Carrefour Aurly S.L. 37% chocolate chips
4 Grandino Lidl Übach-Palenberg 29% chocolate chips and 11% milk chocolate chip
5 Chips-Ahoy Mondelez España Commercial, S.L. 25.6% chocolate chip
6 Alteza Lupa Galletas Gullón S.A. 25% chocolate chips
7 American Cookies Aldi Banketbakkerij Merba B.V. 29% chocolate chips and 11% milk chocolate chips
8 Dia Dia Don Cake S.A. 26.7% chocolate chips and 10.3% milk chocolate chips
9 Ifa Eliges Gadis Galletas Gullón S.A. 25% chocolate chips

Table 4.1: Chocolate chip cookies samples information.

most supermarket shelves, food stalls, and service stations. Their easy ac-
quisition and low price help them become part of the diet, especially among
young people [84], which are the target of the present study. A Scopus
search provided no previous works using Projective Mapping with chocolate
chip cookies and a single one with commercial cookies [127]. Thus, a third
contribution of the present work is the analysis of commercial chocolate chip
cookies, from a multinational brand and several private labels. Our hypoth-
esis is that unexperienced consumers can provide consistent results about
this popular type of cookies.

4.2 Material and methods

4.2.1 Samples

Nine commercial chocolate chip cookies were used in this study, bought at
supermarkets in Palencia (Spain). Products differed in terms of brand, being
or not a private label, manufacturer, and percentage of chocolate (Table
4.1). Blind duplicates were used within the product set, with samples 2
and 5 being the same product, since the ability of positioning close blind
duplicates is widely considered an indicator of the reliability of the method
and the accuracy of the panel [87, 138, 116, 86].

The chocolate chip cookies were presented in plastic cups, labeled with
a three-digit random code, and served in randomized order following a bal-
anced block experimental design. Due to the significant differences in the
size of the cookies and their external appearance, they were served as halves
in order to minimize the possibility of the consumers recognizing them. To
make sure that the assessors could re-test several times if needed, labeled
plates with extra samples were at their disposal. Water was also provided
to all consumers to rinse between samples.
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4.2.2 Consumers

A total of three hundred forty-nine (n = 349) consumers participated in this
study, recruited among seven educational centers and two university fairs
along the academic years 2017–18 and 2018–19; more details are provided
in the dataset description [95]. The participants, of which 53% were female
and 47% male, ranged between 14 and 30 years old. All the participants
agreed to take part in this study and no identifiable or sensitive information
was collected.

4.2.3 Projective mapping

Prior to starting the tasting session, all participants were sensitized about
the importance of sensory analysis by a visual presentation. An aim under-
lying this study was to promote the sensory analysis among young people,
at different high schools and during the open days of the University of Val-
ladolid. Subsequently, the basis of Projective Mapping was explained to the
participants, using an illustration which showed cookies of different shapes
(rectangular and round) and colors (cream and brown).

After the explanation of the technique, the participants received an A2
(60 × 40 cm) sheet of paper to allocate the samples. Samples were to be
placed close to each other if, according to the assessor’s own criteria, they
seemed sensorially similar and vice versa, i.e., two chocolate chip cookies
were to be distant from one another if they seemed different. The partici-
pants had to observe, smell, and taste the chocolate chip cookies, and then
position the samples on the A2 sheet, trying to use as much of the tablecloth
as possible. Once they had decided on the positioning, they were asked to
write the codes on the sheet. The dataset with the x- and y-coordinates of
chocolate chip cookies from the individual perceptual spaces is made pub-
licly available [95], for the sake of facilitating replicability in research.

4.2.4 Data analysis with existing methods

4.2.4.1 Statistical analysis

The data obtained from Projective Mapping [113] was then analyzed by
MFA [99], using the R language [109] and the FactoMineR package [69].
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Figure 4.1: Clustering with the Gabriel graph. The connection 6–7 will be
drawn, since no third sample lies inside the circle having that connection as
diameter. On the contrary, the connection 4–5 will not be drawn, because
sample 1 lies inside the corresponding circle.

Confidence ellipses were constructed using truncated total bootstrapping [20]
with the SensoMineR package [69].

4.2.4.2 Geometric analysis using SensoGraph with a clustering
method

The x- and y-coordinates from the tablecloths were imported and analyzed
using a web app [96] implementation of the SensoGraph method introduced
in [97]. The first step there was to perform a clustering on each tablecloth
using the Gabriel graph [39], a tool from Computational Geometry. With
this technique, two samples become connected if, and only if, there is no
third sample contained in the circle having that potential connection as
diameter. See Figure 4.1.

The aim of this clustering was to connect some pairs of samples at each
tablecloth, so that a global similarity matrix could be constructed by count-
ing, for each pair of samples, in how many tablecloths they became con-
nected.

In other words, for each tablecloth the clustering induced a matrix with
entries in the set 0,1 standing, respectively, for the corresponding pair of
samples being connected or not by the clustering. Then, the global similarity
matrix was just the addition of the particular similarity matrices from each
tablecloth. See Figure 4.2 for an illustration.
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The second step in [97] was the use of the Kamada-Kawai force-directed
algorithm from graph drawing [61] to obtain a positioning of the samples
(consensus graphic) based on the entries of the global similarity matrix.

Interested readers can follow the descriptions in [97] to implement the
SensoGraph method in R, using the command gg in the package cccd [76]
for the Gabriel graph and the command layout_with_kk of the package
igraph [26] for the Kamada-Kawai graph drawing algorithm. The corre-
sponding author can also be contacted for further details.

Several improvements were implemented with respect to the software
used in [97] and the features of the above-mentioned commands in R. First,
a color code from red (smallest) to green (largest) was incorporated to both
the connections between samples in the consensus graphic and the global
similarity matrix, to illustrate the strength of those connections following
the lines of recent successful visualization tools [143]. Second, a dendrogram
for the data of the global similarity matrix was obtained using hierarchical
clustering [48] and the matrix was then rearrange according to the order
in the dendrogram, for the sake of an easier visualization of the groups of
samples.

In addition, the possibility of displaying only the most relevant con-
nections was implemented. The strength of a particular connection was
normalized to the interval between the smallest and largest strengths in the
global similarity matrix, according to the following formula

normalized strength =
current strength− smallest strength

largest strength− smallest strength
.

Then, these normalized strengths were grouped into deciles, allowing to
display only the 10k% of largest normalized strengths, for k an integer from
1 to 10.

4.2.5 Data analysis with a new method

The present work introduces and tests an alternative way of obtaining the
global similarity matrix. As in the original SensoGraph proposal, the global
matrix will also be the sum of particular similarity matrices for each table-
cloth, but the difference is that the values in these particular matrices now
lie in the interval [0, 1]. See Figure 4.3 for an illustration.
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Figure 4.2: Illustration of the process for SensoGraph with Gabriel [97].

Specifically, the values of the particular similarity matrices correspond
to the distances between the pairs of samples, normalized to the interval
[0, 1] as follows: The interval between the smallest and the largest distances
obtained is linearly mapped to a similarity in the interval [0, 1] in an inverse
way, according to the formula

similarity = 1− distance− smallest distance

largest distance− smallest distance
.

which assigns similarity 1 to the smallest distance, 0 to the largest distance,
smaller similarities (between 0 and 1) to the larger distances, and vice versa.

This approach aims to capture the essence of Projective Mapping, which
asks the assessors to position closer those samples perceived as more similar
and vice versa, by assigning larger similarities to (hence, considering more
important) those pairs of samples positioned closer, and vice versa. In
order to emphasize the importance of those samples which were more clearly
positioned closer or further, the linear mapping mentioned above was tuned
using the following formula, which depends on a parameter p ≥ 1.

tuned similarity =

{
2p−1(similarity)p when similarity < 1/2,

1− 2p−1|similarity − 1|p when similarity ≥ 1/2.

Figure 4.4 shows the effect of this function for several values of p. The
value p = 1 gives the aforementioned linear mapping, while increasing the
value of p results in the graph combing towards an S-shape, hence empha-
sizing the effect of extreme values corresponding to more clearly positioned
samples. After checking different values of p between 1 and 3 for the func-
tion of tuned similarity, obtaining analogous results, a compromise value of
p = 2 was chosen for the sake of emphasizing extreme values without an
excessive distortion of the inputs, see again Figure 4.4.

This new method was also implemented in the web app [96], using
Python as backend language on the server side, Flask as microframework,
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Figure 4.3: Illustration of the process for SensoGraph with distances.

Figure 4.4: Effect of linear (p = 1) and non-linear mappings (p > 1) over
the interval [0, 1].
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and MongoDB to manage the databases, as well as JavaScript, HTML, and
CSS on the user side. Again, replicability of the results can be ensured by
alternative implementations using the techniques and commands detailed
above. Interested readers can also contact the corresponding author for
further details.

4.2.6 Stability of the results

The stability of the results obtained was analyzed using boot-strapping re-
sampling in order to simulate repetition of the experiments [121], as used
by [139] for the study of the stability of sample configurations from projec-
tive mapping. For each value of m = 10, 20, 30, . . . , n, subsets of m assessors
were randomly drawn with replacement from the original data set. As in
previous works [37, 17], a collection of 100 subsets was generated for each
value of m.

For the study of the stability of MFA results three analyses were per-
formed, using independent bootstrapping resamplings: With the first two
dimensions of the MFA and with the first four dimensions as in the stability
study by [139] and, in addition, with eight dimensions for better comparison
with the results for SensoGraph.

In order to measure the agreement between the MFA consensus map
for each subset and that of the original panel, the RV coefficient was com-
puted [35, 131, 60]. This is a popular similarity measure between point
configurations or matrices, whose values range between 0 and 1 and for
which, the more similar two items are, the higher is the corresponding RV
coefficient.

The RV coefficient was computed using the FactoMineR [69] function
coeffRV. The mean and the standard deviation for RV coefficients of subsets
of the same size were then obtained using the commands mean and sd of
the R language [109].

For the study of the stability of SensoGraph results, the only meaningful
analysis is considering the global similarity matrices. A graph is defined by
a set of vertices and a set of pairs (i, j) of vertices [46], which are encoded as
the set of entries (i, j) of a matrix. The two-dimensional representation of
a global similarity matrix is a plotting artifact based on the graph-drawing
algorithm considered. Furthermore, the random nature of the seeds cho-
sen by the Kamada-Kawai algorithm used by SensoGraph could result in
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different coordinates in the consensus graph.

In order to measure the agreement between the SensoGraph similarity
matrix for each subset and that of the original panel, the Mantel coeffi-
cient was computed [75], which evaluates the similarity between two con-
figurations by measuring the correlation between two matrices of distances
between the samples [2]. The Mantel coefficient is the usual Pearson correla-
tion coefficient based on two vectors of size n(n− 1)/2 (n being the number
of products) containing the off-diagonal elements of the two dissimilarity
matrices being compared. Its values range between −1 and 1 and, the more
similar two items are, the higher is the corresponding Mantel coefficient.
Widely used in ecology, the Mantel coefficient has also been used in sensory
analysis, e.g., by [17] to investigate the stability of sorting maps.

The mantel coefficient was computed using the Python function skbio.sta-
ts.distance.mantel [129] using Pearson’s product-moment correlation coef-
ficient. The mean and the standard deviation for Mantel coefficients of
subsets of the same size were then obtained using the commands mean
dataset.mean and dataset.std of the pandas library [130].

4.3 Results and discussion

4.3.1 Results for MFA

The data obtained from the Projective Mapping tablecloths were exported
as a CSV file and were processed using MFA as mentioned in Section 4.2.4.1.
The computation took an average of 90.2 s, with a standard deviation of
11.7 s, measured over 5 independent runs on a computer with an Intel(R)
Core(TM)2 Duo CPU @2.13 GHz with 4 GB of RAM.

The consensus representation of the similarities and differences among
samples is shown in Figure 4.5. In this consensus graphic of MFA, the first
two dimensions accounted for 41.12% of the explained variance (25.64%
Dim1 and 15.48% Dim2). Low percentages of explained variance have been
observed for panels composed by unexperienced consumers [90], with some
works reporting such panels not positioning close together blind duplicate
samples [89].

In our case, the panel of unexperienced consumers was able to position
the blind duplicate samples 2 and 5, from the same brand (Chips-Ahoy),
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Figure 4.5: Consensus plot from MFA, dimensions 1 and 2.

close together in the lower-right quadrant. Their confidence ellipses over-
lapping means that no significant differences were perceived and, therefore,
the consumers were capable to detect their similarity.

In addition to that, samples 1 (Hacendado), 3 (Carrefour), 4 (Grandino),
and 7 (American Cookies) became positioned in the lower-left quadrant of
the perceptual space, with their confidence ellipses overlapping indicating
that consumers did not perceive statistically significant differences between
them. These were the cookies with the highest percentage of chocolate:
Samples 1 (Hacendado) and 3 (Carrefour) had a 37% of chocolate chips,
while samples 4 (Grandino) and 7 (American Cookies) had a 29% of choco-
late chips plus an 11% of milk chocolate chips. Recall Table 4.1.

Further, sample 6 (Alteza) and sample 9 (Ifa Eliges) appear separated,
with their ellipses not overlapping but not far to each other and to samples
2 and 5. Probably, this can be explained because the samples 6 and 9 have
a percentage of chocolate similar to samples 2 and 5 (25% and 25.6% of
chocolate chips, respectively, see Table 4.1). Samples 6 and 9 are from a
private label, but produced by the same manufacturer, while the duplicate
samples 2 and 5 are from a best-selling multinational brand (see Table 4.1).

Finally, sample 8 (Dia), was isolated at the upper-left quadrant despite
its proportion of chocolate chips being similar to others (26.7% of chocolate
chips and 10.3% of milk chocolate chips, see Table 4.1). A possible expla-
nation is that this sample appears as the farthest one to samples 2 and 5,
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Figure 4.6: Consensus plot obtained using SensoGraph with Gabriel (Orden
et al., 2019).

those from a best-selling multinational brand, so the private label cookie 8
was perceived as the least similar to a best-selling cookie.

The above discussion is to be considered taking into account that, due
to the lack of batch tracking, changes in product recipes might have arisen
over the two years of data collection.

4.3.2 Results for SensoGraph with Gabriel clustering

The data from the Projective Mapping tablecloths was uploaded to the Sen-
soGraph software [96], which processed them as described in Section 4.2.4.2.
The computation took less than one second with the same computer men-
tioned in Section 4.3.1.

Figure 4.6 shows the consensus graphic obtained, with all the connec-
tions between samples, obtained using SensoGraph with the Gabriel graph
clustering as in [97], see Section 4.2.4.2. Figure 4.7 shows only the 60%
of most relevant connections, while Figure 4.8 shows the dendrogram (left)
obtained by hierarchical clustering from the global similarity matrix with
the strengths of those connections (right). For the consensus plots and the
global similarity matrix, a color code from red (smallest strength) to green
(largest strength) has been used for the sake of an easier visualization.

These graphics show that the positioning of the samples provided by
SensoGraph is similar to that in the consensus map given by MFA, the RV
coefficient between the point configurations in Figures 4.5 and 4.6 being
0.8785. Groups 2–5-6–9, 1–3-4–7, and 8 can be identified in Figures 4.5
and 4.6, with the global similarity matrix in Figure 4.8 (right) easily showing
that the connection 2–5 is the strongest (greenest) one, corresponding to
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Figure 4.7: Consensus plot from SensoGraph with Gabriel, showing only
the 60% of most relevant edges.

Figure 4.8: Dendrogram (left) and global similarity matrix (right) for Sen-
soGraph with Gabriel. The matrix is rearranged according to the result of
the dendrogram, so that the groups obtained appear as submatrices with
similar colors (framed).

samples 2 and 5 being the blind duplicates. It is interesting to note that
SensoGraph identifies these blind duplicates as the most similar samples,
both by the consensus map in Figure 4.6 and by the global similarity matrix
in Figure 4.8, while in the MFA graphic for the first two dimensions (Figure
4.5) the pair 1–7 is instead the closest one (although the confidence ellipses
for 2–5 do overlap, as discussed above). Nevertheless, note that the value
of the connection 2–5 in the SensoGraph similarity matrix is just 187 out of
the 349 consumers considered.

In addition, SensoGraph shows samples 6 and 9 appearing in the same
group as the aforementioned samples 2 and 5, although the strength of the
other connections in this group is quite smaller than that of the connection
2–5. Samples in this group share a similar percentage of chocolate chips
since, as commented above, samples 6 (Alteza) and 9 (Ifa Eliges) have a
25% of chocolate chips, and samples 2 and 5 (Chips-Ahoy) have a 25.6% of
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Figure 4.9: Consensus plot obtained using SensoGraph with distances, as
introduced in Section 4.2.5.

chocolate chips (Table 4.1).

A second group observed in the SensoGraph graphic is composed by
samples 1–3–4–7, with the corresponding ellipses overlapping in MFA as
well. The connection 1–3 is the second strongest one and the connection 4–7
is the third strongest one, while connections 1–4 and 1–7 are not so strong,
and the connections 3–4 and 3–7 have an intermediate strength. This group
can be explained because the samples 1 (Hacendado) and 3 (Carrefour) have
the same percentage of chocolate chips, 37%, while the sample 4 (Grandino)
and the sample 7 (American Cookies) also have both the same percentage
of chocolate (29% of chocolate chips plus 11% of milk chocolate chips).

Finally, the sample 8 (Dia) being isolated in MFA coincides with its
connections to all other samples being weak in SensoGraph, and with this
sample being actually isolated when showing only the 60% of most relevant
edges (Figure 4.7). As happened for MFA, the sample 8 appears as the
farthest one to samples 2 and 5 also in SensoGraph, both for the consensus
map (Figure 4.6) and for the global similarity matrix (Figure 4.8, right).

4.3.3 Results for SensoGraph with distances

In this case, the data was uploaded to the software by [96] and the option of
using SensoGraph with distances was selected, in order to process the data
as described in Section 4.2.5. The computation took less than one second
with the same computer mentioned in Section 4.3.1.

Figure 4.9 shows the consensus graphic obtained, with all the connec-
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Figure 4.10: Consensus plot from SensoGraph with distances, showing only
the 60% of most relevant edges.

tions between samples, using SensoGraph with distances, as introduced in
Section 4.2.5. Figure 4.10 shows only the 60% of most relevant connections.
Finally, Figure 4.11 depicts the dendrogram (left) obtained from the global
similarity matrix (right). Again, the color code from red to green has been
used for the consensus graphics and the similarity matrix.

The consensus map obtained (Figure 4.9) is similar to those given by the
previous methods, the RV coefficient with MFA for the first two dimensions
(Figure 4.5) being 0.7407 and that with SensoGraph with Gabriel (Figure
4.6) being 0.6390. Both the consensus maps (Figures 4.5, 4.6 and 4.9) and
the dendrograms and global similarity matrices (Figures 4.8 and 4.11) show
the same groups, being slightly more clear for SensoGraph with distances
than for the variant with Gabriel (Figures 4.7 and 4.10, also Figures 4.8
and 4.11).

4.3.4 Stability of the results

As detailed in Section 4.2.6, bootstrapping was performed to analyze the
stability of the results given in the previous subsections by the three methods
considered.

Figures 4.12-4.16 show, for different cases, the evolution of the RV and
Mantel coefficients between virtual panels, composed by subsets of con-
sumers randomly drawn with replacement, and the true panel. The vertical
axis corresponds to the average RV or Mantel coefficient, incorporating stan-
dard deviations as vertical bars, while the horizontal axis corresponds to the
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number of consumers in the virtual panel. As expected, in all the cases in-
creasing the number of consumers leads to an increase of the RV or Mantel
coefficients and a decrease of the standard deviations.

Previous works [37, 17, 139] have considered different values of the RV
coefficient as the threshold above which the results are considered to be sta-
ble, the most restrictive one being the value 0.95 proposed by [17], which is
depicted as a red horizontal dashed line. There is no agreement in the liter-
ature about which value of the RV coefficient indicates a good agreement,
with [139] reporting works which consider values that range between 0.65
and 0.95. For the Mantel coefficient there is no standard threshold value as
well, although [17] observed a strong linear relationship between both types
of coefficient, with the Mantel coefficient tending to provide slightly lower
values than the RV coefficient.

For the case of MFA, considering the first four dimensions instead of
the first two leads to better results, with higher initial RV coefficients and
smaller standard deviations. [139] observed similar results where, their work
considering up to 100 consumers, some panels did not reach the 0.95 RV co-
efficient suggested by [17]. The results we obtain show that for this panel of
unexperienced consumers with the first two dimensions accounting for only
41.12% of the explained variance, the 0.95 threshold is achieved for around
200 consumers (Figure 4.12). When considering the first four dimensions, ac-
counting for 65,95% of the explained variance, the 0.95 threshold is achieved
for around 150 consumers (Figure 4.13). Considering the eight dimensions,
which obviously account for the 100% of the explained variance, allows to
achieve the 0.95 threshold for 40 consumers (Figure 4.14).

It should be noticed that [88] analyzed the corpus of 46 publications
in Food Quality and Preference and Food Research International dealing
with projective mapping until then, concluding that most of the papers
considered only the first two dimensions of the MFA, with just a few of them
(6 out of 46) going further and using up to the first four dimensions. To the
best of our knowledge, no previous work used the full (eight) dimensions of
MFA to study the stability of the samples configuration.

As for SensoGraph with Gabriel, the results in Figure 4.15 show smaller
deviations than those for MFA with the first two dimensions (Figure 4.12),
although more consumers are needed to achieve the 0.95 threshold, around
300 consumers. This could be explained because, as observed by [17], the
Mantel coefficient tends to be slightly smaller than the RV coefficient. Ac-
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Figure 4.11: Dendrogram (left) and global similarity matrix (right) for Sen-
soGraph with distances. The matrix is rearranged according to the result
of the dendrogram, so that the groups obtained appear as submatrices with
similar colors (framed).

tually, in this case, considering 200 consumers achieves a 0.92 threshold.

It is worth noticing that, although the dimensionality of the 9× 9 global
similarity matrix is eight (it defines nine points in nine dimensions but the
fact that entries (i, i) are zero implies that those points do actually lie on an
8-dimensional hyperplane), the global similarity matrix can also be depicted
in a single 2-dimensional graphic (Figure 4.8, right).

Finally, SensoGraph with distances leads to the results depicted in Figure
4.16, which show higher Mantel coefficients and smaller standard deviations
than the version using Gabriel. In particular, the 0.95 threshold is achieved
for around 200 consumers, like for MFA with the first two dimensions (Figure
4.12), but with smaller deviations. Further studies with different panels and
products, as in [139], should be performed in order to confirm this behavior.

4.4 Conclusions

This work used Projective Mapping for the evaluation of commercial choco-
late chip cookies by a large number of n = 349 unexperienced consumers,
analyzing the data with statistical (MFA), geometric (SensoGraph-Gabriel)
and mixed (SensoGraph-distances) methods. All of them provided the same
groups of samples, with the two blind duplicates being positioned close to-
gether. The identification of these duplicates was clearer for the geometric
and mixed techniques than for the MFA consensus map, where a different
pair of samples appeared as the closest one.
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Figure 4.12: Evolution of the RV coefficient between subsets of consumers
randomly drawn with re- placement and the whole panel, for the first two
dimensions of MFA (Figure 4.5). The red horizontal dashed line corresponds
to a 0.95 threshold.

The stability of the results was studied with bootstrapping resampling,
randomly drawing 100 subsets of m = 10, 20, 30, . . . , n assessors from the
original data set and measuring the agreement with the original panel by
the RV coefficient for MFA and the Mantel coefficient for SensoGraph. MFA
achieved the highly restrictive RV 0.95 stability threshold for around 200
consumers when using the first two dimensions, for around 150 consumers
when considering the first four dimensions, and for 40 consumers when all
the eight dimensions are considered. For SensoGraph with Gabriel, the
Mantel 0.95 stability threshold was achieved around 300 consumers, while
SensoGraph with distances led to values beyond the Mantel 0.95 threshold
for around 200 consumers. These values are to be considered taking into
account that Mantel coefficients have been previously observed to be slightly
smaller than RV coefficients.

Further research, with different panels and products, would be needed
in order to confirm these behaviors which suggest that, on one hand, global
similarity matrices are useful for Projective Mapping data analysis and, on
the other hand, graph drawing techniques provide reliable consensus maps.
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Figure 4.13: Evolution of the RV coefficient between subsets of consumers
randomly drawn with replacement and the whole panel, for the first four
dimensions of MFA. The red horizontal dashed line corresponds to a 0.95
threshold.

Figure 4.14: Evolution of the RV coefficient between subsets of consumers
randomly drawn with replacement and the whole panel, for the eight di-
mensions of MFA. The red horizontal dashed line corresponds to a 0.95
threshold.
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Figure 4.15: Evolution of the Mantel coefficient between subsets of con-
sumers randomly drawn with replacement and the whole panel, for the
SensoGraph with Gabriel global similarity matrix (Figure 4.8). The red
horizontal dashed line corresponds to a 0.95 threshold.

Figure 4.16: Evolution of the Mantel coefficient between subsets of con-
sumers randomly drawn with replacement and the whole panel, for the Sen-
soGraph with distances global similarity matrix (Figure 4.11). The red
horizontal dashed line corresponds to a 0.95 threshold.



Chapter 5

Flight level assignment using
graph coloring

This chapter contains an article that appeared originally in 2020 in the
journal Applied Sciences Volume 10, Issue 18, 6157. It was written in col-
laboration with Jose Manuel Gimenez-Guzman, Rene D. Reyes-Bardales,
David Orden and Ivan Marsa-Maestre. The front page of this article can be
found in Appendix B.

5.1 Introduction

The increasing congestion of the airspace is widely accepted to be one of the
outstanding problems in today’s society. Researchers agree in considering
the state-of-the-art methods for air traffic management (ATM) to be insuf-
ficient to handle the expected growth, see the survey by Vossen et al. [142].
Barnier and Brisset [14] describe how the airspace is divided into smaller
regions, each one handled by air traffic control (ATC). Therefore, the assign-
ment of flight levels (FLs) is carried out locally within each region, resulting
in a suboptimal solution both for individual routes and for the overall net-
work. This is mainly due to the fact that ATM often requires level changes,
which are costly in terms of fuel and emissions, as well as deviations from
the optimal path from origin to destination, which are also costly in terms of
time and fuel. This is why allocation of flight levels is the goal in [14], where
a graph coloring problem is solved by a combination of a greedy algorithm
and constraint programming.

105
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Being a well-established tool coming from discrete mathematics, graph
coloring has proved to be useful in many different applications. There are
a number of different types of graph coloring problems. For an exhaustive
description of most of them, the reader is kindly redirected to the surveys
in [74, 133]. For the purposes of this paper, we will discuss the classic graph
coloring problem, which is the one used by Barnier and Brisset in [14], and
the spectrum coloring problem, which we proposed in [98]. The classic graph
coloring problem assigns to each vertex in the graph a label or color, with
the constraint that two vertices of the graph cannot have the same color if
there is an edge connecting them -this kind of edges are called monochro-
matic edges, and the colorings which avoid them, proper colorings. If we
envision a graph where aircraft routes are vertices, edges connect intersect-
ing routes, and colors represent FLs, this problem can be used to ensure that
no two crossing routes are assigned the same FL [14]. A limitation of this
approach is that routes may cross at adjacent FLs. Safety considerations,
however, should favor those colorings where crossing routes use further sep-
arated FLs, so that height changes due to flight conditions are less likely to
result in accidents. Taking this into account, we consider here the general
spectrum graph coloring problem [98], where there is a set of available colors
and a matrix of interferences between colors, and the goal is to minimize
the total interference. We have achieved significantly good solutions using
this technique in domains as diverse as Wi-Fi channel assignment [98] and
reactive network resiliency [79]. In this paper we evaluate its applicability
to traffic management, by mapping interference to closeness between flight
levels -i.e. the closer the FLs, the higher the interference.

There are a number of papers on flight level assignment in the literature.
Sasso et al. [28] propose simulated annealing to optimize air traffic through
small reroutes and en-route level changes, as well as flight delays to handle
intersecting routes. Flying at an optimal altitude can help to save a signifi-
cant amount of fuel during the cruise phase of a trip, but there is a fuel cost
in reaching that altitude. This yields a trade-off between optimizing fuel
expenditure by flying at optimum altitude and the extra fuel spent to reach
that altitude. The length of the air route arises as a significant variable
since, the longer the flight, the smaller percentage of total fuel spent is due
to reaching optimum flight level [124].

Both fuel consumption (e.g., [7, 27, 132]) and flight level assignment
(e.g., [14, 25, 28]) have been addressed in the literature but, to the best of
our knowledge, this is the first work considering both of them simultane-
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ously for sets of routes. In doing so, we provide a real-world example of an
instance of behavior optimization in a complex self-interested network, in
the sense that there are interdependent decision makers (the flight pilots or
the airlines governing these flights), whose individual interests (minimizing
fuel consumption for their own flights) are different from the social goal (en-
suring safety distances between FLs for all the flights). There is, of course,
an individual incentive to position a flight in its optimal fuel consumption
level, but not all flights can fly at their optimum without this being a great
risk in terms of safety. The coexistence of different interests between in-
dividual goals which solely depend on individual actions (i.e., how far an
aircraft is from its optimal FL), and social goals which depend on the inter-
action between actions (i.e., at which FLs are conflicting aircrafts flying),
suggests to model the problem as a factorized optimization, and to evaluate
techniques similar to the ones we have used successfully in other complex
network domains [43].

To optimize fuel consumption together with flight level assignment, we
can resort to a number of optimization techniques that can be used for
graph coloring. Examples of such optimization techniques that we have al-
ready successfully used to color graphs are briefly described next. Harmony
Search [40] is an evolutionary nonlinear optimization technique inspired in
musical composition that we have used in [29]. Another family of optimiza-
tion techniques that are suited for this problem are the ones based on Parti-
cle Swarms [104], which we successfully used for that purpose in [30]. More
specifically, in [30] we used an implementation that relies on augmented
Lagrange multipliers to deal with restrictions [56]. Another more recent
nonlinear optimization technique we have used for graph coloring in [22] is
based on Coral Reefs [115]. More specifically, it is a bio-inspired technique
which simulates how a coral reef evolves, considering aspects like the fight
for space in the reef and specific features of the corals’ reproduction. Al-
though all the aforementioned techniques have shown to be useful to color
graphs, in this paper we have chosen Simulated Annealing (SA) [1] as it has
been shown it is able to obtain high-utility results very efficiently [67]. In
addition to SA, we have also considered Hill-Climbing (HC) as an optimiza-
tion technique because, as discussed in [64], the comparison between HC
and SA will let us to assess if the problem under study is highly complex,
because in those scenarios greedy optimizers like HC tend to be blocked in
local optima, while the exploration probability of SA allows to escape from
those local optima.
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The present paper contributes to this goal in the following ways:

• We derive functions for the individual and social utilities, which we use
later in the model (Section 5.2.1).

• We model the joint optimization of fuel consumption and flight level
assignment as a factorized optimization problem (Section 5.2.2).

• We provide an approximate optimization solution to the problem as an
instance of a wide class of coloring problems (Section 5.2.3).

To validate our model and evaluate the significance of our contribu-
tions, we have performed a set of experiments over a graph representing the
Spanish air space, to see the relative performance of different optimization
approaches. The experiment settings and the discussion of results are pro-
vided in Section 5.3. Finally, Section 5.4 summarizes our conclusions and
sheds light on future lines of research.

5.2 Flight-Level Assignment as Spectrum Col-
oring Problem with Hard Constraints

In this section we describe the model we have developed for the problem
in this work. We start by stating the utilities for the different actors in
the model, including the individual utilities (each flight operator wants to
minimize fuel consumption) and the social utility (keep crossing airways
separate enough to ensure certain levels of safety). Next, we model the flight
level assignment as a factorized optimization problem. Finally, we propose
to approximate the solution to the problem as an instance of spectrum graph
coloring.

5.2.1 Individual and social utility models

As stated above, the model considers the interaction between the individual
actors (who have the goal to minimize their individual fuel consumption)
and the social goal (of ensuring safety by keeping intersecting airways far
away from each other).
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5.2.1.1 Individual utility model: fuel consumption

Individuals (e.g., flight operators) will want to minimize their utility func-
tions, defined as the fuel consumption for each flight. Fuel consumption
is a function of both the distance traveled and the cruise flight level, and
takes into account fuel consumption at the cruise phase and during the
climb phase. For longer flights, more time will be spent in the cruise phase,
so flying at sub-optimal altitude will have a more noticeable effect on fuel
consumption than in a shorter flight. In this work, we will neglect the fuel
used during the descent phase as literature suggests that the descent profile
for most flights is approximately the same regardless of total distance [124],
and the idle setting of engines during this phase makes fuel expenditure
invariant to distance and flight level.

With the aforementioned considerations, the individual utility function
corresponding to fuel consumption that we will use for a flight of distance
d and assigned flight level x is:

F (d, x) = Fclimb(x) + Fcruise(d− ε, x), (5.1)

where Fclimb represents the fuel consumption during the climb phase, Fcruise

is the fuel consumption during the cruise phase, and ε is the horizontal dis-
tance traversed during the climb. Fclimb and Fcruise are defined as piecewise
functions depending on the aircraft used.

In this work, we will focus on the Airbus A320 aircraft, which is one of
the most common aircrafts used for Spanish domestic routes. There exists a
trade-off between the better Specific Air Range (SAR)1 provided by higher
flight levels (until the optimal FL for the A320 is reached), and the fuel
required to reach a given FL. In other words, some flights may be so short
that reaching their optimum flight level may not be worthy, since the fuel
savings during the time spent at cruise level do not compensate the fuel cost
of reaching that altitude.

To pre-calculate these optimum flight levels, we will define the functions
as piecewise linear approximations based on existing literature. For the
climb costs, we use [85] to construct Table 5.1.

In view that the relationship between the flight level number and the
fuel consumption is approximately linear, we can then define the following

1Specific Air Range (SAR) is the distance travelled per fuel unit.
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Table 5.1: Climb fuel cost (extracted from [85]).

FL (100s ft) Fuel (kg) ∆Fuel
∆FL

200 600 n/a
240 710 2.75
280 820 2.75
300 875 2.75
320 940 3.25

piecewise linear approximation:{
Fclimb(x) = 2.75(x− 200) + 600, 200 ≤ x ≤ 300
Fclimb(x) = 3(x− 300) + 875, 300 ≤ x ≤ 400

(5.2)

For the cruise phase, we use [73] to obtain the results in Table 5.2, where
different FLs are listed, along with the SAR goodness (expressed as % de-
viation from optimal SAR) and the slope resulting from comparing to the
previous (lower) FL. We use these slopes to make a piecewise-linear approx-
imation defining an auxiliary function S(x), which gives an approximate
value for this percentage deviation from the optimum SAR corresponding
for a given flight level:

Table 5.2: Cruise fuel cost (extracted from [73]).

FL (100s ft) % off from optimum SAR ∆Percentage
∆FL

300 -12 n/a
320 -8 0.2
340 -4 0.2
360 -1.5 0.125
380 0 0.075
400 -3 0.15


S(x) = −4− 0.2(340− x), 200 ≤ x ≤ 340
S(x) = −4 + 0.125(x− 340), 340 < x ≤ 360
S(x) = −1.5 + 0.125(x− 360), 360 < x ≤ 380
S(x) = −0.15(x− 380), 380 < x ≤ 400

(5.3)
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Based on the S(x) function and the fact that

SAR =
distance
Unit Fuel

⇒ Fcruise =
distance

SAR
, (5.4)

we can deduce an expression for the fuel required in the cruise phase, based
on distance d, flight level x and a constant φ that represents the optimum
SAR:

Fcruise(d, x) =
d

(1 + S(x))φ
. (5.5)

We can now find the total fuel required, based on these piecewise func-
tions. We recall the previous expression

F (d, x) = Fclimb(d) + Fcruise(d− ε, x). (5.6)

Since we now have explicit expressions for climb and cruise, we can
calculate the utility function, just needing to set the parameters ε and φ to
a realistic value. The values that are used will be set appropriately to the
type of aircraft.

As stated above, for the purpose of this paper the aircraft considered will
be an Airbus A320. Based on the slopes observed in the tables above, both
the cruise and climb utility functions are linear approximations. The tables
provide the operating points and ranges from literature, but given that we
may use certain operating points below or above the limits, we make an
extrapolation for these points using a linear model. This is viable because,
in the case of the climb, the fuel expenditure is almost perfectly linear, with
a rate of change around 3 (observed at 3±0.25). Then, for the cruise phase,
we need to extrapolate FLs in the range below FL300, and the percentage
off from optimum SAR starts to behave linearly.

Finally, we obtain the values used for ε and φ based on the literature.
From [4], we get that at Cost Index equal to zero (CI = 0, maximum fuel ef-
ficiency), 150NM (278km) are travelled when climbing to FL330. Assuming
a constant rate of climb, we have, for a given flight level x:

ε(x) = 0.84x. (5.7)

For the parameter φ, we use the data in [19], which shows that as the
length of a flight increases (which means cruise phase fuel expenditure be-
comes a larger percentage of the total used), the average fuel spent per
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kilometer tends to 3.3kg/km. This means that each kg of fuel yields ap-
proximately 0.303km, so we can set φ = 0.303.

Based on the proposed model, Fig. 5.1 shows the total fuel consumption
of the Airbus A320 for different values of distance (d) and FL (x) according
to our model.

60,000

30,000

40,000

20,000

10,000

50,000

Figure 5.1: Total fuel consumption of Airbus A320 as a function of distance
and FL.

5.2.1.2 Social utility: interference between crossing airways

In this section we bring social safety considerations to flight level assignment,
considering flight levels as corridors in which crossings arise with the largest
possible vertical distance between the two flight levels involved. Thus, there
is no need to handle the possibility of two aircrafts passing through a crossing
at the same time, hence not needing to take into account the actual position
of aircrafts within the corridor in every time unit.

We translate the search for the largest possible vertical distance at cross-
ings of routes to an instance of the the Spectrum Coloring problem we stud-
ied in [98]. There, we introduced the idea of having an abstract graph G
and a spectrum of colors C = {c1, . . . , cn} together with a matrix W storing
weights Wij = W (ci, cj) for each pair of colors. Thus, a coloring c of the
graph G will induce, via the matrix W , an interference Iv at each vertex v,
according to the following expression:

Iv(G,W, c) =
∑

u∈N(v)

W (c(u), c(v)), (5.8)
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where N(v) is the set of neighbors of vertex v.

The applicability of Spectrum Coloring to the problem presented in this
paper is clear when we map the colors in the spectrum C to the FLs available
for our flights. Here, the entry Wij of the matrix of interferences represents
the impact on safety of assigning FLs ci and cj to a pair of crossing routes.
Clearly, this interference must have a maximum value when the separation
between FLs is zero (that is, in the diagonal of the matrix), and could have
decreasing values as the separation between FLs increases.

One can devise different approaches to define the matrix Wij: We could
take an academic approach and use linear or exponential decays for the
interferences, as we did in [81, 98], or we could take a more risk-based ap-
proach and use the probabilities for a collision when the corresponding FLs
are used (in a similar way to what we did in [79] in a different domain).
Finally, we can take a more conservative approach and assume that crossing
routes must have FLs with a minimum separation, so that the interference
induced by FLs closer than that minimum distance threshold must be in-
finite. As we will discuss later, this is the approach we have taken in this
work.

5.2.2 Factorized Optimization Model

The two utility models defined in the previous section have inherent differ-
ences. Not only do they represent the utilities of different actors (individual
utility vs. social utility), but they also differ in the dimensions of the prob-
lem they depend on. Fuel consumption is a per-flight utility value which
depends solely on an autonomous decision performed for each individual
flight, the FL chosen for the cruise phase. The social utility yielded by
the interference matrix W , instead, depends on the interplay between these
individual autonomous decisions.

Given this coexistence of individual contributions to utility and also
interactions between actions, it makes sense to model the whole problem as
a factorized optimization problem, that is, a problem P of the form

minimize
∑
i∈V

Φi(xi) +
∑
s∈S

Ψs(xs), (5.9)

where V is a finite set of variables and S is a finite collection of subsets
of V representing constraints. Φi and Ψs are real-valued functions called,
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respectively, variable functions and factor functions, representing the impact
on the objective function of the value of each independent variable, and of
combinations of variable values (i.e., interdependences between variables).

In our setting, V would be the set of routes in our scenario and, for
each i ∈ V , xi represents the FL chosen for that route. Hence, the Φi func-
tions would represent fuel consumption and would be defined as Φi(xi) =
F (di, xi), where di is constant for each route i and represents the distance
for that route.

In the same way, S represents the pairs of routes in which the trajectories
intersect, and for each s ∈ S, defined as s = (i, j) the function Ψs is defined
as Ψs(s) = Wij = W (xi, xj), taking values directly from the interference
matrix.

This mapping allows to generalize techniques that we have applied suc-
cessfully to very different domains, such as Wi-Fi channel assignment [77].
These techniques assume an augmented graph coloring problem, which we
describe in the following section.

5.2.3 Graph coloring model

As stated above, the safety considerations in the FL assignment scenario
can be translated to an instance of the Spectrum Coloring problems we
studied in [98]. Problems in this class are defined by an abstract graph G, a
spectrum of colors C, and an interference matrix W . The construction of the
graph G requires further attention and will be detailed in Section 5.3.1. For
the spectrum C we consider 40 colors, corresponding to the 40 FLs ranging
from FL10 (1,000 feet) to FL400 (40,000 feet), with 1,000 feet separation
between adjacent FLs. Finally, in order to define the interference matrix W
we will use a conservative approach, which is coherent with the serious
safety considerations in aviation scenarios. We will assume that there is a
distance threshold δ, expressed in multiples of 1,000 feet, below which the
risks of incidents are not tolerable, so we will assign an infinite value to
the entries of W corresponding to pairs of colors in which corresponding
FLs are closer than the threshold δ. For δ = 0 the interference matrix
W 0 will be the null matrix. Recalling Eq. 5.9, in the δ = 0 case only fuel
consumption is considered, without taking interferences into account. For
δ = 1, the interference matrix W 1 has the value ∞ at all the entries of the
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main diagonal, that is,

W 1 =


∞ 0 . . . 0 0
0 ∞ . . . 0 0
... . . . ...
0 0 . . . ∞ 0
0 0 . . . 0 ∞

 . (5.10)

This corresponds to the classic Proper Coloring problem where no
monochromatic edges are allowed. In our setting, this means that no two
crossing routes are allowed to be assigned to the same FL. In a similar way,
for δ = 2 the interference matrix W 2 is a tridiagonal matrix which adds
values ∞ at the superdiagonal and subdiagonal, as follows:

W 2 =



∞ ∞ 0 0 . . . 0
∞ ∞ ∞ 0 . . . 0
... . . . . . . . . . ...
0 . . . ∞ ∞ ∞ 0
0 . . . 0 ∞ ∞ ∞
0 . . . 0 0 ∞ ∞


. (5.11)

This corresponds to an L(h, k)-labelling [21] with h = 2 and k = 0. In our
problem, this means that equal or adjacent FLs are not allowed for crossing
routes. Analogously, similar matrices W δ can be derived for higher values
of δ.

Our spectrum coloring model has great expressivity, allowing a number
of different possibilities, which we leave for future work. One example is to
define a matrix W̃ 2 having infinite values at the diagonal as before, but with
finite values at the superdiagonal and the subdiagonal. In such a model, we
would be ensuring a separation of at least one flight level between crossing
routes and encouraging (instead of forcing) a separation of two FLs between
such routes. This would give better flexibilities to pilots, which would be
able to move to an adjacent different flight level during the cruise stage
in case of, for example, turbulences. Another example would be different
decision makers (pilots or airlines) having matrices W with different finite
values, modeling different risk tolerances.
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5.3 Experimental Evaluation

5.3.1 Graphs used

For the sake of considering a tractable but sufficiently complex problem,
we restricted ourselves to the Spanish airspace. The set of routes for our
experiments has been built collecting those routes having both origin and
destination in Spain from OpenFlights [102]. The database used as dataset
from OpenFlights [102] is composed by 67,663 routes operated by 548 dif-
ferent airlines and between 3,321 airports. Among other information, the
database includes the source and destination airports, along with their pla-
nar coordinates in the map. Among these, we extracted intersecting routes,
for which the aim is to ensure different FLs at intersections. The airport
locations are considered given by their planar coordinates in the Mercator
projection of Spain and the routes are modeled as straight segments from
origin to destination, as Barnier and Brisset do [14] (Fig. 5.2).

Figure 5.2: Airports and intersecting airways on the Mercator projection of
Spain.

The route graph as described will not be used directly as input for the
graph coloring described in Section 5.2.3. Instead, as in [14], we will use an
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intersection graph G = (V,E) where each of those airways is a vertex in V
and two vertices are joined by an edge if, and only if, the corresponding
routes do intersect (Fig. 5.3).

Figure 5.3: Intersection graph G = (V,E) considered, where V (blue nodes)
is the set of routes and the (grey) edges in E connect two of those routes
when they intersect.

The implementation of the graphs has been done in a Python environ-
ment using the networkX library [91].

To construct the set E of edges in such a graph, each pair of routes
has to be tested in order to determine whether the routes intersect or not.
These intersection tests are performed assuming that the two routes are
not bidirectional, because in that case they would certainly intersect. The
following two conditions need to be fulfilled by a pair of routes to intersect.
First, it is necessary that the convex hull of the four airports (smallest
convex set containing them) is a quadrilateral. Otherwise, the convex hull
is a triangle and the routes do not intersect (Fig. 5.4). Second, when the
convex hull of the four airports is a quadrilateral, the routes intersect if, and
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only if, the routes represent diagonals of that quadrilateral (Fig. 5.5).

A1

A2 A3

A4
A1

A2
A3

A4

Figure 5.4: Possibilities for the convex hull of the four airports involved in
two routes.

A1

A2 A3

A4 A1

A2 A3

A4

Figure 5.5: Cases with the convex hull being a quadrilateral.

In order to distinguish between triangular and quadrilateral convex hulls,
we first compute the sign of each triplet, defined as the determinant

sign(Ai, Aj, Ak) =

∣∣∣∣∣∣
1 1 1

Ai,x Aj,x Ak,x

Ai,y Aj,y Ak,y

∣∣∣∣∣∣ , (5.12)

where Ai,x and Ai,x are, respectively, the horizontal and vertical coordinates
of the location for airport Ai.

That sign equals respectively +1 or −1 when the turn Ai, Aj, Ak is, re-
spectively, counterclockwise or clockwise. Thus, the outcome of the product
sign(A1, A2, A3) · sign(A1, A2, A4) · sign(A1, A3, A4) · sign(A2, A3, A4) is re-
spectively +1 or −1 when the convex hull of the four points is, respectively,
a quadrilateral or a triangle. Then, we just check if the routes are diagonals
of the quadrilateral (hence crossing) or not.
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Performing these intersection tests leads to the intersection graph G =
(V,E) depicted in Fig. 5.3, with 6,597 edges and 288 vertices. Observe that
nodes in this graph correspond to routes in Fig. 5.2.

Finally, it is interesting to note that each node (route) in the graph does
not represent a single flight, but all the flights that take the same route.
This means that, in order to compute the fuel consumption for a given FL
assignment, the fuel cost for each route is multiplied by the frequency of that
route (extracted from the OpenFlights data [102]). We have considered all
the flights that take place in a day for internal routes in Spain.

5.3.2 Algorithms Used

Given the intersection graph obtained from the air routes, we will use some
variations of the optimization techniques proposed in [77], with utility func-
tions and hard constraints adapted to the context of ATM. Four algorithms
are used to address the graph coloring problem, two are inspired by Sim-
ulated Annealing (SA), and two by Hill-Climber (HC) optimization ap-
proaches. Similarly, two of the algorithms use a more greedy approach,
where FLs are assigned as close to the optimum as possible for each route,
whereas the other two use a global approach, where any FL may be assigned.

There is a hard constraint on this graph coloring problem, which is
that nodes sharing an edge should have a separation of at least δ FLs.
This is due to the fact that these nodes represent intersecting routes, so
having them at the same FL would be unsafe. This illustrates how such an
optimization pivots around finding a trade-off between safe and fuel-efficient
FL assignments.

The versions of SA and HC used work basically by starting at a random
solution point (in our scenario, a random assignment of FLs to all flights),
and iterating through single issue (in our case, single route) random muta-
tion. Accordingly, at each iteration, the FL of a randomly selected airway
is assigned a random new value. The key difference between HC and SA is
that, for the hill-climber, the new mutated solution is only accepted (and
therefore used as a basis for the next iteration) when it yields an improve-
ment in terms of utility, while for the annealer there is a finite probability
to accept a solution even when it causes utility losses. That finite proba-
bility depends on a parameter called annealing temperature, and decreases
as the algorithm iterates. The rationale is that this randomized acceptance
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approach allows the annealer to escape local optima, which gives it an ad-
vantage in highly rugged utility spaces [30].

For the problem studied in this paper, the algorithms have been modified
to enforce a separation of at least δ FLs between crossing routes, and to take
into account the utility function based on fuel efficiency. In both the SA and
HC algorithms, conflicts are avoided at every color assignment. To prevent
conflicts, the algorithm follows these steps when assigning a new random
color to a node:

1. Create a list of available colors representing FLs (this depends mostly
on whether it is a global or greedy approach).

2. Iterate through the node’s neighbors (that is, all intersecting routes),
and remove from the list of available colors all colors within separation δ.

3. Once this process is done, if there are still colors available, one is chosen
randomly.

4. For the Greedy HC and Greedy SA: If none of the colors within the orig-
inal range are available, the algorithm assigns the next closest available
FL (i.e, if FLopt is the optimal FL for a given route and the original
range is FLopt ± 5, then the algorithm will assign the first available FL
out of FLopt ± 6,FLopt ± 7, etc.).

5. If none of the 40 FLs are available, this means the current node cannot
be changed.

Then, the utility function for fuel efficiency depends on the distance of the
route and the assigned FL. Since the length of the route is fixed, utility
optimization becomes completely dependent on FLs. Since not all routes
can be assigned their optimum FL, part of the optimization implicitly re-
volves around determining which routes have the least negative effect when
assigned a suboptimal FL.

5.3.3 Experimental Results

In this section we evaluate the performance in terms of fuel consumption
for the four different algorithms stated before. To conduct this study, simu-
lations were run with 100, 500, 1,000, 2,000, 3,000, 4,000, 5,000 and 10,000
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Figure 5.6: Total fuel consumption for the different techniques and δ = 0.

iterations, making 20 runs for each of them, to ensure statistical relevance
of the results. With respect to the complexity of the algorithms used, for
both HC and SA and for each iteration of the algorithm we require an
approximately constant time for mutating a color. This is followed by an
evaluation of the utility function, for which the complexity depends on the
problem size. When we change the color of a vertex, the utility only changes
for that vertex and all its neighbors. For that reason, being K the number
of iterations of the algorithm and deg(G) the average degree of the graph,
the expected complexity will be O(K ·deg(G)). Furthermore, the worst-case
complexity is O(K · |V |), for |V | the number of vertices in the graph.

After running the experiments, and as expected, we have observed that
the computation time increases linearly with the number K of iterations.
For example, using an Intel Core i7-2600 with 8 CPUs@3.40GHz and 8 GB
RAM running Ubuntu 14.04.4 LTS, we have measured that the mean time
required to run 1,000 iterations of SA is 6.84 s with a 95% confidence interval
of 0.24 s.

For δ = 0 (i.e., when crossing routes can use the same FL), airplane
behavior is independent, as all the routes can use their optimal FL inde-
pendently from the rest of routes. Although this scenario with δ = 0 does
not represent a socially acceptable approach, due to its inherent risk, it is
interesting as a baseline for three reasons. First, it will provide the mini-
mum total fuel consumption, as each route can use its optimal FL. Second,
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as each flight is independent from the others, it will allow us to compute
that optimum value exactly. Third, as for this scenario we are able to know
the optimum value, we can test the validity of the proposed algorithms
comparing their solutions with that optimum value.

Thus, for δ = 0, Fig. 5.6 shows the evolution of the four algorithms
studied, as a function of the number of iterations. For each algorithm, we
show both the mean and the 95% confidence intervals of the results. The
main conclusion from this figure is that all four approaches converge to the
computed optimum fuel consumption, the value of which is 2,366 tons of fuel.
It must be noted that the convergence to the optimum of Global approaches
is slower than that of Greedy approaches. Moreover, it is also interesting
to note that there are no statistically significant differences between the
results of SA and HC, telling us that SA is not able to take advantage from
its ability to escape from local optima, suggesting that the state space is
not highly rugged but instead has a monotonic structure.
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Figure 5.7: Total fuel consumption for the different techniques and δ = 1.

Figure 5.7 shows the results for the case δ = 1. This is a much more
realistic setting than δ = 0, since crossing routes are now restricted not
to use the same FL, i.e., these solutions do consider the social safety goal.
Note that this figure still shows the optimum fuel consumption for δ =
0, as a baseline and since the complexity of the case δ = 1 (due to the
interdependences among routes) makes unfeasible to compute the optimum
fuel consumption in this case. First of all, we can observe that, as expected,
solutions with δ = 1 are not able to reach the optimum fuel consumption
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of the case δ = 0, because when δ = 1 not all flights are able to use their
optimum FL to minimize fuel consumption. However, from Fig. 5.7 we can
conclude that the cost of forbidding crossing routes to use the same FL is
around a 5% in fuel consumption. More specifically, this loss is 4% for the
Global approaches and 6% for the Greedy ones. Comparing the different
approaches, we see again that the performance of HC and SA is fairly similar
and that the solutions obtained by the Global algorithms are better, with
a lower fuel consumption, but they need more iterations to reach those
improvements. It is interesting to observe that, for both δ = 0 and δ = 1,
the Greedy approaches reach reasonably good solutions in a much shorter
time than the Global approaches. For δ = 2, our experiments have shown
that the complexity of the graph does not allow to obtain feasible colorings,
i.e., it is unfeasible to obtain FL assignments that ensure a separation of
two flight levels when a pair of routes cross.

Thus, we move the focus from the total fuel consumption to an in-depth
analysis of the assignment of flight levels obtained by the different algo-
rithms. In Fig. 5.8 we show how FLs are assigned to routes. In all cases,
we have considered the results obtained after 10,000 iterations of each al-
gorithm. Moreover, although we ran 20 experiments, for the sake of clarity
and without loss of generality, we only show the results of the first five of
them. More specifically, the figure shows the number of times each flight
level is used, for the cases δ = 0 and δ = 1. It is interesting to note that
for δ = 1 the FLs are more evenly used than for δ = 0, and it is worth
highlighting the peak in FL380 for δ = 0, where the Airbus A320 has its
optimum for the cruise (recall Table 5.2). Moreover, it is also interesting
to note that, although for δ = 0 all the algorithms converge to the optimal
solution (as shown in Fig. 5.6), the number of times that FL380 is used
turns out to be lower in the Global approaches.

Tables 5.3 and 5.4 deepen this analysis of the FL assignment provided
by different techniques for δ = 0 and δ = 1, respectively, and using 10,000
iterations and 20 runs for each algorithm. First, the column labeled as ‘FL
use’ describes the average number of times that each FL in use is used. For
example, a value of 288 stands for the fact that flight levels in use are used,
on average, 288 times each. The standard deviation of this value is key
to understand if FLs are evenly used or not. Analyzing this performance
parameter in both tables, we conclude that FLs are re-used less times in
δ = 1 and, as the standard deviation is much lower, the use of FLs is more
even in δ = 1, as it was also expected from Fig. 5.8. The column labeled
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Figure 5.8: Distribution of FLs for different optimization methods.

as ‘FLs used’ in Tables 5.3 and 5.4 represents the number of FLs used at
least once in the solutions provided by the different techniques. We can
observe that the mean number of FLs used is clearly higher in δ = 1 than
in δ = 0. Finally, the column labeled as ‘FL separation’ represents the
separation between crossing routes measured in FLs. For example, if two
routes cross each other, one is assigned FL350, and the other FL370, then
their separation is 2 FLs. This performance parameter is key for improving
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Table 5.3: Analysis of the FLs used for the different algorithms and δ = 0.

FL use FLs used FL separation
Mean std dev Mean std dev Mean std dev

SA Global 261.82 652.78 19.30 0.90 1.37 0.03
SA Greedy 288.00 825.16 16.70 1.05 1.14 0.01
HC Global 250.43 629.56 19.35 0.96 1.38 0.04
HC Greedy 320.00 871.28 15.45 0.59 1.15 0.01

Table 5.4: Analysis of the FLs used for the different algorithms and δ = 1.

FL use FLs used FL separation
Mean std dev Mean std dev Mean std dev

SA Global 250.43 183.46 21.55 0.59 6.03 0.35
SA Greedy 221.54 168.50 23.60 1.16 7.61 0.27
HC Global 261.82 178.75 21.60 0.58 6.14 0.22
HC Greedy 213.33 170.51 23.75 0.89 7.59 0.35

safety. The differences in this parameter between δ = 0 and δ = 1 are clear,
as the mean separation between intersecting routes in δ = 0 (resp. δ = 1) is
around 1.2 (resp. 7) FLs. It is worth noting that, for the most interesting
setting δ = 1, although the fuel consumption of the Greedy approaches is
slightly higher, the separation between FLs of crossing routes is also higher,
which again confirms the trade-off between safety and fuel consumption.

5.4 Discussion

We study the problem of behavior optimization in the context of flight
level assignment. Apart from being a relevant problem due to the expected
growth (both in size and complexity) of the air traffic networks, it is very
interesting due to the existence of different individual and social goals: the
incentive for fuel consumption minimization by the flight operators, and the
safety constraints demanded by regulators and by society as a whole.
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In this paper, we use a spectrum graph coloring model for behavior
optimization, which relies on a factorized optimization model and realis-
tic utility models for the individual and social goals. After modeling the
problem, we propose an adaptation of hill-climber and simulated annealing
techniques, including some versions which are more greedy than the ones
we had used before, and we evaluate their relative performance in a set-
ting representing the Spanish air space. The experiments show that there
is an inherent trade-off between fuel consumption and safety, and that the
proposed techniques are suitable for finding flight level assignments that
take into account both individual and social goals. The results also reveal
that the greedy versions of the algorithms are able to reach acceptable solu-
tions in much less time, which enables an additional trade-off between fuel
consumption and response time, which can be very significant for real-time
flight level assignment. This motivates us to pursue as our immediate future
work a real-time operation model, with flight level assignments dynamically
depending on the actual position of aircrafts within the routes in real time.
In the same line, we will study the performance of message-passing opti-
mization algorithms like belief propagation [78], which have demonstrated
a better real-time response. Moreover, the study of message-passing opti-
mization algorithms would be especially suitable if we assume distributed
settings where there are a number of agents (for example, airlines) that com-
pete to achieve optimum FLs. We are also interested in introducing risk
aversion as a parameter in the utility model, since recent history has shown
that different airlines follow very different policies in this regard. Finally,
we plan to apply the proposed techniques in other research problems. One
of such problems is the management of routes for unmanned aircrafts or
drone operations in urban areas [126]. Another important problem that we
plan to explore with these techniques is the reduction of pollution in cities
by means of ride-sharing [55].



Chapter 6

Conclusions

First, we obtained an algorithm to compute and maintain O-Kernel(P ) as
the set of orientations O rotates, providing the angle intervals such that
O-Kernel(P ) has maximum area and perimeter. For the remarkable case of
P being a simple orthogonal polygon, we improved those algorithms.

Second, we studied a problem related to the higher order Voronoi dia-
grams of a point set. These diagrams were used by Edelsbrunner, Hasan,
Seidel and Shen to prove the following classic theorem in combinatorial ge-
ometry [32]. Every set of n points in the plane contains two points such
that all the circles having those two points in their boundary contain at
least n(1

2
− 1√

12
) +O(1) points in their interior. We continued using higher

order Voronoi diagrams to prove the following bichromatic version of this
result. Every set of n red and n blue points in the plane contains one red
and one blue point such that every circle through them encloses at least
n(1 − 1√

2
) − o(n) points of the set. Our theorem improves the previous

results on this bichromatic problem, due to Prodromou [107].

Next, we applied graph theory to two real-life problems. In the first
problem, we introduced a new method for sensory analysis, combining tech-
niques from statistics and geometry. We compared the performance of this
method with the performance of classic statistical methods in sensory anal-
ysis over the same data set. Our conclusion is that geometric and mixed
methods provided similar results than those obtained with pure statistical
techniques. Some small differences in the results were appreciated, showing
that these new methods can provide useful complementary information to
statistical analysis.

127
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Finally, the problem of air traffic management was a challenging frame-
work for behaviour optimization, combining social and individual goals. We
modeled this problem using the technique of spectrum graph coloring, that
penalizes aircrafts from flying close to each other through a matrix of in-
terferences. We observed that air traffic management is an immensely com-
plicated task, involving many factors, such as passengers safety, weather
conditions, and airspace congestion. In our model, we simplified the prob-
lem by only considering safety and fuel consumption. In the future, we wish
to explore the performance of this model in other cases of use, such as the
case of drones operating in an urban area.
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Appendix A

Further lines of research

In this appendix we describe our current lines of research in the fields of
restricted orientation convexity and higher order voronoi diagrams, respec-
tively. Our current line of research in restricted orientation convexity focuses
on orthoconvexity. In particular, we formulate and partially solve an Erdős-
Szekeres problem; see Section A.1. Our current line of research on the topic
of higher order Voronoi diagrams is based on a labeling of their edges. Us-
ing that labeling, we make a review of known properties of these diagrams
with new proofs, and we extend this list of properties with new results; see
Section A.2.

A.1 An orthogonal Erdős-Szekeres problem

The work that we describe in this section can be found in the Book of
Abstracts of the XIX Spanish Meeting on Computational Geometry and
was written in collaboration with David Orden [80].

Classic Erdős-Szekeres problems deal with the existence and number of
convex k-gons determined by a set of points in the plane. The original prob-
lem, formulated by Klein, and answered positively by Erdős and Szekeres,
states: For every k ∈ N, can we find a number N(k) such that every set
of N(k) points in the plane contains at least one k-gon? [34]. Provided
the existence of convex k-gons in a sufficiently large point set, the follow-
ing question was asked by Erdős and Guy: What is the smallest number of
convex k-gons determined by any set of n points in the plane? [33].
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Figure A.1: A connected rectilinear convex 4-gon.

In [80], we formulate an Erdős-Szekeres problem for sets of points in the
plane replacing usual convexity by rectilinear convexity.

We observe that the minimum number of (connected) rectilinear convex
k-gons that can be found in a set of n points in the plane is zero. Therefore,
we address the problem of maximizing the number of connected rectilinear
convex k-gons instead. In particular, we deal with the case k = 4; see
Figure A.1. We provide a lower bound for this problem by counting the
exact number of connected rectilinear 4-gons determined by the vertices of
a (carefully positioned) regular polygon.

Precisely, we prove that the maximum number of such 4-gons in a set
of n points is at least A(n− 3), where A(n) is the sequence A096338 in the
OEIS [93]. We conjecture that this is the exact maximum number of such
4-gons in a set of n points based on computer simulation.

A.2 Properties of higher order Voronoi dia-
grams

The work that we describe in this section is available as the arXiv preprint
arXiv:2109.13002, and was writen in colaboration with Mercè Claverol, An-
drea de las Heras Parrilla, and Clemens Huemer [24]. It has also been sent
to a journal, where it is currently under review.

In this work, we define an edge labeling of order-k Voronoi diagrams of
sets of n points in the plane. From this labeling, we derive new properties
about these diagrams.

Let Vk(S) be the order-k Voronoi diagram of the point set S. Among the
new properties of Vk(S) that we obtain in [24], we highlight the property
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that Vk(S) admits a small orientable cycle and path double cover of its
edges.

A cycle double cover of a graph G is a collection of cycles C with the
property that every edge of G belongs to exactly two cycles in C. The small
double cover conjecture states that any bridgeless graph on n vertices has a
cycle double cover C with |C| ≤ n− 1 [18]. For the case of order-k Voronoi
diagrams, we construct a cycle and path double cover of the edges of Vk(S)
with a much smaller number of cycles compared to the number of vertices
of Vk(S). Note that paths are necessary in this double cover because Vk(S)
contains unbounded edges. The double cover C that we construct is also
orientable, which means that we can assign an orientation to every element
in C in such a way that for every edge e of Vk(S), the two cycles or paths
that cover e have opposite orientations [54].

Among the new properties that we obtain in [24], we also highlight the
properties determining forbidden configurations of vertices and edges in the
faces of Vk(S) for small values of k. In addition, this work contains a review
of well known properties of higher order Voronoi diagrams. For those pro-
perties, we obtain new proofs that only use simple arguments from planar
geometry.

In the future, we aim to use this work to make progress in the monochro-
matic combinatorial problem described in Chapter 3.



Appendix B

Information about the articles

In this appendix we include the front page of the articles that form this
thesis. All the articles have been published in peer-reviewed journals that
appear in the Journal Citation Reports1: Journal of Global Optimization
(Q1-T1), Discrete Mathematics (Q3-T2), Food Quality and Preference (Q1-
T1), and Applied Sciences (Q2-T2).

1https://jcr.clarivate.com
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