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Abstract The move towards publishing research data openly has led to the formation of
reference databases in many fields. The benefits of such resources are numerous, par-
ticularly in the development of models. While these exist in research on other aspects
of pedestrian behaviour, no reference database is available for modelling pedestrian des-
tination choice, the process by which pedestrians choose where they wish to visit next.
This work seeks to construct such a database from the literature. The resulting data ob-
tained are described and potential ways in which they could be used to calibrate a simple
pedestrian destination choice model are presented. It contains four datasets that include
destination choices for hundreds of pedestrians in settings ranging from university cam-
puses and music festivals to highly structured stated preference surveys. A case study
using one of these datasets to calibrate a simple pedestrian destination choice model is
provided. These efforts highlight some general issues from creating and using reference
data openly. Discussing these issues will hopefully guide the development of reference
data and accelerate the development of accurate pedestrian destination choice models that
can be applied generally.

Keywords Pedestrian destination choice · reference database · model calibration ·
pedestrian dynamics · choice modelling · open data

1 Introduction

As the urban population grows, it becomes increasingly important for overseers of build-
ings, event sites, and cities, to understand and predict crowd behaviour. It is widely be-
lieved that people walk to places due to a desire to perform activities [1], so understanding
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how and why people choose their next destination, i.e. pedestrian destination choice, is
crucial in understanding and forecasting crowd movement.

Pedestrian destination choice models, and scientific models in general, are often devel-
oped similarly: first, the model is specified, where the researcher decides what assump-
tions are made regarding the process being studied and how observable and unobservable
sources of error are taken into account. This is also where the mathematical form to de-
scribe the process, determining which predictors are relevant and how they interact with
each other, using either prior knowledge or any collected data. Next, model calibration
(also known as model estimation) is conducted, which determines the optimal weighting
of said predictors to best fit a set of data. The next step is to validate the model, which
involves performing checks that the model can reproduce observed behaviour. This can
be qualitative or quantitative. The order of these steps can vary, and/or some steps can
be skipped entirely. Some or all of these steps can be repeated, where predictors can be
added or removed to improve the model’s ability to explain the data, depending on the
objectives of the researcher. But once completed, a model can be used to either explain
observed behaviour or to predict the behaviour of people in hypothetical scenarios.

In the context of pedestrian destination choice models, calibration gives an indication
of the relative importance of the predictors in choosing any particular destination. Cal-
ibration is therefore an important step in model development and relies on data being
collected and available. When it comes to pedestrian behaviour research, the most pop-
ular aspects are: routing - determining the most likely route a person takes through an
environment, and mobility - understanding the physical characteristics of humans moving
around a space. A great deal of data has been collected in these areas and more recently,
reference databases have appeared [2, 3]. These have the potential to allow considerable
progress to be made in improving the accuracy, robustness, and validity of the models that
represent these facets of human behaviour. For example, Zhou et al. [3] have released a
database [4] of videos of crowds moving in 62 locations, along with the individual trajec-
tories. This data was collected in the context of identifying collective motion in crowds
and has been used by a variety of authors within this field [5–9]. Wu et al. [9] use the
video data to identify collective motion in crowds using the curl and divergence of a crowd
motion vector field. Liu et al. [7] instead use the data to assess the efficacy of different
methods for tracking individuals from videos. Additionally, the data has been used to as-
sess algorithms for identifying and segregating collective motion in crowds [5, 6, 8]. The
same cannot be said for pedestrian destination choice, where comparatively fewer data
have been collected, and no reference datasets are available.

There has been a recent increase in demand for openly available data, particularly for
use in areas such as machine learning [10]. This has seen a number of funding bodies in-
clude stipulations that data collected must be published openly, where possible. Such data
is often collated into reference datasets that are openly available, easily interpretable, and
well organised. These have appeared in a number of fields, such as in wireless networks
[11], computer vision (e.g. [12]), and medicine [13]1. Having such data available not
only allows new models to be calibrated and validated, but also makes model comparison

1Accessed: 14/07/2022
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easier and more reliable. Consider pedestrian movement as an example, entries in the data
archive hosted by the Institute of Advanced Simulation at the Forschungszentrum Jülich
[2] has been utilised in a variety of ways. Data originally collected by Seyfried et al. [14]
has been used to: calibrate the Optimal Steps and Social Force model [15], validate an
evacuation simulator which includes both cooperative and competitive agents [16], and
recalibrate a collision avoidance algorithm [17], among others [18–20]. Other entries in
this database have also been used to compare and assess pedestrian behaviour models.
For example, the data provided by Cao et al. [21] was used to compare results from a
pedestrian movement simulator using a velocity-based model [22] the data collected by
Zhang et al. [23] is used to assess a generalised centrifugal-force model for pedestrian
movement in work by Rathinakumar and Quaini [24]. Zhao et al. [25] also use this dataset
to train, test, and validate a neural network which predicts pedestrian velocities.

Therefore, in an attempt to accelerate pedestrian destination choice model develop-
ment, this contribution aims to create a database of reference data which can be used by
other researchers in the field. For example, researchers could use it to compare and/or
assess their own models. With further work to formalise each dataset, the database could
also act as a standard for calibration, validation, and comparison of pedestrian destination
choice models. It should also make reproducing and replicating published results much
easier [26]. To do this, a search for viable data sources is conducted in the pedestrian
destination choice literature, which is described in Sec. 2. This contribution also hopes to
highlight the lack of openly-available data and serve to encourage researchers in this field
to consider publishing their data openly in the future.

Reference datasets are often subject to strict standards for publishing, use, and access.
This is done to streamline the process of using any data published and provides a set of
guidelines for publishers [27]. Typically, data collected that was not initially intended
for open publication will have issues, such as missing entries, inaccessible formats, and
structures that are hard for others to understand. This requires careful consideration when
constructing and using a reference database. The other contribution of this work is to
therefore describe and discuss the general issues that can arise when collating and using
reference data for model development (Sec. 4). These issues are illustrated by means of
a case study, where one dataset is used to calibrate a simple pedestrian destination choice
model (Sec. 3).

2 Literature Search

This section describes the methods used to search for, select, and include previously pub-
lished data (Sec. 2.1). Results of this process are also presented here, describing, among
other things, the numbers of candidates identified, the outcomes, and the issues encoun-
tered, at each stage (Sec. 2.2).
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2.1 Methodology

There are many ways of searching for and obtaining literature, with more reproducible and
systematic techniques being developed [28–31]. These include searching online services
such as Web of Science2 and SCOPUS3 using specific keywords and phrases. The Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
[28] is an example of an orderly approach to writing literature review papers. It consists
of a checklist of 27 items that help ensure a robust, reproducible, and clear literature re-
view has been carried out. It has been used in several recent works (e.g. [32–34]). Several
aspects of this methodology which are applicable to the search for data, rather than lit-
erature, are utilised here. Another, often complementary, method of finding literature is
backward and forward snowballing [35] which involves identifying relevant references
and citations from a set of initial papers, respectively. Each discovered article can them-
selves have snowballing applied to them, and potentially numerous relevant literature can
be obtained in this way. Another more collaborative approach involves reaching out to
key researchers in the area of exploration [31].

The search for data employs several methods described above. First, an ad-hoc search
for potentially available datasets in the literature was conducted. This is because data
can be found in a huge variety of research fields and topics and is often not mentioned
in titles, abstracts, or keywords. Instead, initial candidate papers were selected: [36–45].
Candidate papers were selected if their data satisfied the following conditions:

1. Individual - Measurements of aggregate properties of crowds are often made [46–
48], such as pedestrian flows, densities, and mean speeds. However, decisions of in-
dividuals are required for subsequent analysis by destination choice models. There-
fore, data in which individual participants can be uniquely identified is a necessary
stipulation.

2. Walking only - in many research fields, such as transport modelling, the concept
of ‘activity-based demand’ [1] is widespread when attempting to explain and pre-
dict flows of people on transport networks, such as roads. This concept states that
demand and flows are driven by individual desires to visit destinations, so an indi-
vidual’s choice of destination is important. However, modelling of these decisions
often involves an addition choice of transport mode, e.g. walking, car, train, etc.
Therefore, only data of people travelling by walking only will be included in this
database.

3. Spatial scales - The size of the data collection area must also be considered, as
individual destination choice data can be collected on scales anywhere from coun-
tries [49–51] to within a couple of metres [41,52]. This depends partly on the scope
through which data is collected, but also on how one defines a ‘destination’. Desti-
nations in this work are particular areas where a person can perform activities, but

2https://login.webofknowledge.com/, accessed: 14/07/2022
3https://www.elsevier.com/solutions/scopus?dgcid=RN_AGCM_Sourced_
300005030, accessed: 14/07/2022

https://login.webofknowledge.com/
https://www.elsevier.com/solutions/scopus?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/solutions/scopus?dgcid=RN_AGCM_Sourced_300005030
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other definitions can be a country or region to visit for a holiday [49, 50, 53] or a
hypothetical waypoint along a route [54–56]. Therefore, spatial scales in which an
individual can visit several areas of potential interest are required. Depending on
the context, this can be anything from the size of a floor of a building to the size of
a city block.

4. Temporal scales - sometimes individual-level data is only recorded for a few min-
utes, e.g. for calculating and/or predicting pedestrian trajectories [2]. Other times,
it can be recorded over many weeks, months, or even years, e.g. in household ac-
tivity surveys [37, 57, 58]. In this work, viable data for inclusion must have been
collected over a period anywhere in the order of tens of minutes to several days. No
exact thresholds are used, as the timescale of data depends on the size of the area
studied as well as the context for which it was collected.

Potential privacy concerns can arise from the first point, especially in light of recent
legislation regarding data privacy (e.g. GDPR in Europe4). However, no personal in-
formation that could be used to uniquely identify individuals is required for the database,
only that each datum can be related back to a unique individual. Depending on the context
and kind of data collected, it can be straightforward to achieve this by removing such per-
sonal information while giving each individual a unique numerical identifier. However, in
other contexts, such as daily mobility data, this may not be sufficient, as patterns within
the data can still be used to identify sensitive personal information about individuals, so
researchers must be careful.

While there is no explicit criteria on when data was collected, the likelihood of finding
relevant data gathered from further back in time is assumed to decrease. This may be
because of a lack of available technology and methodologies that could produce data that
meets the criteria outlined above. Also, data that was collected long ago is potentially
more likely to be lost, or otherwise unavailable for online publication.

Fig. 1 summarises the data search procedure and provides the numbers of candidate
papers identified at each stage. This search was conducted over the course of several
months from March to December 2021. Any candidates that had already published their
data openly were immediately included in the database. Otherwise, the corresponding
authors of the papers were contacted via email about potentially publishing their data. If
the author was willing to publish, then the data were added to the database either once the
data was publicly available or if the author shared the data directly (with the expectation
that the online location of said data would become available). Any suggestions made by
these authors as to who or where to find appropriate data were also investigated.

In order to expand this search, backward and/or forward snowballing [35] is used on the
initial candidates. This is supplemented by approaching contacts in the author’s research
network and posting on the professional social media sites LinkedIn5 and ResearchGate6.

4https://gdpr-info.eu/, accessed: 14/07/2022
5https://gb.linkedin.com/, accessed: 25/02/2022. Job advertisement website where profes-

sionals from around the world can connect and spread information.
6https://www.researchgate.net/, accessed: 25/02/2022. Website where scientists can share

papers, ask questions, and find collaborators.

https://gdpr-info.eu/
https://gb.linkedin.com/
https://www.researchgate.net/
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Figure 1 Summary of the data selection process from the literature.

Additionally, the author made use of recommendations suggested by Science Direct7 and
ResearchGate based on previous papers viewed. Finally, if an author publishes several
potential candidate papers, then they are contacted via email asking if they have any data
that could be published. Each candidate paper identified in these ways is subjected to the
same procedures shown in Fig. 1.

2.2 Results

This section describes the results of the literature search described in Sec. 2.1 and gives
detailed overviews of the datasets obtained.

Starting from the ten initial papers selected (listed in Sec. 2.1), an additional 46 papers
were identified via backward and forward snowballing. No additional candidate papers
were identified through the social media posts or through liaison with the author’s re-
search network. Of the additional papers identified, 28 of these contained data which
satisfied the criteria outlined in Sec. 2.1, of which only two had published their data
openly. After emailing the corresponding authors of the remaining 26 candidates, nine
responded. Several authors could not release any data for a variety of reasons, including
privacy concerns, author’s not owning or no longer having access to the data, and the data
being commercially sensitive. Five of the authors suggested others to ask and/or places to
look, but no further viable data was identified. Only two of the authors contacted shared
their data. However, for one of these, the mapping of physical locations to nodes of the
network used to represent the space was missing, so the data could not be shared.

Tab. 1 shows the datasets included in the database. The first three were found using
the literature search methods described in Sec. 2.1, while the fourth is data collected in
previous work by the authors. The information on finding these datasets is given in Sec. 5.
For the remainder of this section, each dataset acquired is briefly introduced, describing
how it was collected, for what purpose, and what information is provided.

7https://www.sciencedirect.com/, accessed: 25/02/2022. Bibliographic database of scientific
and medical publications of Dutch publisher Elsevier.

https://www.sciencedirect.com/
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2.2.1 Danalet data

The data provided by Danalet et al. [59] (henceforth referred to as ‘Danalet’s data’) was
one of the two openly available datasets found during the search. A full description of
how the data was generated can be found in [41]. It was collected between May and July
2012 on the campus of the Swiss Federal Institute of Technology (EPFL) in Lausanne,
Switzerland. They recorded the positions over time (trajectories) of Wi-Fi-enabled de-
vices of both students and staff. This data was combined with additional information,
such as campus layout, building capacities, and course timetables, to infer the most likely
sequence of destinations visited by individuals. To determine a device’s approximate lo-
cation, triangulation was performed on the Received Signal Strength Indicator (RSSI) of
devices to nearby Wi-Fi access points [59]. This data is used to calibrate and validate
statistical models of activity and destination choice, which were then used to make pre-
dictions [41].

Danalet’s data consists of three parts: the Wi-Fi data, the ‘Semantically-enriched Rout-
ing Graph’ (SERG) of the EPFL campus, and the ‘Potential Attractivity Measures’ (PAMs).
The SERG is a graph representing the space in which data was collected, with nodes rep-
resenting places and links representing the routes between them. Both nodes and links
contain additional information to better represent the underlying space. For example,
nodes can have attributes such as opening times, seating capacities, and facilities avail-
able. Links can be weighted according to distance travelled and whether there is a floor
change and/or one-way systems. Nodes are given spatial coordinates of which destina-
tions are a subset. The role of the SERG is to link the Wi-Fi data with the environment
and allows for realistic routing between destinations. PAMs attempt to quantify the de-
sirability of a destination over time and are context specific, e.g. for classrooms, it is the
number of students enrolled on the course taking place there, for offices, it is the work
rates of employees stationed there, and for restaurants, it is the total seating capacity.
These attractivity measures are used to help infer the most likely destination visited by an
individual over time.

There are two sets of Wi-Fi data present: one that records the movements of the lead
author of the work leading to this data over the course of a working day, and one that
records the movements of anonymous campus users, which is described in the first row of
Tab. 1. The former data was originally used to estimate the accuracy of the overall activity
sequence assignment process as the true sequence of activities performed is known.

The movement data for campus users is itself split into two versions: raw and cleaned.
Both versions give information on the device location, its associated user, and the time at
which it was detected. The cleaned data was generated from the raw data by removing
data from individuals where a partial trajectory is collected (see [60] for more details).
However, they are formatted differently, with the raw data being in the format that it
was originally collected (without duplicated rows) and the cleaned data being designed
for use in a Structured Query Language (SQL) database. Both formats can be read by
any commonly-used text editor. The data and accompanying description can be found in
Sec. 5.
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Table 1 Summary information of the datasets available in the database.

Authors Collection
Date Location Collection

Method Participants Sample
Size

Antonin Danalet,
Bilal Farooq,

Michel Bierlaire [59]
May - July 2012

EPFL campus
Switzerland

Wi-Fi positioning
using triangulation

of received
signal strength

indicators (RSSIs)

Staff and students
42571

41802

Antonin Danalet,
Loı̈c Tinguely,

Matthieu de Lapparent,
Michel Bierlaire [61]

May - July 2012
EPFL campus
Switzerland

Bayesian inference
of destination

choice using Wi-Fi
positioning (same
method as above),

and other data

Staff and students 2113

Bram Bonné,
Arno Barzan,
Wim Lamotte,

Peter Quax [62]

August 2012 Hasselt, Belgium

Wi-Fi localisation -
binary indication
of when device
enters/leaves

detector range.

Festival attendees 1386414

Christopher King
Nikolai Bode July 2021 N/A

Online surveys -
questions asking

for choice of
destination in
hypothetical
scenarios.

People aged 18
and older 813

1 raw, 3490 staff
2 cleaned
3 145 staff
4 Number of unique devices detected over all days
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2.2.2 Tinguely data

The data in the second row of Tab. 1 (henceforth called ‘Tinguely’s data’) is generated
from Danalet’s data using techniques that are fully elaborated in Danalet et al. 2016 [61],
Danalet 2015 [41], and their associated references. This data provides information on
the choice of catering location for students and staff on the EPFL campus between 16th

May and 4th July 2012. This data is used to estimate and validate a variety of catering
destination choice models. The model that best fits this data is then used to predict the
effect of adding a new catering location on the preferences of campus users. The number
of individuals in this dataset is all individuals who chose to visit a catering location during
opening hours over the data collection campaign. This data does not show consecutive
choices made by each individual, only their choice(s) of catering location. This is dis-
tinctly different from the Danalet data, which only gives the location of Wi-Fi-enabled
devices over time, along with supplementary information of destinations and the environ-
ment. Tinguely’s data also includes additional information on the individual (e.g. staff or
student), the times at which the individual arrived and left the location, and destination
traits, such as the capacity and services provided.

The data can be found as part of a repository on the website Zenodo8 and is linked in
Sec. 5. This repository is initially split into two sections; one section contains the afore-
mentioned data and the code to analyse the different choice models studied, the other
contains the code to generate the accompanying technical description. Within the first
section, there are three subdivisions: the first contains the data, split into three parts: the
data used to calibrate the models, subsets of the calibration data used to validate the mod-
els, and the estimation data with additional information about a new destination, which is
used for making predictions. Only the data used to calibrate the models is discussed in this
work. The second subdivision contains the Python code used to run the aforementioned
analyses for each destination choice model. This also includes code for running sensi-
tivity analysis on the models. The final subdivision stores the output of said code. The
technical description provides more information on what is available in this repository.

2.2.3 Bonné data

The third dataset collected by Bonné et al. [62] (named ‘Bonné’s data’ forthwith) was
donated to the database as a result of contacting the authors. This data was collected
during the Pukkelpop festival held in Hasselt, Belgium. The festival lasted for three days
from 15th-18th August 2012, with additional data being collected on 14th August, where
a subset of destinations was made available to a limited audience. This data was collected
as one of two case studies that demonstrate a new method of tracking the movements
of people using existing Wi-Fi infrastructure and so illustrates the capabilities of this
technology for use in crowd monitoring during large-scale events. The link to this data
repository is provided in Sec. 5.

The primary data provided is the mobility data of devices over the course of the festi-
val. This data is separated by the four collection days, where each day is split by detector.

8https://www.zenodo.org/, accessed: 14/07/2022

https://www.zenodo.org/
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These files contain: a unique device ID, a binary indicator giving the first time a device is
detected or not detected, and the associated measurement time. This method of detecting
devices means that a device is assumed to be present (i.e. within the detector’s coverage
area) for the entire time between when it is first detected and when it is first not detected.
Additionally, a map of the festival space, which has the positions of each detector anno-
tated, is provided, along with the schedule of performances at each destination over the
three days of the festival. The latitude and longitude coordinates of each detector are also
present within the detector filenames. For further information on the nature of these data
and the repository structure, please refer to the accompanying description document.

2.2.4 King data

The fourth row of Tab. 1 describes the data collected in previous work by the authors [63].
This data was collected between 9th and 20th July 2021 using an online survey platform9.
The surveys gave respondents the same task of choosing up to five destinations to visit
within a hypothetical time in a given environment of six possible destinations. After
each choice made, the respondents were told how much time remained. The amount of
time elapsed between choices depended on both the distance and busyness of the chosen
destination, participants were told this information before starting. If a respondent ran out
of time before choosing five destinations, then the survey would end, but the sequence
of destinations chosen would still be recorded. Five different variations (or experimental
conditions) were considered:

1. Base case - Reference case, using an open environment. Information presented as
an abstract screenshot.

2. Schedule chosen - Before choosing which destinations to visit, participants are re-
quired to create a schedule of the destinations they would like to visit and in what
order. Otherwise, identical to the base case.

3. Schedule given - participants are provided with a suggested order of destinations to
visit in the environment. Otherwise, identical to the base case.

4. Closed environment - A different environment which constrains direct travel be-
tween destinations. Otherwise, identical to the base case.

5. Photo - The information on each destination in the environment is provided by
photos taken from a human observer’s perspective. Otherwise, identical to the base
case.

The repository is split into four sections:

• Processed data — the data used to generate the results in the accompanying paper.

• Raw data — the data directly produced from the online surveys with no processing.

9Online Surveys, URL: https://www.onlinesurveys.ac.uk/, accessed: 14/07/2022

https://www.onlinesurveys.ac.uk/


Towards a Reference Database for Pedestrian Model Development 11

• Schedule chosen variants — the schedule chosen experimental condition data had
additional restrictions imposed. Versions of the data with and without these restric-
tions are provided here.

• Images — contains all images used for the surveys.

The first three sections are further split by the attempts made by participants. For
the raw and processed data, these are divided by experimental condition. Within each
experimental condition, there is a text file containing all the data necessary to calibrate
the destination choice model specified in Eq. 1 and 2. There is also a file containing
the socio-demographic data of all participants. Additionally, for the schedule chosen and
given conditions, there is an additional file providing the schedules of every respondent
and how they change over the course of the survey. The Schedule chosen variants contains
choice, schedule, and socio-demographic data for all respondents for each possible variant
of the schedule chosen data.

3 Case Study

To demonstrate how these kinds of data could be utilised by future researchers in the
field of pedestrian destination choice, a case study on one of the datasets is performed.
The main objective of this study is to attempt to calibrate a simple destination choice
model using data collected by others. In doing so, the considerations needed to repurpose
the data for calibration of a different destination choice model can be illustrated. Any
subsequent issues that arise during this procedure will also be identified and discussed in
detail.

Bonné’s data was chosen for this case study, as it is the only dataset that has been
subject to little analysis. This should inform how this particular dataset could be analysed
as well as highlight potential limitations. The issues and considerations highlighted are
examples of generic problems when using reference data for model calibration.

This section is organised as follows: first, a description of the data processing and
model calibration is given (Sec. 3.1). Then in Sec. 3.2, the results of the model calibration
are presented, along with their interpretations as well as a discussion of any further issues
not mentioned in Sec. 3.1.

3.1 Methodology

A description of the Bonné data and the information provided has been given in Sec. 2.2.3.
The link to this data, and all other datasets in the database, can be found in Sec. 5.

To the best of the author’s knowledge, this is the first time this data has been analysed
in detail. The paper by Bonné et al. [62] provides a description of the data and suggests
possible applications. The aim is to investigate how this data can be used to calibrate
a simple destination choice model (see below). Doing so shall highlight any issues and
simplifications that need to be made during this process. This will hopefully inform future
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researchers about any problems with using reference data, both in general and specifically
for this dataset.

Discrete choice models [64] can be used to broadly understand pedestrian destination
choice. These models assign the probability of a decision-maker choosing a particular
alternative out of a set of possibilities. This probability is often a function of potentially
influential factors weighted by parameters. The primary assumption made is that human
decision-making is a trade-off between different factors (known as predictors forthwith)
that result in an optimal outcome for the decision-maker (e.g. [41], [65], [38]). Many
modelling frameworks exist, each with advantages and disadvantages [64]. The pedes-
trian destination choice model used in this study is a multinomial logit, where the errors
in any unobserved predictors are assumed to be independently and identically Gumbel
distributed and is the same as the one used in previous work [66]. Though this is model
has restrictive assumptions that make it unsuitable in many real-world situations [64], it
is used in this case study because of its simplicity and ease of use. As mentioned above,
the aim of this case study is not to give accurate results, but to explore how this data could
be analysed. It is given by the equations below:

Pi =
eUi

∑ j∈C eU j
(1)

where Pi is the probability of choosing destination i out of the set of all possible desti-
nations (the choice set) C, and

Ui = βoccn̂i +βdist d̂i +βdesq̂i (2)

where n̂i, d̂i, and q̂i are the occupancy of, distance to, and desirability of i, respectively.
They are denoted with a hat symbol to show that these are normalised between zero and
one.

These three factors are commonly used in pedestrian destination choice research (see
below). This observation supports the intuition that these factors are influential in vari-
ous pedestrian destination choice contexts, for instance, shopping centres, transport hubs,
or mass events. How these factors influence a person depends on both the context and
the qualities inherent to the person, such as familiarity with the environment and current
mental state. A commuter at a train station will probably avoid busy places as they con-
strained by time. They are likely to be familiar with the environment and so would be
comfortable visiting an alternative destination which is further away. A tourist, on the
other hand, may not have such a time pressure but may be unfamiliar with the environ-
ment. Therefore, they may be more likely to choose a busy but familiar route to a known
destination as a result, even if there is a less busy destination elsewhere. This case study
is only used to illustrate how Bonné’s data, and other datasets presented in this database,
can be analysed, so including potentially complicating factors, such as situational context
and internal mental factors of the decision-maker, are not considered here, even if doing
so could create a model that would explain the data better (though this can be included in
future work).
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Occupancy is often an influential factor when choosing a destination [38,40,67,68]. In
some situations, such as festivals or tourist attractions, it can be attractive as it indicates
something worth visiting [69]. In other scenarios, for example when shopping or taking
public transport, it can be a repulsive factor.

In most scenarios, distance from a destination can be considered a repulsive factor
(e.g. [39, 41, 70–76]). However, if the decision-maker wishes to exercise, has no time
constraints, or just enjoys the journey as much as reaching the destination, then it can also
be attractive.

The intrinsic motivation of pedestrians to visit a destination is ubiquitous in pedestrian
destination choice modelling. Pedestrians often visit destinations with one or more activi-
ties to perform, with some activities being more important to complete. Some pedestrians
will therefore form an itinerary or schedule of activities and this is likely to influence the
decisions made as to which destinations to visit, with destinations where more important
activities can be performed being more likely to be chosen. Research suggests many ways
of capturing this intangible influencing factor, such as from market research [77,78], using
decay functions based on individual opinions [67, 79], the number of transitions between
destinations [80], or using properties such as seating capacity [41], and floor space [71].
The desirability is a predictor with a context-dependent interpretation and one that can be
used to capture a group of possible influential choice attributes. In this case study, the
desirability designed to quantify how much a person wants to visit a particular destination
and its interpretation depends on the context. For example, when shopping, shops which
sell a necessary product might be more desirable than those which don’t, or when at a
theme park, certain rides may be more preferable depending on the individual’s taste and
personality. This model is not necessarily the most suitable for this particular context, but
it is appropriate for exploring the data.

Both βocc, and βdist can take positive and negative values, representing the potential
for occupancy and distance to have an attractive or repulsive effect, respectively. The
parameter βdes can only be positive, because it represents the effect of an individual’s
chosen or given destination schedule. Negative values would mean that an individual
does the opposite to what they desire. It is expected in the context of a music festival, that
distance will be negative, as attendees might be more unwilling to walk longer distances.
It is unclear what sign and magnitude the occupancy parameter might take in this context,
as some attendees may wish to avoid large crowds while some may be drawn to them. The
magnitude of the desirability parameter may be smaller than those of the other parameters,
as it is expected that the importance of performance schedule will vary over time and
attendees.

This model will be calibrated using Maximum Likelihood Estimation (MLE), where
the model parameters are optimised to maximise the likelihood of this model explaining
the data. Four pieces of information are required to calibrate the model described in Eq. 1,
and Eq. 2 using MLE:

1. Observed decisions made by individuals. This is used to calculate Pi from the data
as part of determining the likelihood.
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Figure 2 Overview of the Bonné data extraction and analysis process, separated according to the three
main sources of information present. The ‘device detections’ branch is described in detail in
Sec. 3.1.1, the ‘detector positions’ branch is described in detail in Sec. 3.1.2, and the ‘festival
schedules’ branch is described in detail in Sec. 3.1.3.

2. Destination occupancies, n - how many people are present at all destinations when
a decision was made.

3. Destination distances, d - how far away are destinations from the decision maker’s
current position.

4. Destination desirability, q - how ‘desirable’ are all destinations at the time the deci-
sion was made.

Fig. 2 gives an overview of the process used to extract the four pieces of information
necessary for model calibration as described above. The values of the three predictors
must be available for all destinations at all decision times, not just for the chosen desti-
nation, in order to calculate the normalisation constant in the denominator of Eq. 1. All
the processes described in this section are performed using the R programming language
[81].

Before extracting the necessary information, however, the set of destinations (i.e. the
choice set) in this context must be defined. Fig. 3 provides a rough sketch of the layout of
the festival, along with the approximate positions of all detectors. This sketch is based on
both the map and the latitude and longitude coordinates of each destination as provided
by the Bonné data. The names of each detector are extracted from the data and are also
displayed. In this case study, a destination is defined as an area in which one or more
activities can be performed. In the context of a music festival, these activities could
include: watching a performance, getting something to eat, and going to the toilet. The
performance schedule for the festival shows eight areas where performances occur and
this is where eight of the 14 detectors have been placed, with the other six placed at
thoroughfares. But, since the size of the area in which a device can be detected (henceforth
known as ‘coverage’) for each detector is unknown and is likely time-dependent due to a
variety of factors that can influence the detection range of devices [82], it is possible that a
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Figure 3 Sketch of the festival area used in the Bonné data. The approximate placement of all detectors
are given, with detectors classed as destinations in red.

detector can have multiple activities associated with it. Due to this lack of information, it
is assumed that detectors at performance areas capture only one kind of activity: attending
a performance, and the detectors placed at thoroughfares have no associated activities.
Therefore, the eight performance areas are considered as the set of possible destinations,
and these are marked in red in Fig. 3. The data from the remaining six detectors (marked in
cyan in Fig. 3) are not used. Each destination is identified by arranging the detector names
in alphabetical order and numbering according to their position: Boiler = 1, Castello = 2,
Club = 3, Dance = 4, Main = 11, Marquee = 12, Shelter = 13, Wablief = 14.

The following subsections describe each branch of Fig. 2 in turn, showing how each
of the three main pieces of information present in the Bonné data: mobility data, festival
map, and performance schedules, are used to infer the required data above.

3.1.1 Mobility data

As described in Sec. 2.2.3, the mobility data provides the times at which devices first
enter and leave the detection area for each detector over all four days of data collection.
The festival itself occurs over three days (Day 1 to 3). Data was also collected the day
before the festival (Day -1), where the area was available to workers and a select few
attendees. This is why the values for this day are smaller than on the other main festival
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Table 2 Quantitative summary of the Bonné raw mobility data. Day -1 is the day before the festival
started.

Day Total number
of measurements

Number
of devices

Collection time
/ HH:MM:SS

Median stay
time / s

-1 79731 18835 16:00:06-05:59:56 577
1 290244 52646 11:00:00-05:59:46 1010
2 251324 49203 11:00:00-05:59:59 1124
3 212604 46565 11:00:00-05:59:59 1414

days. There is also no performance schedule for this day, so the data from this day are not
used in model calibration. This data is summarised in Tab. 2. The first column describes
the total number of measurements recorded by all destination detectors over each day.
The stay time of a device at a destination is the difference in the time at which a device
is no longer detected (henceforth referred to as ‘absence time’) and the time at which
a device is first detected (henceforth referred to as ‘detection time’). The median stay
time over all devices and destinations is provided in the fourth column. The table shows
that for the main days of the festival, Days 1 to 3, the total number of unique devices
recorded diminishes, suggesting that fewer people attend as the festival progresses. The
detectors record for almost 17 hours per day, assumedly covering the most busy periods.
The median time spent at any given destination over the course of the festival increases,
indicating that devices are spending more time at destinations as the festival progresses.

To calibrate the destination choice model, the sequences of chosen destinations for
all individuals are needed, these are comprised of three pieces of information: the time
at which choices were made, the current destination, and the destination chosen, for each
individual. Here, it is assumed that there is a one-to-one relationship between a device and
an individual, so the movements of one unique device correspond to one unique individual
throughout. Therefore, the sequence of detectors where a given device is observed gives
the sequence of current destinations visited by an individual. The destination chosen
is the next destination visited, therefore, the chosen destination sequence is the current
destination sequence shifted one destination later. The chosen destination sequence is one
destination shorter than the current destination sequence as there is no information about
where the decision to visit the first destination was made. There is no way of knowing
exactly when the individual associated with a device made a decision, so for the purposes
of calibration, the decision time was decided to be the absence time.

For example, consider a situation where a device visits the following sequence of des-
tinations: Main, Boiler, Wablief. The device is detected arriving at these destinations
at 09:30:00, 10:30:00, and 11:30:00 and leaving at 10:00:00, 11:00:00, and 12:00:00, re-
spectively. Therefore, the decision times for this device are: 10:00:00, 11:00:00, 12:00:00,
with a corresponding current destination sequence: 11, 1, 14, and chosen destination se-
quence: 1, 14. This assumes that the individual associated with the device does the fol-
lowing: arrive at Main to perform an activity for 30 minutes, then visit Boiler, stay there to
perform an activity for 30 minutes, then visit Wablief and spend half an hour performing
an activity.
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However, some devices will belong to people outside the festival or will be station-
ary devices not associated with any one person. To help filter these out from the data
and obtain valid chosen destination sequences, only devices detected at more than one
destination are considered.

It is also important to try to distinguish between people moving through the coverage of
the detector with people visiting the area to perform an activity. To do this, the distribution
of stay times over all devices, destinations, and days is created. The 5% and 95% quantiles
of this distribution are estimated and used as the criteria for a device being counted as
‘visiting’ a destination. If a device has a detection time but no absence time, then it is
assumed to have stayed at the destination for 130 s, which is the average length of time
that a device should be detected if in range. This value was determined empirically by
Bonné et al. 2013 [62]. If a device has an absence time without an associated detection
time, then no stay time is estimated.

Fig. 4 shows the stay time distribution after the artificial 130 s stay times have been
applied. The 5% and 95% quantiles are estimated at 236 s (3 min 56 s) and 5354 s (1
hr, 29 min 14 s), respectively. Only the subset of devices that had stay times within
these bounds were considered subsequently. There is no noticeable peak in the stay time
distribution at 130 s, so the artificial durations described above have little influence on the
stay time distribution.

If the application of the stay time constraints leave a device with only one visited des-
tination, then it is discarded, as at least two visited destinations are required to calculate
choice probabilities. For each remaining device, the detection and absence times, and the
current and chosen destination sequences are extracted and separated by day. They are
sorted chronologically by detection time.

Upon examining the extracted sequences, a new problem became apparent: presence
conflicts. These arise when the absence time of the previous destination is later than the
detection time at the subsequent destination, suggesting that a device is at two places
simultaneously. It is possible for a device to be detected at two or more Wi-Fi detectors
[83], but this is not sensible when inferring a person’s physical location from a device.
Between 26% (Day 1) and 32% (Day 3) of all choices are involved in a presence conflict.
Even destinations which are far apart from each other can be involved in these conflicts,
suggesting that this problem is not solely due to overlapping coverage of detectors. One
possible source of these conflicts could come from the imperfect detection or absence of
devices. Perhaps this is an issue with the new detector technology, e.g. it is possible that
an unpaired detection at a destination could be mistakenly paired with the absence time
of a separate measurement at that destination.

This presents a problem for calibration, as there is no way of discerning from the infor-
mation provided which destination involved in the conflict is the true destination visited.
Therefore, two versions of the destination sequences are generated, the original (‘con-
flicted’), and one where all conflicted choices were removed (‘clean’). If any devices
have no choices as a result of this cleaning process, then they are discarded. Both ver-
sions will be used to calibrate the model separately to examine any effect on the results
that may arise from neglecting a significant proportion of the available data. Details of
the number of devices and choices remaining after each stage of this extraction process
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Figure 4 Distribution of stay times for all valid detections over all destinations and collection days. The
red dashed line marks the position of the artificial duration used in cases where a device was
detected arriving but not detected leaving a detector.

are given in Tab. 5, and Tab. 6 in App. 7, respectively.
The total number of detected devices present within the detection area of each desti-

nation (i.e. occupancy) can also be calculated from the mobility data. This generates a
time series for each destination where the occupancy increases by one at each detection
time and decreases by one at each absence time. One requirement for calibration is that
values for each predictor for all destinations are available for each decision time. How-
ever, detectors do not take measurements at a constant frequency, only when a device
arrives or leaves its range. This means that different detectors are likely to have slightly
different measurement times. Therefore, the occupancy time series of each destination
are supplemented with any measurement times which are present in at least one other
destination. The occupancy for these new times is interpolated as the occupancy for the
last measurement made by the destination.

Consider an example with two detectors: detector 1 has measurements at 09:30:00,
09:30:02, 09:30:03, with occupancies 5, 6, 5, respectively, while detector 2 has measure-
ments at 09:30:00, 09:30:01, 09:30:02 with occupancies 2, 3, 2, respectively. First, the
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measurement times for each detector are supplemented: 09:30:00, 09:30:01, 09:30:02,
09:30:03, then, the occupancies are interpolated. The resulting occupancies for the detec-
tors are: 5, 5, 6, 5 for detector 1, and 2, 3, 2, 2 for detector 2.

Fig. 5(a) shows the supplemented occupancies for all destinations during Day 2, acting
as a representative example for the other collection days. The occupancy of most desti-
nations gradually increases over the first few hours of recording and decrease in the final
hours of recording, with a distinct saw-tooth structure displayed throughout. Wablief is
unique in that it does not show any such structure and remains constantly low throughout
the collection period. Perhaps it was not a popular destination or maybe the coverage of
this detector is smaller than the others.

Fig. 5(a) shows periods of time when no measurements are taken by some detectors,
e.g. Club between roughly 17:45:00 and 23:15:00, with destination Main being missing
entirely. This is likely to be due to detector malfunctions, as alluded to in Bonné et al.
[62]. Choices made during these periods must therefore be discounted from any data
used in model calibration. These are prevalent for at least one destination over all data
collection days, so only data from a period of time outside any of these gaps is chosen
for calibration. The period between 11:00:00-15:36:11 on Day 2 is chosen (highlighted
in Fig. 5) as it is the longest uninterrupted measurement period over the entirety of data
collection. It also starts when the detectors start taking measurements, making it easier to
segregate from the rest of the data. Missing destinations artificially reduce the choice set,
altering the calculated choice probabilities. There is no way to avoid or correct this with
the data provided, as Days 2 and 3 have at least one destination missing and the Shelter
detector for Day 1 seems to malfunction for the majority of its data collection time.

This truncation of available time during Day 2 must also be reflected in the destination
sequences. Therefore, the sequence for each device is truncated such that only decision
times within the time window are included. As before with the other stages of sequence
processing, any devices with insufficient choices after this are discarded. This applies to
both the clean and conflicted versions of the sequences.

Fig. 5(a) also shows that almost every detector (except Wablief) displays ‘saw-tooth’
behaviour during their operation over all collection days. These peaks show that the aver-
age rate at which devices leave a destination can be up to around 80 devices per second,
which seems unrealistic, despite the coverage of detectors being unknown. These peaks
do not correspond to the performance schedule of destinations (see Fig. 6), so it is un-
likely to be due to performances taking place. The correct functioning of the data analysis
code was ascertained by completing the following tests. First, by verifying that the to-
tal number of devices observed over the course of the day does not exceed the predicted
number of visitors. Second, by applying the code to four simple scenarios involving one
detector over 20 seconds where the outcome over time is known beforehand. The first of
these involves five devices arriving one after the other for the first 10 seconds and then
leaving in the order they arrived over the last 10 seconds. The second scenario is identical
to the first, however, in the latter half, one of the devices which leaves returns later before
leaving again. The third scenario is identical to the first, but one of the devices never
leaves the detector. Scenario four involves each device entering and leaving the detector
with no other devices present. As mentioned previously, this could also be an issue with
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Figure 5 Raw (a) and smoothed (b) occupancy time series for Day 2 for all present destinations. The
highlighted area shows the data used in model calibration.

the detectors themselves, but with the information available it is impossible to ascertain
this.

These occupancy peaks suggest sharp and significant decreases in the number of de-
vices at detectors, which is unrealistic. Therefore, the occupancy time series are smoothed
using a rolling average, making the changes in occupancy less pronounced overall. The
averaging window width was chosen such that the peak structure of the occupancies is
smoothed out without losing the general trends. The window width was therefore chosen
to be 5400 data points wide, with the resultant smoothed occupancies for each destination
in Day 2 shown in Fig. 5b. The definition of the rolling average means that the smoothed
time series are shorter than the originals, losing the last window width of data points.
However, this is not a problem for calibration, which will use the occupancies from the
first few hours of the day. This smoothing obfuscates the information contained within the
raw occupancies, which will impact the occupancy parameter during calibration. These
smoothed occupancies are normalised by dividing by the maximum observed occupancy
for that destination on that day.
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3.1.2 Distance

As mentioned in Sec. 2.2.3, the approximate latitude and longitude coordinates of each
detector are provided. The Great-Circle distance [84] between each detector over the
surface of the Earth can then be estimated. This is calculated using the Vincenty Ellipsoid
method [85] using the values from WGS84 [86], providing Euclidean distances between
each destination pair. These are constant over time as the detectors are assumed not to
have moved. Before calibration, the distances are normalised by dividing by the largest
calculated distance.

3.1.3 Desirability

As mentioned in Sec. 3, desirability represents a person’s innate desire to visit a certain
destination at a certain time. In the context of a music festival, the desirability of a venue
could be whether a performance is taking place there. The desirability of other possible
destinations, such as places to eat, or toilets, could be a quantity that reflects the individ-
uals bodily needs. Since the destinations are only performance venues, desirability can
be defined as whether a performance is occurring or predicted to occur by the time the
venue is reached. No information is available about any attendee’s preferences for dif-
ferent performances. Therefore, the desirability of each destination is a binary variable
such that when a performance is scheduled to occur, the desirability is one, otherwise, it is
zero. Using the performance schedules for each festival day, such as the one illustrated in
Fig. 6, the binary desirability for each measurement time can be determined. The sched-
ule does not provide exact start times for performances, so the start time is determined by
eye to the nearest five minutes.

It is likely that venues will be of different sizes depending on the predicted popularity of
their performances, such that larger venues will house more popular performances. There-
fore, a larger venue could be, on average, more desirable than a smaller venue for any
given individual. To account for this, the binary desirability of a destination is multiplied
by the maximum occupancy for that destination observed over all days. The desirability
is then normalised by dividing by the largest occupancy recorded over all destinations.

For example, consider a destination which has a performance starting at 12:00:00, the
detector records device 1 arriving at 11:55:00, and device 2 at 12:00:05, the binary desir-
ability for the destination for device 1 is zero, but one for device 2. Suppose the greatest
measured occupancy over all destinations is four. The maximum observed occupancy at
the destination is half that of the busiest recorded destination, so the desirability for device
1 is zero, while it is 0.5 for device 2.

3.1.4 Calibration

Once the extraction of the necessary information to calibrate the choice model specified
in Eq. 1 and Eq. 2 was complete, the predictors for each destination must be matched
and conflated with each choice made. The occupancy and desirability are both time-
dependent, while the distance is constant. The distance for a given choice is the distance
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Figure 6 Illustration of the performance schedule for each destination on Day 2 of the festival. Blue areas
indicate periods where a performance is taking place.

between the device’s current destination and the chosen destination. The occupancy at
the time at which the choice is assumed to be made (i.e. absence time) is used. The
desirability at the detection time of the chosen destination is used. This is because it is
assumed that a person who wishes to see a particular performance will leave their current
destination with enough time to reach their desired destination.

Once the specified information has been extracted and collated from the raw data,
model calibration can be performed. As described in Sec. 3.1.1, the choices made be-
tween 11:00:00 and 15:36:11 on Day 2, along with the predictors for all available desti-
nations, is used as input. The clean and conflicted destination sequences are calibrated
separately. The cleaned data contains 6567 choices spread over 2598 devices, while the
conflicted data contains 9142 choices spread over 3050 devices. The three predictors; oc-
cupancy, distance, and desirability, are all normalised so that only the relative weighting
of the model parameters affect the choice probabilities. Model calibration is conducted
via Maximum Likelihood Estimation through the ‘optim’ function in R using the Nelder-
Mead method. To obtain confidence intervals for the parameter estimates, bootstrap re-
sampling of the calibration process is performed.

For each destination sequence version, the calibration process begins by selecting a
random sample of 25% of the total available data. In the conflicted version, if a choice
is selected that is part of a conflict, then the chosen destination is randomly allocated
from the outcomes of the conflicted choices. Next, initial parameter values are chosen
by sampling from a uniform distribution bounded between -5 and 5, which is fed into the
numerical optimiser along with the selected data. To avoid local minima, this procedure
is repeated 10 times and the final parameter estimates that generate the minimum negative
log-likelihood are used as the result for the bootstrap replicate.

5000 bootstrap replicates are performed for each destination sequence version. The
average value for each parameter is used as the final estimate for the calibration, with the
5% and 95% quantiles of the resultant distributions of each parameter over all bootstrap
replicates taken as the confidence intervals.

3.2 Results

The parameter estimates, as well as their confidence intervals, for the clean and conflicted
sequences are shown in Tab. 3 and Tab. 4, respectively.
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Table 3 Model parameter estimates obtained from clean destination sequences, showing the upper and
lower bootstrap confidence intervals and the bootstrap mean over 5000 replicates. Values are
given to 3 d.p.

Clean Lower bound Mean Upper bound
βocc 1.082 1.394 1.724
βdist -2.172 -1.950 -1.737
βdes 0.078 0.238 0.399

Table 4 Model parameter estimates obtained from conflicted destination sequences, showing the upper
and lower bootstrap confidence intervals and the bootstrap mean over 5000 replicates. Values are
given to 3 d.p.

Conflicted Lower bound Mean Upper bound
βocc 1.470 1.686 1.912
βdist -1.527 -1.378 -1.229
βdes 0.394 0.513 0.629

In both versions, the occupancy and desire parameters are positive, while the distance is
negative. This indicates that closer destinations which currently have more people and/or
have a performance scheduled by the time the decision-maker arrives are more likely to be
visited by the festival attendees who have a Wi-Fi-enabled device on their person. There
is no overlap of the confidence intervals in both versions, suggesting that the weighting
of each predictor is distinct. The confidence intervals also do not change sign, affirming
the weighting the average individual gives each predictor. This makes sense intuitively,
as people often try to minimise their walking distance/travel time between destinations
and, in the context of a music festival, a destination is more attractive to an individual if
there is a performance occurring. A destination with a large crowd could also be attractive
to festival attendees, especially those with no plans, as a performance by more popular
artists are likely to attract larger crowds. Also, perhaps festival attendees will be more
naturally drawn to larger groups of other attendees, in order to share their experience and
enjoyment with others.

The distance parameter has the largest magnitude, indicating that individuals consider
this the most important predictor out of those presented. The relative magnitudes of the
occupancy and desire parameters suggest that the average individual considers occupancy
much more favourably than whether a performance is taking place. This could be due
to how desirability was defined, being based on what was predicted to have happened,
rather than what actually happened. It is possible that performances started/ended at dif-
ferent times or were even cancelled, both of which would have a significant impact on
desirability. Also, the definition of desirability is strict and does not consider individuals
hanging around destinations between performances. Plus, if an individual arrives earlier
than when the performance is scheduled to begin, then the destination would still have a
desirability of zero, even if the individual desired to visit. This definition of desirability
also does not take into account individual preferences or personality. Some people are
more impulsive than others, and it is fair to assume that most individuals will want to
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see certain performances more than others. Also, instead of scaling binary desirability
of a destination by the maximum observed occupancy, which has its own problems (see
below), it could be scaled by the popularity of the artist/group performing. Proxy mea-
sures for the popularity of artists/groups could be any arbitrary measure of success that
can be easily obtained online, such as the number of iTunes and/or Spotify downloads,
the number of albums/singles released, or number of followers on various social media
platforms. This could be a better indication of the drawing power of each performance
scheduled during the festival and thus be a better measure of desirability for the average
festival attendee.

There is some difference in the parameter values between the clean and conflicted data,
indicating that removing the conflicted choices does introduce a bias in the parameter
estimates. When all choices are considered and conflicts are resolved at random, the oc-
cupancy and desirability parameters are generally higher and the distance parameter is
generally lower. Now the average individual considers occupancy to be the most impor-
tant, followed by distance, and then desirability. This shows that caution is needed when
interpreting parameter magnitudes, as they change depending on the exact data used dur-
ing calibration. However, the signs of the parameters are unchanged, so it seems that
individuals see the distance as detrimental, while occupancy and desirability are both at-
tractive, regardless of the data used for calibration.

The effect of rolling average window width used to smooth occupancies on the results
of the calibration was investigated. The results are shown in App. 8. Though small
differences in the magnitude of the occupancy parameter were detected, the sign and
order of parameter magnitudes remained unchanged for both clean and conflicted data.

In addition to the issues mentioned above and in Sec. 3.1, there are several other as-
sumptions and simplifications made during data processing that may have influenced the
results. For instance, only the Euclidean distance between destinations can be calculated.
But the possibility of interim stops and the environmental layout means that this is not
necessarily equal to the actual distance travelled by any individual. The actual distance
travelled cannot be gleaned from the data, but a potentially more accurate value of dis-
tance travelled by a device could be obtained by taking into account any interim detections
of the device. For example, consider a device that visits Dance and then Club, but is de-
tected at Ingang in between. The distance travelled can then be estimated as the distance
between Dance and Ingang plus the distance between Ingang and Club. However, due to
presence conflicts and the fact that the coverage of each detector is unknown, any subse-
quent model will still need to consider distance carefully.

The method for determining whether an individual has visited a destination does not
take into account the prevailing conditions at the destination, such as crowd density, which
can impact the time taken for a device to pass through a detector’s coverage area. It is
therefore possible to misidentify devices as visiting, artificially increasing the number of
destinations chosen. If the coverage of each detector was known, then the minimum time
could be weighted such that detectors with larger coverage would have a larger minimum
time. A more accurate minimum time for visiting could be calculated if the coverage of
each detector and the local pedestrian densities over time were also known, but this is
impossible to do accurately with the data available. Alternative definitions of visiting a
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destination have been defined based on the speed of an individual device [87], but this is
not available from the data and could still lead to misidentifications.

The total number of individuals detected at a destination depends on the coverage of
the associated detector, where a larger coverage will likely detect more individuals than
a smaller coverage. This could partly explain why Boiler consistently shows the largest
occupancies, despite its size being comparable to other destinations. Arguably, the per-
formances anticipated to be more popular would be held on the Main stage, where the
large open area should allow the largest crowds to form, yet this does not appear to be
reflected in the occupancies. Without knowing each detector’s coverage, it is unclear if
the number of individuals detected is a valid measure of the occupancy. Also, there is
no information on how many people actually attended the music festival or attended each
destination. The organisers predicted up to 100,000 attendees and Bonné et al. report that
29,296 unique devices were detected (after filtering out stationary devices and devices
from people outside the festival) [62] leading to an average of 29.3% of people possess-
ing a Wi-Fi-enabled device, assuming this proportion is constant throughout the festival,
then the number of detected devices could serve as a suitable proxy for the actual occu-
pancy. One other thing this assumption neglects is the possibility that individuals could
have more than one Wi-Fi-enabled device or that such a device could be shared among a
group. The former could, in theory, be detected if two or more unique devices are detected
arriving and leaving the same sequence of destinations at roughly the same time.

4 Discussion

In this section, the general issues of using the datasets as reference data for model devel-
opment are discussed. These include: the compromises required in repurposing data, the
quality of the data itself and that of the accompanying technical description, the accessi-
bility of the data, and the extent to which the data has been processed.

Attempting to repurpose data that was collected with different aims, scope, and context
in mind can be challenging. Often the information that is needed for any new application
is not directly available from the data, if at all. Therefore, it falls to the researcher to
consider how to extract this information and what caveats and assumptions must be made
during the process.

For example, the Bonné data was collected with several applications in mind: real-
time crowd monitoring at mass events, supporting opportunistic communications network
simulations, and use in the development of ‘smart’ buildings [62]. Yet in this work, it is
used to infer the impact of certain generic predictors on individual destination choice,
which required extensive processing before it could be used (see Sec. 3). These processes
introduce additional sources of error that would not otherwise be present if new data was
collected with said purpose in mind. For example, extracting destination sequences and
occupancies from King’s data is straightforward, but not for Bonné’s data.

This is not so great an issue in Danalet’s data, as it was collected with similar re-
search aims in mind - analysis of activity choice models. Despite this, some predictors
given in Eq. 2 are not present in the data. For example, real-time occupancies are not
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available, and must be inferred either from the presence of detected individuals, or using
estimated/assumed capacities, both of which have issues. The individuals in the data may
not homogeneously mix with other campus users across both time and space, making it
unclear whether the number of detected individuals is correlated with the actual number
of individuals present. Using the capacities of destinations instead of occupancy is also
problematic, as they are unlikely to be representative over all time.

Tinguely’s data requires little in the way of repurposing, as the main aim is exploration
of catering destination choice models. In comparison to Danalet’s and Bonné’s data, there
is expected to be a lot less processing needed in order to extract the necessary information
to calibrate a different choice model, such as the one specified in Eq. 1 and Eq. 2. That
being said, the issues with extracting occupancies are similar to those from Danalet’s data,
again highlighting the issues with inferring new information from existing data. These
problems are not present when analysing the King data, where the whole scope of data
collection revolves around the destination choice model specified in this work. However,
any alternative model specification could run into these kinds of issues.

The quality of the reference data is important as it can determine the scope of its use
in model development. Model calibration, and often validation, is based on data, and the
quality of the resulting calibration directly depends on the quality of the data supplied and
what kind of errors are present [66].

As described in previous sections, Bonné’s data has many issues in data quality that
arose during the case study. This is probably because the data was collected to illustrate
the capabilities of a new detection system, where unexpected errors and malfunctions
are likely to occur. Here, these issues become evident when attempting to derive chosen
destination sequences and occupancies (Sec. 3.1.1), with some devices being detected
in two places at once and large gaps in recorded measurements. These problems are so
significant that great care is needed when interpreting the results of the case study.

Danalet’s data also has some issues, particularly with the Wi-Fi data; a small proportion
of measurements have missing data, however, these can be ignored without impacting
subsequent analysis. Other potential issues with this data might arise if analysed in more
detail.

In King’s data, the basic information for a couple of the experimental conditions is
missing. This was due to a technical error when implementing the surveys. Also, for one
particular experimental condition, the survey was altered after being released, so the data
after that time cannot be included in subsequent analyses. These issues are described in
detail in King and Bode.

Tinguely’s data does not appear to have any quality issues, possibly because it is the
result of processing the raw Danalet data. Though potential issues with this data might
arise if analysed in more detail.

A full and clear explanation of reference data is needed to assess its suitability for a
set of research objectives and make it easier to understand, explore, and manipulate. This
should include; how the data was collected and in what context and experimental condi-
tions, what is available, and in what format. This can be difficult and time-consuming to
do, especially if there is a lot of different data which are used in a variety of ways. Such
appears to be the case with Danalet’s data, where there is detailed and extensive descrip-
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tions of the Wi-Fi mobility data, but not so much for the Potential Attractivity Measures
(PAMs). Also, there is also some discrepancies between the data as it has been reported
in the published work [59] and what is present in the dataset. This makes it difficult to
understand where and when this data was collected, and how it is used in the original
work.

The other datasets are all adequately explained for researchers to begin using them,
perhaps because they contain fewer kinds of data and information.

Reference data should be stored in accessible formats, so that anyone with different
backgrounds and different skills can make use of it. Any reference data should there-
fore be in easily-read formats which see widespread use in programming languages, an-
alytical software, and operating systems. Part of Danalet’s data requires knowledge of
PostgreSQL10, and the requisite software, in order to be accessed. While this is a stan-
dard format used by researchers for data analysis and processing, it may be even more
accessible to the wider public if it were stored in text or Comma-Separated Value (CSV)
formats.

Finally, reference data should be presented in its most raw form, as this allows the
greatest flexibility in its use. Any pre-processing that has been done can introduce in-
herent assumptions and uncertainties that have to be worked around by subsequent re-
searchers. Tinguely’s data is one such example. However, if the original purpose of such
data aligns closely to the intentions of the researcher, this can be an advantage, as the data
will typically be cleaner and require fewer additional processing steps.

To summarise, there are many potential issues with creating and using reference data,
and each of the datasets included in this database exemplify one or more or these issues.
The Bonné and Danalet data need considerable re-purposing to be used in the context
of pedestrian destination choice calibration. Both suffer issues with data quality, where
data is either missing or not inaccurate, but this can be readily taken care of after pre-
processing, for example, Tinguely’s data does not suffer these issues as it is the result of
processing Danalet’s data.. The explanation of Danalet’s data is also incomplete and it is
difficult to cross-reference the properties of the data provided versus what was reported in
the literature. Part of Danalet’s data could also be stored in even more accessible formats.
In order to provide the most flexibility in potential applications, reference data should
be in its rawest form, with as little preprocessing done as possible. These issues do not
devalue the data, they are simply representative of data colection challenges with a given
technology. Ultimately, it is up to the researcher to decide which, if any, datasets currently
available in this database are the most suitable given their goals.

10IBM: Structured Query Language, URL: https://prod.ibmdocs-production-dal-
6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.
cloud/docs/en/db2/10.5?topic=reference-sql, accessed: 11/07/2022

https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/en/db2/10.5?topic=reference-sql
https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/en/db2/10.5?topic=reference-sql
https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/en/db2/10.5?topic=reference-sql
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5 Data Locations

This section details where each dataset described in the database can be found. Danalet’s
data can be found on Zenodo. It has the following Digital Object Identifier (DOI):
10.5281/zenodo.15798. Tinguely’s data can be found on Zenodo. It has the following
DOI: 10.5281/zenodo.1038622. Bonné’s original and processed data, along with the R
code used to process and anlyse the data as described in Section Sec. 3 can be found
on the University of Bristol’s Research Data Storage Facility here. It has the follow-
ing DOI: 10.5523/bris.7ob8ukji8iwp2n0l94n4ykc08. King’s data can be found on the
University of Bristol’s Research Data Storage Facility here. It has the following DOI:
10.5523/bris.249d43dprgg8x2td33cdmg8kax.

6 Conclusion

Openly-available reference databases have benefitted model development in several re-
search fields, including pedestrian mobility and route choice behaviour, such a resource
is not currently available in pedestrian destination choice behaviour. A literature search
reveals that while data for development of destination choice models have been collected
by researchers, only 2 or 3 examples were discovered. This paper attempts to build a
reference database for use primarily in the development of pedestrian destination choice
models. The data collated for this database are described and the potential ways in which
they could be used is illustrated through a case study. This revealed several general issues
around creating and using reference data in model development and these are discussed in
detail in the context of the other datasets. Ultimately this work hopes to form the basis for
an extensive reference database in the field of pedestrian destination choice and provide
guidance on future publication of reference data. It is hoped that this database will grow
in the future.
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Table 5 How the total number of devices changes with each stage of processing of the Bonné mobility data.

Day Detected at
≥ 1 destination

Detected at
> 1 destination

Visiting > 1
destination

After
cleaning

After
truncation

After cleaning
and truncation

-1 12351 3379 2914 2344 2914 2344
1 32362 9822 9193 8101 9193 8101
2 31907 9257 8646 7569 3050 2598
3 30133 9092 8294 6930 8294 6930

Table 6 How the total number of choices changes with each stage of processing of the Bonné mobility data.

Day Detected at
≥ 1 destination

Detected at
> 1 destination

Visiting > 1
destination

After
cleaning

After
truncation

After cleaning
and truncation

-1 42273 12192 9823 7263 9823 7263
1 127273 40810 35657 26371 35657 26371
2 126056 40567 34946 25133 9142 6567
3 110206 34951 30207 20416 30207 20416
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8 How Model Parameter Estimates Change with
Occupancy Smoothing Window Width

This Appendix displays how the values of the occupancy, distance, and desire parameters
of the model specified in Sec. 3 vary with the window width of the occupancy smoothing
average. Results are shown for calibration on both cleaned and conflicted destination se-
quences. The average values and 95% confidence intervals from 5000 bootstrap replicates
are shown.

Occupancy
Distance
Desire

How estimates of each model parameter using cleaned destination
sequences vary with occupancy rolling average window width

Window width / data points

P
ar

am
et

er
 e

st
im

at
e

1800 3600 5400 7200 9000 10800

−
1.

5
−

0.
5

0.
5

1.
5

Figure 7 Model parameter estimates calibrated on cleaned destination sequences using different rolling
average window widths for smoothing occupancies. Error bars represent the 95% confidence
bootstrap confidence intervals. 5000 bootstrap replicates were taken.
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Figure 8 Model parameter estimates calibrated on conflicted destination sequences using different rolling
average window widths for smoothing occupancies. Error bars represent the 95% confidence
bootstrap confidence intervals. 5000 bootstrap replicates were taken.
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