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Detecting air pollution clusters in Japan: A spatial
analysis approach

Alvaro Domínguez

Abstract

We rely on satellite data to study the spatial distribution of air pollutants and economic ac-
tivity for 1650 municipalities of all four main islands of Japan: Honshu, Kyushu, Hokkaido
and Shikoku. Specifically, we analyze atmospheric particulate matter and ozone concen-
trations, as well as population density, accessibility to cities, and night lights for the above
islands. We then make use of principal component analysis, spatial dependence analysis,
and methods of regionalization to endogenously classify the municipalities based on their
similarity in attributes and geographic location. The spatial dependence analysis provides
results which show us the specific sites where the high-value clusters (hot spots) and low-
value clusters (cold spots) are located. These show a high positive correlation between
economic activity and air pollution. Additionally, we perform a regionalization analysis
of the variables under consideration, which specifies how the four main islands can be re-
gionalized into six to nine geographical regions or structures, each. The regionalization
takes into consideration both pollution levels and economic activity. We then conclude by
discussing how these different analyses can complement each other, and how they con-
tribute in finding the locations where policies related to air quality can help in improving
the quality of life of the population.

1 Introduction
The link between the environment and the economy is very important due to the implications
it has both on economic growth and in the quality of life of people. Since the mid-twentieth
century, with the rapid growth and development of many countries along with their industries,
air pollutants became an increasing concern to policy makers. Many works have analyzed the
economic consequences of air pollution and ways to deal with it (Carriazo, 2016; Crandall,
1983; Downing and Watson Jr, 1974; Kyriakopoulou et al., 2021; Luechinger, 2010; Wolozin,
1968). Additionally, there has been an increase in the population’s awareness that in order to
achieve sustainable lifestyles, it is necessary to redesign the socio-ecological regime at a system
level (Beddoe et al., 2009).

We rely on spatial dependence analysis, principal component analysis (PCA), and region-
alization methods to detect clusters of municipalities in Japan that possess similar air pollu-
tion levels and economic activity. To do so, we employ satellite data from AidData geoquery
database (Goodman et al., 2019) to assess and analyze the spatial distribution, for each of the
four main islands, of particulate matter (PM2.5), ozone concentrations, population density, night
lights, and accessibility to cities. We begin by implementing PCA to reduce the variables into
two components. The first component (PC1), mostly sums up variables related to economic
activity (population density, night lights and accessibility to cities), with the variables related
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to pollution (particulate matter concentration and ozone concentration) being included depend-
ing on the island under consideration. The second component (PC2) synthesizes the pollution
variables. In the case of Kyushu and Shikoku, it includes both pollution variables. For Hon-
shu it summarizes Ozone concentration while for Hokkaido it does so for particulate matter
concentration.

We then follow up by applying two different spatial methods to spot geographically contigu-
ous clusters, in each of the islands, for both components. The first one is the spatial dependence
method of Anselin (1995) which lets us find so-called regional hot spots (i.e. high-value clus-
ters), cold spots (i.e. low-value clusters), and also spatial outliers. The second one is a region-
alization method by Duque et al. (2012), which endogenously derives the regional boundaries
(in our case based on pollution levels and economic activity).

We find a positive and statistically significant level of spatial dependence for PC1 and PC2
over many municipalities. From the PC1 data, we observe clusters with higher levels of eco-
nomic activity in the metropolitan areas of Tokyo, Nagoya and Osaka in the island of Honshu.
Some other clusters with these characteristics are also present in the north of Kyushu, and to a
lesser degree, to the northwest of Shikoku and Hokkaido. From the PC2 data, we see that there
are also large clusters with high levels of pollution to the center and the south of Honshu (which
could have been affected due to the changes in energy production after the 2011 earthquake).
We also can see the presence of smaller clusters to the south of Kyushu, west of Shikoku, and
north of Hokkaido.

The regionalization analysis, resting on the PC1 and PC2 data, implies that the islands
conforming Japan can be divided into different geographical regions (ranging from 6 to 9,
depending on the island) from similar constraints. The boundaries of these new regions are
different from those present in the administrative regions of Japan. The design and control
of policies aimed at improving air quality, therefore, would need to be coordinated across the
different municipalities.

This article makes three contributions. The first one is that it restricts the detection of clus-
ters to locational similarity among regions. The second one is that the results of the analysis are
endogenously obtained, thus the number of clusters do not require to be previously defined. By
relying on these methodologies, we differentiate ourselves from other studies of air pollution
that make use of non-spatial clustering methods, therefore having to define the number of clus-
ters “manually”. Finally, we also contribute through the complementarity of spatial dependence
analysis and regionalization methods. By combining both tools, we are able to find clusters that
are endogenous, spatially contiguous, and robust. Through the information that these clusters
provide, local and national governments may develop policies that improve the quality of life
of its citizens, by targeting specifically at the regions that require more urgent action.

The literature on air pollution and its consequences is vast. Different studies explain that air
pollution has severe and chronic effects on human health, going from minor upper respiratory
irritation to lung cancer, aggravating pre-existing heart and lung disease, chronic bronchitis, and
asthmatic attacks (Bernstein et al., 2004; Kampa and Castanas, 2008). An assessment of the
costs of inaction of outdoor air pollution by Lanzi et al. (2018) shows that these costs slowly
build up, reaching a whopping 1% of global GDP by the year 2060. According to Deche-
zleprêtre et al. (2019) and based on evidence from Europe, an increase of 1 µg/m3 in particle
matter concentration (PM2.5) may reduce real GDP by 0.8% that same year. Some estimates
show that the number of lost working days, which ultimately impact labour productivity, will
increase to 3.7 billion US dollars by 2060 (Lanzi et al., 2016).

During the rapid industrialization process of the 1950s and 1960s, pollution levels in Japan
increased substantially creating big environmental problems (Shoji and Miyamoto, 1977); at a
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point about 20% of the population were constantly exposed to air pollutants (Toyama, 1964).
In the 1970s and 1980s, the Japanese manufacturing sector’s energy intensity fell considerably,
and through different measures such as air pollution control agreements and the environmental
impact assessment law, pollution levels were substantially reduced (Kanada et al., 2013).

Different studies have been done examining the effects of air quality on the population in
Japan. Yorifuji et al. (2015) rely on a nationwide population-based longitudinal survey and find
that air pollution exposure during pregnancy increases the risk of low birth weight. Katanoda
et al. (2011) study the effects of particulate matter, sulfur dioxide, and nitrogen dioxide on par-
ticipants living in three different prefectures and find that long term exposure to air pollutants
is associated to significant increases in lung cancer and respiratory diseases. On the economic
side, Kim et al. (2019) analyze the spatial influence that economic growth has, at a national
level, on trade and the emission of particulate matter PM2.5 for Japan, China, and South Ko-
rea. They show that capital stock accumulation in China produce positive spillover effects in
trade and emissions of particulate matter (at both production and consumption levels). Instead,
Japan and South Korea reduce their emissions of pollutants through capital accumulation, cre-
ating positive shocks on trade.

In recent times, with more readily available spatial data and computational power, spatial
approaches to the analysis of air quality have also become increasingly popular. Maantay
(2007) examines the spatial correspondence of air pollution and asthma for the case of the
Bronx in New York. She finds that individuals living within a certain distance of toxic land uses
were significantly more likely to be hospitalized due to asthma, as well as being poor. Kumar
et al. (2016) monitor the air quality in the city of Mumbai to analyze the health benefits of policy
interventions aimed at reducing air pollution. Through an assessment based on air quality
change from concentrations at a starting point and the population in that city, the authors’
results indicate that reductions of pollutants bring enormous health benefits.

Kume et al. (2007) employ contour maps and characterize the spatial distribution of the
monthly variation of environmental pollutants in Shizuoka, Japan from 2001 to 2002. Shi-
madera et al. (2009) estimate the contribution that transboundary air pollutants from neighbor-
ing Asian countries has on ionic concentrations in fog in the Kinki region in Japan. Their study
concludes that transboundary air pollutants significantly affect concentrations in fog in that re-
gion. Araki et al. (2015) apply regression-kriging to air pollutants in Japan for 2009 and 2010.
The authors observe that this methodology predicts with a high accuracy and spatial resolution
the spatial distribution of air pollutants in this country.

Finding regions that are geographically contiguous and that share characteristics (i.e. eco-
nomics, politics, etc.) can greatly contribute to regional planning. Regionalization as a problem
has been widely studied in statistics, machine learning, and geography (Duque et al., 2007; Law
and Neira, 2019; Wise et al., 1997). A homogeneous region is defined as a set or group of areas
that are spatially contiguous, presenting a high level of similarity in certain characteristics or
attributes (Fischer, 1980). In this paper, the characteristics under consideration are particulate
matter concentration, ozone concentration, population density, night lights, and accessibility to
cities.

Regionalization, which is defined as a procedure to add up or combine geographical areas
into regions that are homogeneous has been called in various ways such as regional clustering
(Maravalle and Simeone, 1995), conditional clustering (Lefkovitch, 1980), clustering under
connectivity constraints (Hansen et al., 2003), and regionalization (Wise et al., 1997). Regional
science practitioners use methods of spatial clustering to summarize information, detect the
actual number of clusters, and as a way to sketch regions that are appropriate to analyze and
monitor (Duque et al., 2007, 2011).
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The rest of the paper is organized as follows. Section 2 describes the data we use along with
providing descriptive statistics of the variables we analyze. Section 3 explains the methodology
we rely on: PCA, spatial dependence, and regionalization (Max-p clusters). Section 4 presents
the results obtained from each method. Section 5 discusses how these methods are comple-
mentary. Finally, section 6 concludes. For ease of exposition, all the graphs are presented in
the appendix.

2 The Data

2.1 Description of the Database
Data on air pollution are from the AidData geoquery database (Goodman et al., 2019). From
this novel database, we rely on five variables:

• Particulate matter (PM2.5) concentration: This indicator shows the micrograms (one-
millionth of a gram) of gaseous pollutants per cubic meter (µg/m3) of ambient air, for
2013. These particles can be made of many different chemicals. The original source of
the data comes from Ambient air pollution exposure estimation for the Global Burden of
Disease 2013 (Brauer et al., 2016).

• Ozone concentration: This indicator refers to the quantity of ozone molecules that accu-
mulated in the air in 2013. Long term exposure to this gas can cause the development of
asthma and other respiratory problems. The original source is the Ambient air pollution
exposure estimation for the Global Burden of Disease 2013 (Brauer et al., 2016).

• Population density: This indicator provides an estimate of the number of people per
square kilometer in 2015. The original source of this data is the CIESIN (Columbia Uni-
versity, 2018).

• Night lights: This indicator conveys the lights from cities, towns, and other places with
persistent lighting, including gas flares, measured in digital numbers (DNs) for 2013.
This is used as an approximation to the economic activity that occurs in a given area
or region. The original source of this data is NOAA National Geophysical Data Center
(Lights, 2017).

• Accessibility to cities: This indicator measures the estimated time, in minutes, from a
point to the nearest city in 2015. The original source is The Malaria Atlas Project (Weiss
et al., 2018).

We rely on the indicators described above because:

1. They represent indicators related to the Sustainable Development Goals of the UN (to
which Japan adheres). Specifically, particulate matter and ozone concentrations are re-
lated to SDG3 to “Ensure healthy lives and promote well-being for all at all ages”. In
the case of Night lights, it is related to SDG7 to “Ensure access to affordable, reliable,
sustainable and modern energy for all” and SDG8 to “Promote sustained, inclusive and
sustainable economic growth, full and productive employment and decent work for all”.
Finally, population density and accessibility to cities are related to SDG11 to “Make
cities and human settlements inclusive, safe, resilient and sustainable”.

2. These variables capture, without overlap, the concepts we want to study in this manuscript.
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2.2 Descriptive Statistics and Maps
Table 1 below presents a summary of the indicators previously mentioned, for each of the
main islands. The values are within what we would expect. Nevertheless, it is interesting to
note that even though Kyushu has a lower mean population density than Honshu (523.46 vs
1434.03 people per square kilometer), it presents a higher concentration of particulate matter
(17.56 µg/m3 vs 14.27 µg/m3) and has similar levels of ozone concentration. This may be
due to pollution incoming from China and/or other nearby countries.1 We also observe that
Hokkaido has lower levels of particulate matter concentration and population density than the
other islands.

The importance of night lights in economics rests on its strong correlation to economic
activity. We use it as a way to analyze economic activity for different points in the map, with
areas with higher economic activity, such as urban areas, presenting brighter lights than those
with less activity (i.e. rural areas). For the case of the last variable, accessibility to cities, it
quantifies the time it takes to reach the nearest urban center via surface transportation. This data
helps understand how travel time differs across urban centers. Urban centers tend to concentrate
more infrastructure and resources than rural areas.

Figure 1 gives a first glimpse at the spatial distribution of air pollution in Japan. In particu-
lar, figure 1a depicts the distribution of particulate matter concentration, whereas figure 1b does
so for ozone concentration. We can observe that, for the case of particulate matter concentra-
tion, there are some large concentrations in the Tokyo area (Kantou region, island of Honshu)
and in the Fukuoka area (island of Kyushu). Meanwhile, we can see that there are two big clus-
ters of ozone concentration in the Kantou region and also in parts of the Chuubu and Kansai
regions, to the center of the island of Honshu. It would appear that municipalities with high
values tend to be neighbors with other municipalities with high values, and vice-versa. Never-
theless, we also notice that the clusters we show are not contiguous. An additional constraint
is that the number of clusters shown is exogeneous, so it has to be decided a priori. Due to this,
we later show the results of endogenous clusters that are also contiguous.

3 Methodology

3.1 Principal Component Analysis
The method of Principal Component Analysis (PCA) dates back to the work by Pearson (1901)
and Hotelling (1933). In more recent times, with the advent of higher computing power from
computers, it has become more popular. The purpose of using PCA is to maintain variability
for a reduced number of linear combinations that serve as linear functions of the variables under
study, helping to summarize the data (Jolliffe and Cadima, 2016). The new variables that are
obtained do not correlate with each other and are expected to maximize variance. In order
to obtain these new variables, the PCA method works around decomposing eigenvalues of a
system.

Consider a matrix X made up of k variables, with n observations each. To circumvent
possible differences in scale in each variable, we standardize each of them. We define XT X as
a k× k cross-product correlation matrix. Through the PCA method we reduce the number of
variables relying on the principal components, which explain a significant share of the variance

1Yoshino et al. (2016) explain that for the case of the city of Fukuoka in Kyushu, trans-boundary air pollution
occurs not only during the winter-spring season but also in summer, thus significantly impacting the quality of air.
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Table 1: Descriptive statistics for Honshu, Hokkaido, Kyushu, and Shikoku

(a) Honshu

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.
Particulate Matter Concentration (µg/m3 PM2.5, 2013) 14.27 3.85 0 11.63 13.82 16.55 34.95 1179

Ozone concentration (µg/m3, 2013) 60.68 4.10 0 59.98 61.24 62.37 63.88 1179
Population density (number of people, 2015) 1434.03 3121.68 2.50 93.36 298.21 1165.51 41654.99 1179

Night lights (DNs, 2013) 22.50 15.65 0 8.42 18.37 38.43 47 1179
Accessibility to cities (distance in minutes, 2015) 15.15 16.53 0 1.61 9.96 23.83 86.99 1179

(b) Hokkaido

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.
Particulate Matter Concentration (µg/m3 PM2.5, 2013) 8.76 2.01 5.16 7.24 8.52 9.74 17.45 175

Ozone concentration (µg/m3, 2013) 49.74 1.93 44.35 48.72 50.03 50.81 53.89 175
Population density (number of people, 2015) 70.42 170.49 2.61 11.20 20.45 54.45 1617.71 175

Night lights (DNs, 2013) 9.55 7.44 0.90 4.08 7.44 11.92 38.91 175
Accessibility to cities (distance in minutes, 2015) 49.46 29.88 2.35 28.20 43.06 66.26 142.26 175

(c) Kyushu

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.
Particulate Matter Concentration (µg/m3 PM2.5, 2013) 17.56 3.28 10.95 14.96 17.30 17.33 36.51 205

Ozone concentration (µg/m3, 2013) 59.92 0.58 58.01 59.69 59.85 60.02 62.35 205
Population density (number of people, 2015) 523.46 790.91 6.41 112.23 239.21 645.01 6674.94 205

Night lights (DNs, 2013) 17.34 12.55 0.08 7.11 17.34 26.92 46.68 205
Accessibility to cities (distance in minutes, 2015) 15.25 12.73 0 4.17 11.90 23.55 51.88 205

(d) Shikoku

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.
Particulate Matter Concentration (µg/m3 PM2.5, 2013) 13.44 2.75 9.96 11.95 13.00 14.54 30.76 91

Ozone concentration (µg/m3, 2013) 58.80 0.63 57.45 58.33 59.05 59.23 59.54 91
Population density (number of people, 2015) 324.71 455.42 7.55 53.45 116.48 371.71 2183.96 91

Night lights (DNs, 2013) 12.82 12.33 0 3.14 9.35 18.41 44.92 91
Accessibility to cities (distance in minutes, 2015) 20.81 19.73 0 5.04 16.16 30.51 80.16 91

in the original variables. The idea is that for every principal component y j, the method finds
the coefficients a j for j = 1,2, ...,k so that:

y j = a1x1 +a2x2 + ...+akxk, (1)

where y j is a linear combination of the original variables x1,x2, ...,xk.
For this work, PCA is used on five variables: particulate matter concentration, ozone con-

centration, population density, night lights, and accessibility to cities. The idea is to obtain a
more reduced set of variables (the principal components) that sum up a large part of the variance
of these five variables related to pollution levels and economic activity.

3.2 Spatial Dependence
In order to combine the concepts of attribute similarity with locational similarity, we use spatial
dependence analysis. More specifically, a test for global dependence checks whether we can
find a pattern of clusters in the spatial distribution of a given attribute. The null hypothesis for
such a test consists in showing if there is randomness or not in the spatial location under study
(i.e. the regions under study are independent of each other and their location provides no rele-
vant information). Rejection of the null hypothesis, thus, proposes the presence of structures or
clusters that supply relevant information for our study. The most popular test for global spatial
dependence is Moran’s I (Cliff and Ord, 1981). We define this test in the following way:

I = ∑
i

∑
j

wi j (xi −µ)
(
x j −µ

)
/∑

i
(xi −µ)2 (2)
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where wi j represents the row-standardized element of the weighted matrix, summarizing the
spatial structure of the data under study. The variable xi denotes the level of pollution/economic
activity in municipality i, x j is the same but for municipality j, and µ shows the average level
of the level of pollution/economic activity.

We briefly explain the concept of spatial weights, wi j, due to its importance in spatial anal-
ysis. The spatial weights are represented through a weights matrix W, summarizing the spatial
structure. Positive values in this matrix (i.e. wi j > 0) denote a relationship between neighbors
in a geographical area, while zero-values reflect a lack of it. Different ways exist in which these
weights can be specified. One of these, referred to as Queen contiguity, considers two regions
to be neighbors if they share a common border or vertex. In another, the Rook contiguity, re-
gions are deemed neighbors when they share a common border (although this type of structure
does not consider vertices, thus being a subset of Queen contiguity). Other neighbor structures
can be defined based on distance thresholds, k-nearest neighbors, and inverse distances. In
this paper, we make use of a Queen contiguity structure because it is easy to implement and
interpret the results derived from it.

The Moran scatter plot was proposed by Anselin (1995) as a way to visually analyze spatial
dependence. This plot displays the relationship between the variable x under study, and the
spatially lagged variable Wx. In other words, the Moran scatter plot represents the relationship
between the attribute of a location x and the weighted average, Wx, of this location’s neighbors.
The Moran’s I statistic depicts the slope of the fitted line of the two variables. The Moran scatter
plot provides a convenient way to classify spatial dependence. Positive spatial autocorrelation
is indicated through a positive slope in the graph, and it implies the existence of a cluster in
which the values taken in a particular place are surrounded by neighbors with similar values. If
the graph shows a negative slope, it signifies the presence of negative spatial autocorrelation in
which spatial outliers are ruling. In this case, the values in a particular location are surrounded
by values of the neighbors with reversed signs.

Anselin (1995) also proposed other methods of spatial association, through local indicators
of spatial association (LISA). The local Moran statistic evaluates local spatial patterns through
so called “hot spots” (displaying relatively high patterns), “cold spots” (relatively low values)
and spatial outliers (high values surrounded by low values or vice-versa).2. The local Moran’s
I is defined as:

Ii =
(xi −µ)

∑(xi −µ)2 ∑
j

wi j
(
x j −µ

)
(3)

where the variables and the notation are those of Moran’s I, presented in equation 2.

3.3 The Max-p Method for Regionalization
The Max-p algorithm is used to detect clusters that are spatially constrained, and rests on a
mixed integer programming model. Duque et al. (2012) developed it as the solution to the
constrained optimization problem of the form:

Min Z =

(
−

n

∑
k=1

n

∑
i=1

xk0
i

)
∗10h +∑

i
∑

j| j>i
di jti j, (4)

Subject to:

2Relying on local spatial dependence can complement the analysis performed with the global one. This is due
to the latter identifying whether clustering patterns exist or not, while the local analysis detects the exact location
of these clusters and spatial outliers

7



n

∑
i=1

xk0
i ≤ 1 ∀k = 1, . . . ,n (5)

n

∑
k=1

q

∑
c=0

xkc
i = 1 ∀i = 1, . . . ,n (6)

xkc
i ≤ ∑

j∈Ni

xk(c−1)
j ∀i = 1, . . . ,n;∀k = 1, . . . ,n;∀c = 1, . . . ,q (7)

n

∑
i=1

q

∑
c=0

xkc
i li ≥ threshold ∗

n

∑
i=1

xk0
i ∀k = 1, . . . ,n (8)

ti j ≥
q

∑
c=0

xkc
i +

q

∑
c=0

xkc
j −1 ∀i, j = 1, . . . ,n | i < j;∀k = 1, . . . ,n (9)

xkc
i ∈ {0,1} ∀i = 1, . . . ,n;∀k = 1, . . . ,n;∀c = 0, . . . ,q (10)

ti j ∈ {0,1} ∀i, j = 1, . . . ,n | i < j (11)

Where the decision variables are:

ti j =

{
1, if areas i and j belong to the same region k, with i < j
0, otherwise

xkc
i =

{
1, if areas i is assigned to region k in order c
0, otherwise

The parameters of the problem are:

i, I = Index and set of areas, I = {1, . . . ,n}
k = index of potential regions, k = {1, . . . ,n}
c = index of contiguity order, c = {0, . . . ,q}, with q = (n−1)

wi j =

{
1, if areas i and j share a border, with i, j ∈ I and i ̸= j
0, otherwise

Ni =
{

j | wi j = 1
}
, the set of areas that are adjacent to area i

di j = dissimilarity relationships between areas i and j, with i, j ∈ I and i < j

h= 1+
⌊
log
(
∑i ∑ j| j>i di j

)⌋
, which is the number of digits of the floor function of ∑i ∑ j| j>i di j,

with i, j ∈ I

li = spatially extensive attribute value of area i, with i ∈ I
threshold = minimum value for attribute l at regional scale.
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We now proceed to explain the equations that make up this method. Equation 4 represents
the objective function, constituted by two terms. The first one defines the number of regions
through an aggregation of the number of areas chosen as the root areas. The second term estab-
lishes the heterogeneity by adding the areas of a region based on their pairwise dissimilarities.
Equation 5 bounds an aggregated region to having no more than a single core area. Equation 6
says that each area will only by allocated to a single region k and a single contiguity order c.
Equation 7 tells us that area i is assigned to region k in order c if an area j exists and is allotted
to that region k in order c. Equation 8 explains that when a new area is defined, it is done based
on a threshold from a spatially intensive attribute. For this work, we set it as 10 percent of the
population. Equation 9 expresses that total heterogeneity is obtained from pairwise dissimilari-
ties. The last two equations, equations 10 and 11, point that the integrity of the variables should
be maintained.

4 Results

4.1 Principal Component Analysis
Table 2 below summarizes the results of the principal component analysis. This table is sepa-
rated into a) and b), summarizing two islands each, and is composed of three parts: the first part
shows the proportion of total variance obtained from the principal components. PC1 (the first
component) and PC2 (the second component) explain the variance for each island. In the case
of Honshu, PC1 explains the 55 percent and PC2 the 21 percent. In the case of Hokkaido, PC1
and PC2 explain the 48 and the 21 percent respectively. For Kyushu, PC1 is 50 percent and
PC2 is 23 percent. Finally, Shikoku’s PC1 represents 49 percent and PC2, 26 percent. When
considered cumulatively, these two components represent more than three quarters of the total
variance (except for Hokkaido where it is above two thirds).

In the second part, we observe the squared correlations of the components with the original
variables. This shows the size of the correlation, helping us understand the components in
function of the original variables. As an example, the variables that chiefly compose PC1 for
Honshu are Particulate matter, Population density, Night lights, and Accessibility to cities. For
the case of PC2, Ozone concentration is the main variable of interest. Regarding the criterion
to choose the number of components, we rely on that of Kaiser (1960). This criterion suggests
utilizing only those eigenvalues that exceed a value of one. In our case, this would imply using
two components, which explain a percentage higher than 70 percent of total variance for each
island (once again, Hokkaido is a little bit lower, at 69 percent).

After reducing the variables into a smaller number in PC1 and PC2, which summarize
a large proportion of the variance, we can now study their spatial distribution. We proceed
by finding the spatial dependence and the patterns of regionalization for each of these two
components. With this, we can encounter clusters that are characterized by being spatially
contiguous and that face similar characteristics or attributes.

4.2 Spatial Dependence
In figure 2 and figure 3 below, we show the plots of the local Moran scatter plot for autocorre-
lation. In these plots, the X axis presents the standardized value of PC1 and PC2, respectively.
The Y axis shows the weighted mean of the neighbors (i.e the spatial lag). The regression line
in the graphs explains the degree of spatial dependence in the region. The Moran scatter plot
consists of four quadrants: Top-right, top-left, bottom-right, and bottom-left. The top-right and
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Table 2: Principal Component Analysis

a) Total variance and cumulative proportion.
Honshu Hokkaido

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5
Proportion of variance 0.55 0.21 0.13 0.08 0.04 0.48 0.21 0.17 0.10 0.04
Cumulative proportion 0.55 0.76 0.89 0.96 1.00 0.48 0.69 0.86 0.96 1.00
Squared correlations between the components and the variables.

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5
Particulate matter (PM2.5) concentration 0.64 0.11 0.02 0.23 0.00 0.10 0.58 0.30 0.01 0.01
Ozone concentration 0.20 0.71 0.00 0.09 0.00 0.36 0.25 0.25 0.12 0.01
Population density 0.49 0.08 0.37 0.05 0.01 0.49 0.18 0.12 0.19 0.02
Night lights 0.79 0.08 0.02 0.00 0.11 0.76 0.05 0.05 0.06 0.08
Accessibility to cities 0.63 0.06 0.24 0.01 0.06 0.68 0.01 0.15 0.11 0.06
Criterion to choose of number of components

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5
Eigenvalues 2.75 1.03 0.65 0.38 0.19 2.40 1.06 0.87 0.49 0.18
Kaiser Criterion 2 2

b) Total variance and cumulative proportion.
Kyushu Shikoku

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5
Proportion of variance 0.50 0.23 0.15 0.09 0.03 0.49 0.26 0.14 0.10 0.01
Cumulative proportion 0.50 0.74 0.88 0.97 1.00 0.49 0.75 0.89 0.99 1.00
Squared correlations between the components and the variables.

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5
Particulate matter (PM2.5) concentration 0.16 0.42 0.42 0.00 0.00 0.00 0.67 0.30 0.02 0.00
Ozone concentration 0.08 0.60 0.29 0.02 0.00 0.04 0.59 0.36 0.00 0.00
Population density 0.64 0.10 0.00 0.24 0.02 0.84 0.01 0.00 0.12 0.03
Night lights 0.88 0.04 0.00 0.01 0.08 0.93 0.00 0.00 0.02 0.04
Accessibility to cities 0.75 0.00 0.03 0.18 0.03 0.64 0.00 0.04 0.32 0.00
Criterion to choose of number of components

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5
Eigenvalues 2.51 1.17 0.74 0.45 0.13 2.46 1.28 0.71 0.49 0.07
Kaiser Criterion 2 2

bottom-left parts allow us to single-out spatial clusters. These represent the cases where a mu-
nicipality and its neighbors have similar high/low values, respectively, in PC1 and PC2. For the
case of the top-left and bottom-right sections of the graph, these show the spatial outliers and
their geographical position. These outliers are municipalities with high values in PC1 and PC2,
while its neighbors’ values are low, or vice-versa. The dots that are highlighted in figures 2a-2d
as well as in figures 3a-3d show the observations that are statistically significant. We consider
municipalities that are significant at a p-value of 0.01. By relying on a lower significance level,
we can minimize any problems related to the multiple comparison problem. Anselin (1995)
explains that this is a common problem when performing analysis of local indicators of spatial
association (LISA).

Figures 4a-4d, (for PC1) and 5a-5d (for PC2) present the spatial distribution of municipali-
ties that are statistically significant. Referring to the four sections in the Moran scatter plot, the
municipalities are organized into hot spots (high-high) clusters, cold spots (low-low) clusters,
and the remaining consist of spatial outliers. The idea is that a spatial cluster consists of a core
group (the municipalities) and their neighbors. In figures 4a-4d and 5a-5d, the cold spots and
hot spots depict the cores of the spatial clusters. Meanwhile, we can see that in figures 6a-6d
and 7a-7d, the spatial clusters are composed of the core and its neighbors, for PC1 and PC2
respectively.
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Figures 2, 4, and 6 show a positive and statistically significant amount of spatial depen-
dence. For the case of Honshu, the level of particulate matter concentration, population density,
night lights, as well as accessibility to cities (stipulated by PC1) encountered by the average
municipality, is of a highly similar nature as that of its geographic neighbors. For the mu-
nicipalities in Hokkaido, we observe that ozone concentration, population density, night lights
and accessibility to cities are of a highly similar nature. Finally, Kyushu and Shikoku have a
matching pattern: in PC1 only population density, night lights and accessibility to cities have a
similar nature for the municipalities.

In these graphs, we can see the global Moran’s I, which encapsulates this relationship. This
coefficient’s value is 0.860 for Honshu, 0.707 for Hokkaido, 0.765 for Kyushu and 0.683 for
Shikoku respectively. In figure 6a we find clusters of hot spots located in the Tokyo, Nagoya,
and Osaka areas, with the cores consisting of 162 municipalities. These hot spots consist of
high levels of particulate matter concentration (19.68 µg/m3),3 population density (6593.28
people per square km), night lights (45.60 DNs), and accessibility to cities (0.28 minutes).4

The cold spots are composed of 138 municipalities, with a large concentration of these towards
the north of the Tohoku region. They are characterised by lower levels of particulate matter
(10.10 µg/m3), population density (76.17 people per square km), night lights (6.79 DNs), and
a higher distance to nearby cities (42.18 minutes). Figure 6b shows the same, but for Hokkaido.
We see that the hot spots are located towards the northeast and west, whereas the cold spots
concentrate to the mid west. Figures 6c and 6d present the same, but for Kyushu and Shikoku
respectively. The hot spots in Kyushu are located to the north, which include the cities of
Kitakyushu and Fukuoka. Meanwhile, the cold spots are situated to the southwest.

Figures 3, 5, and 7 exhibit the spatial dependence for PC2. We find a positive and sta-
tistically significant amount of spatial dependence, with the slope of this dependency being
0.288 for Honshu, 0.596 for Hokkaido, 0.812 for Kyushu, and 0.584 for Shikoku. The PC2 hot
spots for Honshu are located to the south (in parts of the Kansai region), center-north (parts of
the Chuubu region), and to the east (encompassing parts of the Kantou and Touhoku regions),
comprising 137 municipalities. The cold spots, instead, only consist of 6 municipalities fairly
distanced from one another. For the case of Hokkaido, small pockets of hot spots are located to
the north and center, whereas the cold spots can be found mostly to the south. It is of interest
to mention that for both Kyushu and Shikoku, the main variables of interest in PC2 are con-
centrations of particulate matter and of ozone. There are only 15 municipalities in Kyushu and
10 in Shikoku classified as hot spots. These municipalities are characterised by higher levels
of particle matter concentrations (14.32 µg/m3 for Kyushu and 15.75 µg/m3 for Shikoku) and
ozone concentration (61.42 µg/m3 for Kyushu and 57.61 µg/m3 for Shikoku).

The Moran scatter plot supplies us with a way to recognize clusters that are bi-dimensional.
In these clusters, the first dimension points out to the values of the principal components (eco-
nomic activity and air pollution) while the second dimension explains the spatial contiguity (ge-
ographic proximity) of the municipalities. We would then be inclined to ask ourselves how we
can classify the grey areas in the maps (figures 4 and 5), which are not statistically-significant.
To do so, in the next section we rely on the Max-p clustering algorithm proposed by Duque
et al. (2012)

3The numbers shown in parenthesis specify the mean value for the municipalities that are classified as hot
spots. These values are in their original scale, as in the case of table 1.

4It is important to note that the lower this number is, the higher the accessibility is.
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4.3 Regionalization through the Max-p algorithm
In figure 8 we can observe the regional division of Japan. These administrative regions are
classified based on natural and historical reasons. At lower levels, Japan is also divided into
47 prefectures and into municipal levels. Simultaneously, different administrative areas tend to
differ in the geographical scope of the economic activities being performed. Therefore, if we
don’t correctly take into consideration spatial autocorrelations, we may overestimate the effects
of urban agglomeration (Otsuka, 2021).

Through the Max-p algorithm, we are able to cluster different regions into analytical re-
gions based on economic activity/pollution levels. Contrary to the traditional regional divi-
sions, which only provide information on locational similarity, by dividing each of the four
main islands by analytical regions we obtain important information on both locational and at-
tribute similarity. On the other hand, we see that the municipalities in figure 8 only have a
similar location (i.e. locational similarity), but they do not necessarily share a common level
of pollution or economic activity (i.e. attribute similarity). The analytical regions shown in
figures 9 and 10 allow us to single out clusters of spatially contiguous municipalities that: (a)
have similar levels of pollution/economic activity, and (b) to an extent have spatial heterogene-
ity in each administrative region. We can appreciate this in the region of Chuubu in figure 8.
When we consider the economic activity and pollution, we detect four different clusters within
its administrative boundaries (figure 9a and 10a).

The major findings from the regionalization process can be broken into two. In the first
one, the economic activity and the pollution levels (expressed through PC1 and PC2 respec-
tively) span various administrative regions. This implies that there is a necessity to coordinate
throughout all these regions in order to successfully tackle this issue. The second one con-
cerns the fact that some regions are spatially more uneven and heterogeneous than others. As
an example, for PC1, Hokkaido and Kyushu include six and nine clusters respectively, while
Touhoku only includes two clusters.

Through a deeper understanding of how multiple variables interact spatially, we can better
communicate to policy-makers and any interested party how to deal with these issues. Authors
such as Gaspar et al. (2019) explain that low and middle income countries may have to spend
an additional 4 percent of GDP each year in order to attain their SDG goals. A country such
as Japan, with more resources and technology at its disposal, is thus better equipped to achieve
such goals. By better grasping how pollution is spatially distributed throughout the various
regions, policy-makers may develop and target more effectively different policies.

5 Discussion
From the two previous sections, we can observe that both the local Moran and the Max-p
clustering method may be used as complementary analyses. First we may rely on the local
Moran analysis to detect hot spot and cold spot clusters. After that, the Max-p method can help
in classifying into clusters the municipalities that were left. Relying on these methods does
not necessarily imply that there will be a one to one superposition of clusters. Nevertheless,
performing such an analysis can facilitate the detection of spatial clusters that are robust and
worthy of deeper studies by the academic community. These clusters also can serve local,
regional, and national governments in the development of policies prioritizing areas where
improving air pollution is more urgent.5

5Policies that are especially desirable are those geared towards municipalities where activities that generate air
pollution strengthens or reinforces that of their neighbors and vice-versa.
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There are two points to consider when contrasting the spatial clusters produced by these
methodologies. The first one is that the local Moran method only considers the observations
from the high-high and low-low quadrants, whereas the Max-p algorithm uses all of the obser-
vations. The second one is that the size of the clusters obtained through the Max-p algorithm
is usually bigger. The definition of spatial contiguity that the local Moran analysis considers is
that of first order neighbors (i.e. the ones that are more proximate or direct neighbors). Instead,
the analysis performed by the Max-p algorithm can also be of higher order. Therefore, these
methodologies work well as complements and not as substitutes. With the variation of spatial
contiguity and observations, both of these methodologies can help us appreciate different things
through the respective information they provide.

Regarding policies to improve air quality, those aimed at generating incentives for popula-
tions to move into less populated areas can help in the reduction of concentrations in certain
areas with higher pollution levels. Additionally, even though air pollution mostly has conse-
quences at the local and regional level, many pollutants and small particles such as PM2.5 can
be carried across large distances by wind, affecting other countries and regions. Because of
this, it is important to coordinate with other countries and regions to find solutions that tackle
this effectively. A global transformation of the energy system, along with less polluting and
more environmentally friendly technologies is a fundamental part of any cost-effective policy
response.

6 Conclusion
In this article we detect clusters of regions in Japan with similar levels of pollution and of eco-
nomic activity. To do so, we rely on principal component analysis and different methods of
spatial data analysis. Through satellite data of 1650 municipalities in the four main islands,
we assess differences, at the regional level, of particulate matter concentration, ozone con-
centration, population density, night lights, and accessibility to cities. By applying principal
component analysis, we reduce these variables into two components: PC1 (the first principal
component) and PC2 (the second principal component). PC1 mostly represents the municipal
variation in population density, night lights and accessibility to cities. The variables related to
pollution (particulate matter concentration and ozone concentration) are included depending on
the island under consideration. PC2 mostly represents the municipal variation in the pollution
variables. We then identify groups of municipalities that present spatial contiguity (location
similarity) and similar economic activity and levels of air pollution (attribute similarity).

We make use of two methods to find clusters that are geographically contiguous. The
first one consists in studying spatial dependence through the local Moran analysis of Anselin
(1995). This analysis shows the high-value clusters (hot spots), low-value clusters (cold spots),
and spatial outliers. The second method is the Max-p algorithm of Duque et al. (2012). This
algorithm outlines a new map of Japan where the regional borders are endogenously obtained
based on differences in air pollution and economic activity.

From the local Moran analysis we find that there is a positive and statistically significant
level of spatial dependence throughout the regions. In other words, the economic activity and
level of air pollution (depicted by PC1 and PC2) that the average Japanese municipality expe-
riences is highly similar to that of its geographically proximate neighbors. Noteworthy are the
PC1 clusters of hot spots for metropolitan areas of Tokyo, Nagoya, and Osaka, in the island of
Honshu. These show high levels of particulate matter concentration, population density, and
night lights. On the flip side, the north of the Tohoku region presents a cold spot for these
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same variables. Municipalities in this latter cluster, thus, have lower levels of particulate matter
concentration, population density, and night lights.

The Max-p algorithm generates results that are consistent to a large extent with those of the
local Moran analysis. The Max-p algorithm shows that Japan can be subdivided into different
regions in each island, from the results of the PC1 and PC2 data. The borders obtained by the
algorithm are different from those of the administrative regions, suggesting that pollution and
economic activity cross administrative borders. Through these new boundaries, it can be more
clear how different municipalities can coordinate in the design and implementation of policies
aimed at improving air pollution levels.

Future research may focus on extending the analysis through the sensitivity of the Max-p al-
gorithm using different size and initialization parameters. Additionally, implementing alterna-
tive clustering methods such as She et al. (2017) for regionalization of Japanese municipalities
could be promising.

7 Appendix

Figure 1: Air and Ozone pollution in Japan

(a) Particle matter (PM2.5) concentration (b) Ozone concentration
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Figure 2: Spatial Autocorrelation (PC1).

(a) Honshu. (b) Hokkaido.

(c) Kyushu. (d) Shikoku.
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Figure 3: Spatial Autocorrelation (PC2).

(a) Honshu. (b) Hokkaido.

(c) Kyushu. (d) Shikoku.
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Figure 4: Hot spots and Cold spots (PC1).

(a) Honshu. (b) Hokkaido.

(c) Kyushu.

(d) Shikoku.
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Figure 5: Hot spots and Cold spots (PC2).

(a) Honshu.
(b) Hokkaido.

(c) Kyushu.

(d) Shikoku.
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Figure 6: High & Low PC1 Clusters.

(a) Honshu. (b) Hokkaido.

(c) Kyushu.

(d) Shikoku.
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Figure 7: High & Low PC2 Clusters.

(a) Honshu.
(b) Hokkaido.

(c) Kyushu.

(d) Shikoku.

Figure 8: Administrative regions.
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Figure 9: Regionalization: Analytical regions for PC1.

(a) Honshu. (b) Hokkaido.

(c) Kyushu.
(d) Shikoku.
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Figure 10: Regionalization: Analytical regions for PC2.

(a) Honshu. (b) Hokkaido.

(c) Kyushu.
(d) Shikoku.
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