
ISSN 2303-4521

Periodicals of Engineering and Natural Sciences Original Research

Vol. 10, No. 6, December 2022, pp.113-119

© The Author 2022. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's

authorship and initial publication in this journal.

 113

Study of effective calculation operation implementation remaining multi-bit

numbers division on FPGA

Aqeel Ali. Al-Hilali1, Laith F. Jumaa2, Ibrahim A. Amory2
1 Medical Instrumentation techniques, Al-Farahidi University, Iraq

2 Medical Instrumentation techniques, Al-Esraa University College, Iraq

ABSTRACT

The rapid enhancement in the fields of the computers that leads to rapid breaking for ciphering algorithms

and for these reasons most of ciphering algorithm tried to used multidigit for ciphering texts or images. Using

multidigit will increase the safety of information and protected it from supercomputer from breaking the

ciphering algorithms. The current information systems employ operations on finite fields of various

structures (for example, cryptographic systems). In this instance, it's common to have to deal with enormous

numbers (128 bits or more). The proposed operation of discovering the remainder of the division of multidigit

numbers will considerably improve the speed of such systems if implemented.

Keywords: Programmable logic integrated circuits, distributed arithmetic, fields with a

limit, multi-digit numbers.

Corresponding Author:

Aqeel Ali Al-Hilali

Medical Instrumentation techniques

Al-Farahidi University

Address Iraq

E-mail: akeel.alhilali@alfarahidiuc.edu.iq

1. Introduction

The type of sets of remnants from division by pre-chosen bases (coprime common numbers). The assignment

of computing the rest of a division turns out to be more muddled when numbers are taken as a positional number

huge digit limit, introduced in the alleged "long" math. This type of composing a number it is utilized when the

piece lattice of the hardware utilized for calculations is restricted. On the off chance that the digit the matrix is

restricted to, say, k pieces, the long number is addressed in the base 2k number framework and is composed

successively into memory (for instance, as a cluster). For this situation, the issue of getting the rest of the division

becomes nontrivial. Strategies for its answer can be found in [1-3]. In [4], a viable technique is proposed for

changing over a double number into a RNS dependent on isolating the first multi-bit parallel number into

independent parts, for which a foreordained number of paired digits B are designated. At that point a n-cycle

twofold number can be communicated as a mix of weighted (positional) numbers with the measurement B

(bits)[5-7]. For this situation, the places of every such part are allocated a specific weight 2j, where j = 0, B,

2B, ..., MB. Direct change of a double number to a secluded number is done utilizing a particular summation

modulo residuals pi (I = 1, 2, ... n) - B pieces of n/B parts of a multideity number, considering their loads. In

light of the abovementioned, any parallel number can be composed as:

 𝑋 = ∑ (∑ 𝑥𝑗𝐵+𝑖

𝐵−1

𝑖=0

2𝑖) 2𝑗𝐵

𝑀

𝑗=0

 (1)

where B is the number of discharges of one part; M is the number of parts;

 x_(jB+i)- - coefficient 0 or 1; j = 0, B, 2B, ...,

https://creativecommons.org/licenses/by/4.0/
mailto:akeel.alhilali@alfarahidiuc.edu.iq

 PEN Vol. 10, No. 6, December 2022, pp.113-119

114

MB is the position of the part; i is the position of the bit in the part. Using expression (1), we can write the

formula for computing a remainder mod p:

 |𝑋|𝑝 = |∑ (∑ 𝑥𝑗𝐵+𝑖

𝐵−1

𝑖=0

2𝑖) 2𝑗𝐵

𝑀

𝑗=0

|

𝑝

= |∑ (∑ 𝑥𝑗𝐵+𝑖

𝐵−1

𝑖=0

2𝑖) 2𝑗𝐵. |2𝑗𝐵|
𝑝

𝑀

𝑗=0

|

𝑝

 (2)

When performing operations, it should be borne in mind that 〖ω_i=|2^jB |〗_p are pre-considered constants.

By freely comparing the remaining pieces, the remaining divisions for each can be found. The next step is to

sum modulo p the calculated residuals for each component. This method of calculating residuals allows for the

completion of jobs on much smaller piece depths, on the order of the piece width of a single section. Example.

Let X = 589249631 and p = 13 be two arbitrary numbers you're working with. To solve, we represent X in

binary:

X = 100011 00011111 00111100 01011111. Divide the binary form of X into 4 groups of B = 8 bits, each.

Determine the constants ω for use in your computations:

𝜔0 = |20|13 = 1; 𝜔1 = |28|13 = 9; 𝜔2 = |216|13 = 3; 𝜔3 = |224|13 = 1

Further calculations are presented in the following diagram:

According to these calculations, |X|_13=9, which is true. We will implement this approach for computing the

remainder of the division using the HDL synthesis and analysis software Xilinx ISE (Integrated Synthesis

Environment), and then we will verify its efficiency with a precise [8-10]. Hardware and development time for

Xilinx Virtex 6 FPGAs using the XC6VLX75T core are estimated at [12].

2. Productive execution of the activity for figuring the rest of a division

Compelling execution of the activity for ascertaining the rest of the division. Advancement of gadgets that carry

out present day cryptographic calculations suggests the utilization of superior equipment[13-16]. Programmable

Logic Integrated Circuits, specifically FPGAs from Xilinx, are the standard equipment for creating present day

elite registering gadgets. FPGA Virtex 6, center Xilinx XC6VLX75T, which has an adequate region, was chosen

as a means for the hardware implementation of the algorithm under consideration. To increase the performance,

we adapt the considered algorithm to the FPGA architecture[17]. To avoid performing the costly operation of

multideity numbers modulo multiplication from the point of view of time and used hardware resources, we store

in memory all possible B-bit values previously multiplied by the constants ωi modulo the chosen modulus, and

the number of these magnitudes will rely on the choice of parameter B and equal to 2B ... Thus, using this

approach allows you to implement modular multiplication tabular. Modulo addition is implemented using a

modular adder. Let us apply this method of calculating the modulus for numbers of different widths (32 bits, 64

bits, 128 bits, 256 bits, 512 bits, 1024 bits, 2048 bits) in 32-bit (p = 4294967291), 16-bit (p = 65521) and 8-bit

(p = 251) modules, while varying the parameter B. Data on the hardware and time spent on computing the

remainder of the division of 32-bit numbers will be written in Table. 1-7 [18-19].

Table 1. Equipment and spent time on executing the X mod p activity for 32-cycle numbers on FPGA Virtex

6, center Xilinx XC6VLX75T

 Split

 Mod
1 bit 2 bit 4 bit 8 bit IEEE

Numeric_std

32 bit
Slices 42 34 30 43 22

Delay, ns 11,7 10,6 10 11 8,7

 PEN Vol. 10, No. 6, December 2022, pp.113-119

115

 Split

 Mod
1 bit 2 bit 4 bit 8 bit IEEE

Numeric_std

16 bit
Slices 105 71 36 54 265

Delay, ns 16.3 14,7 12 13 58,6

8 bit
Slices 87 46 47 63 287

Delay, ns 16,8 13,4 14,4 12,2 68.ju4

Table 2. Equipment and spent time on carrying out the X mod p activity for 64-cycle numbers on FPGA

Virtex 6, center Xilinx XC6VLX75T

 Split

 Mod 1 bit 2 bit 4 bit 8 bit
IEEE

Numeric_std

32 bit
Slices 42 34 30 43 22

Delay, ns 11,7 10,6 10 11 8,7

16 bit
Slices 105 71 36 54 265

Delay, ns 16.3 14,7 12 13 58,6

8 bit
Slices 87 46 47 63 287

Delay, ns 16,8 13,4 14,4 12,2 68.ю4

While figuring the rest of isolating 32-digit numbers by a 32-bit module, we got the upside of the standard IEEE

Numeric_std library calculation both as far as equipment and time costs. When calculating the remainder after

dividing 32-bit numbers into 16 and 8-bit modules, the optimal hardware and time costs are to use the parameters

B = 4 and 2 bits, respectively. When calculating the remainder of dividing 64-bit numbers into 32, 16 and 8-bit

modules, the optimal hardware and time costs are the use of the parameters B = 4, 8 and 8 bits, respectively.

Table 3. Hardware and spent time on X mod p operation for 128-bit numbers on FPGA Virtex 6, core Xilinx

XC6VLX75T

 Split

 Mod 1 bit 2 bit 4 bit 8 bit
IEEE

Numeric_std

32 bit
Slices 190 147 112 145 4216

Delay, ns 24 23,5 20,9 20,2 453,9

16 bit
Slices 380 341 265 186 4172

Delay, ns 18,6 20,4 17,5 14,7 490,6

8 bit
Slices 222 133 99 124 4399

Delay, ns 19 15,2 14,8 15, 3 509,6

While ascertaining the rest of isolating 128-bit numbers by a 32-digit module, the ideal equipment and time cost

is to utilize the boundary B = 4 pieces, which has a 37-overlay region advantage and a 21-overlap time advantage

over the standard calculation. IEEE Numeric_std libraries. While figuring the rest of isolating 128-bit numbers

by a 16-digit modulus, the ideal equipment and time cost is to utilize the boundary B = 8 pieces, which has a

22-overlap region advantage and a 32-crease time advantage contrasted with standard calculation of the IEEE

Numeric_std library. While computing the rest of partitioning 128-digit numbers by a 8-cycle modulus, the

ideal equipment and time cost is to utilize the boundary B = 8 pieces, which has a 35-overlay region advantage

and a 34-overlap time advantage over the standard calculation. IEEE Numeric_std libraries .Using the inherent

calculation of the IEEE Numeric_std library for ascertaining the rest of the division of 256-bit numbers is

incomprehensible because of the restricted assets of the FPGA, while the proposed calculation permits you to

figure the rest of the division of numbers whose measurement surpasses 256 bits .As a consequence of looking

at the considered strategy for computing the rest of division with the standard calculation of the IEEE

Numeric_std library, we can reason that it is prudent to utilize the implicit technique just while figuring the rest

of division of a 32-cycle number into a 32-bit module. In any case, it ought to be noticed that when working

 PEN Vol. 10, No. 6, December 2022, pp.113-119

116

with numbers with a width of in excess of 128 pieces, the standard elements of the IEEE Numeric_std library

are adequately not, while the technique viable permits you to handle quantities of any width, restricted simply

by the equipment capacities of the programmable rationale coordinated circuit utilized.

Table 4. Equipment and spent time on carrying out the X mod p activity for 256-cycle numbers on FPGA

Virtex 6, center Xilinx XC6VLX75T

 Split

 Mod 1 bit 2 bit 4 bit 8 bit
IEEE

Numeric_std

32 bit
Slices 225 183 152 221 –

Delay, ns 23,5 26,9 24, 0 23,6 –

16 bit
Slices 493 512 342 244 –

Delay, ns 22,7 25,0 23,7 21,2 –

8 bit
Slices 288 140 109 133 –

Delay, ns 21,3 18,0 18,8 16,9 –

While figuring the rest of separating 256-bit numbers by 32, 16, and 8-bit modules, the ideal equipment and

time costs are to utilize the boundaries B = 4, 8, and 8 pieces, individually. When calculating the remainder of

dividing 512-bit numbers by 32, 16 and 8-bit modules, the optimal hardware and time costs are the use of the

parameters B = 8, 8, and 4 bits, respectively. When calculating the remainder after dividing 2048-bit numbers

by 32, 16 and 8-bit modules, the optimal hardware and time costs are to use the parameters B = 8, 8, and 4 bits,

respectively. Based on the data obtained, we will construct graphs of the dependence of the number of Slices

used and the maximum time delays on the partition parameter B when calculating the remainder of dividing

multi-bit numbers of various lengths into 32-bit, 16-bit and 8-bit modules.

Table 5. Equipment and spent time on carrying out the X mod p activity for 512-cycle numbers on FPGA

Virtex 6, center Xilinx XC6VLX75T

 Split

 Mod

1 bit 2 bit 4 bit 8 bit
IEEE

Numeric_std

32 bit
Slices 225 183 152 221 –

Delay, ns 23,5 26,9 24, 0 23,6 –

16 bit
Slices 493 512 342 244 –

Delay, ns 22,7 25,0 23,7 21,2 –

8 bit
Slices 288 140 109 133 –

Delay, ns 21,3 18,0 18,8 16,9 –

Table 6. Equipment and spent time on carrying out the X mod p activity for 1024-cycle numbers on FPGA

Virtex 6, center Xilinx XC6VLX75T

 Split

 Mod
1 bit 2 bit 4 bit 8 bit IEEE

Numeric_std

32 bit
Slices 1419 796 224 364 –

Delay, ns 43,0 42,5 29,6 29,7 –

16 bit
Slices 2173 832 535 367 –

Delay, ns 29,0 31,8 29,8 26,1 –

8 bit
Slices 589 367 198 188 –

Delay, ns 25,5 23,2 20,5 22,1 –

When calculating the remainder of dividing 1024-bit numbers by 32, 16 and 8-bit modules, the optimal hardware

and time costs are to use the parameters B = 4, 8, and 4 bits, respectively.

 PEN Vol. 10, No. 6, December 2022, pp.113-119

117

Table 7. Equipment and spent time on executing the X mod p activity for 2048-piece numbers on FPGA

Virtex 6, center Xilinx XC6VLX75T

 Split

 Mod
1 bit 2 bit 4 bit 8 bit IEEE

Numeric_std

32 bit
Slices 1705 952 623 424 –

Delay, ns 46,5 46,8 41,8 32,5 –

16 bit
Slices 2621 1469 626 426 –

Delay, ns 41,4 40,1 31,8 28,3 –

8 bit
Slices 1345 454 259 216 –

Delay, ns 32,3 25,3 23,5 24,7 –

Figure 1. Hardware and time costs for implementing the X mod p operation on a 32-bit FPGA Virtex 6

module, core Xilinx XC6VLX75T a) the number of Slices; b) maximum time delays, ns

Figure 2. Hardware and time costs for implementing the X mod p operation on a 16-bit FPGA Virtex 6

module, core Xilinx XC6VLX75T a) the number of Slices; b) maximum time delays, ns

 PEN Vol. 10, No. 6, December 2022, pp.113-119

118

Figure 3. Hardware and time costs for implementing the X mod p operation on an 8-bit FPGA Virtex 6

module, core Xilinx XC6VLX75T a) the number of Slices; b) maximum time delays, ns

From the diagrams acquired (Figures 1-3), we can presume that with an expansion in the digit limit of the

prepared numbers, the quantity of Slices and the most extreme time delays in the execution of the activity of

ascertaining the rest of the division increment. The quantity of Slices and the most extreme time delays in the

execution of the activity for ascertaining the rest of a division arrive at their littlest qualities when the boundary

B = 4, 8 pieces, contingent upon the piece width of the number and the modulus.

3. Conclusions

The outcomes got over the span of the examination showed that the utilization of the IEEE Numeric_std library

calculation for figuring the rest of division is prudent just on account of computing the rest of isolating a 32-bit

number by a 32-bit module, and for preparing numbers with a width of in excess of 128 pieces of standard

library capacities IEEE Numeric_std isn't sufficient.

The utilization of conveyed math related to plain particular increase and measured snake permits not exclusively

to fundamentally diminish the time spent on the execution of the activity of figuring the rest of division by

putting away all conceivable B-cycle esteems to begin with duplicated by the loads for the chose module, yet

in addition makes it conceivable to measure multi-digit numbers (in excess of 128 pieces) of any length,

restricted simply by the equipment abilities of the programmable rationale incorporated circuit utilized.

Examination of different approaches to carry out the activity of computing the rest of separating multi-digit

numbers showed that the ideal according to the perspective of the pre-owned equipment assets and the time

spent on the activity of figuring the rest of the division, is to part the enormous piece number into 4-bit or 8-bit

parts, contingent upon the piece width numbers and modulus.

Declaration of competing interest

The authors declare that they have no known financial or non-financial competing interests in any material

discussed in this paper.

Funding information

No funding was received from any financial organization to conduct this research.

Acknowledgements

The authors have special thanks for Al-Farahidi University and Al-Esraa University College for their support

during the period of this research.

References

[1] Xilinx 7 Series DSP48E1 Slice https://www.xilinx.com/support/ documentation/user guides/ug479

7Series DSP48E1.pdf

 PEN Vol. 10, No. 6, December 2022, pp.113-119

119

[2] Xilinx LogiCORE IP v12.0 https://www.xilinx.com/support/ documentation/ip documentation/mult

gen/v12 0/pg108-mult-gen.pdf [3] Integer Arithmetic IP Cores User Guide https://www.altera.com/en

US/ pdfs/literature/ug/ug lpm alt mfug.pdf

[3] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes and B. Popa, ”Arithmetic core generation using

bit heaps,” 2013 23rd International Conference on Field programmable Logic and Applications, Porto,

2013, pp. 1-8.

[4] J. Beuchat and J. Muller, ”Automatic Generation of Modular Multipliers for FPGA Applications,” in

IEEE Transactions on Computers, vol. 57, no. 12, pp. 1600-1613, Dec. 2008.

[5] Ahmet Kakacak, Aydin Emre Guzel, Ozan Cihangir, Sezer Gren, and H. Fatih Ugurdag. 2017. ”Fast

Multiplier Generator for FPGAs with LUT based Partial Product Generation and Column/row

Compression,”. in Integr. VLSI J. 57, C 2017, 147-157.

[6] M. Kumm, J. Kappauf, M. Istoan and P. Zipf, ”Resource Optimal Design of Large Multipliers for

FPGAs,” 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH), London, 2017, pp. 131-138.

[7] E. G. Walters, ”Array Multipliers for High Throughput in Xilinx FPGAs with 6-Input LUTs” in

Computers, vol. 5, no. 4, 2016.

[8] M. Kumm, S. Abbas and P. Zipf, ”An Efficient Softcore Multiplier Architecture for Xilinx FPGAs,” 2015

IEEE 22nd Symposium on Computer Arithmetic, Lyon, 2015, pp. 18-25.

[9] H. Parandeh-Afshar and P. Ienne,” Measuring and Reducing the Performance Gap between Embedded

and Soft Multipliers on FPGAs,” 2011 21st International Conference on Field Programmable Logic and

Applications, Chania, 2011, pp. 225-231.

[10] 7 Series FPGAs Configurable Logic Block https://www.xilinx.com/ support/documentation/user

guides/ug474 7Series CLB.pdf

[11] H. Parandeh-Afshar, P. Brisk and P. Ienne, ”Exploiting fast carry-chains of FPGAs for designing

compressor trees,” 2009 International Conference on Field Programmable Logic and Applications,

Prague, 2009, pp. 242- 249.

[12] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for obtaining digital signatures and

public-key cryptosystems." Communications of the ACM 21.2 (1978): 120-126.R. L. Rivest, A. Shamir,

L. A. Adleman. 1978. pp. 120-126.

[13] Diffie, Whitfield, and Martin Hellman. "New directions in cryptography." IEEE transactions on

Information Theory 22.6 (1976): 644-654.Esmaeildoust M. Efficient RNS Implementation of Elliptic

Curve Point Multiplication Over GF(p) / M. Esmaeildoust,

[14] Alioto, Massimo. "Editorial on the Opening of the New Editorial Year—The State of the IEEE

Transactions on Very Large Scale Integration (VLSI) Systems." IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 28.1 (2019): 1-2.

[15] Fournaris, Apostolos P., et al. "An RNS implementation of an Fp elliptic curve point multiplier." IEEE

Transactions on Circuits and Systems I: Regular Papers (2009)..

[16] Schinianakis, Dimitrios, and Thanos Stouraitis. "Multifunction residue architectures for cryptography."

IEEE Transactions on Circuits and Systems I: Regular Papers 61.4 (2014): 1156-1169.

[17] Chervyakov, Nikolay I., et al. "Comparison of modular numbers based on the chinese remainder theorem

with fractional values." Automatic Control and Computer Sciences 49.6 (2015): 354-365. In the

meantime, there is no need to worry about it. ”

[18] Wade, Andrew D., et al. "Diagnosis by consensus: a case study in the importance of interdisciplinary

interpretation of mummified remains." International journal of paleopathology 24 (2019): 144-153.

[19] M. El Hajjar and L. Hanzo, “A survey of digital television broadcast transmission techniques,” IEEE

Commun. Surv. Tut., vol. 15, no. 4, pp. 1924–1949, Fourth Quarter 2013.

[20] O. Bello and S. Zeadally, “Intelligent device-to-device communication in the Internet of Things,” IEEE

Syst. J., vol. 10, no. 3, pp. 1172–1182, Sep. 2016.

