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ABSTRACT 

The aim of this paper is to study the asymptotic behavior of the Arithmetic Reduction of Intensity (ARI) and Arithmetic 

Reduction of Age (ARA) models as two imperfect maintenance models. These models have been proposed by Doyen 

& Gaudoin (2011), the failure process with bathtub failure intensity. The maintenance effect is characterized by the 

change induced by the failure intensity before and after a failure during the degradation period. To simplify the study, 

the asymptotic properties of the failure process are derived. Then, the asymptotic normality of several maintenance 

efficiency estimators can be proved in the case where the failure process without maintenance is known. Practically, the 

coverage rate of the asymptotic confidence intervals issued from those estimators is studied. 
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1. INTRODUCTION 

Throughout their operational life, the industrial systems 

are subjected to preventive and corrective maintenance 

actions. The essential assumptions on maintenance 

efficiency are known as minimal maintenance and perfect 

maintenance. Further realistic ideas of maintenance are 

somewhat intermediary between these two extremes. 

Various models have already been proposed for imperfect 

maintenance effects, for example, de Toledo et al. (2015) 

and Jin et al. (2022). Single a minority imperfect 

maintenance model have been statistically studied, 

particularly regarding the estimation of maintenance 

efficiency. For virtual age models, some empirical studies 

on maximum likelihood estimators have been published 

Wang et al. (2021). The entire of these articles is based on 

simulation results. Recent articles by Xiaoyang et al. 

(2020) and Teixeira et al. (2021) deal with simulation and 

theoretical statistical results in a general class of repair 

models that include the Nunes & Barbosa (2020) models. 

However, in these articles, authors consider multiple 

independent and identical systems over a finite time 

interval. 

Thus, the system behavior without maintenance is 

known, and the failure intensity is then supposed to be a 

function of the single efficiency parameter. The failure 

process without maintenance is characterized by the 

intensity in bathtub form. This form is presented as a 

superposition of two Non-Homogeneous Poisson 

Processes (NHPP) and Homogeneous Poisson one (HPP). 

The maintenance effect is expressed by the change 

induced by the failure intensity before and after 

maintenance. The modeling frameworks are proposed and 

studied in order to generalize several models to the 

planned preventive maintenance. The generalization of 

the models suggested makes it possible to integrate the 

dependence between corrective and preventive 

maintenance. 

For this fact, we try to proceed in the same way as 

Syamsundar et al. (2021) by introducing in the first place 

the properties of the maximum likelihood estimator and 

second place by interest in exposing an explicit estimator. 

Several works were carried out on parametric statistical 

inference in imperfect repair models. We refer, for 

example, to the Si and al. (2018) study in which authors 

developed a preventive maintenance policy, as the work 

of Han and al. (2021). For the case of the Arithmetic 

Reduction of Intensity (ARI) and the Arithmetic 
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Reduction of Age (ARA) models, we evoke the Chahrour, 

and al. (2021) works. The numerical results for our study 

were at the estimate base on the maximization likelihood 

method and its properties. 

The paper is organized as follows: Section 2 discusses 

the properties of the failure process. Section 3 analyses 

the failure intensity of first-order asymptotic extension. 

Section 4 derives the cumulative failure intensity second-

order asymptotic extension. Section 5 introduces the 

maintenance efficiency estimation. A simulation phase is 

done in section 6. Section 7 presents some discussion. 

Finally, section 8 gives conclusions.  

 

2. PROPERTIES OF THE FAILURE PROCESS 

 The basic outline of the ARI model is to ensure that the 

maintenance effect shoulders on the failure intensity itself. 

The fundamental idea is at the origin of the Chan and 

Shaw (1993) work, for whom the maintenance effect is to 

reduce the failure intensity with quantity proportional to 

its value right before maintenance. The following failure 

intensity characterizes this model: 

𝜆𝑡 = 𝜆(𝑡) − 𝜌 ∑(1 − 𝜌)𝑗   𝜆(𝒯𝒩𝑡−𝑗)

𝒩𝑡

𝑗=0

            (1) 

Mendoza and al. (2022) extended the of Chan-Shaw 

model. The construction principle of their model appeared 

in two stages. The first stage is to formulate a model 

similar to Chan-Shaw, for which the maintenance effect 

is not to reduce the failure intensity but its increase since 

the last maintenance. In the second stage, the authors have 

defined the ARI models with memory 𝑚(𝐴𝑅𝐼𝑚)  using 

intensity written in the following way: 

     𝜆𝑡 = 𝜆(𝑡) − 𝜌 ∑ (1 − 𝜌)𝑗   𝜆(𝒯𝒩𝑡−𝑗)

min (𝑚−1,𝒩𝑡−1)

𝑗=0

     (2) 

Under these conditions, the model defined by the 

intensity (1) can thus be called the ARI model with 

infinite memory (𝐴𝑅𝐼∞). Figure 1 represents the general 

appearance of the failure intensity of the 𝐴𝑅𝐼𝑚  model. 

The first fine line represents the initial intensity, and the 

second, the minimal degradation intensity, 𝜆min(𝑡). This 

function is defined as the maximum lower limit for the 

failure intensity. For the 𝐴𝑅𝐼𝑚  model, minimal 

degradation intensity is: 

∀𝑡 ≥ 0, 𝜆min(𝑡) = (1 − 𝜌)𝑚𝜆(𝑡)         (3) 

 
Figure.1 Failure intensity for the 𝑨𝑹𝑰𝒎 model 

Practically, that means that the examined system is 

degraded faster than a system whose failure intensity is 

𝜆min(𝑡), and slower than a system whose failure intensity 

is the initial intensity 𝜆(𝑡). Near the 𝐴𝑅𝐼𝑚  models, the 

failure intensity is vertically parallel to the initial 

intensity, as the arrows indicate in Figure 1. The 

maintenance efficiency is allotted by the estimated value 

of the parameter 𝜌, called improvement factor. 

The principle of the ARA models is considered in the 

manner that the maintenance causes to renovate the 

system. This is with the intuition that its failure intensity 

at the instant t is equal to the initial intensity at one instant 

considered as the virtual age of the system, in perception 

where we consider that the real age of the system put 

under operation at instant 0 is t. The failure intensity of 

the ARA model is defined by the following: 

𝜆𝑡 = 𝜆 (𝑡 − 𝜌 ∑

𝑗=0

min(𝑚−1,𝒩𝑡)

(1 −   𝜌)𝑗𝒯𝒩𝑡−𝑗)   (4) 

Figure 2 represents the failure intensity behavior of the 

𝐴𝑅𝐴𝑚 model. We see that the intensity is parallel to the 

initial intensity at any instant. Nevertheless, this time the 

correspondence is horizontal (direction of the arrows). 

The minimal degradation intensity for the 𝐴𝑅𝐴𝑚 model 

is: 

∀𝑡 ≥ 0,    𝜆min(𝑡) = 𝜆((1 − 𝜌)𝑚𝑡)             (5) 

The failure intensity, as well for the 𝐴𝑅𝐴𝑚 models that 

for the 𝐴𝑅𝐼𝑚  models, expressed using the 𝑚 last failure 

instants. Thus, the memory 𝑚  imitate a Markovian 

property, remaining the maximum number of failures 

which can influence the failure intensity. 

 

Figure. 2 Failure intensity for the 𝑨𝑹, 𝑨𝒎 model 

 

3. FAILURE INTENSITY FIRST ORDER 

ASYMPTOTIC EXTENSION 

In this section, the idea is to show that the failure 

intensity and the asymptotic intensity have identical 

behavior. Thus, we recall the property presented in Doyen 

and al. (2019), that if exists a function 𝜆min , not 

decreasing and verifies for our model ∀𝑡 > 𝛾1: 𝜆min(𝑡), 
hence for all 𝑘 ≥ 0: 𝑡 − 𝒯𝒩𝑡−𝑘 = 𝑜(𝑡). 

We develop the asymptotic intensity with the same 

principle followed by Bening (2018), like the minimal 

degradation intensity for effective maintenance and the 
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maximal degradation intensity for harmful maintenance. 

Consequently, we admit for our generalization of the 

𝐴𝑅𝐴𝑚  model, like asymptotic failure intensity, the 

function: 𝜆∞ = 𝜆((1 − 𝜌)𝑚(𝑡)).  And the function 

defined by 𝜆∞ = (1 − 𝜌)𝑚𝜆(𝑡) is considered asymptotic 

failure intensity of the 𝐴𝑅𝐼𝑚 generalized model. 

In continuation, the initial intensity, 𝜆(𝑡), is supposed 

to be a deterministic function, which is not identically null 

and decreases during the period of the system 

degradation,  defined by Liu et al. (2020) without a 

maintenance process. These conditions necessarily imply 

: lim
𝑡→+∞

Λ(𝑡) = +∞ . The function Λ  is the cumulative 

failure intensity.If, moreover, 𝜆  is a regular variation 

function, then for 𝑡 > 𝛾1: 𝜆(𝑡) − 𝜆(𝑡 + 𝑜(1)) = 𝑜(𝜆(𝑡)). 
Thereafter, the whole asymptotic results of this study 

rested on a rewriting of the failure intensity, considered 

exclusively by finished memory models. By means of 

  𝜌 ∑𝑚−1
𝑘=0 (1 − 𝜌)𝑘 = 1 − (1 − 𝜌)𝑚,  this new form of 

failure intensity is defined, for the 𝐴𝑅𝐼𝑚  generalized 

model, ∀𝑡 ≥ 𝒯𝑚 ≥ 𝒯𝛾1
, as: 

𝜆𝑡 = 𝜆∞(𝑡) −
𝜌

(1 − 𝜌)𝑚
 

∑

𝑚−1

𝑘=0

(1 − 𝜌)𝑘 [𝜆∞(𝑡) − 𝜆∞ (𝑡 + (𝑡 − 𝒯𝒩𝑡−𝑘))]  (6) 

By means of the foregoing property, this formula is 

written as follows: 

𝜆𝑡 = 𝜆∞(𝑡) −
𝜌

(1 −   𝜌)𝑚
 

∑

𝑚−1

𝑘=0

(1 −   𝜌)𝑘[𝜆∞(𝑡) − 𝜆∞(𝑡 + 𝑜(1))] 

= 𝜆∞(𝑡) + 𝑜(𝜆∞(𝑡)) 

In the same way, for the 𝐴𝑅𝐴𝑚 generalized models: 

𝜆𝑡 = 𝜆∞(𝑡) 

− [

𝜆∞(𝑡) − 𝜆∞

(𝑡 +
𝜌

(1−𝜌)𝑚
∑𝑚−1

𝑘=0 (1 − 𝜌)𝑘(𝑡 − 𝒯𝒩𝑡−𝑘))
]    (7) 

And that : 

𝜆𝑡 = 𝜆∞(𝑡) − [𝜆∞(𝑡) − 𝜆∞(𝑡 + 𝑜(1))]
= 𝜆∞(𝑡) + 𝑜(𝜆∞(𝑡)) 

Consequently, for our generalizations of the 𝐴𝑅𝐼𝑚  and 

𝐴𝑅𝐴𝑚 models, the failure intensity, for all 𝑡 > 𝛾1, verify: 

𝜆𝑡 = 𝜆∞(𝑡) + 𝑜(𝜆∞(𝑡)). Under the same conditions, the 

cumulative failure intensity proves : Λ𝑡 = Λ∞(𝑡) +
𝑜(Λ∞(𝑡)). This first order of asymptotic expansion of the 

failure intensity, make it possible to verify that the 

increasing phase of the failure intensity and the 

asymptotic intensity of the 𝐴𝑅𝐼𝑚 and 𝐴𝑅𝐴𝑚 generalized 

models of finished memory have same asymptotic 

behavior. 

 

4. CUMULATIVE FAILURE INTENSITY 

SECOND-ORDER ASYMPTOTIC EXTENSION 

Using the second order of asymptotic expansion of the 

cumulative failure intensity, Dijoux et al. (2016) go more 

and express the difference between failure and asymptotic 

intensities. The author proved the cumulative failure 

intensity for the 𝐴𝑅𝐼𝑚 and 𝐴𝑅𝐴𝑚 models with the power 

failure intensity. In consequence, for our generalization 

with bath-tub failure intensity, the cumulative failure 

intensity of the 𝐴𝑅𝐼𝑚  model can be written, for all 𝑡 ≥
𝒯𝑚, as: 

Λ𝑡 = Λ∞(𝑡) +
𝜌

(1 − 𝜌)𝑚
∑

𝑚−1

𝑘=0

(1 − 𝜌)𝑘 ∫

𝑡

𝛾1

𝜆∞(𝑠) 

−𝜆∞(𝒯𝒩𝑠−𝑘)𝑑𝑠𝑧                                (8) 

Thereafter, let’s suppose that the initial intensity is 

divergent through the asymptotic intensity, or in an 

equivalent way, during the degradation phase of the 

system. That’s to say, then, the proposal that the 

cumulative failure intensity of the 𝐴𝑅𝐼𝑚  generalized 

models ensures: 

Λ𝑡 = Λ∞(𝑡) +
1 − (1 + 𝑚𝜌)(1 − 𝜌)𝑚

𝜌(1 − 𝜌)𝑚
ln𝜆(𝑡) 

+𝑜(ln𝜆(𝑡))                                (9) 

By analogy with the 𝐴𝑅𝐼𝑚  generalized models are 

defined by: 

𝜆]𝛾1,+∞(𝑡) =
1

𝜂0

+
𝛽2

𝜂2

(
𝑡 − 𝛾1

𝜂2

)
𝛽2−1

 

Then the cumulative failure intensity of the 𝐴𝑅𝐴𝑚 

generalized models verify: 

Λ𝑡 = Λ∞(𝑡) + (𝛽2 − 1)
1 − (1 + 𝑚𝜌)(1 − 𝜌)𝑚

𝜌(1 − 𝜌)𝑚
 

ln(𝑡) + 𝑜(ln(𝑡))                       (10) 

The two relations (9) and (10) indicate the asymptotic 

behavior of the failure process of the 𝐴𝑅𝐼𝑚  and 𝐴𝑅𝐴𝑚 

models. In fact, this behavior with finished memory is the 

same as that of NHPP with intensity 𝜆∞. Obviously, for 

the models with finished memory, if 𝜆(𝑡)  is concave 

(respectively convex), for the same parameter 𝜌 such as 

0 ≤ 𝜌 ≤ 1 , the asymptotic degradation speed of the 

𝐴𝑅𝐴𝑚 model is larger (respectively smaller) than that of 

the 𝐴𝑅𝐼𝑚  model. Consequently, 𝐴𝑅𝐼𝑚  and 𝐴𝑅𝐴𝑚 

models with asymptotic intensities having different 

asymptotic behaviors are similar to NHPP with different 

failure intensities. This way, 𝐴𝑅𝐼𝑚  and 𝐴𝑅𝐴𝑚  models 

with the same parameters are not comparable because 

they have very different degradation speeds. 

Nevertheless, it can happen there that if the initial 

intensity is a functioning power, the values of the 

maintenance efficiency parameters, such as the models, 

are comparable. And each of the two models has its own 

maintenance efficiency. 
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5. MAINTENANCE EFFICIENCY ESTIMATION 

The object now is to study some estimators of 

maintenance efficiency since the initial intensity is 

known. In that case, the failure intensity is supposed to 

depend on a simple parameter 𝜌. The true value of this 

parameter will be noted 𝜌0.  The maximum likelihood 

estimators 𝑀𝐿𝐸 of maintenance efficiency, denoted �̂�𝑡
𝑀𝐿. 

For the 𝐴𝑅𝐼𝑚  generalized model maintenance 

cap𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒intenance efficiency parameter checks: 

√
Λ(𝑡)

(1 − 𝜌0)𝑚
(1 − 𝜌0)𝑚 

−(1 − �̂�𝑡
𝑀𝐿)𝑚 →

ℒ
𝒩(0,1)                   (11) 

efficiency parameter of the 𝐴𝑅𝐴𝑚 generalized model, 

for only one observation of the failure process proves: 

√
(𝑡 − 𝛾1)𝛽2

𝜂2(1 − 𝜌0)𝑚(𝛽2−1)
(1 − 𝜌0)𝑚(𝛽2−1) 

−(1 − �̂�𝑡
𝑀𝐿)𝑚(𝛽2−1) →

ℒ
𝒩(0,1)           (12) 

According to the preceding assumptions, we do not 

know how to prove , that the 𝑀𝐿𝐸 is convergent when the 

maximization of likelihood is made on ] − ∞, 1]. So the 

𝑀𝐿𝐸 must be required in compact of ] − ∞, 1] containing 

the true value 𝜌0 of maintenance efficiency. The explicit 

estimators (𝐸𝐸), which are not present in this problem 

type, can exist. These 𝐸𝐸  verify the same asymptotic 

properties as the 𝑀𝐿𝐸. For the 𝐴𝑅𝐼𝑚 generalized model 

for only one observation of the failure process over ]𝛾1, 𝑡], 
the 𝐸𝐸 of maintenance efficiency parameter is given by: 

�̂�𝑡
𝐸 = 1 − [

𝒩𝑡

Λ(𝑡)
]

1

𝑚

                    (13) 

Similarly, with the 𝐴𝑅𝐼𝑚  generalized model, an 𝐸𝐸 

can be defined for the 𝐴𝑅𝐴𝑚 generalized model using the 

initial intensity in bath-tub form. Thus, we define near the 

last generalization, for only one observation of the failure 

process ,  the  𝐸𝐸  of maintenance efficiency parameter. 

This estimator is expressed by: 

�̂�𝑡
𝐸 = 1 − [

𝜂2𝒩𝑡

𝑡𝛽2
]

1
[𝑚(𝛽2−1)]

              (14) 

Considering the asymptotic normality of the estimators 

introduced in front, we maintain to define the Asymptotic 

Confidence I, intervals (𝐴𝐶𝐼). It is clear that for the same 

model, 𝑀𝐿𝐸  and 𝐸𝐸  verify the same properties,,They 

describe the identical 𝐴𝐶𝐼. Thus, we can assimilate to the 

model 𝐴𝑅𝐼𝑚  generalized model with finished memory, 

simultaneously for two estimators the 𝐴𝐶𝐼 for (1 − 𝜌0)𝑚 

at level 𝛿, given by: 

𝐴𝐶𝐼(𝜌) = (1 − �̂�)𝑚 

+
𝑢𝛿

2 ± √𝑢𝛿
2[4Λ(𝑡)(1 − �̂�)𝑚 + 𝑢𝛿

2]

2Λ(𝑡)
           (15) 

where  indicates 1 −
𝛿

2
 quantiles of the reduced-centered 

normal law, �̂� indicate the 𝑀𝐿𝐸 or 𝐸𝐸 and Λ]𝛾1,+∞(𝑡) =

1

𝜂0
𝑡 + (

𝑡−𝛾1

𝜂2
)

𝛽2
. 

Similarly, we can define an 𝐴𝐶𝐼  for the 𝐴𝑅𝐴𝑚 

generalized model. The 𝐴𝐶𝐼 for (1 − 𝜌0)𝑚  of level 𝛿  is 

defined as follows: 

𝐴𝐶𝐼(𝜌) = (1 − �̂�)𝑚(𝛽2−1) 

+
𝜂2(𝑢𝛿

2±√𝑢𝛿
2[

4

𝜂2
(𝑡−𝜆1)𝛽2(1−�̂�)𝑚(𝛽2−1)+𝑢𝛿

2])

2(𝑡−𝜆1)𝛽2
       (16) 

6. SIMULATION PHASE 

Using simulations groping of the 𝐴𝑅𝐼𝑚  and 𝐴𝑅𝐴𝑚 

models one next to one and for a given 𝐴𝐶𝐼, we estimate 

the coverage Rate (𝐶𝑅 ). This rate is expressed as the 

simulations proportion for which the true value of the 

parameter is in the confidence interval. Obviously, the 𝐶𝑅 

converges to 1 − 𝛿 when the number of observed failures 

𝑛  increases, where 𝛿  represents the 𝐴𝐶𝐼  threshold. 

Practically, the 𝐶𝑅  is a function only of the estimator 

quality used to build the 𝐴𝐶𝐼. Thus, we have estimated 

over 10000 simulations, the 𝐶𝑅 of the 𝐴𝐶𝐼 at level 95 for 

𝑚 = 1,2  or 3 , 𝛽1 = 0.75 , 𝛽2 = 3 , 𝜌 =
−1, −0.7, −0.5, −0.2,0,0.2,0.5,0.7  or 0.9  and 𝑛 = 60 . 

The following notations are used in Figure 3.  

− − −𝑀𝐿𝐸                𝑜  𝐴𝑅𝐴_1           ∗ 𝐴𝑅𝐼_1 

    ⋯   𝐸𝐸              ∎𝐴𝑅𝐴_2          + 𝐴𝑅𝐼_2 

                               × 𝐴𝑅𝐴_3            𝛻𝐴𝑅𝐼_3 

 

Figure. 3 CR(𝝆); 𝜷𝟏 = 0.75; 𝜷𝟐 = 𝟑; n = 60 

Figure 3 represents the 𝐶𝑅 evolution according to the 

value of the maintenance efficiency parameter 𝜌. So the 

𝐶𝑅  of 𝐸𝐸  depends closely oon the 𝜌  value. The 𝐸𝐸 

provides the most correct 𝐴𝐶𝐼 for maintenance efficiency 

close to the minimal case (𝜌 near to 0), even for a low 

value of the number of observed failures. On the other 

hand, when maintenance efficiency is too different from 

the minimal assumption, the 𝐶𝑅 converges less quickly, 

especially in the 𝐸𝐸 case. This result is a consequence due 

to the 𝐸𝐸, which is founded on an equivalence property 

between cumulative failure and asymptotic intensities. 

This equivalence relation is made with a near remainder 

which is asymptotically equal to: 
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𝑟(𝑡) =
(𝛽2 − 1)

(1 − 𝜌)𝑚

1 − (1 + 𝑚𝜌)(1 − 𝜌)𝑚

𝜌
ln(𝑡 − 𝛾1)      (17) 

At a certain in instan1 and for 𝜌 = 0, this quantity is 

null by hypothesis. In fact, in this case Λ𝑡 = Λ∞(𝑡) 

whereas, when 𝜌 tends to 1 by lower values, the above 

difference diverges. Finally, since the maintenance 

efficiency is degraded and becomes more and more 

harmful, the cumulative asymptotic intensity increase, 

and the difference 𝑟(𝑡) tends to a constant limit equal to 

𝑚(𝛽2 − 1). 

The 𝑀𝐿𝐸  are characterized by 𝐶𝑅 , which are less 

sensitive to the value of 𝜌 , but it is always under the 

assumption of minimal maintenance efficiency that the 

estimators are most correct. This 𝐶𝑅  behavior whether 

through of the 𝑀𝐿𝐸 or 𝐸𝐸, can be owed to the operation 

of the system in the improvement and service life periods, 

and is maintained by minimal maintenance actions. It 

appears clearly, on the one hand for low numbers of 

failures, and on the other hand for the models with high 

enough memories. Thus, for a great number of failures the 

𝐴𝐶𝐼 are the good approximations for the practical value 

of maintenance efficiency. 

7. DISCUSSION 

This paper analyzes the imperfect repair model with the 

Buth-tub Weibull failure distribution under the asyptotic 

assumption. We develop the marginal distributions of 

effective ages and inter-failure times and show a 

stationary state’s existence. When the model reaches this 

state, the effective ages and the inter-failure times 

converge towards its limit distributions. The results are 

then applied to propose a static, dynamic and failure-limit 

maintenance policy. Numerical simulations are presented 

to illustrate the policies.  

  In all applications, preventive maintenance and 

corrective maintenance are assumed to be equally 

effective, but this is rarely the case in practice. The use of 

the virtual age is extremely practical because the models 

take the efficiency of maintenance into account and make 

it very easy to carry out Monte Carlo simulations and 

numerical calculations. The results are consistent with 

those found in the work Joshi et al. (2019); and Ruiz-

Hernández et al. (2020). 

  Indeed, the failure limit policy is the most 

advantageous policy but it is also the most difficult to 

extend because it is necessary to measure the virtual age 

of the system, not the real age. The dynamic policy is not 

as efficient as the infinite horizon static policy but it is 

locally optimal. Moreover, in practice, the computation 

time to obtain the optimal solution is on the order of 

milliseconds, which is an order of magnitude different 

from the time until the planned preventive maintenance.  

  We can emphasize that estimating the parameters is 

an important and crucial step in analyzing a set of 

maintenance data. Inference in the presence of virtual age 

assumptions has been well discussed in the literature 

(Doyen & Gaudoin, 2004; Liu et al., 2020) by considering 

one or more types of interviews. The quality of ML 

estimators for arithmetic age reduction models has been 

discussed explicitly in Nguyen et al. (2016). As our article 

does not focus on inference procedures, we have not 

provided detailed details on how to estimate the model 

parameters. 

8. CONCLUSION 

In this paper, we generalized two classes of imperfect 

maintenance models using failure intensity in bath-tub 

shape. We gave new results on our generalizations of 

arithmetic reduction of age or intensity with memory 𝑚. 

We have shown that ARIm and ARAm models with finite 

memories are adapted to reparable systems. In fact, they 

are asymptotically equivalent to a non-homogeneous 

Poisson process with no decreasing failure intensity. 

Their failure process is characterized by equivalence 

between cumulative failure intensity and cumulative 

asymptotic intensity. 

In the application, it is proposed that if the initial 

intensity is unidentified, then an estimate could be used. 

Except this also guides to a different property of the 

estimator of maintenance efficiency. Further study can be 

done to extend the statistical properties to this case. For 

the 𝐴𝑅𝐼  and 𝐴𝑅𝐴  generalized models with finished 

memory, we proposed the explicit estimators of the 

maintenance efficiency parameter. Then, we presented 

theoretical statistical results for the estimate of 

maintenance efficiency. The convergence properties 

relative to maximum likelihood and explicit estimators 

were derived. Thus, we could assume that the asymptotic 

confidence intervals are issued from those estimators. 
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