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a b s t r a c t 

Assessment of grain boundaries in chromia (Cr 2 O 3 ) doped fuels has been carried out using high resolution 

transmission electron microscopy to assess the structure compared to undoped fuel produced via the 

same process. Chemical analysis of the grain boundary was carried out using Energy Dispersive X-ray 

Spectroscopy (EDS). It was shown that a relatively disordered phase is formed along the grain boundaries 

in the doped fuel and that they were chemically enriched in chromium. This has implications for the 

prediction and understanding of fuel manufacture and in-reactor behaviour as many processes are highly 

dependant on grain boundary mechanisms. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Chromia doped fuels are being considered as an evolutionary 

ccident tolerant fuel (ATF) candidate [1] due to their reported 

hanges in mechanical properties [2] , altered fission gas release 

 3 , 4 ] and improved washout behaviour [5] . These properties are

xpected to vary as a result of the deviations that occur in the 

ost-sintered microstructure. Originally, these dopants were used 

o improve the sinterability of UO 2 , particularly from conversion 

outes such as the AUC (ammonium uranyl carbonate) conversion 

rocess [ 3 , 5 , 6 ], however efforts to understand further operational

enefits are being assessed by the international nuclear fuel com- 

unity. 

The mechanism by which the dopants produce the larger grains 

s not fully understood. A range of investigations, both experimen- 

al and theoretical, have tended towards two, not necessarily com- 

eting, mechanisms: (1) an increase in bulk diffusivity that there- 

ore increases the grain size during sintering [4] and (2) an in- 

rease in grain boundary diffusivity, again increasing the grain size. 

s noted, multiple mechanisms may be occurring simultaneously 

r dependant on dopant concentration and sintering atmosphere. 

or example, in the work of Bourgeois et al. [7] , two distinct peaks
∗ Corresponding author. 

E-mail address: s.middleburgh@bangor.ac.uk (S.C. Middleburgh) . 
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n grain size are present at different dopant concentrations in the 

ample sintered in 1 vol.% H 2 O + H 2 at ∼600 μg (Cr 2 O 3 )/g(UO 2 )

nd ∼2500 μg (Cr 2 O 3 )/g(UO 2 ) indicating the likelihood of multiple 

rain growth mechanisms. 

Mechanism (1) requires some bulk solubility in the UO 2 ma- 

rix, and then a large enough impact to cause quite a marked mi- 

rostructural change, whilst Mechanism (2) requires low solubil- 

ty species existing at grain boundaries and surfaces of UO 2 rather 

han in solid solution in order to maximise the concentration and 

mpact on the grain boundary, but not too much to cause grain 

oundary pinning or a seizure in sintering. The presence of grain 

oundary phases may also alter the defect chemistry of the bulk 

ystem. Recent theoretical work has shown that the formation of 

isordered or amorphous grain boundary phases have much higher 

hermodynamic drives to deviate their stoichiometry compared to 

he crystalline bulk UO 2 [8] , and therefore may alter the bulk ma- 

erial’s stoichiometry. This will alter the sintering behaviour of the 

uel and also will change subtle properties such as bulk material 

attice parameters [9] . 

The solubility of Cr in UO 2 has been assessed on a number 

f occasions. Experimentally, the solubility has been estimated as 

.07 wt.% (700 wppm) by Bourgeois et al. [7] and a thorough 

valuation was provided by Riglet-Martial et al. [10] to ranging 

rom 500 wppm to 10 0 0 wppm (for Cr O ). It is regularly noted
2 3 
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Fig. 1. Back-scattered electron micrograph images of undoped (left) and Cr-doped UO2 analysed in this study. Grain size enlargement is clearly shown in the doped fuel. 
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n literature that once the solubility limit of Cr 2 O 3 in UO 2 is ex-

eeded, grain growth is reduced. Some emphasis was placed onto 

he oxidation state of Cr entering the UO 2 matrix. It was noted 

hat at high temperatures and low oxygen partial pressures, the 

r may reduce to a 2 + charge state, thus altering the solution 

oute [4] with conflicting experimental observations that may be 

ade clearer with the use of single crystal data in the future. A 

olubility model was put forward by Riglet-Martia [10] highlight- 

ng the potential reduction of Cr to a 2 + charge-state at high sin-

ering temperatures and intermediate to high oxygen partial pres- 

ures (avoiding the formation of Cr metal) and the formation of 

rO (l) . The solubility model did not consider alterations to chem- 

stry that could be present at grain boundaries and the impact of 

rain boundaries as defect sinks. 

Killeen [3] performed some of the seminal work on Cr-doped 

O 2 and highlighted, amongst other things, the segregation of Cr 

o grain boundaries during operation and therefore highlighting 

he instability of solute Cr at the dopant levels tested (0.5 wt.% 

n this study) as well as possible co-migration mechanisms with 

ssion gases from the bulk to the grain boundaries. 

The solubility of Al in UO 2 is reported to be negligible accord- 

ng to Kashibe and Une [ 11 ] and Lang [ 12 ]. This very low solution

nergy agrees with theoretical results performed using empirical 

otentials [ 13 ]. Solubility values are low and the mechanism for 

rain growth observed, for example by Kashibe [ 11 ] from 15 μm 

n the undoped sample to 30 μm in the 760 wppm Al 2 O 3 sample,

s presently not clear (especially as the redox behaviour of Al 2 O 3 is 

arkedly less varied compared to Cr 2 O 3 ). Similarly, grain growth is 

bserved in MgO doped UO 2 [12] and TiO 2 doped UO 2 [14] , both 

nown to have very low solubilities in UO 2 that are unlikely to 

mpact intrinsic processes to produce changes in grain sizes ob- 

erved experimentally. Specifically on TiO 2 as a dopant, Silva et al. 

 14 ] performed a study that assessed the dopant’s impact when 

dded through a sol-gel process where the resulting grain size was 

 300% than that of the un-doped fuel. Secondary Ti-rich phases 

ere observed at grain boundaries and a reduction in grain size 

as also observed that was attributed to some solute Ti within the 

ulk, possibly as a result of the low-temperature gelation method. 

ndeed, it should be noted that the synthesis route chosen will sig- 

ificantly alter the distribution and behaviour of the additions to 

O 2 , and mix-milling of powders (as is generally the production 

oute for commercial fuels) [ 15 ] can only be compared to sol-gel 

nd wet synthesis methods [ 9 , 16 ] with care. 

Other work has considered the formation of a ternary or mixed 

-Cr oxide and its implications. CrUO 4 was first reported by Brisi 

 17 ] and then Hoekstra [ 18 ]. Subsequently, experimental work has 
2 
ighlighted the assumed charge states of both Cr and U in this 

ompound to be 3 + and 5 + , respectively [ 19 ]. Solubility of Al into

his structure was both theoretically predicted and experimentally 

erified, potentially providing some answers as to the changing be- 

aviour when co-doping Al 2 O 3 with Cr 2 O 3 into the UO 2 system 

hat may be pointing towards other mechanisms that dictate grain 

rowth in Cr 2 O 3 /Al 2 O 3 doped fuels. The formation of CrUO 4 in the

arly stages of sintering could act as a key intermediate in the sin- 

ering behaviour of Cr-doped fuel, forming readily with UO 2 + x [ 19 ], 

nd the formation of the Al-containing (Cr,Al)UO 4 may enhance the 

ffect of this intermediate compound at some stage of the sinter- 

ng process. Further work assessing the potential beneficial impact 

f this intermediate is required. 

Grain boundary complexion and structure is known to impact 

any synthesis and in-operation mechanisms of ceramics. First 

nd foremost, the changing structures of grain boundaries have 

een strongly linked to changing in grain boundary mobility and 

iffusion mechanisms [ 20 , 21 ]. Grain boundaries can be considered 

n groups depending on the order at the grain boundary, and if 

here is a distinct film or phase between the two crystallites. Com- 

lexion IV noted to be “a true wetting film because it has a thick- 

ess that depends only on the amount of available liquid phase 

i.e. the thickness would diverge in a glass melt)” [ 22 ]. 

This work uses pellets produced via a commercial route to in- 

estigate the grain boundary structure and composition produced 

s a result of doping. The doped pellet’s structure is compared to 

n un-doped fuel. The aim is to assess whether Cr is observed to 

egregate to grain boundaries, to assess the resulting grain bound- 

ry structures and to add to the body of work investigating the 

ole of Cr 2 O 3 and other relatively insoluble additives to UO 2 . 

Production of Cr 2 O 3 and Al 2 O 3 doped UO 2 pellets was carried 

ut at Westinghouse Electric Sweden’s Västerås facility. AUC con- 

erted UO 2 powder (with O/U stoichiometry of 2.14) was mixed 

ith 500 wppm of Cr 2 O 3 and 150 wppm Al 2 O 3 for approximately 

ne hour to obtain full homogeneity. It is important to note that 

ccording to the existing literature, the Cr 2 O 3 concentration is ex- 

ected to be below the solubility limit. 

The doped powder was pressed to green pellets with a force of 

pproximately 49 kN. The green pellets were sintered in a H 2 /CO 2 

tmosphere at a maximum temperature of 1770 °C. Previous work 

y Arborelius et al. has reported expected properties and param- 

ters of the pellets produced by this method (equivalent to pellet 

3 in that work) [5] . 

A standard undoped UO 2 pellet was produced using similar sin- 

ering conditions (1730–1750 °C in a H 2 /N 2 atmosphere) to com- 

are to the doped pellet. This was produced at the Springfields 
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Fig. 2. Top: High resolution transmission electron microscopy (HRTEM) image from the Cr-doped UO 2 pellet including a grain boundary. Inset is a higher magnification of a 

portion of the grain boundary. Below: other examples of HRTEM images of grain boundaries in the Cr-doped pellet. 

3 
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Fig. 3. Examples of high resolution microscopy of four grain boundaries observed in the undoped UO 2 sample.Top (a&b): grain boundaries with very little thickness/disorder 

observed and Bottom (c&d): grain boundaries with a thickness similar to the doped sample. 
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uels Ltd manufacturing facility using UO 2 converted through the 

ntegrated dry route. Final stoichiometries of both pellets were de- 

ermined to be in the range 2.00–2.02 through X-Ray Diffraction 

attice parameter measurements. 

Sample examination was carried out using both Tescan XEIA3 

lasma focused ion-beam and FEI Helios 600i focused ion-beam 

FIB) instruments, the latter was used for transmission electron 

icroscope (TEM) sample preparation. Fig. 1 shows the back- 

cattered electron micrograph image of the un-doped and doped 

uels highlighting the significant increase in grain size upon dop- 

ng with Cr 2 O 3 . These images were used to identify grain bound- 

ries that were subsequently targeted for further analysis. Lamella 

amples were extracted from the bulk cross-section samples and 

hen thinned to approximately 150 nm thickness using varying ion 

eam energies and final stages of preparation conducted at 5 kV 

nd a final cleaning polish at 2 kV was used. 

Samples were then examined in a JEOL 2100 TEM with a LaB 6 

lectron source operated at 200 kV and equipped with an Oxford 

nstruments Ultimax X-ray detector and AZtec software. Overview 

mages were taken in bright-field TEM mode and high resolution 

EM (HR-TEM) was used to examine the grain boundary structures. 

canning transmission (STEM) mode was used to obtain composi- 
4 
ional maps and line profiles across grain boundaries using energy- 

ispersive X-ray analysis (EDX). 

High resolution transmission electron microscopy (HR-TEM) 

as undertaken on both the Cr-doped and undoped UO 2 sam- 

les after sample preparation. The sections prepared were specifi- 

ally targeted to assess the grain boundary nature of the ceramics. 

ig. 2 provides a micrograph of a grain boundary in the Cr-doped 

O 2 . The atomic ordering in the grains either side of the bound- 

ry is distinct, highlighting that the grain boundaries themselves 

re somewhat disordered although there appears to be evidence of 

ome diffusive ordering, similar to the theoretical predictions pro- 

osed by Rushton et al. [ 23 ] related to glass-crystal interfaces. 

In regions of the grain boundary reported in Fig. 2 , the thick- 

ess of the grain boundary can be seen to be 2–3 atomic planes 

hick, indicating a complexion III or IV system as defined by Dil- 

on et al. [22] . The nature of the grain boundary appears ordered 

n some regions and disordered in other regions, especially those 

hat are thicker. This observation is also in line with categorising 

he grain boundaries in the Cr-doped samples as complexion II or 

V boundaries. These bi-layers or tri-layers have been shown to im- 

act a number of properties including atomic transport that may 

mpact the sintering and operation of such materials. 
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Fig. 4. Chromium concentration as a function of distance from the grain boundary assessed by EDX spectroscopy. 
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When assessing the grain boundary structure of the undoped 

ystem, the thickness of the grain boundary film varied consider- 

bly from nearly zero thickness ( Fig. 3 a and 3 b) to similar thick-

esses observed in the doped samples ( Fig. 3 c and 3 d). This vari-

tion in grain boundary type is commensurate with previous ex- 

erimental work assessing grain boundaries using electron back- 

cattered diffraction (EBSD) techniques [ 24 ] that determined that 

oincident site lattice (CSL) boundary fraction was of the order of 

5% of the observed grain boundaries. 

Chemical assessment of the grain boundaries was undertaken 

sing EDX analysis. In the doped fuel system, a number of line 

cans were carried out across grain boundaries and are reported in 

ig. 4 . Due to the interaction region of the EDX analysis, the reso- 

ution around the grain boundary is not sharp, however there is a 

lear enrichment of Cr observed at the grain boundary. This indi- 

ates that the Cr is not in complete solid solution within the bulk 

f the system, which provides data to aid the mechanistic under- 

tanding of not only grain growth in these large-grained doped fu- 

ls, but will also be important to consider when assessing the ma- 

erial’s behaviour in reactor. As expected, the undoped pellet did 

ot show any enrichment of Cr at the grain boundary. 

The implications of the observations are important when con- 

idering the development and use of doped fuels that enhance 

rain boundaries. These results highlight that the solubility of Cr 

nto the bulk, even at the low dopant levels of 500 wppm Cr 2 O 3 ,

s not complete when considering the commercial route for pel- 

et production and that Cr will be affecting the behaviour of grain 

oundaries during the sintering process and during operation. Sin- 

ering atmospheres, temperatures and profiles are known to im- 

act the solubility and behaviour of Cr in the UO 2 , and in addition

o affecting the bulk behaviour, the sintering atmosphere will also 

e altering the structure and chemistry of the grain boundary. 

The possible stabilization of higher complexity grain boundaries 

ill likely impact the character of grain boundary bubbles that 

orm containing fission gases, and the mobility of fission products 

long the grain boundary. Further work should be carried out to 

ssess the role of Cr within the grain boundary structure on the 

obility of fission gases and volatile species along them, altering 

heir transport to the rod free volume. Our findings build upon the 

xperimental findings from Killeen [3] , who reported significant 

rain boundary segregation of Cr in Cr-doped fuel after irradiation. 

urther work should assess the source of the diffuse grain bound- 

ry observations of Killeen and whether the source could be a 

W

5

ombination of bulk Cr moving to boundaries or whether the high 

oncentration of Cr at the grain boundaries acted as the source of 

he diffuse Cr regions. 

Experimental work has identified that creep is higher in Cr- 

oped fuels and alumino-silicate doped pellets [2] . The alteration 

n grain boundary structure and chemistry observed in this inves- 

igation provides a basis for this observation and highlights that 

oble creep mechanisms are altered in doped fuels. 

Future work should also consider the implications of the find- 

ngs in this investigation on phenomena such as high burnup 

tructure formation, the impact of the grain boundaries as sinks 

or defects and non-stoichiometry as well as the implications of 

rain boundary attack by corrosive species and steam relevant to 

ashout events where a cladding structure has failed. 

In conclusion, the present investigation has undertaken a high- 

esolution transmission electron microscopy assessment on doped 

nd undoped UO 2 pellets post sintering. The grain boundary struc- 

ure of the doped fuel was observed to have been altered in the 

oped fuel system and chemical analysis highlighted the enrich- 

ent of Cr at the grain boundaries in the doped fuel system. The 

bservation has implications to the mechanistic understanding of 

he production and operation of doped fuels. 
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