
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2022

Flexible And Robust Iterative Methods For The Partial Singular Flexible And Robust Iterative Methods For The Partial Singular

Value Decomposition Value Decomposition

Steven Goldenberg
William & Mary - Arts & Sciences, sgoldenberg@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Goldenberg, Steven, "Flexible And Robust Iterative Methods For The Partial Singular Value Decomposition"
(2022). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1673281619.
https://dx.doi.org/10.21220/s2-7jmv-m325

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1673281619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1673281619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-7jmv-m325
mailto:scholarworks@wm.edu

Flexible and Robust Iterative Methods for the Partial Singular Value
Decomposition

Steven Goldenberg

Fairfax, Virginia

Master of Science, William & Mary, 2017
Bachelor of Arts, Johns Hopkins University, 2014

Bachelor of Music, Peabody Institute, 2014

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
August 2022

© Copyright by Steven Goldenberg 2022

ABSTRACT

The Singular Value Decomposition (SVD) is one of the most fundamental matrix
factorizations in linear algebra. As a generalization of the eigenvalue
decomposition, the SVD is essential for a wide variety of fields including statistics,
signal and image processing, chemistry, quantum physics and even weather
prediction. The methods for numerically computing the SVD mostly fall under
three main categories: full, partial, and streaming. Full SVD methods focus on
solving the problem in its entirety, making them suitable for smaller dense
matrices where the computation cost is tractable. On the other end of the
spectrum, streaming methods provide an "on-line" algorithm that computes an
approximate SVD on large datasets by analyzing small chunks of the data at a
time, which limits their overall accuracy. Partial SVD solvers fill in the large gap
between these two extremes by providing accurate solutions for a subset of
singular values on large (often sparse) matrices.

In this dissertation, we focus on the development of fast, flexible, and robust
partial SVD solvers. We first introduce a novel solver, GKD, based on the
Golub-Kahan and Davidson methods and demonstrate its performance and ability
to produce accurate solutions on difficult problems through comparisons with the
PRIMME software package. Then, we investigate the use of flexible stopping
criteria for GKD and other SVD solvers that are tailored to specific applications.
Finally, we analyze the effect of SVD stopping criteria on matrix completion
algorithms.

In total, this work has enhanced the landscape of large scale SVD solvers by
providing a novel, efficient SVD algorithm, as well as the implementation of a
flexible framework for stopping criteria that can be adapted to study and solve a
diverse set of problems.

TABLE OF CONTENTS

Acknowledgments iv

Dedication v

List of Tables vi

List of Figures viii

1 Introduction 2

1.1 Overview . 2

1.1.1 Motivation . 4

2 The Golub-Kahan Davidson Method 7

2.1 Introduction . 7

2.1.1 Related Work . 10

2.2 Main Contribution . 13

2.2.1 Algorithm . 13

2.2.2 Restarting and Locking . 16

2.2.3 Resetting . 18

2.2.4 Inner Solver . 21

2.3 Benefits over PHSVDS . 26

2.3.1 Avoiding the Augmented Problem 26

2.3.2 Switching Problems . 27

2.3.3 Space and Time Comparisons 27

i

2.4 Numerical Results . 28

2.4.1 Unpreconditioned Results . 30

2.4.2 Single Precision Results . 32

2.4.3 Preconditioned Results . 34

2.5 Chapter Summary . 36

3 Low-Rank Stopping Criteria for the SVD 37

3.1 Introduction . 38

3.2 Background and Motivation . 39

3.2.1 Common LRA Criteria . 41

3.2.2 Issues with Current SVD Methods 42

3.3 Proposed Solution . 44

3.3.1 Guidelines for Standard LBD 47

3.3.2 Guidelines for Subspace Iteration 48

3.3.3 Specific Solutions Required for GKD 49

3.3.4 GKD MATLAB Implementation 52

3.4 Stopping Criteria . 52

3.4.1 Frobenius Norm Criteria . 56

3.4.2 Spectral Norm Criteria . 60

3.4.3 Singular Gap Finding . 65

3.5 Matrix Completion . 67

3.6 Hard-Impute Testing . 70

3.7 Soft-Impute Testing . 71

3.8 Chapter Summary . 74

4 GKD Software Implementation 75

4.1 Targeting and Stopping Functions . 78

ii

5 Conclusion 80

5.1 Future Research Directions . 81

Bibliography 83

iii

ACKNOWLEDGMENTS

My journey in pursuit of a Ph.D. has been a long and winding road full of new
experiences, fruitful work, and dozens of wonderful people and memories. I would
like to take this opportunity to thank all those that have given me guidance,
encouragement and joy during my time here at William and Mary.

First, I would like to thank my doctoral advisor, Dr. Andreas Stathopoulos. He
has known me from the beginning of this journey and has left an indelible mark on
my life and work. This thesis is the culmination of the countless emails and
meetings we shared. Without him, I would not be the researcher I am today.

A special thanks goes to my dissertation defense committee: Dr. Weizhen Mao,
Dr. Robert Michael Lewis, Dr. Zhenming Liu, and Dr. Ronald Morgan. Thank
you for giving your time, support, and informed critique.

I am incredibly grateful to William and Mary for providing a welcoming
environment in which I could grow as a student and a person. In particular, I
would like to thank the administrators of the Computer Science Department:
Vanessa Godwin, Dales Hayes, and Jacqulyn Johnson. They have always been
happy to talk with me about anything and provide help whenever I needed it.

Of course, I cannot forget the friends and mentors I have met along the way,
especially Eloy Romero, Xiaodan Zhu, and Heather Switzer. Thank you for all the
time you have spent with me talking about research or eating our favorite foods. I
cannot express how grateful I am to know you all.

Last but certainly not least, I would like to thank my family for always supporting
me and my studies. Their patience and love gave me the strength to persevere
when I needed it most.

iv

To my parents, Michael Goldenberg and Dr. Susan Hasselquist

v

LIST OF TABLES

2.1 Basic Properties of Square Matrices 29

2.2 Basic Properties of Rectangular Matrices 29

2.3 Basic Properties of Large Scale Matrices 29

3.1 Set of Symbols . 40

3.2 Example subset of solverdata variables in GKD and their descrip-

tions. Variable names come directly from GKD and may not match

their use in this paper. 46

3.3 Matrices chosen from SuiteSparse . 51

3.4 Searching for all singular values above the threshold δ2 = max(σ100+σ101

2σ1
, 1e−

4) for 12 SuiteSparse matrices. For each matrix, we note the optimal

k, the threshold, the first iteration where kmax is an upper bound,

the first iteration where kmin is optimal, the maximum ρ (relative to

∥A∥) that will return at least kmax > k, and the first iteration that

the least-squares regression has a slope of 0. 64

3.5 Searching for an additive gap larger than δG, which is chosen to be

the geometric mean of the two largest gaps. The columns kmax = k

and Criteria Stop give iteration counts. The criteria stops when all

ri/σkmax < 10−6 with i ∈ 1 : kmax + 1. We testednopss_11k, however

GKD stops early before finding all 4 multiplicities, so no values are

given for kmax = k or max(r/σkmax). 68

4.1 Output variables in GKD . 76

vi

4.2 Optional Name/Value pairs for GKD 77

vii

LIST OF FIGURES

2.1 Demonstrating the need for resetting on lshp3025 (∥A∥ = 7) with

GKD (q = 35, s = 15, δ =1E-14, and k = 1). 21

2.2 Convergence of GKD and GKJD when there are more SVs below
√
ϵmach than the MaxBasisSize (q = 35, s = 15). 24

2.3 Convergence of GKJD on a problem with 20 SVs below
√
ϵmach in sin-

gle precision with varying minimum restart sizes. (Maximum Matvecs

= 75,000, q = 50) . 24

2.4 Convergence of PHSVDS on a poorly conditioned problem (κ(A) =

1E+13) . 26

2.5 Stagnations caused by a failure to fully converge in the first stage of

PHSVDS (κ =1.1E+4) . 26

2.6 Unpreconditioned Results on 12 problems from the SuiteSparse Matrix

Collection with a relative user tolerance of δ = 1e− 14. 30

2.7 Large-Scale Unpreconditioned Results. Required matvecs for GKD,

GD+k, GKJD and JDQMR are shown in the table. Note that for

sls, GKJD finds 3 of the singular values with multiplicity 14 while

JDQMR finds only 2. 31

2.8 Similar performance can be achieved with a relatively small basis size

even when searching for 100 values. 32

2.9 IRLBA wastes matrix vector multiplications building a full basis with-

out checking convergence. 32

viii

2.10 Maximum accuracy achievable with GKD in single precision for the

10 largest SVs on Rucci1. We set δ = 0 and rotate the target at each

iteration to allow all triplets to converge. 34

2.11 Preconditioned Results with an ILU Preconditioner for finding the

smallest and 10 smallest singular triplets. 35

2.12 Large-Scale Results with Block Jacobi Preconditioner (block size=600

on ATA) for the 5 smallest singular triplets. Required matvecs for

GKD,GD+k, GKJD and JDQMR are shown in the table. 36

3.1 Empirical Frobenius norm convergence compared to theoretical bounds

from [49, Algorithm 1/2]. The constants c = [0.0096, 0.001] for SI and

BGKD respectively are chosen to be as small as possible. 45

3.2 Empirical spectral norm convergence compared to theoretical bounds

from [49, Algorithm 1/2]. The constants c = [0.253, 0.0241] for SI and

BGKD respectively are chosen to be as small as possible. 45

3.3 Ratio of matrix vector products required by GKD using standard tar-

geting (R) and largest residual targeting (L) to achieve a residual

tolerance of 1e-6 on 100 singular triplets. The ratio (R/L − 1) for

GKJD on c-42 is 2.32. 49

3.4 Geometric mean of the ratio between the real and approximated resid-

ual norms (∥ri∥/∥ri∥) over the first min(d, 100) singular triplets and

all iterations using GKD and GKJD to find 100 singular values with

standard (suffix -R) and largest residual targeting (suffix -L). 49

3.5 Maximum multiplicative error of ϵ using RSVD on SNAP/Amazon0302.

. 54

3.6 Maximum multiplicative error of ϵ using RSVD on SNAP/email-ENRON.

. 54

ix

3.7 Convergence of GKD error estimates compared to ϵ for the 1st singular

value on the matrix A = diag(1000:-1:1). 56

3.8 Convergence of GKD error estimates compared to ϵ for the 10th sin-

gular value on the matrix CurlCurl_0. 56

3.9 Comparing the optimal rank k (100) and optimal ∥A100∥F with the

returned rank and corresponding maximum achievable ∥Ak∥F when

stopping GKD with the standard Frobenius norm criteria. The max-

imum achievable ∥Ak∥F is derived from the true singular values of

A. 59

3.10 Comparing estimations of kmin with the optimal k using GKD for the

Frobenius norm criterion on a Gaussian Kernel matrix. ϵ for (3.21) is

calculated by (3.17) with either exact residuals or approximate resid-

uals from (3.12). 59

3.11 Convergence of kmax and kmin on CurlCurl_0 using GKD where the

threshold is given in Table 3.4. kmax is calculated using accurate

residual norms and (3.17). 62

3.12 Convergence of the first kmax +1 residual norms using GKD on Curl-

Curl_0. δ2 matches the threshold used for Figure 3.11. 62

3.13 Using Least-Squares Regression to track the rate of increase in kmin. 63

3.14 Comparing various SVD tolerances (surface plot) with our specialized

stopping criteria (line plot). (Left) Results with a very flat spectrum

Σ = linspace(0.99, 1, 30) for the low rank space. (Right) Results with

a slightly decaying spectrum Σ = linspace(1, 50, 30) for the low rank

space. 70

3.15 Comparing the number of singular values needed at each iteration for

varying thresholds . 72

x

3.16 Comparing the distance between two successive Soft Impute steps with

varying thresholds . 72

3.17 Comparing the Frobenius norm distance to the full (dense) low rank

matrix A after 1000 iterations for 20 different thresholds 73

3.18 Comparing the number of singular values needed at each iteration for

varying thresholds with heuristic 3.31 73

xi

Flexible and Robust Iterative Methods for the Partial Singular Value
Decomposition

Chapter 1

Introduction

1.1 Overview

Assuming a large sparse matrix, A ∈ ℜm,n with m ≥ n, the economy size singular value

decomposition (SVD) is given by

A = UΣV T , (1.1)

where U ∈ ℜm,n and V ∈ ℜn,n are orthonormal bases and Σ = diag(σ1, . . . ,σn) ∈ ℜn,n

with σ1 ≤ σ2 ≤ · · · ≤ σn is a diagonal matrix containing the singular values of A.

The singular triplets of A are defined as (ui,σi,vi), where bold face differentiates from

approximate vectors and values in this thesis. Given the approximate singular triplet

(ui, σi, vi), we have the left and right singular value residuals, defined as ru = ATui − σivi

and rv = Avi − σiui.

The SVD is crucial to a variety of fields including statistics for principal component

analysis [36], computer science for image compression [57] and web search clustering [53],

and genomics for expression data processing [3]. More specifically, finding the smallest

singular triplets is useful for total least squares problems, the determination of the effective

rank of a matrix [21], and variance reduction of inverse operators [18]. When searching for

the largest singular values, the SVD is frequently used to provide a low-rank approximation

such that ∥A − Ak∥ is minimized for some norm and rank k. In fact, without additional

2

constraints, the SVD is known to provide the best such rank k approximation for all

Schatten p-norms including the 2-norm ∥ · ∥2 (spectral norm), Frobenius norm ∥ · ∥F and

trace norm ∥ · ∥∗.

∥A∥2 = σ1, ∥A∥F =

min(m,n)∑
i=1

σ2
i

1/2

, ∥A∥∗ =
min(m,n)∑

i=1

σi. (1.2)

In this thesis unless otherwise specified, the 2-norm can be assumed.

Frequently, the SVD is framed within the context of eigenvalue decomposition on the

symmetric matrices ATA, AAT (normal equations) and on the augmented matrix

B =

0 AT

A 0

 . (1.3)

This is due to the following relations given A = UΣV T : ATA = V Σ2V T , AAT = UΣ2UT ,

and QTBQ = diag(σn, . . . , σ1,−σn, . . . ,−σ1, 0, . . . , 0) with

Q =
1√
2

V V 0

U1 −U1

√
2U2

 and U =

[
U1 U2

]
. (1.4)

These observations have lead to a number of algorithms derived from previous work on the

well-studied symmetric eigenvalue problem [55]. However, the computation strategies for

SVD vary significantly based on the problem size and structure of the matrix A.

For smaller dense problems, a direct solver is typically used. Direct solvers generally

utilize an implicit version of the symmetric QR algorithm for eigenvalues on ATA. This

involves an initial bidiagonalization step where the matrix A is reduced to an upper bidi-

agonal matrix through Householder reflections (or possibly Givens’ rotations). Without

considering the remaining reduction to diagonal form, this process requires O(mn2) time,

making it prohibitively expensive for large matrices.

When the matrix A is large enough, it can be inefficient to compute the SVD with

3

direct methods. Furthermore, the matrix often can be relatively inexpensive to apply

as a matrix-vector multiplication (MatVec), even when the dimensions are large. This

can occur when the matrix is highly sparse, or when the matrix action on a vector can

be represented as an inexpensive function. In some applications, it is possible to highly

sparsify the matrix to reduce the MatVec cost without perturbing the required spectrum

significantly [1].

These considerations have led to the use of iterative algorithms like Golub-Kahan-

Lanczos (GKL) also known as Lanczos bidiagonalization [20]. While these methods gen-

erally only provide a portion of the singular triplets, many applications often require only

a few of the largest or smallest singular values and vectors.

When the solution requires many iterations, it may be infeasible to store all the GKL

vectors necessary to maintain stability through orthogonalization. To solve this, restarted

versions of GKL that limit the maximum basis size, such as IRLBA [6], have been devel-

oped. Additionally, other methods have emerged, such as Jacobi-Davidson (JDSVD) [29],

the Preconditioned Hybrid SVD method (PHSVDS) [73], and the Preconditioned Locally

Minimal Residual method (PLMR_SVD) [70]. These methods can use the more advanced

+k (also known as locally optimal) restarting and can take advantage of preconditioning,

which can provide significant speedups for difficult problems.

In general without preconditioning or +k restarting, these methods build Krylov spaces

on the normal equations matrix C = ATA or on the augmented matrix B in (1.3). We

denote a k-dimensional Krylov space on a square matrix A with initial vector v1 by

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}.

1.1.1 Motivation

Methods on ATA generally converge more quickly to the smallest singular triplets compared

to methods on the augmented matrix B. This can be attributed to the highly interior

nature of the smallest eigenvalues of B. However, methods on ATA generally exhibit poor

conditioning as their condition number is κ2, i.e., the square of the condition number of A,

4

κ = σn/σ1. In this dissertation, we present a new algorithm, the Golub-Kahan Davidson

method (GKD), which removes this trade-off. We show that GKD converges with the

speed of methods on ATA without their accuracy limitations.

We achieve this novel improvement through two key steps. First, we enforce the relation

AV = UR, where the left space, U , is built through the QR decomposition of AV . Second,

we update the right search space V with left residuals ATU −ΣV . These residuals can be

preconditioned like the Davidson method for eigenvalue problems, which is crucial for fast

convergence on poorly conditioned matrices. We show in comparisons with the PRIMME

[64] software package that our novel GKD algorithm consistently requires fewer iterations

when searching for the smallest singular values, while it is equally efficient when searching

for the largest.

While computing the smallest singular values presents significant numerical difficulties,

finding the largest values is critical for a large number of applications. In particular, the

low rank approximation of a matrix A requires the computation of many of its largest

singular values. In our second work, we expand GKD with a focus on novel stopping

criteria that target the needs of low rank approximations. GKD and most other iterative

methods for SVD use the standard residual stopping criterion

∥rv∥ = ∥Av − σu∥ < δ

∥ru∥ = ∥ATu− σv∥ < δ

(1.5)

with a user specified δ. While the residual criterion is useful in many situations, it may

require significantly more computation than necessary for applications that only require a

subspace that delivers a low rank matrix close to A in some norm. We analyze multiple

alternative stopping criteria including novel criteria for matrix completion algorithms.

During our investigation of matrix completion algorithms, we found a few interesting

methods that were iterative in nature and relied on one SVD computation per iteration.

This includes the Singular Value Thresholding algorithm [9], the Soft Impute algorithm

5

[44], and the Accelerated Proximal Gradient algorithm (APGL) [67]. All three of these

algorithms use a heuristic to determine the number of singular values to calculate at each

iteration, but the authors claim this heuristic is only necessary because PROPACK [39]

does not provide an appropriate stopping criteria.

We implemented these suggested stopping criteria in GKD and developed also an al-

ternative stopping criterion based on the actual functional that the matrix completion

algorithms seek to minimize. We have made two key observations. One, we show that

the thresholding criteria proposed by other authors performs signficantly worse than the

heuristic implementations they implement. This leads to the conclusion that these rela-

tively unstudied heuristics play a far larger role in convergence than the authors suggest.

Secondly, we found that our stopping criterion based on checking the distance to the true

matrix (instead of residuals) could significantly improve performance. Surprisingly, this

criterion frequently chose to return low accuracy answers to the SVD problem, but pro-

duced good answers for the matrix completion problem. We intend on investigating these

phenomena further to provide additional theory or insights that can lead to algorithmic

improvements.

6

Chapter 2

The Golub-Kahan Davidson Method

Obtaining high accuracy singular triplets for large sparse matrices is a significant challenge,

especially when searching for the smallest triplets. Due to the difficulty and size of these

problems, efficient methods must function iteratively, with preconditioners, and under

strict memory constraints. In this research, we present a Golub-Kahan Davidson method

(GKD), which satisfies these requirements and includes features such as soft-locking with

orthogonality guarantees, an inner correction equation similar to Jacobi-Davidson, locally

optimal +k restarting, and the ability to find real zero singular values in both square

and rectangular matrices. Additionally, our method achieves full accuracy while avoiding

the augmented matrix, which often converges slowly for the smallest triplets due to the

difficulty of interior eigenvalue problems. We describe our method in detail, including

implementation issues that arise. Our experimental results confirm the efficiency and

stability of our method over the current implementation of PHSVDS in the PRIMME

software package.

2.1 Introduction

Assuming a large sparse matrix, A ∈ ℜm,n with m ≥ n, the economy size singular value

decomposition (SVD) is given by

A = UΣV T , (2.1)

7

where U ∈ ℜm,n and V ∈ ℜn,n are orthonormal bases and Σ = diag(σ1, . . . ,σn) ∈ ℜn,n

with σ1 ≤ σ2 ≤ · · · ≤ σn is a diagonal matrix containing the singular values of A. The

singular triplets of A are defined as (ui,σi,vi), where bold face differentiates from search

space vectors and values in this paper. Given the approximate singular triplet (ui, σi, vi),

we have the left and right singular value residuals, defined as ru = ATui − σivi and

rv = Avi − σiui.

This decomposition has become increasingly important and is frequently used in fields

like statistics for principal component analysis [36], computer science for image compression

[57] and web search clustering [53], and genomics for expression data processing [3]. More

specifically, finding the smallest singular triplets is useful for total least squares problems,

the determination of the effective rank of a matrix [21], and variance reduction of inverse

operators [18].

Additionally, finding high accuracy solutions is crucial when running in a single or

low precision environment. In single precision, matrix multiplication can only provide

1.2E-7∥A∥ of accuracy, and in practice this bound is optimistic for iterative solvers due

to accumulated error. Despite this limitation, single-precision calculations have become

increasingly important for deep learning applications [26] which are often resistant to errors

and therefore require less than full double precision. Reducing the precision of matrix

vector multiplications can provide speed ups on CPUs due to increased vectorization, and

GPUs can obtain speedups of 2x-4x [76]. In addition, using single precision cuts the storage

requirements in half. Specifically, the use of single precision calculations is encouraged by

Advanced Micro Devices (AMD) for OpenCL applications [2], and half precision, which

can only provide 1E-3∥A∥ digits of accuracy, has been growing in popularity on NVIDIA’s

GPUs [43].

When the matrix A is large enough, it can be inefficient to compute the SVD with

dense methods. Furthermore, applications often require only a few of the largest or smallest

singular values and vectors. These considerations have led to the use of iterative algorithms

like Golub-Kahan-Lanczos (GKL) also known as Lanczos bidiagonalization [20]. However,

8

when the solution requires many iterations, it may be infeasible to store all the GKL vectors

necessary for full or partial reorthogonalization. To solve this, restarted versions of GKL

that limit the maximum basis size, such as IRLBA [6], have been developed. Additionally,

other methods have emerged, such as Jacobi-Davidson (JDSVD) [29], the Preconditioned

Hybrid SVD method (PHSVDS) [73], and the Preconditioned Locally Minimal Residual

method (PLMR_SVD) [70]. These methods can use the more advanced +k (also known as

locally optimal) restarting and can take advantage of preconditioning, which can provide

significant speedups for difficult problems.

In general without preconditioning or +k restarting, these methods build Krylov spaces

on the normal equations matrix C = ATA or on the augmented matrix,

B =

0 AT

A 0

 . (2.2)

We denote a k-dimensional Krylov space on a square matrix A with initial vector v1 by

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1} and ∥ · ∥ denotes the Euclidean norm.

Frequently, methods that build their search space with B, like JDSVD and PLMR_SVD,

are able to achieve accuracy of ∥rB∥ < O(∥A∥ϵmach) when searching for the smallest singu-

lar triplets, where ϵmach is the working machine precision and rB = [ru; rv] is the eigenvalue

residual on B. However, B has singular values ±σi [55], so searching for the smallest sin-

gular triplets is a highly interior eigenvalue problem that can converge slowly. Worse, when

A is rectangular, the spectrum of B contains m − n zero eigenvalues that are not in the

spectrum of A. Therefore, methods on B are unable to distinguish real zero singular values

of A within the spectrum when m ̸= n.

Alternatively, methods that build Kk(C, v1) explicitly are only able to achieve accuracy

O(∥C∥ϵmach) = O(∥A∥2ϵmach) for the eigenvalue residual on C, rC . If u = Av/σ or rv = 0,

then rC is equivalent in exact arithmetic to a scaling of ru,

rC = ATAv − σ2v = σ(ATu− σv) = σru. (2.3)

9

When these methods compute the smallest singular value, and if σ ̸= 0, it is easy to see

that (2.3) limits the accuracy with respect to the ru residual to O(∥A∥κ(A)ϵmach), where

κ(A) = σn
σ1

is the condition number of A.

Despite the squaring of the spectrum, these methods usually converge faster than

methods on B, both in theory and in practice, due to the extremal problem they solve.

Furthermore, these methods are often able to find real zero singular values of A, as the

corresponding eigenproblem on C does not introduce extraneous zero eigenvalues.

In this work, we introduce a Golub-Kahan Davidson method (GKD), which keeps the

convergence of methods on C, but attains the full accuracy of methods on B. Specifi-

cally, we define full accuracy to be
√
∥ru∥2 + ∥rv∥2 < ∥A∥ϵmach. First, we discuss related

methods such as GKL, JDSVD, PLMR_SVD and PHSVDS, followed by a detailed de-

scription of our method including implementation details. Lastly, we provide experimental

results that highlight the capabilities of GKD compared to the current implementation of

PHSVDS in the PRIMME software package.

2.1.1 Related Work

GKL [39] builds two vector bases, one for the right space Kk(A
TA, v1) and one for the

left space Kk(AA
T , Av1). It builds the second basis while computing the first one without

additional matrix vector multiplications (matvecs). More importantly, it avoids directly

multiplying vectors with ATA and thus avoids the numerical problems associated with

working on C. This is done by keeping two orthogonal spaces, U and V , where the last

vector of V , vk, is used to expand U as uk = Avk and the last vector of U , uk, is used to

expand V as vk+1 = ATuk. These new vectors are orthonormalized to the previous ones

in their corresponding bases and the coefficients from this process are used to create the

bidiagonal projection matrix UTAV . GKL solves the smaller singular value problem on

this projection matrix to approximate the singular triplets.

While GKL is considered to be one of the most accurate and effective algorithms for

finding small singular triplets, the standard version is unrestarted and cannot be precondi-

10

tioned. Therefore, GKL tends to be computationally slow for poorly separated triplets of

large matrices. Many restarted versions have been developed [7, 6, 35] but use primarily

implicit or thick restarting [71] and thus are unable to maintain the convergence of the

unrestarted method. Locally optimal (also known as +k) restarting uses vectors from suc-

cessive iterations in a way similar to a non-linear conjugate gradient and has been shown

to converge similarly to an unrestarted method for both eigenvalue [38, 61, 63] and singular

value problems [73].

SVDIFP [42] implements an inner-outer method where the inner one builds a precon-

ditioned Krylov space Kk(M(C − ρiI), xi), where M is a preconditioner for C and (xi, ρi)

is the approximate right singular vector and value at the i-th step of the outer iteration.

SVDIFP is able to avoid numerical problems, at least for the right singular vectors, by us-

ing a two sided projection similarly to GKL. SVDIFP’s structure, however, does not allow

for many of the optimization techniques of Davidson-type methods which can significantly

improve convergence [73].

JDSVD [29] works on B by using two independent subspaces rather than one. It is an

inner outer method that expands both spaces by solving a Jacobi-Davidson type correction

equation on B. Without preconditioning, restarting, or solving the correction equation,

the JDSVD outer method builds subspaces that span the following Krylov spaces:

Uk = K k
2
(AAT , u1)⊕K k

2
(AAT , Av1), Vk = K k

2
(ATA, v1)⊕K k

2
(ATA,ATu1). (2.4)

These spaces are similar to the ones used in GKL, but crucially, each space is the sum

of two different spaces of half dimension. This allows JDSVD to take advantage of initial

guesses for both the left and right singular vectors. However, it also means that the

outer solver in JDSVD requires twice as many matvecs to build a space of equal Krylov

dimension. Furthermore, if we choose initial vectors that satisfy v1 = ATu1, the outer

iteration of JDSVD becomes wasteful as it builds the same space as a GKL with half the

dimension (in this case the spaces K k
2
(ATA, v1) and K k

2
(ATA,ATu1) in (2.4) differ only

11

by one vector). This is also true of eigensolvers on B as seen below,

B2

 v

Av

 =

0 AT

A 0

2 v

Av

 =

 ATAv

AAT (Av)

 . (2.5)

Despite a slower outer iteration, the inner correction equation used in JDSVD is essen-

tial to its performance as it often allows for faster convergence than eigenvalue methods

on B while maintaining the ability to converge to full accuracy. However, it can still suffer

from the same issues as other eigenmethods on B.

PHSVDS [73] exploits the different advantages of eigenmethods on B and C by utilizing

each in a two-stage method. The first stage can use any state-of-the-art eigensolver on C,

which gives it fast convergence until either the user tolerance is met or until switching to a

second stage using an eigensolver on B is necessary to reach the remaining user tolerance.

Switching to an eigensolver on B after a fully converged first stage can effectively utilize

good initial guesses from the first stage on C, and thus PHSVDS can avoid resolving the

entire accuracy on an indefinite problem. Its implementation in PRIMME can use any of

the two near-optimal eigensolvers, GD+k or JDQMR. This two-stage approach has been

shown to be faster than eigensolvers on B alone, and typically has better performance than

other SVD methods.

While PHSVDS has shown significant improvements, it is still limited by the speed of

eigensolvers on B when the matrix is ill-conditioned. It converges quite well for problems

that do not need to switch stages, but eigensolvers on C cannot converge to high accuracy

if the smallest singular value is nearly 0. Once it switches to the second stage on B, a

significant slowdown occurs associated with interior problems and methods based on the

augmented matrix. In the following sections, GKD demonstrates convergence with the

near-optimal speed of GD+k on C down to O(∥A∥ϵmach).

PLMR_SVD [70] is a recent method based on a stationary iteration that uses two

12

separate four-term recurrences to build the following spaces,

span{v(i), r(i)u , P (AT r(i)v − σr(i)u), v(i−1)}

span{u(i), r(i)v , P (Ar(i)u − σr(i)v), u(i−1)},

where v(i) and u(i) are the i-th approximations of the right and left singular vectors re-

spectively, and r
(i)
v = P (Av(i)−σu(i)) and r

(i)
u = P (ATu(i)−σv(i)) are their preconditioned

right and left residuals respectively. Without a preconditioner, PLMR_SVD is equivalent

to GD+1 with a 3-vector basis (or LOBPCG) on B. There may be additional benefits to

building the spaces separately, but PLMR_SVD lacks the subspace acceleration present

in GD+k and JDSVD, which can provide superlinear convergence.

2.2 Main Contribution

In the following section, we describe the proposed method, GKD, in detail, especially

focusing on the selection of approximate singular triplets from our subspaces and the im-

plementation of our restarting method. Additionally, we discuss error accumulations that

occur due to restarting and the mitigation strategy required to ensure reliable perfor-

mance for high accuracy calculations. Finally, we extend GKD to an inner-outer method

that solves a Jacobi-Davidson correction equation.

2.2.1 Algorithm

Our algorithm is designed to mimic the numeric nature of GKL by keeping two orthonor-

mal bases for the right and left space, V and Q respectively, which are built without

multiplying directly with ATA. Instead, we build Q such that AV = QR is the economy

QR factorization of AV . Then, we extend V with a left residual based on a Galerkin

extraction from R. Without preconditioning or +k restarting, this process is identical to

GKL, building the right and left spaces Kq(A
TA, v1) and Kq(AA

T , Av1) after q iterations

or 2q matvecs. Since both the extraction of approximate triplets through the SVD of R

13

and the expansion of the spaces avoid a direct multiplication with C, we avoid the squaring

of the norm and condition number that occurs with eigensolvers on C.

Specifically, we extract approximate singular triplets from these spaces using a Rayleigh-

Ritz procedure that is adapted for the SVD. Given search spaces Q ⊂ Rm and V ⊂ Rn, we

can determine approximations (u, σ, v) with the following two Galerkin conditions on the

right and left residuals,

Av − σu ⊥ Q,

ATu− σv ⊥ V.
(2.6)

Since u ∈ Q and v ∈ V, we can write u = Qx and v = V y, where Q and V form

k-dimensional orthonormal bases of Q and V respectively. Additionally, AV = QR ⇒

QTAV = R, which allows us to rewrite the conditions as follows:

QTAV y = σQTQx⇒ Ry = σx

V TATQx = σV TV y ⇒ RTx = σy.

(2.7)

Therefore, solving the singular value decomposition on R with singular triplets (x, σ, y)

satisfies both constraints and provides approximations to the singular triplets of A.

To expand the right search space, we take the approximations from the above Rayleigh-

Ritz extraction and use them to form the left residual ru = ATu−σv. Then, we can choose

to expand V with this ru directly, or with the preconditioned residual Pru, where P is a

suitable preconditioner for ATA or for ATA− σI, if available.

We expand the left space Q with Avi+1 instead of a preconditioned right residual. This

differentiates the method from JDSVD with the goal of producing a faster converging outer

method. Specifically, from (2.3) the left residual ru is colinear with the residual rC of the

Generalized Davidson (GD) method [46] on the matrix C, which is also colinear with the

new GKL direction for V . In addition, the Rayleigh-Ritz on C used by GD gives the same

14

answer as (2.7),

V TATAV y = σy ⇒ RTRy = σy,

so, in exact arithmetic, GKD is equivalent to GD solving the eigenproblem on ATA.

Without preconditioning or restarting, it is also equivalent to GKL and thus it is twice as

fast as JDSVD if the latter is used only as an outer method. By construction, GKD has

similar numerical properties as GKL, whereas the accuracy of GD is limited by working

directly on ATA. GKD can also be used with thick and +k restarting, which in exact

arithmetic makes it equivalent to GD+k on C, the first stage method of PHSVDS, but

without the numerical limitations. Algorithm 1 shows the restarted and preconditioned

version of GKD when seeking one singular triplet. Although the orthogonalization of step

13 can be avoided without preconditioning [59], it is needed for high accuracy and allows

our more general method to use flexible preconditioning. Furthermore, the algorithm can

be extended to find more than one singular triplet by using soft or hard locking. A block

version is similarly possible.

Algorithm 1 GKD Iteration
1: Define target τ , initial vector v1, max basis size q, tolerance δ, preconditioner P , and

i = 1
2: Build V = [v1], Q = [Av1

∥Av1∥], R =zeros(q,q), and R(1, 1) = ∥Av1∥
3: while

√
∥ru∥2 + ∥rv∥2 > ∥A∥δ do

4: while i < q do
5: Compute SVD of R
6: Choose the singular triplet (x, σr, y) of R nearest to the target τ
7: Save vold = y for +k restarting
8: Set u = Q(:, 1 : i)x, v = V (:, 1 : i)y
9: Compute left residual: ru = ATu− σrv

10: V (:, i+ 1) = Pru
11: Orthogonalize V (:, i+ 1) against V (:, 1 : i)
12: Q(:, i+ 1) = AV (:, i+ 1)
13: Orthogonalize Q(:, i+ 1) against Q and update R(:, i+ 1)
14: i = i+ 1
15: end while
16: call Algorithm 2 to restart
17: end while

15

2.2.2 Restarting and Locking

Our restart procedure takes the current best approximations to the s singular triplets

closest to the user specified target, τ , and uses them together with those from the +k

restarting to compress V , Q and R down to dimension s + k. The steps for building the

restarted V follow closely the description in [63] and are shown in lines 1-7 of Algorithm

2.

Algorithm 2 Restart Procedure
1: Define restart size s and target τ
2: Compute SVD of R = XΣrY

T

3: Choose s singular triplets of R closest to τ (called (X1,Σ
(1)
r , Y1))

4: Save the remaining singular triplets from the SVD of R, (X2,Σ
(2)
r , Y2)

5: vnew ← Orthogonalize saved +k vectors [vold; 0] from main iteration against Y1
6: t = [Y1, vnew]
7: V = V t
8: if Reset criteria is met then
9: Reorthogonalize V and build Q and R such that AV = QR

10: else
11: QR factorize Σ

(2)
r Y T

2 vold = Q̃R̃

12: Set Q = Q[X1X2Q̃] and R =

[
Σ
(1)
r 0

0 R̃

]
.

13: end if

The simplest method to restart Q and R, without recomputing the QR factorization

of the restarted AV t, is to set them as QQ̃ and R̃ respectively, where Q̃R̃ = Rt is the

QR factorization of Rt with t = [Y1, vnew] from line 6 of Algorithm 2. This can introduce

numerical error of magnitude O(∥R∥ϵmach), which can be as large as O(∥A∥ϵmach). Al-

though this error is acceptable for a single QR factorization, the error accumulates over

many restarts causing the factorization not to correspond to the actual AV and eventually

causing loss of convergence. It is possible to intelligently compute Q and R to avoid direct

16

multiplications with R through the already available SVD of R as seen below,

AV t = QRt = Q

[
X1 X2

]Σ(1)
r 0

0 Σ
(2)
r

I 0

0 Y T
2 vold

= Q

[
X1 X2

]Σ1 0

0 Σ
(2)
r Y T

2 vold

 .

(2.8)

From (2.8), the new Q and R can be obtained with minimal effort by performing a QR fac-

torization on Σ
(2)
r Y T

2 vold = Q̃R̃. The restarted Q and R are given in Line 12 of Algorithm

2. This strategy has better numerical behavior because we separate the space of small

singular values that are kept in thick restarting (X1) from the +k restarting space which

has correction directions over the entire singular space (including those of large magni-

tude). By explicitly decoupling Σ
(1)
r and R̃ in R, any errors in R̃ do not affect the ability

of the algorithm to compute the smallest eigenvectors and they only affect the correction

directions. Moreover, as the +k algorithm typically uses only k = 1 previous vectors, no

errors are expected.

To accurately find many singular triplets, we implement two versions of locking. The

first, hard-locking, locks singular vectors out of the search space explicitly once the required

user tolerance is reached. At every iteration, we orthogonalize the vector added to V

against the locked right singular vectors, as well as the previous vectors in V . In practice,

the vectors added to Q do not require orthogonalization against the locked left singular

vectors. The second, soft-locking, merely flags converged singular triplets while leaving

them in the basis.

It is known that hard locking can cause stagnation in some rare cases or when the

number of locked vectors is large. This is caused by the error still present in the locked

vectors, which may contain critical directions for other singular triplets [62]. We have

not seen any matrices in this paper that exhibit this behavior. However, soft-locking can

provide left and right singular vectors that are orthogonal to machine precision, while hard-

17

locking only obtains left singular vectors orthogonal up to O(∥A∥δ). Therefore, we present

only soft-locking results in this paper. We intend to address the issues with hard-locking

more thoroughly in the future.

2.2.3 Resetting

Since AV = QR, the right residual rv = Av−σu should be zero throughout our procedure,

rv = Av − σu = AV y −Q(σx) = AV y −QRy = (AV −QR)y = 0. (2.9)

Generally, this means we can avoid the extra matrix-vector multiplication (or storage for

AV) necessary to compute rv. In practice though, ∥rv∥ cannot be better than O(∥A∥ϵmach)

due to the multiplication of AV when computing the left space. Worse, ∥rv∥ grows as

O(
√

numRestarts∥A∥ϵmach), which has also been noticed in [72]. Therefore, our method

must calculate ∥rv∥ explicitly when ∥ru∥ < ∥A∥δ, where δ is the user selected tolerance.

This ensures we meet the convergence criteria of Algorithm 1.

The errors we observe in rv may grow large enough to exceed the user tolerance, which

would make convergence impossible. These errors come from two main sources. The first

source is from the loss of orthogonality of V , and the second is the loss of accuracy of

the QR factorization of AV . We have found experimentally that both of these errors can

impede or halt convergence as the SVD of R no longer corresponds to the singular triplets

in A. We note that this issue is rare and only occurs when δ ≈ ϵmach

√
numRestarts.

To correct these errors, we implement a resetting procedure that reorthogonalizes V , and

rebuilds Q and R directly from a newly computed AV . It is critical to only reset sparingly,

as rebuilding Q and R from scratch takes s + k matvecs to obtain AV and a full QR

factorization.

Additionally, we have noticed in our experiments that resetting can cause an increase in

the residual norm up to ∥A∥κ(A)ϵmach, which may require a few iterations to reduce back

to its previous level. This can be seen by analyzing a reset of the method when V = v1, the

18

exact singular vector. In this situation, after resetting the new q̃ = (Av1 + e)/∥Av1 + e∥

contains an error due to the matrix vector multiplication, with ∥e∥ ≤ ∥A∥ϵmach. When

κ(A) is not too large, the error term e in the nominator will be amplified by a factor of

1/(σ1−∥e∥) ≈ 1/σ1 at most. Thus, we expect the error in q̃ to be at most κ(A)ϵmach. This

means that the norm of the left residual norm, which we compute explicitly, can increase

up to ∥A∥κ(A)ϵmach. In order to track the errors mentioned above, we have devised two

inexpensive criteria that help to avoid unnecessary resets.

Since the error in the orthogonality of V may cause convergence issues, we must es-

timate how large ∥E∥ = ∥V TV − I∥ can be before it needs correction. To do so, we

analyze the Galerkin condition on the equivalent eigenproblem on C, i.e. ATAv = σ2v.

Applying the Galerkin condition with V , the projected eigenproblem should have been

V TATAV ỹ = σ̃2V TV ỹ. However, our algorithm solves V TATAV y = σ2y regardless of the

orthonormality of V . Therefore, we obtain a Ritz vector v = V y and Ritz value σ2 that

will not converge to a zero residual. The Ritz pair produced by our inexact Galerkin can be

considered as a Ritz pair of an exact Galerkin condition applied to the nearby generalized

eigenproblem ATAṽ = λM ṽ where M = V (V TV)−2V T . This can be seen by using the

Galerkin condition with V , which yields the same Ritz vector V y and Ritz value λ = σ2,

V TATAV y = λV TMV y = λV TV (V TV)−2V TV y = λy. (2.10)

In order to correctly monitor and maintain convergence, the residual rC = σru =

ATAv/∥v∥ − σ2v/∥v∥ should not drift too far from the exact residual of the generalized

eigenproblem, rE = ATAv/∥v∥ − σ2V (V TV)−2V T v/∥v∥, where ∥v∥ = ∥V y∥ since V y

may not be unit length. However, from [65, 30], ∥V y∥ ≥ σmin(V) ≥
√

1− ∥E∥ and

∥I − (V TV)−1∥ ≤ ∥E∥/∥(1− ∥E∥)∥. Therefore, assuming ∥E∥ < 1, we have

19

∥rE − rC∥ = σ2

∥∥∥∥ V y

∥V y∥
− V (V TV)−1y

∥V y∥

∥∥∥∥
≤ σ2∥V ∥∥I − (V TV)−1∥√

1− ∥E∥

≤ σ2∥V ∥ ∥E∥
(1− ∥E∥)3/2

≤ σ2(1 + ∥E∥)

 ∞∑
i=0

∥E∥i+1(−1)i

−3
2

i

≤ σ2(∥E∥+O(∥E∥2)).

(2.11)

Since we want ru = rC/σ to converge to tolerance ∥A∥δ, we want the distance ∥rE −

rC∥ < ∥A∥δσ. Thus, from (2.11), we should perform a reset when ∥E∥ ≥ ∥A∥δ/σ. In

practice, the second criterion described below will be satisfied earlier than (2.11), and

therefore ∥E∥ does not need to be computed explicitly.

The accuracy of the QR factorization also directly impacts the convergence of ru. From

(2.9), we can estimate errors in the QR factorization directly from the norm of the right

residual. We choose to reset when ∥ru∥ < 1.25∥rv∥, which includes a small 25% buffer that

we have found is necessary to detect potential stagnation in a few experimental cases. Since

∥rv∥ grows at a rate of approximately O(
√

numRestarts∥A∥ϵmach), explicit computation

of rv is unnecessary.

To demonstrate this problem, we ran lshp3025, a problem from the SuiteSparse Matrix

Collection [13], which requires thousands of restarts before convergence. Properties of

this problem can be found in Table 2.1. The criteria outlined in the previous paragraphs

combine to avoid the stagnation seen in Figure 2.1. Due to the very low tolerance of 1E-14

= 50 ∗ ϵmach, approximately 2,500 restarts or 35,000 matvecs may cause the reset criteria

to be met. It is clear our criteria is somewhat conservative, as resets occur approximately

every 40,000 matvecs, even when the method is able to converge without it. However,

20

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
10−14

10−10

10−6

10−2

102

Matrix Vector Multiplications

Le
ft

R
es

id
ua

lA
T
u
−

σ
v

lshp3025 with and without resetting

WithReset
WithoutReset

Figure 2.1: Demonstrating the need for resetting on lshp3025 (∥A∥ = 7) with GKD
(q = 35, s = 15, δ =1E-14, and k = 1).

without resetting, the method completely stagnates at around 110,000 matvecs. Moreover,

with or without resets, we observe convergence to the first 8 smallest singular values in a

similar number of matvecs (110,000), even though adding resets should increase the overall

number of matvecs. This indicates the increased stability of the method also can improve

performance slightly.

2.2.4 Inner Solver

Inner-outer solvers like JDSVD and the JDQMR implementation in PRIMME utilize extra

matvecs inside of an inner solver as a refinement step to improve the convergence speed

of the outer iterations. By solving a related linear system, these methods can provide a

significant speedup in time for problems that have a relatively inexpensive matrix-vector

multiplication. Furthermore, solving this linear system can reduce the residual of the so-

lution without requiring the expansion of the outer basis. Consequently, the number of

orthogonalizations as well as the number of restarts are reduced, which avoids their asso-

ciated error and resets. This is particularly critical for problems that require a significant

number of iterations.

GKD can be extended to a Jacobi-Davidson variant, GKJD, that expands the subspace

21

V by the approximate solution of the correction equation

(I − vvT)(ATA− σ2I)(I − vvT)t = −ru (2.12)

instead of applying a preconditioner at line 10 of Algorithm 1. Here, and for the remainder

of this section, σ without a subscript denotes the shift used for the inner solver, which may

be different from the user specified target τ or the current approximate singular value. As

before, σi will denote the ith singular value.

The inner equation can also utilize a preconditioner, improving convergence further.

In particular, our inner solver is based on the symmetric Quasi-Minimal Residual method

(QMRs) used in PRIMME’s JDQMR. QMRs benefits from the ability to utilize indefinite

preconditioners and solve indefinite systems which may occur when σ lies in the interior

of the spectrum.

In order to avoid overutilizing the inner method when convergence is poor or the cor-

rection equation does not match the desired singular values, or underutilizing the inner

method when convergence is good, extra steps must be taken. There is a significant volume

of research on stopping criteria for inner iterations, including results for Jacobi-Davidson

type methods for eigenvalue and SVD problems [31, 34, 33, 63, 52]. In this paper, we adopt

the dynamic criteria used in PRIMME’s JDQMR [63] which take advantage of the smooth

convergence of QMRs to estimate the relevant eigenvalue residuals and stop the linear solve

in a near-optimal way. Of course, other stopping criteria can also be implemented or an

entirely different inner solver may be used.

The inner solver for (2.12) works directly on ATA−σ2I so its numerical stability needs

to be justified. As with an outer iteration on ATA, no numerical issues are expected when

σ is in the largest part of the spectrum, but when seeking the smallest part, singular values

below O(∥A∥√ϵmach) will become indistinguishable when squared. However, the solution

of the inner correction equation still provides useful directions even when a few singular

values of A are below O(∥A∥√ϵmach). The reason is well understood numerically and it is

22

why inverse iteration works well despite a nearly singular linear system [55, sec. 4.3].

Assume there are k singular values below the noise level, i.e., σk ≤ ∥A∥
√
ϵmach < σk+1,

and a shift σ ≤ ∥A∥√ϵmach. If we ignore the projectors for simplicity, the numerically

computed solution of (2.12), t̃, satisfies

t̃ = t+ V (Σ2 − σ2)−1V TEt̃, (2.13)

where the backward error satisfies ∥E∥ ≤ ||ATA||ϵmach. Therefore, the relative forward

error is a vector t̃−t
∥t̃∥ =

∑n
i=1 vici with the coefficients satisfying

|ci| =
|vT

i Et̃|
|σ2

i − σ2|∥t̃∥
≤ ∥A∥

2ϵmach

|σ2
i − σ2|

. (2.14)

For i > k, we have σi ≥ σk+1 > ∥A∥√ϵmach, and thus |ci| = O(∥A∥2
σ2
i
ϵmach) < 1. As

the separation increases, σk+1 ≫ ∥A∥√ϵmach, we have ci ≪ 1 and the errors in the

vi, i > k, directions become negligible. For i ≤ k, we have |σ2
i − σ2| < ∥A∥2ϵmach and

thus the corresponding ci could blow up. In practice, calculations at the noise level of

the arithmetic will limit ci = O(1) but either way these vi, i ≤ k, directions dominate the

correction vector.

The behavior is similar when the backward error is at the level of the residual norm

at which we solve (2.12), i.e., ∥E∥ ≤ ∥A∥2θ, for some tolerance θ. Typically we ask for a

residual norm reduction relative to ∥ru∥ but this can be translated to a θ. Then, the |ci| in

(2.14) have the same bounds as above only multiplied by θ/ϵmach. Since the approximate

solution has ∥t∥ = O(θ), the effect of the noise error is larger.

We can view the noise of the numerically computed correction t̃ as the application of

a low pass filter with the diagonal matrix diag(ci), where the i < k singular components

dominate the result. Clearly, the inner iteration cannot differentiate between these k

smallest singular directions which look like a multiplicity. However, the Rayleigh Ritz of

the outer method has no problems approximating these singular vectors as long as their

23

k-dimensional space is sufficiently represented in the outer search space.

If the outer method in GKJD has a restart size s ≥ k and the gap σk+1/σk is large,

then the filter ensures that all vi, i = 1, . . . , k, will be approximated well after k outer

iterations. As the gap narrows, the filter boosts also directions of larger singular values

up to σf , where ∥A∥2
σ2
f
ϵmach starts to become negligible. Therefore, the outer method may

take more than k iterations, although convergence depends on the gaps in the “filtered”

σ1, . . . , σf spectrum, which has a much smaller spread than the entire spectrum.

The situation is similar if the restart size s < k and σk+1/σk is large, since the search

space cannot capture all small singular vectors, so convergence will occur based on the

perceived gaps after the implicit application of the filter. In the extreme case of s ≪ k

and/or very small spectral gaps, we can expect the method to be slow. However, in such

ill-conditioned problems, no better algorithmic options exist without a preconditioner.

0 100,000200,000300,000400,000500,000600,000700,000

10−10

10−7

10−4

10−1

102

Matrix Vector Multiplications

Le
ft

R
es

id
ua

lA
T
u
−
σ
v

GKD and GKJD on
Σ = [logspace(-10,-8,16) 1:1000]

GKJD
GKD

Figure 2.2: Convergence of GKD and
GKJD when there are more SVs below√
ϵmach than the MaxBasisSize (q = 35, s =

15).

5 10 15 20 25 30

2 · 104

4 · 104

6 · 104

8 · 104

Minimum Restart Size

M
at

ri
x

V
ec

to
r

M
ul

ti
pl

ic
at

io
ns

Effect of Minimum Restart Size on
Σ = [logspace(-5,-4,20) linspace(1e-3,1,1000)]

GKJD
GKD

Figure 2.3: Convergence of GKJD on a
problem with 20 SVs below

√
ϵmach in sin-

gle precision with varying minimum restart
sizes. (Maximum Matvecs = 75,000, q = 50)

Figures 2.2 and 2.3 show examples of how GKJD with dynamic stopping conditions for

the inner iteration can converge even when several singular values are below ∥A∥√ϵmach.

They also show that GKJD is competitive and sometimes faster than GKD in terms of

matrix-vector products, in addition to the benefit of a less expensive iteration. The ma-

24

trices have a specified spectrum Σ and random left and right singular vectors.

In Figure 2.2 the matrix has 16 singular values below ∥A∥√ϵmach but we limit GKD

and GKJD to a restart size of only 15. Even with this limitation, GKJD is able to converge

to the smallest singular triplet with a relative accuracy of 1E-14, and it does so three times

faster than GKD. Additionally, with only a few extra outer iterations, GKJD can find 14

of the smallest singular values.

The difference seen between GKD and GKJD is due to the large number of restarts

for GKD and their associated error. As the errors caused by restarts grows above the

relative tolerance within approximately 2,000 restarts (40,000 matvecs), GKD may have

numerical issues and not converge although this behavior is sensitive to the choice of

random orthonormal bases U and V . Since GKJD performs orders of magnitude fewer

outer iterations, it is not affected by this source of error heavily and therefore is not sensitive

to the random left and right singular spaces. With a marginally less strict tolerance, GKD

does not exhibit this behavior.

In Figure 2.3 we consider an example where the matrix has 20 singular values below

the ∥A∥√ϵmach threshold. We use single precision arithmetic, which allows for relatively

larger spectral gaps that make convergence tractable. We search for the smallest singular

value with a maximum basis size of 50, the dynamic inner stopping criteria, and a tolerance

of 1E-5 for all tests while varying the restart size used by the GKD and GKJD. We see

that smaller restart sizes do not impede convergence of GKJD and only slow it down by

less than a factor of two. However, the effects of a small restart size are much more severe

on GKD, which is unable to converge to the desired tolerance within 75,000 matvecs for

restart sizes less than 10. This shows that GKJD is able to rebuild the space lost during

restarting much more quickly than GKD, as the inner equation can sufficiently filter out

directions corresponding to the unwanted portions of the spectrum.

25

2.3 Benefits over PHSVDS

2.3.1 Avoiding the Augmented Problem

As mentioned earlier, methods on B often exhibit problems due to the interior nature of

the spectrum that they work on. In order to demonstrate these issues, Figure 2.4 shows

convergence on the problem A = diag([1e-10, 2e-10, 5e-10, 1e-9, 3e-9, 1e-8, 1e-6, 1e-4,

1:1000]). First, this problem is very poorly conditioned (κ(A) = 1E13) and since the 6

smallest singular values are below 1E-8, the first stage of PHSVDS is unable to distinguish

them from zero. Second, because the spectrum is reflected across 0 for the augmented

problem, it is very difficult to converge only to the positive part of the spectrum.

0 50,000 100,000 150,000 200,000
10−12

10−8

10−4

100

104

Matrix Vector Multiplications

Le
ft

R
es

id
ua

lA
T
u
−

σ
v

Finding 3 Smallest with Difficult
Artificial Problem

GKD
PHSVDS

Figure 2.4: Convergence of PHSVDS on
a poorly conditioned problem (κ(A) =
1E+13)

0 200 400 600 800 1,000

10−10

10−8

10−6

10−4

10−2

100

102

104

Matrix Vector Multiplications

Le
ft

R
es

id
ua

lA
T
u
−

σ
v

Finding 5 Smallest with Block
Jacobi Preconditioning (LargeRegFile)

GKD
PHSVDS

Figure 2.5: Stagnations caused by a fail-
ure to fully converge in the first stage of
PHSVDS (κ =1.1E+4)

In searching for 3 singular values to a user tolerance of 1E-14, PHSVDS took more

than 4 times more matvecs, but more importantly, it missed 5 smaller singular values as

the third converged value was 1e-4. Even worse, the vectors that were returned for left

and right spaces were not orthogonal, as ∥QTQ− I∥ ≈ ∥V TV − I∥ ≈ 6E-5. Therefore, the

true residuals after orthogonalization did not meet the full user tolerance. Comparatively,

GKD converges to all 6 of the smallest singular values and did so with fully orthogonal

26

left and right vectors. As we can see from the figure, the convergence for GKD is fairly

smooth, converging to each of the six singular values below 1E-8 before finishing. This is a

vast improvement over the second stage of PHSVDS, which exhibits irregular convergence

with large spikes in the left residual and long stagnations.

2.3.2 Switching Problems

One of the biggest practical advantages of GKD over PHSVDS or any two stage algorithm

is that it avoids the need to switch. For PHSVDS, choosing the right time to switch is

crucial so as to give the best possible initial guesses to the second stage in order to avoid

excessive use of the second stage on B. However, if an overly optimistic bound is used, it

may cause stagnations in the first stage before switching. In general, it can be difficult to

converge down to the theoretical limit for the first stage in practice, and determining the

minimum constant above the theoretical limit that works for every problem is most likely

impossible. Worse, preconditioning can increase this difficulty as it can cause errors that

are difficult to account for within the switching criteria.

Specifically, we found these switching issues to occur when testing PHSVDS on Larg-

eRegFile (another matrix from the SuiteSparse Collection [13]) with Block Jacobi pre-

conditioning and δ =1E-12. It is clear from the highlighted portions of Figure 2.5 that

PHSVDS is unable to meet the convergence criteria for the first stage. In fact, while

the case shown in Figure 2.5 is able to reach the criteria eventually, most cases like this

stagnate completely. For example, the same problem (LargeRegFile) when solved with an

inner solver (JDQMR) is never able to meet the first stage convergence criteria. Since

GKD never requires switching methods, we can avoid these problems entirely and provide

more reliable convergence.

2.3.3 Space and Time Comparisons

For computations on large matrices, it is important to consider the convergence rate, the

space requirements, and the total work that the algorithm requires. Therefore, we provide

27

a short comparison of the latter between our method and PHSVDS before presenting

numerical results in Section 2.4.

GKD requires storage for two spaces, V and Q that are n× q and m× q respectively

where q is the maximum basis size. In the PRIMME implementation of PHSVDS, a

similar amount of space is required to store the resulting left and right singular vector

approximations. However, the first stage of PHSVDS requires a working memory set of

two spaces of size n × q, for V and ATAV . Therefore, for square matrices, the working

space required for the first stage of PHSVDS is equivalent to GKD. For very tall and skinny

matrices (n ≪ m), the first stage of PHSVDS uses a reduced memory footprint for most

of the computation, but only if the user can guarantee that switching to the second stage

will not be required. Otherwise, the second stage of PHSVDS will require two spaces of

dimension (m+ n)× q. This corresponds to double the storage requirement of GKD. For

very large problems, this might force the user to reduce the max basis size in order to store

the bases in memory.

In terms of execution cost, GKD performs two orthogonalizations per iteration, one for

V and one for Q, while the first stage of PHSVDS performs only one orthogonalization for

V . Therefore, with low required accuracy where the second stage is not involved, PHSVDS

is more efficient per step computationally. For robustness, primme_svds implements the

second stage of PHSVDS using refined extraction which requires two orthogonalizations

on vectors of dimension m + n and thus has double the orthogonalization cost of GKD.

Additionally, these vectors of size m+n incur more error in dot product computations, so

baseline calculations will not be as accurate. When using low precision calculations (single

or half), these errors become even more important to avoid if possible.

2.4 Numerical Results

To verify our algorithm’s performance, we utilized the same matrices given in the original

PHSVDS publication [73] as well as three matrices with dimension larger than one million

28

Matrix pde2961 dw2048 fidap4 jagmesh8 wang3 lshp3025
dimension 2961 2048 1601 1141 26064 3025
nnz(A) 14585 10114 31837 7465 77168 120833
κ(A) 9.5E+2 5.3E+3 5.2E+3 5.9E+4 1.1E+4 2.2E+5
∥A∥ 1.0E+1 1.0E+0 1.6E+0 6.8E+0 2.7E-1 7.0E+0
γ1 8.2E-3 2.6E-3 1.5E-3 1.7E-3 7.4E-5 1.8E-3

Table 2.1: Basic Properties of Square Matrices
Matrix well1850 lp_ganges deter4 plddb ch lp_bnl2
rows 1850 1309 3235 3049 3700 2324

columns 712 1706 9133 5069 8291 4486
nnz(A) 8755 6937 19231 10839 24102 14996
κ(A) 1.1E+2 2.1E+4 3.7E+2 1.2E+4 2.8E+3 7.8E+3
∥A∥ 1.8E+0 4.0E+0 1.0E+1 1.4E+2 7.6E+2 2.1E+2
γ1 3.0E-3 1.1E-1 1.1E-1 4.2E-3 1.6E-3 7.1E-3

Table 2.2: Basic Properties of Rectangular Matrices
Matrix sls Rucci1 LargeRegFile
rows 1,748,122 1,977,885 2,111,154

columns 62,729 109,900 801,374
nnz(A) 6,804,304 7,791,168 4,944,201
κ(A) 1.3E+3 6.7E+3 1.1E+4
∥A∥ 1.3E+3 7.0E+0 3.1E+3
γ1 8E-7 5E-5 3E-7

Table 2.3: Basic Properties of Large Scale Matrices

from [72]. These matrices are publicly available through the SuiteSparse Matrix Collection

[13] and represent real world applications. These problems are quite difficult for iterative

solvers and are used to stress test the capabilities of GKD and PHSVDS. Since these

matrices are sparse, we provide their dimensions and the number of non-zero entries of A,

nnz(A), as well as the norm of A, ∥A∥, the condition number of A, κ(A), and the gap

ratio for σ1, γ1 = (σ2 − σ1)/(σn − σ2).

The matrices listed in Table 2.1 and Table 2.2 are listed from least to most difficult (left

to right) as generally their condition numbers increase, and the gap ratios for their smallest

singular values decrease. It should be noted that none of these matrices are particularly

poorly conditioned, and do not require the second stage in PHSVDS to improve the singular

vector estimates more than a few orders of magnitude. Therefore, the benefits we would

expect to gain on very poorly conditioned problems are significantly larger.

We restrict GKD and PRIMME’s PHSVDS Matlab interface, primme_svds, to a max-

29

imum basis size of 35 vectors, a minimum restart size of 15 vectors and a user tolerance

of δ = 1E-14 for the smaller matrices and δ = 1E-12 for the larger ones. We also enforce

one retained vector from the previous iteration (for +1 restarting) except for the three

large cases, where we enforce +2 restarting. Additionally, we choose to soft lock converged

triplets, but due to the interior nature of the augmented method in primme_svds, we

are unable to set soft-locking for the second stage while searching for the smallest singu-

lar triplets. It should be noted that hard-locking generally improves performance for our

method when searching for more than one singular value, but does not provide the same

orthogonality guarantees and is subject to the numerical issues mentioned earlier.

2.4.1 Unpreconditioned Results

lshp3025
wang3

jagmesh8
fidap4

dw2048
pde2961

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Matrix Name

M
V

R
at

io

Finding 1 or 10 Smallest SVs
on Square Matrices

GD+k/GKD
GD+k/GKD 10SV
JDQMR/GKJD

JDQMR/GKJD 10SV

lp_bnl2
ch plddb

deter4
lp_ganges

well1850

1

1.5

2

2.5

Matrix Name

M
V

R
at

io

Finding 1 or 10 Smallest SVs
on Rectangular Matrices

GD+k/GKD
GD+k/GKD 10SV
JDQMR/GKJD

JDQMR/GKJD 10SV

Figure 2.6: Unpreconditioned Results on 12 problems from the SuiteSparse Matrix Col-
lection with a relative user tolerance of δ = 1e− 14.

We compare GD+k (implemented as the default MIN_MATVECS method in primme_svds)

against GKD, and the JDQMR method (MIN_TIME in primme_svds) against GKJD.

As shown in Figure 2.6, GKD and GKJD require fewer matrix-vector multiplications than

their primme_svds counterparts for all matrices. Also, the matrices that show the largest

benefits are lshp3025, wang3, jagmesh8, and lp_ganges. As expected, these correspond to

the matrices that required more significant use of the second stage in primme_svds, due

to their larger κ(A).

30

sls Rucci1 LargeRegFile

0.8

0.9

1

Matrix Name

M
V

R
at

io
Finding 5 Smallest SVs
on Large-Scale Problems

GD+k/GKD 5SV
JDQMR/GKJD 5SV

sls Rucci1 LargeRegFile
GKD 60298 112668 28766
GD+k 62050 117882 30056
GKJD 50859 138750 27652

JDQMR 40236 138118 26508

Figure 2.7: Large-Scale Unpreconditioned Results. Required matvecs for GKD, GD+k,
GKJD and JDQMR are shown in the table. Note that for sls, GKJD finds 3 of the singular
values with multiplicity 14 while JDQMR finds only 2.

For most cases, we see a slight drop off in performance when searching for the 10

smallest singular values, but this is mostly caused by different implementations of soft-

locking. Since primme_svds uses two stages, the first stage soft locks each vector at a

tolerance above the user specified tolerance. However, since they are soft-locked, the first

stage of primme_svds can improve the initial guesses to the second stage in some cases,

since it leaves the estimated singular triplets in the basis while converging to other vectors.

To verify this hypothesis, we ran GKD using a pseudo two-stage implementation that

mimics the primme_svds behavior. This was done by converging to all 10 singular values

to a higher tolerance first (κ(A)∥A∥ϵmach), before converging to the full user tolerance. In

this case, GKD can further improve performance for soft-locking over primme_svds.

For rectangular matrices, we also tested whether our method could find a true zero

singular value by appending one extra column to the matrix equal to the first column. GKD

is able to find the real zero in all cases. primme_svds will not return this numerically zero

value, as outlined in its documentation, since its second stage has no way to distinguish

real zeros from the null space created by the augmented matrix.

For the large scale matrices, Figure 2.7 shows fairly similar performance between

primme_svds and GKD/GKJD. This is expected as the tolerance is higher (tol = 1E-

12) than the small cases, and therefore primme_svds only uses the second stage sparingly.

The biggest difference is seen for sls and for the inner-outer methods (JDQMR/GKJD),

31

where the high multiplicity (14) at the second smallest singular value causes issues with

convergence. Specifically, JDQMR only converges to two of these numerically equal sin-

gular values before finding five converged triplets, while GKJD is able to recognize the

higher multiplicity and spends extra iterations finding a third. We also note that the

number of matvecs for GKD/GKJD is significantly smaller than the numbers for SLEPc’s

implementation of LBD reported in [72].

In general, iterative methods may have trouble finding multiplicities or may converge

out of order causing the methods to miss directions [45]. This is especially true for Krylov

solvers which, in exact arithmetic, are unable to find more than one eigenvector correspond-

ing to a multiplicity. In order to solve this problem, many algorithms, including PHSVDS,

can utilize a block solver where the block size approximates the degree of the multiplicity

[7, 5, 23]. Additionally, multiple initial guesses can be used to reduce the likelihood of

initial vectors being deficient in the invariant space of the multiplicity. Both of these ideas

would be simple extensions that could be added to GKD to improve robustness.

2.4.2 Single Precision Results

106 108 110 112 114 116 118 120

1,800

2,000

2,200

2,400

Max Basis Size

M
at

ri
x

V
ec

to
r

M
ul

ti
pl

ic
at

io
ns

Rucci1: Finding 100 Largest
in Single Precision

GKD
IRLBA

Figure 2.8: Similar performance can be
achieved with a relatively small basis size
even when searching for 100 values.

20 25 30 35 40 45 50

200

220

240

Max Basis Size

M
at

ri
x

V
ec

to
r

M
ul

ti
pl

ic
at

io
ns

Rucci1: Finding 10 Largest
in Single Precision

GKD
IRLBA

Figure 2.9: IRLBA wastes matrix vector
multiplications building a full basis without
checking convergence.

32

In order to demonstrate the versatility of our method, we ran tests in single preci-

sion looking for the largest 10 or 100 singular values of matrices to tolerance δ = 1E-4.

Additionally, our initial basis is built with a simple GKL iteration. Although much less

taxing on the solver, these kinds of requirements are common in many SVD applications.

We compare our results to IRLBA, which is the default method in MATLAB’s svds for

seeking the largest singular values. Since we are looking for low accuracy, we omit results

from PRIMME since it would use only the first stage which is equivalent to GKD.

Figures 2.8 and 2.9 report results on Rucci1. We also ran these tests on sls and Larg-

eRegFile, but convergence was achieved in too few iterations (requiring only one restart)

so all methods were similar. We vary the maximum basis size to understand how GKD

compares when the user has more or less space than IRLBA uses as a default. When

searching for 100 singular triplets, we choose basis sizes close to 100 to mimic the situation

where space is at a premium and only a small number of extra vectors can be stored. For

10 singular triplets, we show how IRLBA compares to GKD when the basis size is much

larger than the number for desired triplets.

Figure 2.8 shows that both IRLBA and GKD provide fairly similar results for 100

singular values. GKD performs better in the most extreme memory limitation as it can

selectively target the desired values when building its space. However, when there is more

room to build a Krylov space, this targeting is no longer required.

Figure 2.9 shows increased advantages of GKD when fewer singular values are needed.

For 10 singular values, the standard version of IRLBA defaults to a maximum basis size of

30. In some cases, the system may have additional space for a larger basis size which can

improve convergence. However, since IRLBA generally only checks convergence after a full

basis is built, a larger basis size can limit how often IRLBA performs these checks. This

allows GKD to outperform IRLBA, even though they obtain nearly identical performance

for smaller basis sizes.

To demonstrate the accuracy limit of our method, we run GKD searching for the 10

largest singular values of Rucci1 with a user tolerance of 0. Since this tolerance is not

33

reachable, the original algorithm will stagnate on the largest singular triplet, before it has

the chance to target more singular values. To allow all 10 singular triplets to improve, we

rotate the target index from 1 to 10 at every iteration, and stop when all of the values begin

to stagnate at their accuracy limit. Figure 2.10 shows the convergence of each residual to

a stagnation at ≈ 2.5E-5. This is impressive given that ∥A∥ ≈ 7, ϵmach = 1.2E-7, and

the matrix dimensions are 2 million by 110K, which affects the dot product accuracy. The

associated error bound for a single iteration is ∥A∥ϵmach

√
m+ n ≈ 1.2E-3. Our algorithm

goes well below this bound.

0 100 200 300 400 500 600 700 800

10−5

10−4

10−3

10−2

10−1

100

Matrix Vector Multiplications

Le
ft

R
es

id
ua

l∥
A

T
u
−

σ
v
∥

Convergence of GKD in Single Precision

Figure 2.10: Maximum accuracy achievable with GKD in single precision for the 10
largest SVs on Rucci1. We set δ = 0 and rotate the target at each iteration to allow all
triplets to converge.

2.4.3 Preconditioned Results

In order to test the efficacy of preconditioning GKD, we ran tests on the six smaller square

matrices using a preconditioner built from Matlab’s ILU with the ilutp factorization, a

drop-tolerance of 1E-3, and a pivot threshold of 1.0. Our results in Figure 2.11 show the

significant benefit of an effective preconditioner, as all of the small problems required less

than 150 matvecs when searching for one singular value with GKD. However, these precon-

ditioners sometimes caused significant issues for primme_svds, as it was unable to converge

34

for lshp3025 when searching for the 10 smallest singular values, and exhibited significant

difficulty converging to 10 singular values for wang3, jagmesh8 and fidap4. Specifically,

when searching for 10 singular values, wang3 requires 12x more matvecs for JDQMR, and

jagmesh8 requires 56x and 14x more matvecs for GD+k and JDQMR respectively. These

issues are caused by primme_svds’ switching issues mentioned earlier.

lshp3025
wang3

jagmesh8
fidap4

dw2048
pde2961

2

4

6

8

Matrix Name

M
V

R
at

io

Finding 1 or 10 Smallest SVs
on Preconditioned Square Matrices

GD+k/GKD
GD+k/GKD 10SV
JDQMR/GKJD

JDQMR/GKJD 10SV

MVs to Find 1 Smallest SV
lshp3025 wang3 jagmesh8 fidap4 dw2048 pde2961

GKD 56 132 40 48 46 36
GD+k 94 224 78 82 78 74
GKJD 146 268 82 96 84 66

JDQMR 474 268 296 184 160 118

MVs to Find 10 Smallest SVs
lshp3025 wang3 jagmesh8 fidap4 dw2048 pde2961

GKD 389 687 285 399 389 303
GD+k DNF 860 16038 656 552 420
GKJD 1211 1393 721 1063 1027 779

JDQMR DNF 17132 10656 6250 3354 808

Figure 2.11: Preconditioned Results with an ILU Preconditioner for finding the smallest
and 10 smallest singular triplets.

For the three large rectangular matrices, we use a block-Jacobi preconditioner, inverting

exactly diagonal blocks of ATA each of size 600. This is relatively inexpensive to compute

and it is also parallelizable. Again, we see a significant decrease in matvecs as all three

problems required less than 15% of the matvecs needed for the unpreconditioned cases. For

Rucci1 the convergence differences between our methods and primme_svds are negligible,

but for sls and LargeRegFile, GKD and GKJD provide significant improvements in speed

and robustness. Again, as seen earlier in Figure 2.5, primme_svds’ switching criteria are

too stringent for preconditioned cases, which causes slowdowns for GD+k on LargeRegFile.

Worse, primme_svds’ JDQMR suffers stagnations that cause failures to converge when

preconditioned on sls and LargeRegFile.

The 80% improvement on sls over GD+k comes from primme_svds being unable to

separate the directions corresponding to the large degree multiplicity. During additional

testing, we found the number of matvecs required to find the 5 smallest singular values

with primme_svds is only marginally less than the number required to find 10. Since

35

primme_svds is unable to appropriately separate the directions corresponding to the mul-

tiplicity, it converges to all 10 values concurrently. However, GKD is able to distinguish

these directions and converge smoothly for each one individually, providing a substantial

improvement. Testing GKD to converge to 10 values as well, we still found an improvement

over primme_svds, however the gap between the two methods was significantly reduced.

sls Rucci1 LargeRegFile
1

1.5

2

M
V

R
at

io

Finding 5 Smallest SVs on
Preconditioned Large-Scale Problems

GD+k/GKD 5SV
JDQMR/GKJD 5SV

sls Rucci1 LargeRegFile
GKD 6515 16074 810
GD+k 11972 16426 1106
GKJD 8204 18198 1266

JDQMR DNF 18734 DNF

Figure 2.12: Large-Scale Results with Block Jacobi Preconditioner (block size=600 on
ATA) for the 5 smallest singular triplets. Required matvecs for GKD,GD+k, GKJD and
JDQMR are shown in the table.

2.5 Chapter Summary

We have presented GKD, a new method for finding the smallest singular triplets of large

sparse matrices to full accuracy. Our method works iteratively, under limited memory, with

preconditioners, while including features such as soft-locking with orthogonality guaran-

tees, +k restarting, and the ability to find real zero singular values in both square and rect-

angular matrices. Additionally, GKJD adds a Jacobi-Davidson inner solver for the ATA

correction equation into GKD, which can lower execution time when the matrix-vector

multiplication operation is inexpensive and can reduce the errors caused by restarting.

Both of these methods have shown to be more reliable and efficient than PHSVDS, and

thus over other SVD methods, for nearly all cases.

36

Chapter 3

Low-Rank Stopping Criteria for the

SVD

The singular value decomposition (SVD) is one of the most commonly used low rank ap-

proximation techniques due to its optimality for all Schatten p-norms. To solve large scale

SVD problems, robust, efficient and flexible iterative methods have been implemented in

a variety of software packages. However, these typically require practitioners to deter-

mine an appropriate target rank and accuracy, often without prior spectral information. If

practitioners desire SVD solutions with attributes that cannot be described with these two

parameters, they must overestimate these parameters, leading to potentially significant

inefficiencies.

We have developed a novel interface to iterative methods that allows users to directly

implement new stopping criteria to meet their needs and it is simple enough to implement

in a variety of solvers. We analyze a few examples of its use with newly developed robust

criteria for four cases: low rank approximations with certain magnitude and accuracy in

the Frobenius norm, in the 2-norm which is equivalent to singular value thresholding, the

computation of a well separated space in terms of spectral gap, as well as a unique and

purpose-built criterion for a real-world application. These model criteria are currently

implemented in GKD.

37

3.1 Introduction

Low rank approximations have become increasingly relevant over the past few years as

high dimensional data sets can be analysed in a variety of fields as low dimensional sub-

spaces. This kind of analysis can be far more efficient than using the full data and more

accurate than sketching or Monte-Carlo type methods. While integral to algorithms like

principle component analysis (PCA), low rank approximations have also been used for

a wide range of applications including facial recognition [68], image denoising [17], text

information retrieval using latent semantic indexing (LSI) [15], and signal processing [58]

including adaptive beamforming modeling [54]. Additionally, SVD is a critical component

for applications in scientific computing including preconditioning [8], variance reduction

[18] and model reduction [74], among others.

Given a m × n matrix A, the goal of the low rank approximation (LRA) problem is

to find a rank constrained version of A, Z, that satisfies some additional constraint. This

secondary constraint is frequently posed as the minimization of ∥A − Z∥ for a particular

norm and rank k. More generally, the second constraint can be viewed as a minimization

over any cost function. Many of these functions, including the standard ∥A − Z∥ mini-

mization for a variety of norms, have optimal solutions that can be directly described with

the truncated singular value decomposition (SVD) of A.

When the matrix is large and k ≪ min(m,n), large scale iterative SVD solvers are

far more efficient than their full SVD counterparts which require O(mn2) time. Highly

optimized software for most state of the art such iterative solvers is readily available in

[64, 39, 41, 6, 28, 32] These methods must implement criteria in order to determine when

a given solution has converged sufficiently. However, the criteria implemented in these

high quality software packages are based on the accuracy of the SVD solution, rather

than the best LRA solution. Often it is not clear how the two types of accuracy relate.

Additionally, these implementations require a priori knowledge of an appropriate k, which

may be unknown.

38

If the rank or required SVD accuracy is unknown, we are currently unaware of any soft-

ware solution that can guarantee an appropriate or optimal solution to the LRA problem

without solving the SVD problem repeatedly and varying these parameters. Our aim in

this paper is to show that these types of solutions are neither robust nor efficient. There-

fore, we developed a simple but powerful interface to stop SVD methods directly based on

LRA criteria which we describe in Section 3.3. Additionally, in Section 3.4 we describe the

algorithms that are required to ensure good quality, robust solutions for a few common

LRA criteria. These algorithms must be able to measure the LRA error with minimal

overhead, which can be especially difficult in the early steps of an iterative method when

the SVD solutions are inaccurate. Lastly, to show that this solution could be implemented

in place of the standard criteria in current available software, we implement it within the

Golub-Kahan-Davidson (GKD) solver [19] and test its efficacy on a variety of problems.

3.2 Background and Motivation

The singular value decomposition (SVD) of A is given by:

A = UΣV T , (3.1)

where U ∈ Rm,n and V ∈ Rn,n are orthonormal bases and Σ = diag(σ1, . . . ,σn) ∈ Rn,n

with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 is a diagonal matrix containing the singular values of A.

The singular triplets of A are defined as (ui,σi,vi). In this paper, the use of bold font

denotes exact values. Given this definition and an approximate singular triplet (u, σ, v),

the left and right residuals are defined as ru = ATu − σv and rv = Av − σu respectively.

For brevity, r without the superscript refers to the residual (ru or rv) with maximum

2-norm. Subscripts are used for indexing based on the values corresponding singular or

Ritz value (e.g. ri and σi) unless otherwise defined. For indexing matrices however, we

subscript using standard MATLAB notation (e.g. A(1:i,j)). As a reference, we provide ??

39

for notation.

Name Symbol Example/Definition
Size of A m× n
Rank of a solution k —
Block size b —
Current Basis Size d —
Iteration (j) σ

(j)
i

Index i —
Left Residual r ATu− σv
SVal Error ϵ σ = σ + ϵ
Spectral Threshold δ2 ∥A− Z∥ < δ2∥A∥, (3.6)
Frobenius Threshold δF ∥A− Z∥F < δF ∥A∥F , (3.7)
Residual Tolerance ρ ∥ri∥ < ρ∥A∥ ∀i in a given range (3.13)
Rank Bounds kmin, kmax σkmin

≥ δ2∥A∥ ≥ σkmax

Max Rank Overestimate o kmax − kmin ≤ o
Gap Window Size w σi+w/σi < δG, (3.26)
SVal Add Gap γi γi = min(σi−1 − σi, σi − σi+1)
SVal Mult Gap τi σi+1/σi = τ

Iteration Distance ϕ ϕ
(j)
i = σ

(j)
i − σ

(j−1)
i

Maximum Allowed Rank q Interface Requirement (Subsection 3.4.3)

Table 3.1: Set of Symbols

Additionally, we define the singular value error at iteration ϵi = σi − σi. Since the set

of estimated singular values is often smaller than n, the index i for both σ and σ refers

merely to the ith largest value of each set independently. Therefore, ϵ is only defined over

the set of estimated singular values, Σ. As a consequence of this definition, an accurate

singular triplet with ∥ri∥ = 0 can have ϵi ̸= 0 when there exists a singular triplet in Σ

with a larger singular value that is not included in Σ. These missing singular values are a

common problem for iterative SVD solvers. We discuss choices for approximations to this

error, ϵi, in Section 3.4.

A rank k approximation can be derived from the first k columns of U and V corre-

sponding to the k largest singular values, which we denote with Uk, Vk. The truncated

SVD solution can be formulated in a number of ways as seen below:

Ak = UkΣkV
T
k = UkU

T
k A = AVkV

T
k . (3.2)

40

The equality in (3.2) is only true for exact singular triplets. In Section 3.4, we show how

these formulations can behave differently for inexact singular triplets. The importance of

the SVD stems from its optimality property,

min
rank(Z)≤k

∥A− Z∥ = ∥A−Ak∥ (3.3)

under a variety of norms including all unitarily invariant norms [16, 22, 48]. This prop-

erty allows us to define the minimum approximation errors for the spectral 2-norm and

Frobenius norm with the singular values as follows:

min
rank(Z)≤k

∥A− Z∥2 = σk+1, (3.4)

min
rank(Z)≤k

∥A− Z∥F =

√√√√ n∑
i=k+1

σ2
i . (3.5)

3.2.1 Common LRA Criteria

Two of the most common LRA criteria are based on the above two norms:

∥A− Z∥ < δ2∥A∥, (3.6)

∥A− Z∥F < δF ∥A∥F . (3.7)

with both 0 ≤ δ2/F ≤ 1. Generally, we seek a Z with minimum rank. We focus on these

relative norm criteria, however absolute versions are also frequently used.

Examples of these two criteria are easily found in the literature. For instance when

denoising images, it may be desirable to have ∥A − Z∥F = O(µ) where µ is the standard

deviation of the noise matrix [25]. A similar Frobenius norm criterion can be found when

performing shot boundary detection [75] as well as denoising of magnetic resonance images

[40]. On the other hand, the spectral norm criterion (3.6) may be preferred over (3.7) for

big data computations where the sum of squared singular values may be dominated by a

41

heavy tail of many small singular values [66].

Due to its minimum approximation error (3.4), the spectral norm criterion with exact

SVD solutions is equivalent to a thresholding criterion on the singular values of A where

all singular values above a given threshold are returned. This thresholding criterion is

particularly useful for the nuclear norm regularization needed in applications like matrix

completion [9]. It is important to note that when the SVD solution is inexact, the spectral

norm criterion and thresholding may differ significantly as the thresholding problem is in

essence a maximization problem on k, while the spectral criterion attempts to minimize k.

In Section 3.4, we analyse this difference as well as others in more detail.

In some cases, practitioners may expect their problems to exhibit a specific low rank

structure that is not captured purely through ∥A−Z∥. For instance, in [74], the matrix is

believed to have large additive gaps up to the noise threshold, and therefore the appropriate

rank is defined by:

k = max
i

(σi − σi+1 > δG). (3.8)

Another gap criteria can be seen in [67] where a large multiplicative gap is expected over

a window of singular values with size w. The optimal rank for this problem is given by:

k = min
i

(∑i+w+1
j=i+1 σj∑i
j=i−w σj

< δG

)
. (3.9)

Often these criteria are paired with other restrictions as they do not impose any accuracy

constraint and there is no guarantee that an appropriate rank k can be found within the

entire spectrum of A.

3.2.2 Issues with Current SVD Methods

When the matrix is small, the SVD can be computed directly with any standard linear

algebra package like LAPACK [4]. This will find all singular values of A, which can

be truncated to the appropriate rank k as a post-processing step. To deal with larger

42

matrices, many iterative algorithms have been developed to compute only the largest k

singular values. When the number of values needed, k ≪ n, these iterative SVD solvers

are far more efficient.

There are a wide range of iterative methods designed for the truncated SVD, as well

as iterative eigensolvers which can be adapted to produce accurate singular triplets. The

number of these methods and the differences between them are far too many to provide

an exhaustive list, however some of the most popular include Randomized SVD (RSVD)

[27], Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [38], Lanzcos

Bidiagonalization (LBD) [46], Thick Restarted Lanczos [71], Generalized Davidson (GD)

[64], Jacobi-Davidson (JDSVD) [29], and the Golub-Kahan Davidson method (GKD) [19].

In general, these methods require at least two parameters to stop the iteration: the

number of desired singular values and an accuracy parameter. Frequently, accuracy is

measured either directly through the SVD residuals (ru or rv) or indirectly through total

iterations completed. The latter of these choices is particularly popular with block Krylov

and subspace iteration methods like RSVD as there has been extensive work done to

provide convergence bounds for both per vector and global LRA error [27, 49, 24].

For LRA, both of these parameters present significant challenges. To start, the rank

required to satisfy any of the criteria previously described may be unknown. If this is the

case, the optimal rank k may be approximated as shown in [47, 69, 27]. However, these

estimates require a non-negligible investment in computation when performed separately

from an SVD method. Rank estimators based on Krylov type methods would need to

replicate the effort of the SVD method, and randomized estimators would need to perform

extra matvecs in addition to being significantly less accurate. Therefore, it seems obvious

to try and integrate dynamic rank estimation within the SVD methods themselves. Our

solution for this is presented in Section 3.3.

The second parameter required by iterative SVD solvers to determine stopping accu-

racy also presents a significant challenge, even if k is known. Most common SVD accuracy

parameters like per vector residual norms or iterations do not directly measure convergence

43

to the desired criteria, and therefore may not provide optimal performance for common

LRA criteria like (3.6) or (3.7). For instance, if the SVD method stops based on iter-

ations, we must rely on theoretical bounds in order to guarantee our criteria has been

met. However, we cannot use any bound that includes singular value gaps or any spectral

information, since this information is rarely known a priori. This leaves bounds like the

gap-free bounds presented in [49] which are limited to the simultaneous iteration and block

Krylov methods and are known to be loose compared to empirical results. Figure 3.1 and

Figure 3.2 show this “loose” behavior, especially for block Krylov methods. Additionally,

the graphs show a best case scenario for these bounds as the smallest possible constant is

chosen for the given norm, even though this constant would not be known in practice.

On the other hand, we know of almost no work that directly relates a per vector residual

stopping criterion to LRA criteria like (3.7) or (3.6), even though this is the predominant

way to stop an iterative SVD solver. Due to the issues present in these common ways of

stopping by iterations or residual norms, we propose stopping the SVD method directly

based on LRA criteria. We note that a few criteria of this nature have been developed for

particular methods and LRA criteria, such as solving (3.7) using LBD [59], however there

has been little work done to provide generic solutions that cover a variety of methods and

criteria. We present our solutions to this issue in Section 3.4.

3.3 Proposed Solution

First, we address creating a solver that can handle an unknown rank constraint. The main

programmatic issue is memory management. In general, it is not practical to allocate

enough memory to handle rank n solutions, nor should we expect a low-rank problem to

require a solution this large. Also, we should not expect the user to know the correct rank

within some small multiplicative factor. Therefore, we have two options; we can either

implement a dynamic memory management scheme to allow for slowly increasing rank

estimates, or we can insist on a user specified overestimate. The latter of these solutions

44

0 5 10 15 20
10−7

10−6

10−5

10−4

10−3

10−2

10−1

c(log(n)/i)2

BGKD
c log(n)/i

SI

Figure 3.1: Empirical Frobenius norm
convergence compared to theoretical
bounds from [49, Algorithm 1/2]. The
constants c = [0.0096, 0.001] for SI and
BGKD respectively are chosen to be as
small as possible.

0 5 10 15 20
10−6

10−5

10−4

10−3

10−2

10−1

100

c(log(n)/i)2

BGKD
c log(n)/i

SI

Figure 3.2: Empirical spectral norm con-
vergence compared to theoretical bounds
from [49, Algorithm 1/2]. The constants
c = [0.253, 0.0241] for SI and BGKD re-
spectively are chosen to be as small as pos-
sible.

may sound limiting, but there are multiple reasons for why it is our preferred solution.

First, some methods, like subspace iteration, do not have well studied ways of increasing

the current basis size. Second, it is reasonable to expect that some maximum amount of

memory is available or practical, especially for large scale problems. Last, for methods that

can restart, a dynamic memory solution would require additional heuristics to determine

when to restart and how many vectors to maintain. For these reasons, our solution requires

an a priori overestimate of the rank, q, but crucially does not require this estimate to be

close to k. Even if the estimate is very inaccurate, our solution should still provide similar

results to when k is known a priori. This is because we integrate the stopping criterion

into the SVD method itself and can reduce the maximum basis size during runtime as

information becomes available.

Next, we discuss how to handle various LRA criteria by utilizing an SVD interface.

This interface should not only meet the requirements of the criteria we investigate in this

paper, but should also be sufficient for criteria that we have not analysed. Additionally,

the interface must be relatively lightweight, as it will generally be called once per iteration

45

in order to check for convergence. For some methods, software developers may choose

to reduce the frequency of convergence checks to balance iteration costs with optimal

stopping. We present the basic framework below.

Interface 3
1: function [flag, numV als] = StopFunc(numV als, solverdata, userdata)
2: Determine if additional work is needed; set flag
3: If a new upper bound on k is known; set numVals
4: end function

Broadly, the inputs required for any interface to stop an SVD method fall into two

categories: external user data and solver generated data. The external user data might

include parameters that control tolerances, thresholds, and bounds on computation. For

more intricate criteria, userdata can also include function pointers to routines that are

required to verify the accuracy of the solution at the current iteration. Importantly, these

routines may not actually measure the accuracy of the SVD itself, but rather the accuracy

of an outside optimization problem. In this situation, userdata may also include variables

that store the best solution seen up to the current iteration, or other data generated within

the stopping criteria function. On the other hand, solver generated data may include a

variety of information that is generally updated at each iteration of the SVD solver. As an

example, Table 3.2 provides descriptions of the solverdata structure passed to our GKD

interface.

Variable Description Size
mvs Number of matrix vector multiplies 1

iters Solver iterations 1
time Total elapsed time 1

normA Current estimate of ∥A∥2 1
k Current basis size 1
s Singular values k
b Block size 1

resid_est Approximate residual norms k−1

Table 3.2: Example subset of solverdata variables in GKD and their descriptions. Vari-
able names come directly from GKD and may not match their use in this paper.

46

In terms of output, the interface should only require a completion flag and the number

of values desired, k. When the completion flag is set, the solver should stop at the current

iteration and return the number of singular triplets desired as indicated by the second

output argument. Since k is unknown initially, numVals can be set using the matching

input variable, but can be changed if a user determines a new upper bound to the number

of desired singular triplets. This can be done even if the singular triplets have not reached a

sufficient accuracy to set the completion flag. Some solvers may be able to take advantage

of this decreasing estimate of k by changing internal parameters like block size, the number

of vectors kept after restart, or the maximum number of vectors allowed in the basis.

In the following subsections, we investigate a few additional guidelines for specific

methods. Mainly, we discuss when it makes sense to call the interface and how to provide

useful solverdata fields without excessive overheads. These are general guidelines and may

need to be adapted to fit the specific method, programming language, and architecture

being used.

3.3.1 Guidelines for Standard LBD

In order to provide useful solverdata information, Lanczos-type methods will need to

perform a small SVD on the d × d bidiagonal matrix to produce Ritz values and vectors,

where d is the column dimension of the current basis. If performing O(d3) additional work

at each iteration significantly degrades performance, the decomposition and interface can

be called after a “super-step” consisting of many iterations. For restarted methods, the

SVD computation can be postponed until restart.

In order to gauge the accuracy of solutions, Lanczos methods can provide residual norm

estimates using the well known relations, AV = UB and ATU = V BT + βdvd+1e
T
d where

βd = ∥ATud − αdvd∥, αd = ∥Avd − βd−1ud−1∥, and B is the bidiagonal coefficient matrix

(see [46]). The first relation gives ∥rvi ∥ = 0 for all i = 1, . . . , d, while the second combined

47

with the SVD of B = XΣY T gives the left residual norms,

∥rui ∥ = ∥ATUX(:,i) − V Y(:,i)σi∥ = |βdX(d,i)|, (3.10)

where X(d, i) is the ith entry in the last row of X. For block versions of Lanczos, the

absolute value is replaced with a norm over the last b rows of X. These cheap and accurate

approximations to the residual norms make LBD a prime candidate for our interface.

3.3.2 Guidelines for Subspace Iteration

For methods like RSVD, it is possible to calculate residuals without additional memory

overhead, although it is computationally expensive and therefore should be limited to

situations where residuals are necessary. If there is enough memory to hold an extra (n×d)

matrix, the associated code can be simplified but still incurs the same computational cost.

Since there are many different ways to implement this functionality with varying trade-offs,

we leave this decision up to the developer. However, the option to compute them on request

would allow users to trade some performance for verifying accuracy when necessary.

On the other hand, the QR of AV is a byproduct of the RSVD method and thus

computing singular value approximations from the SVD of the d × d upper triangular

matrix R is significantly less costly than the computation of residuals. Instead of residual

norms, we can use the iteration distance between iteration j and j − 1,

ϕ
(j)
i = σ

(j)
i − σ

(j−1)
i , (3.11)

and the well understood convergence properties of SI to obtain information about the

singular value error ϵ. We discuss this further in Section 3.4.

48

CurlCurl_0

bayer02
bundle1

c-42 coupled
fd15 igbt3 msc10848

0

0.2

0.4

0.6

(R
/L

)
−
1

GKD
GKJD

Figure 3.3: Ratio of matrix vector products required by GKD using standard targeting
(R) and largest residual targeting (L) to achieve a residual tolerance of 1e-6 on 100 singular
triplets. The ratio (R/L− 1) for GKJD on c-42 is 2.32.

CurlCurl_0

bayer02
bundle1

c-42 coupled
fd15 igbt3 msc10848

0

2

4

6

8 GKD-R GKJD-R
GKD-L GKJD-L

Figure 3.4: Geometric mean of the ratio between the real and approximated residual
norms (∥ri∥/∥ri∥) over the first min(d, 100) singular triplets and all iterations using GKD
and GKJD to find 100 singular values with standard (suffix -R) and largest residual tar-
geting (suffix -L).

3.3.3 Specific Solutions Required for GKD

For Davidson methods like GKD, a lot of information needed for the interface is directly

available. For example, Davidson must compute a residual (or more in case of a block

method) in order to expand the basis at each step. This requires performing an SVD on

the (d× d) projected problem, yielding d Ritz values and a block size number of residuals

at each step. Therefore, we call the stopping interface after this small SVD computation.

The expansion of the basis depends on which particular value and its residual is tar-

geted. Although, in theory, all residuals of a Krylov method are co-linear, floating point

49

arithmetic makes convergence faster toward the targeted value while convergence to oth-

ers is delayed. In Davidson type methods, locally optimal restarting and preconditioning

further accentuate the effects of targeting. This means that if a particular singular value is

targeted, there is little information about the rest of the spectrum until it has converged.

Moreover, it imposes a stringent, per vector residual criterion which is unnecessary for the

criteria discussed in this paper.

There are changes to GKD that can help improve global convergence instead of per

vector convergence. A simple scheme targets all sought singular values (or at least the ones

the method restarts with) one by one in a round-robin fashion. However, this often degrades

convergence. We have found that we can simply target the vectors corresponding to the

largest b known residual norms at each iteration without any performance degradation.

This targeting scheme is presented in Algorithm 4. In fact, as seen in Figure 3.3, this

new targeting scheme often outperforms the standard one for a variety of problems when

computing 100 singular triplets to a 1e-6 residual tolerance. Additionally, targeting in this

way computes accurate residual norms for the entire space over a smaller number of steps

which can serve as a reasonable upper bound on the true residuals if no other approximation

is available. This is particularly important for preconditioned GKD or GKJD. Our testing

utilizes matrices from the SuiteSparse Matrix Collection [14], and general information can

be found in Table 3.3. This table also includes data about other matrices from SuiteSparse

used in this chapter.

Algorithm 4
1: Initialize all_resid(1:q) = ∞.
2: while not Converged do
3: Stable sort all_resid and obtain the sorting indices. [~,i] = sort(all_resid,’descend’)
4: Calculate ri(1:b) and their norms.
5: Update all_resid(i(1:b)).
6: Expand basis with targeted residuals
7: end while

Since GKD only expands with a block of b < d residuals at a time, it may be beneficial

to have residual norm approximations for the other d − b residual vectors at each step.

50

Name SS_ID Dimensions ∥A∥
CurlCurl_0 2569 11083× 11083 4.3e+10
bayer02 453 13935× 13935 1.3e+05
bundle1 1347 10581× 10581 6.4e+12
c-42 1561 10471× 10471 4e+04
coupled 1183 11341× 11341 2e+02
fd15 918 11532× 11532 2.9e+08
igbt3 969 10938× 10938 1.2e+12
msc10848 361 10848× 10848 6.3e+11
nopss_11k 2348 11685× 11685 1e+20
pkustk02 848 10800× 10800 1.1e+02
psse1 1871 14318× 11028 2e+05
t2dah_a 1204 11445× 11445 2.7e+02
SNAP/amazon0302 2304 262111× 262111 2.1e+01
SNAP/email-Enron 2290 36692× 36692 1.2e+02

Table 3.3: Matrices chosen from SuiteSparse

For unpreconditioned GKD and GKJD, we have found that it is possible to approximate

the exact residual norms cheaply, since the space produced is near Krylov and we can

use a formula similar to (3.10). Specifically, we use the SVD of B = UTAV = XΣY T

and assume that the angle between the residuals and the next block of expansion vectors,

V(:,d+1:d+b), is small (for exact LBD it would be exactly zero). This yields

∥rui ∥ ≈ ∥V T
(:,d+1:d+b)(A

TUxi − V yiσi)∥ = ∥BT
(1:d,d+1:d+b)xi∥, (3.12)

where xi and yi are the ith columns of X and Y respectively. Since our stopping interface

is called prior to expansion, these estimates will be one iteration behind the true residuals.

Additionally, since GKD does not match the Krylov expansion exactly, (3.12) will be

approximate instead of exact. However, we see in Figure 3.4 that it generally performs

quite well with an average underestimate of less than 4 when using our largest residual

targeting scheme. We expect this solution will be more inaccurate for preconditioned

systems.

51

3.3.4 GKD MATLAB Implementation

Our MATLAB implementation of GKD requires a number of additional changes to optimize

performance. Specifically, we must adapt our interface due to MATLAB’s copy-on-write

behavior for function variables. This modified interface is given in Interface 5. For input,

we directly pass large data objects like the matrix A and bases U and V as variables

to the interface to avoid a significant performance penalty caused by the way MATLAB

creates structures with duplicated references. For output, userdata is included to allow

the interface to save or modify information from one iteration to another. These changes

would not be needed in a language like C where structures like solverdata and userdata

can be passed by reference.

Interface 5
1: function [flag, numV als, userdata] = GKDStop(numV als, solverdata, userdata,A, U, V)
2: Determine if additional work is needed; set flag
3: If a new upper bound on k is known; set numVals
4: end function

3.4 Stopping Criteria

The stopping criterion that is implemented in almost all iterative SVD solvers is to check

the standard residual stopping criterion

∥rv∥2 = ∥Av − σu∥2 < ρ∥A∥

∥ru∥2 = ∥ATu− σv∥2 < ρ∥A∥,
(3.13)

where (u, σ, v) are the approximate singular triplets of A and ρ is a user specified tolerance.

Even with our new interface, Equation (3.13) continues to be the default stopping criterion

in GKD. Additionally, we use this criterion with a default value of ρ = 1e−6 as a stop-gap

measure for all other stopping criteria in GKD.

The residual norm provides strong guarantees, which makes it ideal for determining

high accuracy solutions. From the Davis-Kahan sin θ theorem [12, 55], for any approximate

52

singular triplet (u, σ, v), there is an exact singular vector u and singular value σ such that

if gap = |σ − σ|, then

sin∠(u, u) ≤ ∥r
u∥

gap
. (3.14)

The main drawback of this bound is that σ may not correspond to the singular value

the user wants. We examine this issue further later. If the SVD method utilizes Ritz

values from a Rayleigh-Ritz procedure, recent work has tightened this bound significantly

providing useful information even when ∥ru∥
gap ≥ 1 [50].

While stopping by (3.13) provides strong guarantees for the singular vectors, the cri-

terion may be far too strict for certain applications. For instance, practitioners may only

desire solutions where the returned vectors span the correct space. As a trivial example,

take A to be a diagonal matrix with entries sorted from largest to smallest. If we are

interested in the Frobenius norm criterion, ∥(I − ZZT)A∥F < δF ∥A∥F , any n× k matrix

Z = [X; 0] where X is a k× k orthonormal matrix would give an optimal rank k solution.

The following subsections discuss a few common alternative criteria that are useful

in many applications with low-rank approximation requirements. However, the standard

formulation of these criteria is given in terms of accurate singular triplets which does

not translate optimally to approximate triplets, which is the case at each iteration of an

SVD solver. In this case, we require additional constraints for the SVD stopping criteria

in order to ensure solutions that satisfy the LRA requirement. We provide suggestions

for these new constraints that are more robust in the face of inaccurate singular triplet

approximations. Additionally, when used with our interface, each criterion can stop the

SVD solver nearly optimally while avoiding wasted compute time and eliminating any need

for post-processing checks on the solution.

For these new criteria, an estimation of the true error in the singular value, ϵ, is

required in order to estimate the distance between the current solution and the optimal

low rank solution. Importantly, we desire an estimate that converges during the iterative

process and one that provides an upper bound to ϵ to ensure our criteria provide accurate

53

0 10 20 30 40

2

4

6

8

10

12

Iteration

m
ax

(ϵ
i/
ϵ i
)

d = 80

d = 100

Figure 3.5: Maximum multiplicative error
of ϵ using RSVD on SNAP/Amazon0302.

0 10 20 30 40

1

2

3

4

5

6

7

Iteration

m
a
x
(ϵ

i/
ϵ i
)

d = 80

d = 100

Figure 3.6: Maximum multiplicative error
of ϵ using RSVD on SNAP/email-ENRON.

answers. One choice is the iteration distance given in (3.11). It is convenient as it incurs

minimal cost and can work well near convergence. For Davidson and Lanczos methods,

however, convergence is monotonic which implies that the true error after j iterations is

ϵ
(j)
i =

∑∞
l=j+1 ϕ

(l)
i , with ϕ

(l)
i ≥ 0, so iteration distance is always an underestimate of the

error and unsuitable for our criteria on its own.

On the other hand, for RSVD, (3.11) can be used to develop a usable approximation

as ϵ
(j)
i = σi − σ

(j)
i ≈ ciν

j
i for some constant ci that depends on the initial guess and

the asymptotic convergence rate of the singular value νi = σi/σk+1. Even though exact

values for σk+1 and σi are not known, we can approximate νi ≈ νi =
ϕ
(j)
i

ϕ
(j−1)
i

based on the

following relation:

ϕ
(j)
i = σ

(j)
i − σ

(j−1)
i = ciν

j−1
i − ciν

j
i = ciν

j−1
i (1− νi). (3.15)

Additionally, solving the above equation for ci yields an estimate for ϵi,

ϵi = ϕ
(j)
i

νi
1− νi

. (3.16)

The accuracy of this estimate is shown in Figure 3.5 and Figure 3.6 by calculating

54

max(ϵi/ϵi , i = 1, . . . , 80) at each iteration of RSVD. For these graphs, any values with

ϵ less than the square root of machine precision are ignored in calculating the maximum

as they are considered “converged”. Additionally, when both ϵi and ϵi are near machine

precision, |ϵi−ϵi| is small enough to ignore even if ϵi/ϵi is large. We see that multiplicative

errors larger than a factor of 10 are rare and that oversampling (d = 100) can drastically

improve the behavior of our estimates. The minimum multiplicative errors are not analyzed

since overestimates of the singular value error are actually preferred.

For non-SI methods, other options for providing ϵ may be preferable. One such option

is the residual norm ∥ri∥ which works well since in general, ∥ri∥ ≥ ϵi. However, when the

singular triplet has converged such that ∥ri∥ < γi = min(σi−1−σi, σi−σi+1), the following

tighter heuristic can be used:

ϵi =

∥ri∥2/γi if ∥ri∥ < γi

∥ri∥ otherwise.
(3.17)

If σi approximates some other σj with j < i, both of these bounds will generally underes-

timate the error.

To illustrate these options for estimating ϵ with non-SI methods, we present Figures 3.7

and 3.8. The left figure shows the expected behavior for well separated values as ϵ is

bounded between the iteration distance and the residual, along with the increased accu-

racy obtained from (3.17) when the residual norm is smaller than the singular value gap.

The right figure shows the behavior for values within a cluster, where all methods underes-

timate the true error due to missing directions in the largest part of the spectrum in early

iterations. When singular values are too close together or residuals too large, residuals

will only bound the error to the nearest true singular value, which may or may not be

σi. In this case, all of our estimations will underestimate ϵi. Due to differences between

criteria, we propose solutions to this issue in the following subsections. For the general

case, these errors can be mitigated with larger block sizes or by enforcing a maximum

55

0 50 100
10−13

10−10

10−7

10−4

10−1

102

Iteration

V
al

ue

ϵ

ϕ

∥r∥
(3.17)

Figure 3.7: Convergence of GKD error es-
timates compared to ϵ for the 1st singular
value on the matrix A = diag(1000:-1:1).

20 40 60 80
10−7

10−4

10−1

102

105

108

1011

Iteration

ϵ

ϕ

(3.17)

Figure 3.8: Convergence of GKD error es-
timates compared to ϵ for the 10th singular
value on the matrix CurlCurl_0.

acceptable residual for returned solutions similar to (3.13).

3.4.1 Frobenius Norm Criteria

One commonly referenced criterion is based on the percentage of the Frobenius norm

maintained by the rank-k matrix approximation as in Equation (3.7). Many iterative

methods create solutions from the Rayleigh-Ritz (RR) procedure, which ensures UT
k AVk =

Σk. If the low rank solution is chosen such that Z = UkΣkV
T
k , then

∥A− Z∥2F = ∥A− UkΣkV
T
k ∥2F

= tr((A− UkΣkV
T
k)T (A− UkΣkV

T
k))

= tr(ATA) + tr(Σ2
k)− 2 tr(VkΣkU

T
k A)

= ∥A∥2F + tr(Σ2
k)− 2 tr(Σ2

k)

= ∥A∥2F − ∥Σk∥2F .

(3.18)

If Z is chosen to be a projection such that Z = UkU
T
k A or Z = AVkV

T
k , where U or V

is still chosen from the RR procedure, the corresponding matrix of residuals must also be

included in the decomposition of ∥A− Z∥2F . We show this for the left projected problem,

56

∥(I − UkU
T
k)A∥2F , with Ek = ATUk − VkΣk, while the right projected problem is derived

similarly.

∥A− Z∥2F = ∥(I − UkU
T
k)A∥2F

= ∥A∥2F − ∥ATUk∥2F

= ∥A∥2F − tr((VkΣk + Ek)
T (VkΣk + Ek))

= ∥A∥2F − tr(Σ2
k)− tr(ET

k Ek)− 2tr(ET
k VkΣk)

= ∥A∥2F − ∥Σk∥2F − ∥Ek∥2F

(3.19)

with tr(ET
k VkΣk) = 0 since ET

k VkΣk = (UT
k AVk − Σk)Σk = 0.

If the residuals are not known, we can always safely stop based on (3.18) since its norm

is larger. Equation (3.19) raises the possibility that a large random basis of vectors may

have large enough residuals to cause ∥(I − ZZT)A∥ < δF ∥A∥ even when ∥A− UΣV T ∥ is

very far from δF ∥A∥. For small ranks k, this is not a concern because Krylov methods

with block size of 1 quickly achieve enough accuracy to ensure ∥Σk∥2F ≫ ∥Ek∥2F . With

subspace iteration methods, the difference between these two norms is negligible after the

first 1-2 iterations.

These equations allow iterative methods to avoid direct computation of ∥A − Z∥F .

Instead, we need to know the quantities ∥A∥2F , ∥Σk∥2F =
∑k

i=1 σ
2
i , and potentially ∥Ek∥2F =∑k

i=1 ∥ri∥22 if the projected norm is desired. On the other hand, if ∥A∥F is not easily

determined, these bounds will not be useful, and instead, the remainder of the spectrum

would need to be approximated. An obvious upper bound would be ∥A∥2F < ∥Σk∥2F +

(n− k)σ2
k+1, which together with (3.18) give ∥A−Z∥2F < (n− k)σ2

k+1. For large matrices,

this is only practical when the spectrum has significant decay. Alternatively, a stochastic

estimate could be derived as ∥A∥F =
√
mnx̄ where x̄ is the average squared norm of the

entries of A. Of course, other options have been developed as in [56]. For this paper,

we assume that an accurate version of ∥A∥F is known or sufficient singular value decay is

present to allow for accurate estimations.

57

We turn now to a common problem with the Frobenius norm criterion; since the opti-

mal k is usually unknown, many possible solutions exist with varying degrees of residual

accuracy and rank. As an example of the rank issue, we take a random Gaussian matrix of

size 5,000 and set a threshold δF that requires exactly 100 values to achieve with full resid-

ual accuracy. Then we can implement the ∥A−Z∥F < δF criterion without any restriction

on accuracy. Figure 3.9 shows the number of returned values from GKD if we vary the

block size used from 1 to 75. We see that GKD returns on average 43% more values than

required, and at worst returns 102% more. In terms of Frobenius norm, the rank chosen

in the worst case could produce a 38.65% larger Frobenius norm at full residual accuracy.

This clearly shows that this stopping criterion alone offers very little guarantee of good

answers with iterative methods.

There are many options to alleviate these issues and provide stronger guarantees, which

generally fall into two categories: combining weaker criteria with known strong criteria, or

creating new focused criteria. For an example of the former, the Frobenius norm criteria

could easily be strengthened by requiring a residual criteria for all returned singular triplets.

However, this and other criteria may only be tangentially related to the Frobenius norm

criterion and may impose requirements that are ultimately too strict.

Therefore, we propose a new criterion which attempts to limit the distance to the

optimal rank so that k − k < o where o ∈ N is small. Using (3.18), we can calculate

the maximum rank required based on the current value of ∥A − Z∥F . Importantly, we

know that this rank will be an upper bound on k. For a lower bound on k, we utilize our

singular value error estimates from (3.17). The difference between these ranks can be used

to obtain our criteria

kmax − kmin ≤ o, (3.20)

58

max ∥Ak∥F Rank (k)

1

1.2

1.4

1.6

1.8

2

label

R
at

io
to

op
ti

m
al

Figure 3.9: Comparing the optimal rank
k (100) and optimal ∥A100∥F with the re-
turned rank and corresponding maximum
achievable ∥Ak∥F when stopping GKD with
the standard Frobenius norm criteria. The
maximum achievable ∥Ak∥F is derived from
the true singular values of A.

240 260 280 300 320 340

0

5

10

15

20

Iteration

V
al

ue

kmax − k̃min

kmax − kmin

kmax − k

Figure 3.10: Comparing estimations of
kmin with the optimal k using GKD for the
Frobenius norm criterion on a Gaussian Ker-
nel matrix. ϵ for (3.21) is calculated by
(3.17) with either exact residuals or approx-
imate residuals from (3.12).

where o is the user given accuracy parameter and kmin and kmax are defined below:

kmax = min
k

(√
∥A∥2F − ∥Σk∥2F < δF ∥A∥F

)

kmin = min
k

√√√√∥A∥2F − k∑

i=1

(σi + ϵi)2 < δF ∥A∥F

 .

(3.21)

Additionally, if the solver implements numVals as a return parameter in the interface, kmax

can be safely used to provide updated overestimates of the required rank.

This criterion provides the user control of the final rank and an accuracy parameter

directly related to the LRA. If Z = (I−UUT)A is desired, our method may stop late (since

the residuals decrease the norm ∥A−Z∥). However, if a solution with nearly optimal rank

k is desired (small o), our requirement that kmax − kmin < o ensures that the residuals

must be small as well. Therefore, the Ritz values will dominate the norm calculation and

the two norms can be used interchangeably. Additionally, we have found this criterion

performs nearly optimally as seen in Figure 3.10. This figure compares our estimations of

59

kmin and the optimal rank k using both accurate and approximate residuals with (3.17)

on a Gaussian Kernel matrix made with 5 random vectors (of length 5000) and γ = 1. We

see that both approximations do a very good job at tracking the true distance from kmax

on this problem.

If (3.17) does not bound the true error due to out of order convergence of singular

values, kmin may overestimate k significantly. This may cause our criterion to return too

many values. However, we will still provide a valid solution to (3.7), just with a larger

rank relative to the optimal one requested by the user. To help avoid this situation,

we can determine whether our estimation of the optimal ∥Ak∥F ≈
√∑k

i=1(σi + ϵi)2 is

increasing or decreasing at each iteration. When converging to ∥Ak∥F , we should expect

an overestimate to decrease towards this value. If we see an increase, that means at least

one σi+ϵi increased, which suggests that it was not previously an upper bound. Therefore,

we can require that this value is decreasing in addition to (3.20). Alternatively, we can

increase the block size used by the solver (if the solver supports this feature), as this

increases the effective gap between values, and makes out of order convergence less likely.

3.4.2 Spectral Norm Criteria

Another common criterion minimizes the spectral norm ∥A−Z∥ instead of the Frobenius

as shown in (3.6) and restated here for convenience: ∥A−Z∥ < δ2∥A∥. Like the Frobenius

norm, an absolute δ2 can be defined instead of the relative version used here. However,

unlike the Frobenius norm, the 2-norm does not have a convenient expansion that allows

direct computation. Instead of directly calculating this error, Halko, Martinsson and Tropp

[27] bound ∥(I − QQT)A∥ by calculating ∥(I − QQT)AΩ∥ where the columns of Ω are a

small number of random normal Gaussian vectors. While this method can derive some

information, according to [27, Remark 4.1] this bound is “somewhat crude" and we have

found it to be too inaccurate for our purposes.

Instead, we look to the thresholding problem since, if Z = Ak is chosen, (3.6) can

be restated as finding all i such that σi ≥ δ2∥A∥. Since this problem only deals with

60

the singular values themselves, we can use our approximations of σi and ϵi to develop a

reasonable criterion that takes advantage of our SVD method during runtime. In general,

this criterion can provide sufficient results for the more general spectral norm problem even

though we do not directly measure it. For any iteration of a solver we define the following

terms,

kmin = {i|σi > δ2∥A∥ > σi+1} (3.22)

kmax = min{i|σi + ϵi > δ2∥A∥ > σi+1 + ϵi+1}. (3.23)

We know kmin is uniquely defined since the σi are sorted. Due to the Cauchy Interlacing

theorem, which shows that the singular values converge towards matrix extrema [55], we

know kmin should always provide a lower bound on the rank required. On the other hand,

kmax may not be unique without the minimum constraint, since in general, we cannot

expect σi + ϵi to be sorted. Additionally, since ϵi often grows as i increases, there can be

large ϵi which may cause σi+ϵi > δ2∥A∥ even when the first k singular triplets are already

fully converged. An alternative solution is to choose the maximum index, but limit kmax

to less than d − b. This can ensure that large residuals that occur when a vector is first

added to the basis do not effect the kmax calculation.

While kmin ≤ k, kmax is an upper bound only when ϵi > ϵi for all i, i.e., there are no

singular values missing in the Rayleigh Ritz extraction. We can see from Figure 3.11 that

this is true only once kmin is near k. Additionally, the distance kmax− kmin may be 0 well

before kmax ≥ k. Therefore, we need some indication of when we can trust kmax to be an

upper bound. One option is to enforce a residual criterion with

ρ < δ2 (3.24)

on the first kmax + 1 singular triplets. Intuitively, this seems reasonable since we should

expect the user would like at least some accuracy on the values near δ2. If reasonably high

61

0 50 100 150 200 250
0

20

40

60

80

100

Iteration

R
an

k

kmin

kmax

Figure 3.11: Convergence of kmax and kmin

on CurlCurl_0 using GKD where the thresh-
old is given in Table 3.4. kmax is calculated
using accurate residual norms and (3.17).

0 50 100 150 200 250

10−4

10−3

10−2

10−1

100

Iteration

m
ax

(∥
r i
∥)
/
δ 2
∥A
∥

Figure 3.12: Convergence of the first
kmax+1 residual norms using GKD on Curl-
Curl_0. δ2 matches the threshold used for
Figure 3.11.

accuracy is required compared to δ2, we can expect that the chances of underestimating ϵ

are lower. We can see this in Figure 3.12, where the first kmax+1 residuals do not converge

beyond 1e-2 until kmax is an upper bound. We expect that this additional criterion will

be sufficient for the majority of use cases.

However, if less residual accuracy is required, we see in Figure 3.12 that the convergence

is erratic and could cause the algorithm to stop early. In these cases, we have developed

a heuristic that tracks the rate of increase in kmin. Logically, we know kmin will grow

until it reaches k. Additionally, we can expect this rate to slow as the distance to k

decreases. We measure this growth rate using a least-squares regression over some small

number of steps, which can be seen in Figure 3.13. In particular, for a given block size

b, and current iteration j, we find the slope of the least-squares regression of kmin from

iteration max(1,min(⌈0.95j⌉, j − ⌈20/b⌉)) to j. This ensures that the slope is determined

over at least 40 matrix vector products of information, while averaging over more steps

for slowly converging problems. We also know that this slope will always become zero

within max(⌈20/b⌉, ⌊0.05j⌋) iterations of the first iteration where kmin = k. The user can

choose a threshold near 0 for the slope of this regression heuristic to balance accuracy of

62

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

Iteration

Sl
op

e

Figure 3.13: Using Least-Squares Regres-
sion to track the rate of increase in kmin.

the estimated rank and the work required to improve that accuracy. For our experiments,

we choose this threshold to be exactly 0 to avoid issues with early stopping as much

as possible. We note that this heuristic may still fail in pathological problems as many

clusters of multiplicities will always exhibit poor behavior with single vector methods. In

these cases, using our heuristic with an increased block size can greatly improve robustness.

Even if kmax is an upper bound, the kmax − kmin criterion we used for the Frobenius

norm may cause issues. For example, δ2∥A∥ may lie within a cluster of singular values,

and therefore σkmin+o+1 may be nearly equal to δ2∥A∥. If this occurs, the kmax − kmin

criterion will require a significant amount of computation to reduce the estimated singular

value error to nearly 0. In other words, the amount of computation required may be highly

dependent on the choice of δ2 and unknown spectral information.

Instead, we can use the least-squares regression to prevent early stopping and the

additional residual criterion in (3.24). This combination ensures we will not stop too early

when only a modest residual threshold is required, while also requiring returned singular

values to be larger than (δ2 − ρ)∥A∥.

We show results for a variety of problems in Table 3.4. We can see that the maximum

ρ required to ensure kmax is an upper bound varies significantly, including one problem

63

Matrix k δ2 kmax > k kmin = k max(ρ) LSR = 0

CurlCurl_0 100 2.98e-01 191 191 2.69e-02 211
bayer02 17 1.00e-04 48 48 3.77e-07 68
bundle1 100 3.05e-02 109 149 1.19e-01 169
c-42 100 1.65e-03 148 149 4.62e-04 169
coupled 100 6.32e-02 242 432 4.93e-03 308
fd15 62 1.00e-04 75 76 1.18e-02 96
igbt3 100 1.22e-01 227 227 1.90e-03 247
msc10848 100 1.69e-04 175 214 2.56e-05 234
nopss_11k 4 1.00e-04 6 7 1 –
pkustk02 100 4.18e-01 187 236 4.90e-02 256
psse1 100 1.00e-01 421 499 1.96e-04 483
t2dah_a 100 6.58e-02 141 245 1.15e-02 196

Table 3.4: Searching for all singular values above the threshold δ2 = max(σ100+σ101
2σ1

, 1e−4)
for 12 SuiteSparse matrices. For each matrix, we note the optimal k, the threshold, the
first iteration where kmax is an upper bound, the first iteration where kmin is optimal, the
maximum ρ (relative to ∥A∥) that will return at least kmax > k, and the first iteration
that the least-squares regression has a slope of 0.

where any ρ < 1 would have sufficiently stopped the method. Additionally, we see that the

least-squares regression (LSR) always has a non-zero slope until kmax is an upper bound

(for all problems other than nopss_11k), and is never more than 20 iterations larger than

the first iteration where kmin = k. While we cannot guarantee that the least-squares

regression will always be an accurate indicator of kmax > k, our results indicate that it

performs well for a variety of problems.

We want to specifically address the anomalous results shown for nopss_11k. The low

rank structure of nopss_11k has a multiplicity of 4 at σ1 and all other singular values are

numerically zero. This means that the problem takes fewer than 20 iterations to converge,

so the least-squares regression gives a non-zero slope for all iterations. Additionally, this

problem does not require any accuracy requirement to guarantee kmax > k because the first

time kmax was defined, kmax was already an upper bound. Our code includes a safeguard

for problems like this one which stops the method when ∥ri∥ is approximately machine

precision for each of the first kmax + 1 singular triplets.

64

3.4.3 Singular Gap Finding

Unlike the criteria mentioned in earlier sections, gap criteria focus directly on the structure

of the singular values themselves, rather than an achieved ∥A − Z∥ norm. This can be

described as an additive gap, as in [74], where the user is searching for

max
i=1:q

σi − σi+1 > δG, (3.25)

where q is the user chosen maximum rank required by our interface. Alternatively, multi-

plicative gaps could be desired, as in [67], where we want to find a gap such that,

min
i=1:q

∑i+w+1
j=i+1 xj∑i
j=i−w xj

< δG (3.26)

with xj = max(0,σj − θ), a user given θ, and window size w. For example, when θ = 0

and w = 0 this is a simple ratio of two successive singular values. When w > 0 the

criterion involves the ratio of the additive weights of two neighboring non-overlapping

windows. Unlike the Frobenius norm and thresholding criteria, these gap criteria require

the additional minimum or maximum rank restriction as there could be multiple gaps that

satisfy the inequality. However, it is also possible that no significant spectral gap exists at

the level desired by the user. In order to have more robust criteria, these gap criteria are

often paired with additional criteria similar to (3.7), (3.6), or (3.13) with a given k.

To bound the maximum number of values required, we can view (3.25) as both a gap

criterion and a thresholding criterion where δ2∥A∥ = δG, since all singular values are

non-negative and therefore any solution requires

σi ≥ σi − σi+1 > δG.

Viewing the multiplicative gap criterion in this manner is not as useful without additional

information, since the relative distance σi+1/σi can be arbitrarily small. However, if σn or

65

the condition number is known, we can choose δ2∥A∥ = σn/δG because any σi < δ2∥A∥ =

σn/δG implies also that

σi+1/σi > δG(σi+1/σn) ≥ δG.

Using these thresholding criteria in combination with their associated gap criteria allows

an online refinement of q which can improve performance and allow the solver to stop

earlier.

The rest of this section will focus on the minimum rank restriction for (3.25) without

additional restrictions, since finding the maximum rank restricted solution can be satisfied

similarly by searching backwards from the largest acceptable rank, q. In fact, the maximum

rank restriction may be easier to solve optimally for single vector methods because many

vectors need to be computed before evaluating the gap criterion. In order to develop a

robust version of (3.25), like in the previous sections, we desire lower and upper bounds

on the optimal k. For the additive criteria we have:

kmin = min
i=1:q

σi + ϵi − σi+1 ≥ δG

kmax = min
i=1:q

σi − (σi+1 + ϵi+1) ≥ δG.

(3.27)

Given these definitions and upper bounds to the true error ϵ, we have the following.

Lemma 1. Let ∀i ϵi ≥ ϵi and σi ≤ σi. Then kmin ≤ k ≤ kmax.

Proof. Because σk + ϵk − σk+1 ≥ σk − σk+1 ≥ σk − σk+1 ≥ δG and because kmin is the

minimum index that achieves that bound, then kmin ≤ k.

From (3.27), σkmax − (σkmax+1 + ϵkmax+1) ≥ δG. However, σkmax − σkmax+1 ≥ σkmax −

σkmax+1 ≥ σkmax − (σkmax+1 + ϵkmax+1) ≥ δG. This means that kmax is a solution to the

gap criterion, and since k is the minimum index that satisfies this solution, k ≤ kmax.

Given Lemma 1, we know the requirement kmin = kmax is sufficient to find k for

methods that typically overestimate ϵi like RSVD. For GKD and Lanczos-type methods

ϵi+1 can underestimate the true ϵi+1 and therefore kmax can underestimate k like we’ve

66

seen with the thresholding criterion. Additionally, this criterion may be very sensitive to

gaps σi − σi+1 ≈ δG. For example, let’s assume σi − σi+1 + τ = δG for some small τ and

i < k. In order to have kmin = k = kmax, we must have kmin > i, so from (3.27) we want

σi + ϵi − σi+1 < δG = σi − σi+1 + τ, which implies (σi + ϵi − σi) + (σi+1 − σi+1) < τ , or

equivalently ϵi − ϵi + ϵi+1 < τ. Thus, kmin will not skip over i until both the i and the

i + 1 errors become smaller than τ . A similar problem with kmax and ϵk+1 exists if the

optimal solution is only slightly larger than δG: σk−σk+1−τ = δG. Both situations would

require significant computation for very small τ to ensure kmin = k = kmax even though a

solution could be found easily for a slightly different choice of δG.

Therefore, it is preferred to accept kmax as k if ϵkmax and ϵkmax+1 are small enough.

Specifically, the returned solution would have rank kmax with ϵkmax+1 < ρ∥A∥ which acts

as a residual criterion like (3.13). This should guarantee the rank of the solution is the

optimal solution for the problem where the gap threshold is δG − ρ∥A∥.

Results for this criterion can be seen in Table 3.5. Specifically, we can see that most

problems need only an order or two of accuracy on the first kmax values relative to σkmax ,

with only 3 problems that require more (CurlCurl_0, nopss_11k, and psse1). These 3

problems contain multiplicities or near multiplicities for the largest singular values, and

we’ve found that the accuracy requirements can be lessened or completely removed with a

larger block size. Additionally, even with a residual tolerance relative to σkmax of 10−6, the

criteria stops within only a few iterations of the optimal stopping point (when kmax = k).

This should not be particularly surprising since the largest additive gap separates the

values we desire and the rest of the spectrum.

3.5 Matrix Completion

Over the last decade matrix completion algorithms have seen increased importance due

to the growth of large, but incomplete, datasets. These datasets include user ratings for

a variety of platforms including Amazon, Microsoft and Netflix. Additionally, the matrix

67

Matrix δG/∥A∥ k kmax = k Criteria Stop max(r/σkmax)

CurlCurl_0 1.83e-01 14 59 65 2.76e-04
bayer02 4.03e-01 1 2 4 1
bundle1 1.39e-01 14 29 34 3.04e-02
c-42 3.36e-01 1 6 8 8.21e-02
coupled 2.16e-01 1 2 13 1
fd15 2.40e-01 1 5 9 2.57e-01
igbt3 1.89e-01 3 8 19 2.02e-01
msc10848 1.82e-01 15 20 23 2.86e-01
nopss_11k 1.28e-08 4 – 3 –
pkustk02 2.81e-02 45 86 101 4.42e-02
psse1 4.05e-01 2 12 7 4.10e-12
t2dah_a 9.67e-02 1 8 15 1

Table 3.5: Searching for an additive gap larger than δG, which is chosen to be the ge-
ometric mean of the two largest gaps. The columns kmax = k and Criteria Stop give
iteration counts. The criteria stops when all ri/σkmax < 10−6 with i ∈ 1 : kmax + 1. We
testednopss_11k, however GKD stops early before finding all 4 multiplicities, so no values
are given for kmax = k or max(r/σkmax).

completion problem can be useful for localization of internet of things networks where only

partial distance information is available [51]. In all of these cases, we have a large matrix A

with an unknown but (hopefully) small rank, where only a small portion of its elements is

known. We denote the indices of these observed elements as the set Ω. Matrix completion

algorithms attempt to "fill in" these missing elements.

Often, these problems are considered to be low rank due to the categorization of human

preferences. A few examples include Amazon grouping items into product segments, or

Netflix grouping movies into genres. Predictions can then be made based on an individual’s

affinity for any given grouping. In general, if A is not low rank, this problem is ill-posed and

may not result in "correct" values for the entries outside of Ω. However given a low rank

structure, bounds on error as well as the number of observed entries required to converge

have been studied [10, 11, 37, 60]. Additionally, many algorithms have been created based

68

on a convex nuclear norm relaxation of the rank constrained matrix completion problem

minimize ∥Z∥∗

subject to
∑

(i,j)∈Ω

(Aij − Zij)
2 < δ,

(3.28)

given a low rank approximation Z. While it might be preferable to minimize the rank of Z

instead of the nuclear norm, rank minimization in this context is a non-convex optimization

problem. A few of the algorithms created to solve this problem include the work of Cai,

Candes, and Shen in their work on singular value thresholding (SVT) [9], the Soft-Impute

algorithm by Mazumder et al. [44] and the APGL algorithm by Toh and Yun [67]. Each of

these works was published shortly after the conclusion of the Netflix competition in 2009.

Noticeably, SVT, Soft-Impute and APGL all rely on computing a set of singular values

above a given threshold at each step. Specifically, a θ parameter is chosen (potentially at

each step as seen in APGL) and the resulting low rank approximation S is created from

the SVD of the approximate Z = UΣV T by

S = U(Σ− θI)+V
T , (3.29)

where I is the identity matrix, and for any matrix X, (X)+ = max(X, 0). Hard-Impute

[44] removes the subtraction from Σ, but relies on a threshold θ as in (3.6) to choose the

appropriate low rank-k parameter. Since they chose PROPACK as the SVD software when

implementing these algorithms, they each developed a heuristic to determine a priori the

number of singular values to compute in each PROPACK call. With other software, such

as the SVD solver in the PRIMME software package [64], calculating all values above a

threshold is relatively trivial. This leads to a natural question: Is there a performance

benefit to their heuristics and why?

69

Hard Impute with Varying SVD Tolerance

10−4
10−2

100

200
400

10−3

10−2

10−1

100

Tolerance Itera
tion

s

E
rr

or
=

∥A
−
Z
∥ F

∥A
∥ F

10−4
10−2

100

200
400

10−3

10−2

10−1

100

Tolerance Itera
tion

s

E
rr

or
=

∥A
−
Z
∥ F

∥A
∥ F

Figure 3.14: Comparing various SVD tolerances (surface plot) with our specialized stop-
ping criteria (line plot). (Left) Results with a very flat spectrum Σ = linspace(0.99, 1, 30)
for the low rank space. (Right) Results with a slightly decaying spectrum Σ =
linspace(1, 50, 30) for the low rank space.

3.6 Hard-Impute Testing

In order to better understand the role of SVD tolerance, we began our analysis using a

Hard-Impute type method, where θ is chosen at each step to obtain the same rank k. This

allows us to choose k to equal the true rank of our test matrices. In Figure 3.14, we show

results for two rank 30 matrices with varying SVD residual tolerances.

Interestingly, problems with more decay within the low rank space converged much

more quickly with very high tolerances. Since problems with very flat spectra did not

exhibit this behavior, we developed a specialized criterion that could handle either situation

(seen as lines in Figure 3.14). To do this, we monitored the convergence of the sum in

Equation (3.28) inside of our GKD implementation. If the value increased, we stopped

GKD and returned the best rank 30 approximation currently available.

This criterion may be expensive as it results in O(gk) additional operations for each

SVD step where g is the number of entries of A used for comparison. In comparison, each

matvec is made up of a sparse matvec, O(|Ω|), and a vector multiplication with two low

rank bases O(nk+mk). Two matvecs are performed for each outer iteration, so the overall

cost of our criterion may not exceed the matvec cost for small |Ω|. While we utilized the

70

full sample size available for O(|Ω|k) operations per step, potentially a subsample could

suffice, further increasing performance. Also, the convergence check could be performed

less frequently, at each restart of the SVD. Considering the large cost of orthogonalization

for large matrices, it should be possible to include criteria like this with minimal overhead.

While the results shown in Figure 3.14 are promising, we found that comparing to the

sampled values of A sometimes was not sufficient to provide optimal performance beyond

1e-3. For the slightly decaying spectra Σ = linspace(1, 50, 30), a tolerance of 5e-1 provided

superlinear convergence to 1e-12 error, while our criterion converged significantly slower. If

our criterion tests against the entire matrix A (instead of just the sampled entries), we are

able to improve results beyond those of the standard 5e-1 tolerance. Obviously, this could

not be done in practice, but these results suggest that stopping the SVD appropriately can

produce high quality and fast results for the matrix completion problem.

3.7 Soft-Impute Testing

In order to determine the benefits (or drawbacks) of their heuristics, we first analyze the

performance of the Soft-Impute algorithm with varying thresholds on a small artificial

test case. This matrix is a 500 × 500 rank 20 matrix, with singular values diag(Σ) =

linspace(1, 50, 20). We uniformly choose a random sample comprising 30% of A to use as

AΩ. For a rank 20 problem, 30% of the entries should easily provide enough information

to converge to the correct low rank space. At each step, we calculate all singular values

using Matlab’s svd function, then update our approximation using all values above the

threshold provided. We run the same test with 20 thresholds from linspace(0.999, 0.1, 20).

These thresholds are chosen to include all non-zero singular values, while not including the

entire spectrum of AΩ at the first step.

Figure 3.15 shows the convergence of Soft-Impute towards the low rank approximation

size of 20. It is important to note that only the smallest two thresholds complete 1000

iterations with the correct number of singular values. While larger thresholds converge

71

0 50 100 150 200 250
0

100

200

300

400

500

Iteration

N
um

be
r

of
R

et
ur

ne
d

V
al

ue
s

Number of SVs above θ

0.14732
0.24195
0.33658
0.43121
0.52584
0.62047
0.71511
0.80974
0.90437
0.999

Figure 3.15: Comparing the number of
singular values needed at each iteration for
varying thresholds

0 100 200 300 400 500
10−16

10−12

10−8

10−4

100

Iteration
∥Z

i
−

Z
i−

1
∥ F

Iteration Distance

0.14732
0.24195
0.33658
0.43121
0.52584
0.62047
0.71511
0.80974
0.90437
0.999

Figure 3.16: Comparing the distance be-
tween two successive Soft Impute steps with
varying thresholds

more quickly, they tend to overshoot, leading to an underestimate of the rank. Obviously,

this can limit their ability to converge to the correct solution as the Frobenius norm of a

solution missing the smallest value is off by at least

1−

√∑19
i=1 σ

2
i√∑20

i=1 σ
2
i

= 2.87× 10−5 (3.30)

relative to the true solution. If there is also error in the largest portion of the spectrum,

even more error may accumulate.

Next, we focus on the standard stopping criteria for Soft-Impute, which is based on the

distance between two successive iterates. Again, we see that higher thresholds begin their

convergence more quickly, however the asymptotic rate of convergence seems similar for

all thresholds. Perhaps not surprisingly, the larger threshold values remove more singular

values and therefore have larger iterate distances for the first 30 iterations prior to achieving

asymptotic convergence. Interestingly, we see that the asymptotic convergence for each

72

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Threshold

E
rr

or
to

Fu
ll

D
at

a
Frobenius Error

With Heuristic
Without Heuristic

Figure 3.17: Comparing the Frobenius
norm distance to the full (dense) low rank
matrix A after 1000 iterations for 20 differ-
ent thresholds

0 20 40 60
0

100

200

300

400

500

Iteration
N

um
be

r
of

R
et

ur
ne

d
V

al
ue

s

Number of SVs above θ

0.14732
0.24195
0.33658
0.43121
0.52584
0.62047
0.71511
0.80974
0.90437
0.999

Figure 3.18: Comparing the number of
singular values needed at each iteration for
varying thresholds with heuristic 3.31

threshold seems to begin when the method has converged to the correct (or nearly correct)

number of singular values (from Figure 3.15).

Figure 3.17 shows the significant trade-off that exists between the speed of convergence

of larger tolerances and the distance to the true solution. While it should be theoretically

possible to converge to the correct values of A, we find larger thresholds tend to miss crucial

values and can even underestimate the largest singular values, causing significant error in

the final result. Seeing this, we tried choosing a threshold of 1e-2, but the slowdown in

finding the correct number of values was significant. Within 1,000 iterations, a threshold

of 1e-2 still returned more than 240 singular values and the error larger than 0.45.

It is clear that small thresholds generally perform better in terms of error, but the

significantly slower convergence speed must be addressed. The first option to try is utilizing

the heuristics given in [44]. Essentially, instead of updating with all the singular values

73

above the threshold, we use the following criteria:

Return: σ
(j)
i − θ > 0 with i ≤ j (3.31)

where (j) denotes the iteration number and θ is the chosen threshold. This limits the

amount of work needed at the beginning of the algorithm significantly, but may introduce

errors as we leave out significant portions of the initial space.

Using this heuristic we see nearly identical performance in error to the full dataset

(Figure 3.17). However, as seen in Figure 3.18, the convergence to the correct number

of singular values is nearly 5 times faster in iterations with the heuristic. If this problem

were larger and required an iterative solver, this heuristic would reduce time by even larger

margins, as each iteration only needs to compute a small number of singular values.

3.8 Chapter Summary

In this chapter, we presented our novel interface to the GKD solver that provides tailored

solutions to a variety of low rank approximation problems. On top of providing addi-

tional flexibility for SVD stopping criteria, we have added new targeting strategies that

can improve runtime of GKD in general as well as the accuracy of a new efficient residual

approximation strategy. Additionally, we have analysed a few common low rank problems

that focus on Frobenius and spectral norm optimization as well as gap finding. To ensure

these problems are well-posed when fully accurate SVD solutions are not available or fea-

sible to compute, we have provided additional conditions that ensure acceptable solutions

for both single vector and block SVD solvers. We have demonstrated through testing on

a variety of matrices that these novel criteria provide nearly optimal stopping conditions.

Lastly, we have shown the flexibility of our interface for solving matrix completion problems

using both standard and custom stopping criteria.

74

Chapter 4

GKD Software Implementation

As mentioned in previous chapters, we have developed an implementation of GKD using

the MATLAB programming language for our testing as well as for practical applications.

In this chapter, we focus on the specifics of the code including its user interface and runtime

options.

GKD can be invoked using the following function call in MATLAB.

[U,S,V,H,D] = GKD(A,nv,...)

Descriptions of the output variables and their size can be found in Table 4.1. MATLAB

syntax allows for fewer output parameters and defaults to returning values from left-to-

right. As an example, if only singular values are desired, the following function call can be

used.

[~,S] = GKD(A,nv,...)

The input variables include the matrix A, the number of values desired nv, which can

optionally be followed by a variety of Name/Value pairs. The matrix A can be given as a

standard matrix or as a function handle object. If using the latter, the Name/Value pairs

m and n must be provided to describe the dimensions of the matrix function.

As a general purpose partial SVD solver, the code has numerous default values for the

optional Name/Value pairs to provide a simplified user experience for the vast majority

75

Variable Description Size
U Left singular vectors m× nv
S Singular Values nv× nv
V Right singular vectors n× nv
H Convergence History outerits× 6
D User data N/A

Table 4.1: Output variables in GKD

1 %%Code to compute the largest 20 SVs of a matrix function using
2 %% a pseudo three term recurrence to a residual tolerance of
3 %% 1e−4. A random seed guarantees consistent results.
4 A = @(x,transp) mat_fun(x,transp);
5 [U,S,V] = GKD(A,20,'tol',1e−4,'m',1500,'n',1000,'b',20,'minRestart',20, ...
6 'maxBasis',60,'numOld',0,'seed',1);

Algorithm 4.1: GKD usage example

of users. These additional options along with their default values are listed in Table 4.2.

We provide an example using a number of these parameters in Algorithm 4.1. Some

additional discussion is required for a few of these options. SIGMA determines whether the

largest singular values (‘L’) or the smallest singular values (‘S’) are desired. This affects

restarting as well as the targeting order for the majority of targeting methods.

The options maxMV and maxTime are available to stop the method prior to convergence

to all nv values. By default, these options are not used. When these options are set, the

method stop when either maxMV matrix vector products have been computed or the total

elapsed time is greater than maxTime. In this scenario, the method will return the entire

bases U , V as well as all current Ritz values. This may be more than nv values.

If available, the user can provide an estimate of ∥A∥ using normA. By default this value

is set to match the current largest Ritz value found. This is generally less accurate when

searching for the smallest singular values (SIGMA = ‘S’), but is often good enough if no

estimate is known a priori.

If initial guesses are available for the right singular vectors, they can be included using

v0. Importantly, the dimension of these vectors should match the smaller dimension of

A. Currently, there is no support for supplying left singular vectors. The default uses a

76

Variable Description Default
tol Residual norm tolerance 1E-6

SIGMA Sets which values are desired (‘L’ or ‘S’) ‘L’
m Number of rows in A (function handle) max(size(A))
n Number of cols in A (function handle) min(size(A))

maxMV Maximum number of MVs inf
maxTime Maximum solver time inf
normA ∥A∥2 estimate Current max(σi)

display Prints partial history to console if set 0 (off)
v0 Initial guess randn(n,b)

seed Random seed ’shuffle’
b Block size 1

minRestart Number of vectors to maintain after restart Equation (4.1)
maxBasis Max number of basis vectors in V,U Equation (4.2)
numOld Number of +k vectors to keep during restart -1
maxQMR Max number of QMR iterations 0

P Preconditioner for ATA []
target_fn Function used for expanding the basis ‘resid’
stop_fn Function used for stopping the solver ‘resid’
userdata External user data []

Table 4.2: Optional Name/Value pairs for GKD

block of random standard Gaussian vectors, which are orthonormalized prior to starting

the main algorithm. In order to obtain consistent results from one run to the next, the user

can provide a consistent v0 or use the default value and use seed, which sets the random

seed for MATLAB’s random number generator. By default, seed is set to ‘shuffle’ which

sets the random number generator based on the current time. This will produce different

results for each run of GKD.

The Name/Value pairs for minRestart, maxBasis and numOld control the restarting

parameters for GKD. minRestart and maxBasis default to the following equations:

minRestart = max(7, nv+ 5), (4.1)

maxBasis = max(15, minRestart+ 4b, ⌊1.3 minRestart⌋). (4.2)

numOld controls the number of Ritz vectors from the previous iteration to include for +k

77

restarting which defaults to the current block size (-1). This value should be non-negative

unless the default behavior is desired.

Preconditioners can be given using the P Name/Value pair in a number of different

ways. If given as a matrix, the input should be an approximation to ATA which will be

backsolved using MATLAB’s backslash operator (\). If P is a function_handle, the input

function should approximate the action of (ATA)−1 on a set of vectors. Similarly, if P

is given as a cell array, the first two arguments are treated as function handles that act

on the vectors X sequentially (e.g. P{1}(P{2}(X))). No preconditioning is applied when

P = [] which is the default behavior.

4.1 Targeting and Stopping Functions

Advanced users may wish to change the way GKD targets vectors for basis expansion or

include their on stopping criterion as presented in Chapter 3. We include the target_fn

and stop_fn Name/Value pairs for this purpose. The userdata structure can be used in

conjunction with a custom target_fn or stop_fn to pass in important external information

to these functions.

The available defaults for target_fn include ‘prog_tol’ (a progressive targeting scheme),

‘resid’ (targets vectors sequentially to a residual of tol), and ‘large’ (targets vectors with

the largest residuals). Most users should use ‘resid’ unless they know that their stopping

criterion requires a non-standard targeting scheme. It is also possible for users to write

their own targeting function, however this is not generally recommended. If a custom

targeting scheme is desired, the function handle should follow the form

[index,UD] = fn(SD,UD,A,U,V)

where index should return an ordered list of the integers from one to SD.k. The solver

will target vectors in the order that their index appears in index, unless these vectors

have residuals less than ∥A∥SD.tol. UD is included to allow the user to maintain any user

78

1 function [index,UD] = resid_target(SD,UD,A,U,V)
2 r = A(U*SD.ur,SD.transp) − V*SD.vr*diag(SD.s); %Compute residuals
3 r_norm = vecnorm(r); %Compute norms
4 index = find(r_norm > SD.normA*SD.tol); %Find unconverged triplets
5 end

Algorithm 4.2: Targeting function example

1 function [done,nv,UD] = resid_stop(nv,SD,UD,A,U,V)
2 done = 0;
3 if SD.k > nv
4 r_norm = SD.rn;
5 if all(r < SD.normA*SD.tol)
6 done = 1;
7 end
8 end
9 end

Algorithm 4.3: Stopping function example

data generated by the targeting function if desired. The input parameters are described

in Section 3.3. We provide an example target_fn in Algorithm 4.2.

Similarly, stop_fn is available to advanced users who need the functionality presented

in Chapter 3. Currently, the only default available is ‘resid’ which stops by the standard

residual criterion (1.5). If a custom function is desired, the function handle should follow

the form

[done,nv,UD] = fn(nv,SD,UD,A,U,V)

where done is a completion flag and nv should return to the solver the number of desired

singular triplets as explained in Section 3.3. An example stop_fn is given in Algorithm 4.3.

79

Chapter 5

Conclusion

We have presented GKD, a new method for finding the smallest singular triplets of large

sparse matrices to full accuracy. Our method works iteratively, under limited memory, with

preconditioners, while including features such as soft-locking with orthogonality guaran-

tees, +k restarting, and the ability to find real zero singular values in both square and rect-

angular matrices. Additionally, GKJD adds a Jacobi-Davidson inner solver for the ATA

correction equation into GKD, which can lower execution time when the matrix-vector

multiplication operation is inexpensive and can reduce the errors caused by restarting.

Both of these methods have shown to be more reliable and efficient than PHSVDS, and

thus over other SVD methods, for nearly all cases.

Second, the lack of good stopping criteria within traditional SVD solvers like PROPACK,

severely limit the ability of practitioners to test their theoretical results properly. We have

demonstrated a number of stopping criteria and useful heuristics for the singular value

decomposition, including those based on the residual norm, Frobenius norm, and thresh-

olding. This work updates a few of the most common low rank criteria to ensure the

problem is well-posed when working with iterative SVD solvers. To verify our criteria and

heuristics, we have built a flexible interface into our MATLAB implementation of GKD.

Through this, we have shown that well crafted stopping functions can provide appropriate

low rank solutions with only a minor computational overhead.

80

Additionally, purpose built criteria such as the ones proposed for matrix completion

may significantly improve convergence when applied appropriately as shown in Section 3.5.

We have also demonstrated the significant performance gap between the heuristics and

theory of previous works like [44] and [9]. This shows that our work on flexible SVD

software can provide a significant benefit to both the speed of these applications as well as

our theoretical understanding of them.

5.1 Future Research Directions

In the future, further research should be done to incorporate specialized SVD criteria

in a variety of different fields including for the kernel ridge regression problem. Due to

the large sizes of many low rank approximation problems, it is often crucial to avoid

additional computation when possible. Initial testing on low signal to noise ratio problems

with our colleagues has shown promising results for stopping SVD calculations based on

small singular value gaps as mentioned in Chapter 3.

Similarly, a much deeper study into optimally stopping matrix completion algorithms

could prove fruitful, specifically for the SVD heavy APGL algorithm. This includes search-

ing for SVD specific criteria that could provide accurate and fast results, as well as devising

additional theory for matrix completion that can explain a few of the results seen in this

dissertation. Potentially, this research could be further extended to unconstrained non-

smooth convex optimization problems like the ones discussed in [67].

Of course, a high performance implementation of GKD as a standalone package or

within an existing package like PRIMME would be an obvious improvement in addition to

the work seen in this dissertation. This implementation could also include high performance

versions of other popular SVD methods. By having many methods implemented within the

same basic framework, research could be done to produce mixed methods where the basis is

first built using one method like subspace iteration and then improved (if necessary) using

GKD. Alternatively, work could be done to determine the appropriate method and/or

81

block size for a given problem based on a small set of input parameters (e.g. number

of desired singular triplets, desired residual tolerance). This would lead to a “black-box”

solution for less experienced users.

Lastly, Krylov solvers are known to have difficulty converging to values of the same

magnitude (multiplicities) for both the singular value decomposition (nonsymmetric) and

the eigenvalue decomposition. When working on problems that do not require high accu-

racy like low rank approximations, this difficulty is accentuated as solutions with sufficient

accuracy are found before finding the multiplicities as seen in Chapter 3. Frequently, the

solution to this problem is to utilize a block method where the size of the block is larger

than the largest multiplicity in the spectrum of interest. However, if there are many clus-

tered values (also called a near multiplicity), the block size required may be prohibitively

large. This can occur at the largest part of the spectrum in low rank approximation, or

the lowest part of the spectrum if the matrix is highly singular. It is possible that the

use of randomization within general eigensolvers by injecting noise into their recurrences

may be able to avoid missing multiple eigenvalues without relying on block methods. This

could be done by adding small random perturbations to the expansion vectors at each

step. Initial testing has shown that smaller block sizes can reliably find near multiplicities

of high degree when adding this noise, but additional work is still needed.

82

Bibliography

[1] Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank ma-

trix approximations. Journal of the ACM (JACM), 54(2):9, 2007.

[2] Advanced Micro Devices Inc. AMD APP SDK OpenCL Op-

timization Guide, August 2015. https://usermanual.wiki/Pdf/

AMDOpenCLProgrammingOptimizationGuide.1224332988 Accessed 2018-02-14.

[3] Orly Alter, Patrick O Brown, and David Botstein. Singular value decom-

position for genome-wide expression data processing and modeling. Proceedings of the

National Academy of Sciences, 97(18):10101–10106, 2000.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and

D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, third edition, 1999.

[5] James Baglama, Daniela Calvetti, and Lothar Reichel. IRBL: An implic-

itly restarted block-Lanczos method for large-scale Hermitian eigenproblems. SIAM

Journal on Scientific Computing, 24(5):1650–1677, 2003.

[6] James Baglama and Lothar Reichel. Augmented implicitly restarted Lanczos

bidiagonalization methods. SIAM J. Sci. Comput., 27(1):19–42, 2005.

83

https://usermanual.wiki/Pdf/AMDOpenCLProgrammingOptimizationGuide.1224332988
https://usermanual.wiki/Pdf/AMDOpenCLProgrammingOptimizationGuide.1224332988

[7] James Baglama and Lothar Reichel. Restarted block Lanczos bidiagonalization

methods. Numerical Algorithms, 43(3):251–272, 2006.

[8] MR Bai and SJ Elliott. Preconditioning multichannel adaptive filtering algo-

rithms using evd-and svd-based signal prewhitening and system decoupling. Journal

of sound and vibration, 270(4-5):639–655, 2004.

[9] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value

thresholding algorithm for matrix completion. SIAM Journal on optimization,

20(4):1956–1982, 2010.

[10] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex

optimization. Foundations of Computational mathematics, 9(6):717, 2009.

[11] Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-

optimal matrix completion. IEEE Transactions on Information Theory, 56(5):2053–

2080, 2010.

[12] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by

a perturbation. iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[13] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collec-

tion. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[14] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.

ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[15] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-

dauer, and Richard Harshman. Indexing by latent semantic analysis. Journal of

the American society for information science, 41(6):391–407, 1990.

[16] Carl Eckart and Gale Young. The approximation of one matrix by another of

lower rank. Psychometrika, 1(3):211–218, 1936.

84

[17] Linwei Fan, Ran Meng, Qiang Guo, Miaowen Shi, and Caiming Zhang. Im-

age denoising by low-rank approximation with estimation of noise energy distribution

in svd domain. IET Image Processing, 13(4):680–691, 2019.

[18] Arjun Singh Gambhir, Andreas Stathopoulos, and Kostas Orginos. Defla-

tion as a Method of Variance Reduction for Estimating the Trace of a Matrix Inverse.

SIAM Journal on Scientific Computing, 39(2):A532–A558, 2017.

[19] Steven Goldenberg, Andreas Stathopoulos, and Eloy Romero. A golub–

kahan davidson method for accurately computing a few singular triplets of large sparse

matrices. SIAM Journal on Scientific Computing, 41(4):A2172–A2192, 2019.

[20] Gene Golub and William Kahan. Calculating the singular values and pseudo-

inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics,

Series B: Numerical Analysis, 2(2):205–224, 1965.

[21] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.).

Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[22] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns

Hopkins University Press, Baltimore, 4th edition, 2013.

[23] Roger G Grimes, John G Lewis, and Horst D Simon. A shifted block Lanczos

algorithm for solving sparse symmetric generalized eigenproblems. SIAM Journal on

Matrix Analysis and Applications, 15(1):228–272, 1994.

[24] Ming Gu. Subspace iteration randomization and singular value problems. SIAM

Journal on Scientific Computing, 37(3):A1139–A1173, 2015.

[25] Qiang Guo, Caiming Zhang, Yunfeng Zhang, and Hui Liu. An efficient svd-

based method for image denoising. IEEE transactions on Circuits and Systems for

Video Technology, 26(5):868–880, 2015.

85

[26] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish

Narayanan. Deep learning with limited numerical precision. In International Con-

ference on Machine Learning, pages 1737–1746, 2015.

[27] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding struc-

ture with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions. SIAM review, 53(2):217–288, 2011.

[28] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scal-

able and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math.

Software, 31(3):351–362, 2005.

[29] Michiel E. Hochstenbach. A Jacobi–Davidson type SVD method. SIAM Journal

on Scientific Computing, 23(2):606–628, 2001.

[30] Walter Hoffmann. Iterative algorithms for gram-schmidt orthogonalization. Com-

puting, 41(4):335–348, 1989.

[31] Jinzhi Huang and Zhongxiao Jia. On inner iterations of jacobi-davidson type

methods for large svd computations. to appear in SISC, 11 2018.

[32] hypre: High performance preconditioners. https://llnl.gov/casc/hypre, https:

//github.com/hypre-space/hypre.

[33] ZhongXiao Jia and Cen Li. Inner iterations in the shift-invert residual arnoldi

method and the jacobi-davidson method. Science China Mathematics, 57(8):1733–

1752, 2014.

[34] Zhongxiao Jia and Cen Li. Harmonic and refined harmonic shift-invert residual

arnoldi and jacobi–davidson methods for interior eigenvalue problems. Journal of

Computational and Applied Mathematics, 282:83–97, 01 2015.

86

https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
https://github.com/hypre-space/hypre

[35] Zhongxiao Jia and Datian Niu. An implicitly restarted refined bidiagonalization

Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix

Anal. Appl., 25(1):246–265, 2003.

[36] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[37] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix

completion from a few entries. IEEE transactions on information theory, 56(6):2980–

2998, 2010.

[38] Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally op-

timal block preconditioned conjugate gradient method. SIAM journal on scientific

computing, 23(2):517–541, 2001.

[39] Rasmus Munk Larsen. Lanczos bidiagonalization with partial reorthogonalization.

DAIMI Report Series, 27(537), 1998.

[40] Nallig Leal, Eduardo Zurek, and Esmeide Leal. Non-local svd denoising of

mri based on sparse representations. Sensors, 20(5), 2020.

[41] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’

guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi

methods, volume 6. Siam, 1998.

[42] Qiao Liang and Qiang Ye. Computing singular values of large matrices with

an inverse-free preconditioned Krylov subspace method. Electronic Transactions on

Numerical Analysis, 42:197–221, 2014.

[43] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,

and Jeffrey S. Vetter. NVIDIA tensor core programmability, performance &

precision. CoRR, abs/1803.04014, 2018.

87

[44] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regular-

ization algorithms for learning large incomplete matrices. Journal of machine learning

research, 11(Aug):2287–2322, 2010.

[45] James R McCombs and Andreas Stathopoulos. Iterative validation of eigen-

solvers: a scheme for improving the reliability of Hermitian eigenvalue solvers. SIAM

Journal on Scientific Computing, 28(6):2337–2358, 2006.

[46] K. Meerbergen and R. Morgan. Inexact methods. In Templates for the So-

lution of Algebraic Eigenvalue Problems: A Practical Guide, James Demmel, Jack

Dongarra, Axel Ruhe, and Henk van der Vorst, editors. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000.

[47] Maike Meier and Yuji Nakatsukasa. Fast randomized numerical rank estima-

tion. arXiv preprint arXiv:2105.07388, 2021.

[48] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quar-

terly journal of mathematics, 11(1):50–59, 1960.

[49] Cameron Musco and Christopher Musco. Randomized block krylov methods

for stronger and faster approximate singular value decomposition. In Advances in

Neural Information Processing Systems, pages 1396–1404, 2015.

[50] Yuji Nakatsukasa. Sharp error bounds for ritz vectors and approximate singular

vectors. Mathematics of Computation, 89(324):1843–1866, 2020.

[51] Luong Trung Nguyen, Junhan Kim, Sangtae Kim, and Byonghyo Shim.

Localization of iot networks via low-rank matrix completion. IEEE Transactions on

Communications, 67(8):5833–5847, 2019.

[52] Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the partial

symmetric eigenproblem. Numer. Lin. Alg. Appl., 9:21–44, 2002.

88

[53] Stanisław Osiński, Jerzy Stefanowski, and Dawid Weiss. Lingo: Search

results clustering algorithm based on singular value decomposition. In Intelligent

information processing and web mining, pages 359–368. Springer, 2004.

[54] Peter Parker, Patrick J Wolfe, and Vahid Tarokh. A signal processing

application of randomized low-rank approximations. In IEEE/SP 13th Workshop on

Statistical Signal Processing, 2005, pages 345–350. IEEE, 2005.

[55] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

[56] David Persson, Alice Cortinovis, and Daniel Kressner. Improved variants

of the hutch++ algorithm for trace estimation. arXiv preprint arXiv:2109.10659,

2021.

[57] HS Prasantha, HL Shashidhara, and KN Balasubramanya Murthy. Image

compression using svd. In Conference on Computational Intelligence and Multimedia

Applications, 2007. International Conference on, volume 3, pages 143–145. IEEE,

2007.

[58] Louis L Scharf. The svd and reduced rank signal processing. Signal processing,

25(2):113–133, 1991.

[59] Horst D Simon and Hongyuan Zha. Low-rank matrix approximation using the

Lanczos bidiagonalization process with applications. SIAM Journal on Scientific Com-

puting, 21(6):2257–2274, 2000.

[60] Nathan Srebro, Noga Alon, and Tommi S Jaakkola. Generalization error

bounds for collaborative prediction with low-rank matrices. In Advances In Neural

Information Processing Systems, pages 1321–1328, 2005.

[61] A. Stathopoulos and Y. Saad. Restarting techniques for (Jacobi-)Davidson sym-

metric eigenvalue methods. Electr. Trans. Numer. Anal., 7:163–181, 1998.

89

[62] Andreas Stathopoulos. Locking issues for finding a large number of eigenvectors

of Hermitian matrices. Technical report, Tech Report WM-CS-2005-09, Computer

Science, The College of William & Mary, 2005.

[63] Andreas Stathopoulos. Nearly optimal preconditioned methods for Hermitian

eigenproblems under limited memory. part i: Seeking one eigenvalue. SIAM J. Sci.

Comput., 29(2):481–514, 2007.

[64] Andreas Stathopoulos and James R. McCombs. PRIMME: PReconditioned

Iterative MultiMethod Eigensolver: Methods and software description. ACM Trans-

actions on Mathematical Software, 37(2):21:1–21:30, 2010.

[65] Andreas Stathopoulos and Kesheng Wu. A block orthogonalization procedure

with constant synchronization requirements. SIAM Journal on Scientific Computing,

23(6):2165–2182, 2002.

[66] Arthur Szlam, Yuval Kluger, and Mark Tygert. An implementation of a ran-

domized algorithm for principal component analysis. arXiv preprint arXiv:1412.3510,

2014.

[67] Kim-Chuan Toh and Sangwoon Yun. An accelerated proximal gradient algo-

rithm for nuclear norm regularized linear least squares problems. Pacific Journal of

optimization, 6(615-640):15, 2010.

[68] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of

Cognitive Neuroscience, 3(1):71–86, 1991. PMID: 23964806.

[69] Shashanka Ubaru and Yousef Saad. Fast methods for estimating the numerical

rank of large matrices. In International Conference on Machine Learning, pages 468–

477. PMLR, 2016.

90

[70] Eugene Vecharynski. Preconditioned Iterative Methods for Linear Systems, Eigen-

value and Singular Value Problems. PhD thesis, University of Colorado at Denver,

Denver, CO, USA, 2011. AAI3456056.

[71] Kesheng Wu and Horst Simon. Thick-restart Lanczos method for large symmetric

eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 22(2):602–

616, 2000.

[72] Lingfei Wu, Eloy Romero, and Andreas Stathopoulos. PRIMME_SVDS:

A high-performance preconditioned SVD solver for accurate large-scale computations.

arXiv preprint arXiv:1607.01404, 2016.

[73] Lingfei Wu and Andreas Stathopoulos. A preconditioned hybrid SVD method

for accurately computing singular triplets of large matrices. SIAM Journal on Scien-

tific Computing, 37(5):S365–S388, 2015.

[74] Qiong Wu, Felix Ming Fai Wong, Zhenming Liu, Yanhua Li, and Varun

Kanade. Adaptive reduced rank regression. arXiv preprint arXiv:1905.11566, 2019.

[75] Bendraou Youssef, Essannouni Fedwa, Aboutajdine Driss, and Salam

Ahmed. Shot boundary detection via adaptive low rank and svd-updating. Computer

Vision and Image Understanding, 161:20–28, 2017.

[76] Peng Zhang and Yuxiang Gao. Matrix multiplication on high-density multi-GPU

architectures: theoretical and experimental investigations. In International Confer-

ence on High Performance Computing, pages 17–30. Springer, 2015.

91

	Flexible And Robust Iterative Methods For The Partial Singular Value Decomposition
	Recommended Citation

