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ABSTRACT

This thesis develops several forecasting models for simultaneously predicting the
prices of d assets traded in financial markets, a most fundamental problem in the
emerging area of “FinTech”. The models are optimized to address three critical
challenges, C1. High-dimensional interactions between assets. Assets could interact
(e.g., Amazon’s disclosure of its revenue change in cloud services could indicate
that revenues also could change in other cloud providers). The number of possible
interactions is quadratic in d, and is often much larger than the number of observations.
C2. Non-linearity of the hypothesis class. Linear models are usually insufficient
to characterize the relationship between the labels (responses) and the available
information (features). C3. Data scarcity for each asset. The size of the data
associated with an individual asset could be small. For example, a typical daily
forecasting model based on technical factors uses three years (approx. 750 trading
days) of data. We collect one data point for each day so only 750 observations are
available for each asset. We develop the following works to address these challenges.
1. Adaptive reduced rank regression (addressing C1): We examine a linear regression
model y = Mx+ ε that aims to directly capture the interactions between all features
from all assets and all the responses, by estimating d× ω(d) entries in M using O(d)
observations. In this setting, existing low-rank regularization techniques such as
reduced rank regression or nuclear-norm based regularizations fail to work. Adaptive
Reduced Rank Regression is a new provable algorithm for estimating M under a
mild assumption on the spectrum of the covariance matrix of x.
2. On embedding stocks (addressing C1 & C2). We next propose a semi-parametric
model called the “additive influence model” that decomposes the inference problem
into two orthogonal subroutines. One subroutine is used to learn the high-dim
interactions between entities, and we solve the problem with techniques developed
for Adaptive-RRR. The other subroutine is used to learn the non-linear signals, and
we solve the problem with practical algorithms such as deep learning and ensemble
learning.
3. Equity2Vec: Interaction beyond return correlations (addressing C2 & C3). We
develop a specialized neural net model for each asset (e.g., train gi(·) for asset i) but
there is insufficient data to properly train gi with data only from i (because of C3).
Our idea is to shrink gi(·)’s toward one or more centroids to reduce model (sample)
complexities. Specifically, we train a neural net model g(xi,W,Wi), where W is
shared across all entities, Wi is entity-specific and is learned through embedding,
and gi(xi) = g(xi,W,Wi). When entities i and j are close, then Wi and Wj are close.
Consequently, gi and gj will be similar when entity i and entity j are similar.
The proposed algorithms/models are verified via extensive experiments based on
real-world equity datasets. Our forecasting models can also be applied to a wide
range of applications, such as identifying biomarkers, understanding risks associated
with various diseases, image recognition, and link prediction.



TABLE OF CONTENTS

Acknowledgments v

Dedication vi

List of Tables vii

List of Figures viii

1 Introduction 2

1.1 Overview of our contribution . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Adaptive reduced rank regression 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Intuition of the design . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2.1 Step 1. PCA for the features (proof of Proposition 2.3.1) 20

2.3.2.2 Step 2. Analysis of ZTY . . . . . . . . . . . . . . . . . 25

2.3.2.3 Step 3. Analysis of our algorithm’s MSE . . . . . . . . 31

2.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.2.1 Step 1. Partial specification for each column . . . . . . 48

i



2.4.2.2 Step 2. Random samples from the Cartesian product . 49

2.4.2.3 Step 3. Building up unitary matrices . . . . . . . . . . 53

2.4.2.4 Proof of Proposition 2.4.2 . . . . . . . . . . . . . . . . 56

2.5 Related work and comparison . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Missing proof in comparison . . . . . . . . . . . . . . . . . . . 62

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.1 Setup of experiments . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.1.1 Equity returns . . . . . . . . . . . . . . . . . . . . . . 65

2.6.1.2 User popularity . . . . . . . . . . . . . . . . . . . . . . 67

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 On Embedding Stocks: Orchestrating High-dimensional Techniques for

Financial Machine Learning Models 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Our algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Learning vector representation provably . . . . . . . . . . . . . 74

3.3.2 Learning g(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Related work and comparison . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Additional notes on problem definition . . . . . . . . . . . . . . . . . 86

3.8 Estimation of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8.2 Proof for Prop 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8.3 Additional estimators for K . . . . . . . . . . . . . . . . . . . . 92

3.9 Estimating g(·) with non-parametric methods . . . . . . . . . . . . . . 93

ii



3.9.1 Overview of our algorithms . . . . . . . . . . . . . . . . . . . . 93

3.9.2 Implementing the FlipSign algorithm . . . . . . . . . . . . . . . 95

3.9.2.1 Part 1. Analysis of the stylized model . . . . . . . . . 97

3.9.2.2 Part 2. Analysis of the original problem with g(·) and

unknown K . . . . . . . . . . . . . . . . . . . . . . . . 98

3.10 Estimating g(·) with boosting . . . . . . . . . . . . . . . . . . . . . . 103

3.11 Consolidation/Ensemble model . . . . . . . . . . . . . . . . . . . . . . 105

3.12 Additional proofs and calculations . . . . . . . . . . . . . . . . . . . . 106

3.12.1 Proof of Proposition 3.8.7 . . . . . . . . . . . . . . . . . . . . . 106

3.12.2 Anti-concentrations . . . . . . . . . . . . . . . . . . . . . . . . 107

3.13 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.13.1 Datasets collection and experimental setup . . . . . . . . . . . 109

3.13.2 Additional explanation about evaluation matrices and baselines 111

3.13.3 Experiment evaluation . . . . . . . . . . . . . . . . . . . . . . . 113

3.14 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.15 Factor list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Equity2Vec: End-to-end Deep Learning Framework for Cross-sectional

Asset Pricing 128

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Preliminaries and Framework overview . . . . . . . . . . . . . . . . . 131

4.3 Equity2Vec from news . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.1 Capturing long-term stock relations . . . . . . . . . . . . . . . 133

4.3.2 Capturing evolving stock relations . . . . . . . . . . . . . . . . 134

4.4 Leverage heterogeneous data sources . . . . . . . . . . . . . . . . . . . 136

4.4.1 Sequential modeling . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.2 Gathering difference sources of alphas . . . . . . . . . . . . . . 137

iii



4.5 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . 139

4.5.3 Baselines for comparison . . . . . . . . . . . . . . . . . . . . . . 140

4.6 Performance and Discussion . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 Interpretation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.9 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Conclusions and Future Work 148

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 152

Vita 170

iv



ACKNOWLEDGMENTS

This dissertation would not finish without the support of many people. First, I wish
to express my deepest gratitude to my academic advisor, Dr. Zhenming Liu for his
insightful and diligent mentoring along with the whole Ph.D. journal. He helped to
identify interesting research topics, carry out deep analysis and build up my research
skills.
During my Ph.D., I was fortunate to closely collaborate with Mihai Cucuringu,
Andreas Stathopoulos, Wen-ling Hsu, Christopher G. Brinton, Yanhua Li, Lirong
Xia, Varun Kande, Ao Liu, Tan Xu, and Guy Jacobson. I thank them for their
enormous advice and countless hours. I extend my thank to my committee members:
Dr. Andreas Stathopoulos, Dr. Gang Zhou, Dr. Bin Ren, and Dr. Mihai Cucuringu
for their valuable questions and comments, which help a lot in improving the
dissertation.
My Ph.D. research was performed using the computing facilities at William & Mary.
I thank the entire technical staff for managing those facilities. In particular, I
thank Eric Walter for always helping me with my requests. I also thank the entire
administrative staff of the Computer Science department; Vanessa Godwin and Dale
Hayes for being efficient, professional, and above all caring.
Finally, I have been gifted with a caring, patient, and supportive family and friends.
I am thankful to my husband Hongyuan, my sister, my parents, and my friends for
their unconditional love and endless support. In the end, I would like to thank my
adorable full friend, Lume, for the joy she brought to me. By pursuing a Ph.D., I
could become a much better researcher, engineer, and person. It was a truly valuable
experience for me and thank everyone who helped me get through the Ph.D.

v



To my family.

vi



LIST OF TABLES

2.1 Summary of results for equity return forecasts. R2 are measured by

basis points (bps). 1bps = 10−4. Bold font denotes the best out-of-

sample results and smallest gap. . . . . . . . . . . . . . . . . . . . . . 64

2.2 Average results for Twitter dataset from 10 random samples. Bold

font denotes the best out-of-sample results and smallest gap . . . . . . 64

3.1 Comparison between GBRT and Lin-PVEL. . . . . . . . . . . . . . . 82

3.2 Summary of results for equity raw return forecasts. Lin-PVEL is

the gradient boosting method with linear learner. Bold face denotes

the best performance in each group. DD denotes the method using

Alg. 2. Opt. denotes the optimal results from different estimators of

K (App. 3.8.3). Backtesting results pertain to the Full universe. See

App. 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Barra style factors from [122]. . . . . . . . . . . . . . . . . . . . . . . 110

3.4 The by year results for Universe 800 . . . . . . . . . . . . . . . . . . . 114

3.5 Yearly results for Full universe. . . . . . . . . . . . . . . . . . . . . . . 114

3.6 Feature Importance of Linear Boosting (Universe 800 ). . . . . . . . . 116

3.7 Feature Importance of Linear Boosting (Full universe). . . . . . . . . 116

4.1 A set of popular technical indicators and the corresponding description.139

4.2 The temporal overall attention weights. . . . . . . . . . . . . . . . . . 144

vii



LIST OF FIGURES

2.1 Our algorithm (Adaptive-RRR) for solving the regression y = Mx+

ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The angle matrix between C and C∗. . . . . . . . . . . . . . . . . . . 17

2.3 (a) Major result: signals in N are partitioned into four blocks. All

signals in block 1 can be estimated (Thm 2.3.2). All signals in block 3

cannot be estimated (Prop 2.4.2). Our lower bound techniques does

not handle a small tail in Block 4. A gap in block 2 exists between

upper and lower bounds. (b)-(d) Constructing N: Step 1 and 2

belong to the first stage; step 3 belongs to the second stage. (b) Step

1. Generate a random subset D(i) for each row i, representing its

non-zero positions. (c) Step 2. Randomly sample from D, where D

is the Cartesian product of D(i). (d) Step 3. Fill in non-zero entries

sequentially from left to right. . . . . . . . . . . . . . . . . . . . . . . 40

3.1 (a) We use the square root of Pi∗(Y
TY) to approximate K so that we pay a factor

of 1/σi∗(K), instead of 1/σmin(K). (b) Three key requirements for i∗: σi∗(K) is

large (R1), Pi∗(K
2) is close to K2 (R2), and σi∗(K)− σi∗+1(K) is large (R3). . . 74

viii



3.2 A toy example of nparam-gEST when Ki,j = 1 for all i and j and

Ω = [−1, 1] and is uniformly partitioned into 10 pieces. Sampling a

g(xt,i) corresponds to randomly placing a ball into a total number

of 10 bins. For example, xt,2 falls into the 8-th interval so µ8 is

used to approximate g(xt,2), which may be viewed as a new ball of

type µ8 (or in 8-th bin) is created. The mean load for each bin is

d/` = d/10. We calculate
∑

i≤d g(xt,i) by counting the balls in each

bin: yt,1 = 5× µ1 + 1× µ2 + ...+ 6× µ8 + 3× µ9 + 1× µ10 + ξt,1. . . 79

3.3 An example of representing trees as a DNF formula. . . . . . . . . . . . . . . 82

3.4 Cumulative PnL (Profit and Loss) curves of the top quintile portfolio

from Full universe (i.e., on any given day, we consider a portfolio with

only the top 20% strongest predictions in magnitude, against future

market excess returns). See App. 4.6 . . . . . . . . . . . . . . . . . . . 85

3.5 Example of a two-dimensional scenario for the construction of {Ωj}j≤`.

Each rectangle in the graph has the same probability mass. . . . . . . 94

3.6 Left: training one weak learner. We first choose three features that

are the most correlated with the residualized response. Then we run a

linear regression using linear and interaction terms. Right: boosting.

When we train learners sequentially, we can control gm(·) but not the

neighbors’ structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Improving factor level forecasting power by the nparam-gEST algorithm.113

3.8 Cumulative PnL (Profit & Loss) curves of the top quintile portfolio

(i.e., on any given day, we consider a portfolios with only the top

20% strongest in magnitude predictions, against future market excess

returns). (a)-(c) are for the Universe 800 and (d)-(f) are for the Full

universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ix



3.9 (a): t-SNE for our latent embedding (colors are coded by sectors); (b): Examples

of stocks and their neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1 Examples showing our key observations: When the news mention

stocks frequently, the stocks are 1) likely to reflect relations, such as

sector and supply-chain, 2) likely to have similar movement on prices. 129

4.2 The illustration of our end-to-end framework. It contains the Eq-

uity2Vec component (Section 4.3) and heterogeneous data source

component (Section 4.4). . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3 (a) Our approach to build the stock co-occurrence matrix and calculate

the static embedding for stocks. (b) The construction of temporal graph.133

4.4 Performance comparison in terms of correlation (a) and t-statistic (b)

among our Equity2Vec, ARRR, HAN, AlphaStock, VR, and SFM.

For both correlation and t-statistic, higher scores are better. . . . . . . 138

4.5 The effects of using different number of neighbors and effects of learned

stock representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.6 The cumulative PnL (Profit and Loss) curves of the top quintile

portfolio. For example, on any given day, we consider a portfolio

with only the top 20% strongest predictions in magnitude, against

future market excess returns. We simulate the investment on both (a)

Long-short portfolio and (b) Long-index portfolio. . . . . . . . . . . . 143

4.7 t-SNE of final stock representations (colors code industry sectors). . . 144

4.8 The demonstrative news from high accuracy and low accuracy perfor-

mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

x



High-dimensional Machine Learning Models in FinTech



Chapter 1

Introduction

Predicting the assets prices or return is of fundamental importance to the financial

technology community as the successful prediction of assets’ future price could yield

significant profit [71, 157, 103]. This thesis investigates using machine learning techniques

to simultaneously forecast the future return for a large number of stocks traded in a region.

For example, in the US market, we generally build models to predict the next 5-day returns

for the S&P 500 or the Russell 3000.

Forecasting future prices of equities has been extensively studied [165, 22, 60, 12, 81,

69, 21, 86, 46, 70, 62, 26, 155, 49, 73, 53, 68, 38, 51, 28, 64, 26, 39, 167, 72, 80, 92]. Most

have examined how the fundamental characteristics, such as the book/market ratio, capital,

and momentum of the issuing firm could affect the price of the asset over the long term, or

how various events or macroeconomic factors could cause price changes [36, 127, 81]. The

studies have tended to use low-frequency models because the response horizon is in the

order of months (e.g., how a stocks price changes after 3 months). Linear statistical models

need to be used because the data sets are remarkably small, e.g., each asset is associated

with only a few data points (e.g., each month corresponds to a data point). “Mid-frequency”

models with one or multiple days of forecasting horizon had been studied more extensively

in the private sectors. It has been observed that trading activities (e.g., price/volume

changes) have a heavier impact on an equitys short term price movement than fundamental
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factors so significant effort was devoted to understanding the prediction powers of technical

factors such as volatility or trading volume changes [155, 26, 49] for empirical asset pricing.

Because we can collect a more reasonable amount of data (e.g., one trading day results

in one data point), using machine learning techniques to extract interactions becomes

possible. Recent years have witnessed explosive development of mid-frequency ML models

from both finance and computer science.

“High-frequency” models investigate price changes over an even shorter time horizon

(e.g., next 10-second return). The price changes in this horizon are usually driven by the

market microstructure (the dynamics of the bid-ask queues). Here, the modeling challenge

is more on the computational side. It is often remarkably to fit an ML model properly with

an abundant amount of data. So a significant fraction of effort focuses on speeding up the

system, which resembles typical system and architecture research [160, 101, 75, 98, 94, 99].

Our works examine the mid-frequency models and focus on their statistical challenges,

and do not examine market microstructure. Under this setting, we focus on learning how

technical factors impact equities prices. We aim to tackle three key challenges that are not

properly addressed in prior works [155, 72, 167, 92, 20, 25, 84, 118, 73]:

C1. High-dimensional interactions between assets. The current state of one asset

could potentially impact the future state of another. For example, Amazon’s disclosure

of its revenue change in cloud services could indicate that revenues also could change

in other cloud providers. The number of possible interactions is excessively large and

can be even significantly larger than the number of observations. For example, in a

portfolio of 3,000 stocks, the total number of potential links between pairs of stocks is

3, 000× 3, 000 ≈ 107, whereas we typically have 10 years of daily data with only 2,500 data

points [124, 62, 81, 28]. This setting is also referred to as the high dimensional setting and

is prone to have severe overfitting issues. It requires careful analysis of a models theoretical

properties before fitting the data.

C2. Non-linearity of the hypothesis class. Linear models are usually insufficient
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to characterize the relationship between the response/label and the available information

(features), so techniques beyond simple linear regressions are heavily needed.

C3. Data scarcity for training individual asset model. While we usually have a

large volume of data, the size of the data associated with an individual asset could be

small and is insufficient for properly train the model for the individual asset. For example,

a typical daily forecasting model based on technical factors uses 10 years (approx. 2500

trading days) of data. We collect one data point for each day so only 2500 observations

are available for each asset.

1.1 Overview of our contribution

We develop three works that are optimized to address one or more of these critical challenges.

Chapter 2: Adaptive reduced rank regression (address C1). We propose adaptive

reduced rank regression to address the high-dimensional interaction challenge. We assume

a total number of d2 stocks and we examine the regression model. The system proceeds in

rounds for a total of T rounds and regression problem yt =Mxt + ε. At round t, asset i is

associated with features xi,t ∈ Rk and a response yi,t ∈ R that needs to be predicted. We

use all xt ∈ Rd1 = {xi,t}i∈d2 to predict all yt = {yi,t}i∈[d2]. M ∈ Rd2×d1 are the learnable

parameters. For example, we aim to predict the returns of a collection of financial stocks

in the S&P500. In round t, yi,t refers to the next period return of asset i, xi,t refers to the

features associated with stock i such as the technical factors (e.g., recent trading volumes

of i), yt refers to the next period return of all the stocks and xt refers to the features from

all the stocks.

Recall that the regression is under high-dimension setting since the number of obser-

vations n is significantly less than d1. Existing low-rank regularization techniques (e.g.,

[7, 76, 84, 118, 104] are not optimized for the large feature size setting. These results

assume that either the features possess the so-called restricted isometry property [23],

or their covariance matrix can be accurately estimated [118]. Therefore, their sample

complexity n depends on either d1 or the smallest eigenvalue value λmin of x’s covariance

4



matrix. For example, a mean-squared error (MSE) result that appeared in [118] is of the

form O
(
r(d1+d2)
nλ2

min

)
. When n ≤ d1/λ

2
min, this result becomes trivial because the forecast

ŷ = 0 produces a comparable MSE. We design a new provable algorithm for estimating M

called Adaptive Reduced Rank Regression (Adaptive-RRR). Our algorithm is a simple

two-stage algorithm. Let X ∈ Rn×d1 be a matrix that stacks together all features and

Y ∈ Rn×d2 be the one that stacks the responses. In the first stage, we run a principal

component analysis (PCA) on X to obtain a set of uncorrelated features Ẑ. In the second

stage, we run another PCA to obtain a low rank approximation of ẐTY and use it to

construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on

using PCA to process features, a widely used practice for “dimensionality reduction” [24,

58, 53]. PCA is known to be effective to orthogonalize features by keeping only the subspace

explaining large variations. But its performance can only be analyzed under the so-called

factor model [143, 142]. We show the efficacy of PCA without the factor model assumption.

Instead, PCA should be interpreted as a robust estimator of x’s covariance matrix. The

empirical estimator C = 1
nXXT in the high-dimensional setting cannot be directly used

because n� d1 × d2, but it exhibits an interesting regularity: the leading eigenvectors of

C are closer to ground truth than the remaining ones. In addition, the number of reliable

eigenvectors grows as the sample size grows, so our PCA procedure projects the features

along reliable eigenvectors and dynamically adjusts Ẑ’s rank to maximally utilize the raw

features. Under mild conditions on the ground-truth covariance matrix C∗ of x, we show

that it is always possible to decompose x into a set of near-independent features and a set

of (discarded) features that have an inconsequential impact on a model’s MSE.

When features x are transformed into uncorrelated ones z, our original problem becomes

y = Nz+ ε, which can be reduced to a matrix denoising problem [41] and be solved by

the second stage. Our algorithm guarantees that we can recover all singular vectors of N

whose associated singular values are larger than a certain threshold τ . The performance

guarantee can be translated into MSE bounds parametrized by commonly used variables
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(though, these translations usually lead to looser bounds). For example, when N ’s rank is

r, our result reduces the MSE from O(racr(d1 + d2)nλ
2
min) to O( rd2n + n−c) for a suitably

small constant c. The improvement is most pronounced when n� d1.

We also provide a new matching lower bound. Our lower bound asserts that no

algorithm can recover a fraction of singular vectors of N whose associated singular values

are smaller than ρτ , where ρ is a “gap parameter”. Our lower bound contribution is

twofold. First, we introduce a notion of “local minimax”, which enables us to define a

lower bound parametrized by the singular values of N . This is a stronger lower bound

than those delivered by the standard minimax framework, which are often parametrized

by the rank r of N [84]. Second, we develop a new probabilistic technique for establishing

lower bounds under the new local minimax framework. Roughly speaking, our techniques

assemble a large collection of matrices that share the same singular values of N but are far

from each other, so no algorithm can successfully distinguish these matrices with identical

spectra.

Adaptive reduced rank regression (Adaptive-RRR) is a new and provably optimal

algorithm for estimating M under a mild average case assumption over the features. Our

algorithm is a simple two-stage algorithm. Let X ∈ Rn×d1 be a matrix that stacks together

all features and Y ∈ Rn×d2 be the one that stacks the responses. In the first stage, we run

a principal component analysis (PCA) on X to obtain a set of uncorrelated features Ẑ. In

the second stage, we run another PCA to obtain a low-rank approximation of ẐTY and

use it to construct an output. We also provide an upper bound and a new matching lower

bound.

Chapter 3: On embedding stocks (addressing C1 & C2). This work describes

how we can decouple the learning of high-dimensional stock interactions (C1) and non-

linear learning of feature interactions (C2) so that the former problem is solvable by

provable algorithms and the latter is solvable by a wide range of practical machine

learning [155, 72, 100, 159] techniques such as deep learning, boosting tree, and non-
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parametric methods.

We propose a latent position model for equity returns, dubbed as the additive influence

model. Our model assumes that each stock i is associated with a vector representation

zi in a (latent) Euclidean space, and characterizes the interactions between stocks in the

form as

yt,i =
∑
j∈[d]

κ(zi, zj)g(xj,t) + ξt,i, (1.1)

where yt,i ∈ R is the next period return at time t for stock i, xt,j ∈ Rk are the features

associated with stock j at time t, ξt,i is a noise term, g : Rk → R is an unknown function,

and κ is a function that measures the interaction strength between stocks based on their

vector representations. When zi and zj are close, κ(zi, zj) will be large, and thus the

variable g(xt,j) from stock j’s has a stronger impact on i’s return.

Our proposed model allows for feature interactions through g(·), and addresses the

overfitting problem arising from stock interactions because the distances (interaction

strength) between stocks are constrained by the latent Euclidean space: when zi − zj and

zj−zk are small, zi−zk is also small, and thus the degree of freedom for stock interactions

becomes substantially smaller than O(d2).

Our goal is to learn both the zi’s and g(·). We note that these two learning tasks can

be decoupled : high-dim methods can be developed to provably estimate the zi’s without the

knowledge of g(·), and when estimates of zi’s are given, an experiment-driven process can

be used to learn g(·) by examining prominent machine learning methods such as neural

nets and boosting. In other words, when we learn stock interactions, we do not need to be

troubled by the overfitting problem escalated by fine-tuning g(·), and when we learn feature

interactions, the generalization error will not be jeopardized by the curse of dimensionality

from stock interactions.

To learn the zi’s, we design a simple algorithm that uses low-rank approximation of

yt’s covariance matrix to find the closeness of the stocks, and develop a novel theoretical

analysis based on recent techniques from high-dim and kernel learning [15, 147, 161].
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To learn g(·), we generalize major machine learning techniques, including neural nets,

non-parametric, and boosting methods, to the additive influence model when estimates

of zi’s are known. We specifically develop a moment-based algorithm for non-parametric

learning of g(·), and a computationally efficient boosting algorithm based on linear learners

by using the domain knowledge of equity data sets.

Chapter 4: Equity2Vec (addressing C2 & C3).

We propose Equity2Vec to learn the stock embedding reflects non-return interactions

and address the data scarcity challenge (C3) using neural net model (C2).

First, we examine how to learn the stock embeddings. Most research analyzed the

interactions between stocks by modeling their correlations over returns. However, the

stock interactions are beyond return correlations. For example, in early 2021, the AMC

theatres, GameStop, and BlackBerry suddenly show the co-movement. All of them show

the soaring stock price due to the investors formed on social media are buying up these

stocks. Thus, it is logical to ask how can we generalize the notion of correlation, or use

non-return information to analyze the interactions. We make two key observations by

analyzing news on stocks. When two stocks are frequently co-mentioned, 1) they are likely

to share common characteristics such as sector and supply-chain relation, 2) their prices

tend to have a similar trend. Based on our observations, we designed the graph-based

component and learned the stock embeddings that effectively capture both long-term and

evolving cross-sectional interactions using news co-mention.

To solve the data scarcity challenge, we develop a specialized neural net model for each

asset (e.g., train gi(·) for asset i ) but there is insufficient data to properly train gi(·) with

data only from i (because of C3). Therefore, we use the data associated with other entities

for training. We aim to train a neural net model g(xi,W,Wi), where W is shared across all

assets, Wi is entity-specific and is learned through embedding, and gi(xi) = g(xi,W,Wi).

When assets i and j are close, then Wi and Wj are close. Consequently, gi and gj will be

similar when asset i and asset j are similar.
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All the proposed algorithms/models are verified via extensive experiments based on

real-world equity datasets. Our forecasting models can also be applied to a wide range of

applications, such as identifying biomarkers, understanding risks associated with various

diseases, customer care [158], image recognition, and link prediction [96], topic modeling [].

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses more details

about Adaptive-RRR, where we demonstrate our upper bound, new matching lower bound,

and the experiments. In Chapter 3, we demonstrate how we use high-dimensional kernel-

based techniques to design a provably correct algorithm for revealing stock latent position,

and how we integrate the algorithm with machine learning models including two new

algorithmic techniques (a statistically sound non-parametric method and an ensemble

learning algorithm optimized for vector regressions). In Chapter 4, we propose Equity2Vec,

where we use both static and dynamic non-return interactions to price the assets. In

Chapter 5, we summarize the contributions of our works and discuss the future research

directions.
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Chapter 2

Adaptive reduced rank regression

2.1 Introduction

We consider the regression problem y = Mx+ ε in the high dimensional setting, where

x ∈ Rd1 is the vector of features, y ∈ Rd2 is a vector of responses, M ∈ Rd2×d1 are the

learnable parameters, and ε ∼ N(0, σ2ε Id2×d2) is a noise term. High-dimensional setting

refers to the case where the number of observations n is insufficient for recovery and hence

regularization for estimation is necessary [84, 118, 27]. This high-dimensional model is

widely used in practice, such as identifying biomarkers [170], understanding risks associated

with various diseases [52, 14], image recognition [129, 47], forecasting equity returns in

financial markets [124, 142, 107, 16], and analyzing social networks [163, 130].

We consider the “large feature size” setting, in which the number of features d1

is excessively large and can be even larger than the number of observations n. This

setting frequently arises in practice because it is often straightforward to perform feature-

engineering and produce a large number of potentially useful features in many machine

learning problems. For example, in a typical equity forecasting model, n is around 3,000

(i.e., using 10 years of market data), whereas the number of potentially relevant features

can be in the order of thousands [124, 62, 81, 28]. In predicting the popularity of a user in

an online social network, n is in the order of hundreds (each day is an observation and a

typical dataset contains less than three years of data) whereas the feature size can easily
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be more than 10k [133, 13, 140].

Existing low-rank regularization techniques (e.g., [84, 118, 104] ) are not optimized for

the large feature size setting. These results assume that either the features possess the

so-called restricted isometry property [23], or their covariance matrix can be accurately

estimated [118]. Therefore, their sample complexity n depends on either d1 or the smallest

eigenvalue value λmin of x’s covariance matrix. For example, a mean-squared error (MSE)

result that appeared in [118]is of the form O
(
r(d1+d2)
nλ2

min

)
. When n ≤ d1/λ

2
min, this result

becomes trivial because the forecast ŷ = 0 produces a comparable MSE. We design an

efficient algorithm for the large feature size setting. Our algorithm is a simple two-stage

algorithm. Let X ∈ Rn×d1 be a matrix that stacks together all features and Y ∈ Rn×d2 be

the one that stacks the responses. In the first stage, we run a principal component analysis

(PCA) on X to obtain a set of uncorrelated features Ẑ. In the second stage, we run another

PCA to obtain a low rank approximation of ẐTY and use it to construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on

using PCA to process features, a widely used practice for “dimensionality reduction” [24,

58, 53]. PCA is known to be effective to orthogonalize features by keeping only the subspace

explaining large variations. But its performance can only be analyzed under the so-called

factor model [143, 142]. We show the efficacy of PCA without the factor model assumption.

Instead, PCA should be interpreted as a robust estimator of x’s covariance matrix. The

empirical estimator C = 1
nXXT in the high-dimensional setting cannot be directly used

because n� d1 × d2, but it exhibits an interesting regularity: the leading eigenvectors of

C are closer to ground truth than the remaining ones. In addition, the number of reliable

eigenvectors grows as the sample size grows, so our PCA procedure projects the features

along reliable eigenvectors and dynamically adjusts Ẑ’s rank to maximally utilize the raw

features. Under mild conditions on the ground-truth covariance matrix C∗ of x, we show

that it is always possible to decompose x into a set of near-independent features and a set

of (discarded) features that have an inconsequential impact on a model’s MSE.

When features x are transformed into uncorrelated ones z, our original problem becomes
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y = Nz+ ε, which can be reduced to a matrix denoising problem [41] and be solved by

the second stage. Our algorithm guarantees that we can recover all singular vectors of N

whose associated singular values are larger than a certain threshold τ . The performance

guarantee can be translated into MSE bounds parametrized by commonly used variables

(though, these translations usually lead to looser bounds). For example, when N ’s rank

is r, our result reduces the MSE from O( r(d1+d2)
nλ2

min
) to O( rd2n + n−c) for a suitably small

constant c. The improvement is most pronounced when n� d1.

We also provide a new matching lower bound. Our lower bound asserts that no

algorithm can recover a fraction of singular vectors of N whose associated singular values

are smaller than ρτ , where ρ is a “gap parameter”. Our lower bound contribution is

twofold. First, we introduce a notion of “local minimax”, which enables us to define a

lower bound parametrized by the singular values of N . This is a stronger lower bound

than those delivered by the standard minimax framework, which are often parametrized

by the rank r of N [84]. Second, we develop a new probabilistic technique for establishing

lower bounds under the new local minimax framework. Roughly speaking, our techniques

assemble a large collection of matrices that share the same singular values of N but are far

from each other, so no algorithm can successfully distinguish these matrices with identical

spectra.

2.2 Preliminaries

Notation. Let X ∈ Rn×d1 and Y ∈ Rn×d2 be data matrices with their i-th rows

representing the i-th observation. For matrix A, we denote its singular value decomposition

as A = UAΣA(V A)T and Pr(A) , UA
r ΣA

r V
A
r

T
is the rank r approximation obtained by

keeping the top r singular values and the corresponding singular vectors. When the context

is clear, we drop the superscript A and use U,Σ, and V (Ur, Σr, and Vr) instead. Both

σi(A) and σ
A
i are used to refer to i-th singular value of A. We use MATLAB notation when

we refer to a specific row or column, e.g., V1,: is the first row of V and V:,1 is the first column.

‖A‖F , ‖A‖2, and ‖A‖∗ are Frobenius, spectral, and nuclear norms of A. In general, we use
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boldface upper case (e.g., X) to denote data matrices and boldface lower case (e.g., x) to

denote one sample. Regular fonts denote other matrices. Let C∗ = E[xxT] and C = 1
nX

TX

be the empirical estimate of C∗. Let C∗ = V ∗Λ∗(V ∗)T be the eigen-decomposition of the

matrix C∗, and λ∗1 ≥ λ∗2, . . . ,≥ λ∗d1 ≥ 0 be the diagonal entries of Λ∗. Let {u1,u2, . . .u`}

be an arbitrary set of column vectors, and Span({u1,u2, . . . ,u`}) be the subspace spanned

by it. An event happens with high probability means that it happens with probability

≥ 1− n−5, where 5 is an arbitrarily chosen large constant and is not optimized.

Step-1-PCA-X(X)

1 [U,Σ, V ] = svd(X)
2 Λ = 1

n(Σ
2); λi = Λi,i.

3 . Gap thresholding.

4 . δ = n−O(1) is a tunable parameter.

5 k1 = max{k1 : λk1 − λk1+1 ≥ δ},
6 Λk1 : diagonal matrix comprised of {λi}i≤k1

.
7 Uk1 , Vk1 : k1 leading columns of U and V .

8 Π̂ = (Λk1)
− 1

2V T
k1

9 Ẑ+ =
√
nUk1(= XΠ̂T).

10 return {Ẑ+, Π̂}.

Step-2-PCA-Denoise(Ẑ+,Y)

1 N̂T
+ ← 1

n Ẑ
T
+Y.

2 . Absolute value thresholding.

3 . θ is a suitable constant; σε is std. of the noise.

4 k2 = max
{
k2 : σk2(N̂+) ≥ θσε

√
d2
n

}
.

5 return Pk2(N̂+)

Adaptive-RRR(X,Y)

1 [Ẑ+, Π̂] = Step-1-PCA-A(X).

2 Pk2(N̂+) = Step-2-PCA-Denoise(Ẑ+,Y).

3 return M̂ = Pk2(N̂+)Π̂

Figure 2.1: Our algorithm (Adaptive-RRR) for solving the regression y =Mx+ ε.

Our model. We consider the model y = Mx + ε, where x ∈ Rd1 is a multivariate
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Gaussian, y ∈ Rd2 , M ∈ Rd2×d1 , and ε ∼ N(0, σ2ε Id2×d2). We can relax the Gaussian

assumptions on x and ε for most results we develop. We assume a PAC learning framework,

i.e., we observe a sequence {(xi,yi)}i≤n of independent samples and our goal is to find an

M̂ that minimizes the test error Ex,y[‖M̂x−Mx‖22]. We are specifically interested in the

setting in which d2 ≈ n ≤ d1.

The key assumption we make to circumvent the d1 ≥ n issue is that the features are

correlated. This assumption can be justified for the following reasons: (i) In practice, it

is difficult, if not impossible, to construct completely uncorrelated features. (ii) When

n � d1, it is not even possible to test whether the features are uncorrelated [11]. (iii)

When we indeed know that the features are independent, there are significantly simpler

methods to design models. For example, we can build multiple models such that each model

regresses on an individual feature of x, and then use a boosting/bagging method [53, 136]

to consolidate the predictions.

The correlatedness assumption implies that the eigenvalues of C∗ decays. The only

(full rank) positive semidefinite matrices that have non-decaying (uniform) eigenvalues are

the identity matrix (up to some scaling). In other words, when C∗ has uniform eigenvalues,

x has to be uncorrelated.

We aim to design an algorithm that works even when the decay is slow, such as when

λi(C
∗) has a heavy tail. Specifically, our algorithm assumes λi’s are bounded by a heavy-tail

power law series:

Assumption 2.2.1. The λi(C
∗) series satisfies λi(C

∗) ≤ c · i−ω for a constant c and

ω ≥ 2.

We do not make functional form assumptions on λi’s. This assumption also covers many

benign cases, such as when C∗ has low rank or its eigenvalues decay exponentially. Many

empirical studies report power law distributions of data covariance matrices [4, 120, 151, 33].

Next, we make standard normalization assumptions. E ‖x‖22 = 1, ‖M‖2 ≤ Υ = O(1),

and σε ≥ 1. Remark that we assume only the spectral norm of M is bounded, while its
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Frobenius norm can be unbounded. Also, we assume the noise σε ≥ 1 is sufficiently large,

which is more important in practice. The case when σε is small can be tackled in a similar

fashion. Finally, our studies avoid examining excessively unrealistic cases, so we assume

d1 ≤ d32. We examine the setting where existing algorithms fail to deliver non-trivial MSE,

so we assume that n ≤ rd1 ≤ d42.

2.3 Upper bound

Our algorithm (see Fig. 2.1) consists of two steps. Step 1. Producing uncorrelated

features. We run a PCA to obtain a total number of k1 orthogonalized features. See

Step-1-PCA-X in Fig. 2.1. Let the SVD of X be X = UΣ(V )T. Let k1 be a suitable

rank chosen by inspecting the gaps of X’s singular values (Line 5 in Step-1-PCA-X).

Ẑ+ =
√
nUk1 is the set of transformed features output by this step. The subscript + in

Ẑ+ reflects that a dimension reduction happens so the number of columns in Ẑ+ is smaller

than that in X. Compared to standard PCA dimension reduction, there are two differences:

(i) We use the left leading singular vectors of X (with a re-scaling factor
√
n) as the output,

whereas the PCA reduction outputs Pk1(X). (ii) We design a specialized rule to choose k1

whereas PCA usually uses a hard thresholding or other ad-hoc rules. Step 2. Matrix

denoising. We run a second PCA on the matrix (N̂+)
T , 1

n Ẑ
T
+Y. The rank k2 is chosen

by a hard thresholding rule (Line 4 in Step-2-PCA-Denoise). Our final estimator is

Pk2(N̂+)Π̂, where Π̂ = (Λk1)
− 1

2V T
k1

is computed in Step-1-PCA-X(X).

2.3.1 Intuition of the design

While the algorithm is operationally simple, its design is motivated by carefully unfolding

the statistical structure of the problem. We shall realize that applying PCA on the features

should not be viewed as removing noise from a factor model, or finding subspaces that

maximize variations explained by the subspaces as suggested in the standard literature [53,

143, 144]. Instead, it implicitly implements a robust estimator for x’s precision matrix,

and the design of the estimator needs to be coupled with our objective of forecasting y,

thus resulting in a new way of choosing the rank.

Design motivation: warm up. We first examine a simplified problem y = Nz + ε,
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where variables in z are assumed to be uncorrelated. Assume d = d1 = d2 in this simplified

setting. Observe that

1

n
ZTY =

1

n
ZT(ZNT + E) = (

1

n
ZTZ)NT +

1

n
ZTE ≈ Id1×d1NT +

1

n
ZTE = NT + E ,

(2.1)

where E is the noise term and E can be approximated by a matrix with independent

zero-mean noises.

Solving the matrix denoising problem. Eq. 2.1 implies that when we compute ZTY, the

problem reduces to an extensively studied matrix denoising problem [41, 55]. We include

the intuition for solving this problem for completeness. The signal NT is overlaid with a

noise matrix E . E will elevate all the singular values of NT by an order of σε
√
d/n. We

run a PCA to extract reliable signals: when the singular value of a subspace is � σε
√
d/n,

the subspace contains significantly more signal than noise and thus we keep the subspace.

Similarly, a subspace associated a singular value . σε
√
d/n mostly contains noise. This

leads to a hard thresholding algorithm that sets N̂T = Pr(N
T + E), where r is the

maximum index such that σr(N
T+E) ≥ c

√
d/n for some constant c. In the general setting

y =Mx+ ε, x may not be uncorrelated. But when we set z = (Λ∗)−
1
2 (V ∗)Tx, we see that

E[zzT] = I. This means knowing C∗ suffices to reduce the original problem to a simplified

one. Therefore, our algorithm uses Step 1 to estimate C∗ and Z, and uses Step 2 to reduce

the problem to a matrix denoising one and solve it by standard thresholding techniques.

Relationship between PCA and precision matrix estimation. In step 1, while

we plan to estimate C∗, our algorithm runs a PCA on X. We observe that empirical

covariance matrix C = 1
nX

TX = 1
nV (Σ)2(V )T, i.e., C’s eigenvectors coincide with X’s

right singular vectors. When we use the empirical estimator to construct ẑ, we obtain

ẑ =
√
n(Σ)−1(V )Tx. When we apply this map to every training point and assemble the

new feature matrix, we exactly get Ẑ =
√
nXV (Σ)−1 =

√
nU . It means that using C to

construct ẑ is the same as running a PCA in Step-1-PCA-X with k1 = d1.

When k1 < d1, PCA uses a low rank approximation of C as an estimator for C∗. We
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Figure 2.2: The angle matrix between C and C∗.

now explain why this is effective. First, note that C is very far from C∗ when n � d1,

therefore it is dangerous to directly plug in C to find ẑ. Second, an interesting regularity

of C exists and can be best explained by a picture. In Fig. 2.2, we plot the pairwise angles

between eigenvectors of C and those of C∗ from a synthetic dataset. Columns are sorted

by the C∗’s eigenvalues in decreasing order. When C∗ and C coincide, this plot would look

like an identity matrix. When C and C∗ are unrelated, then the plot behaves like a block of

white Gaussian noise. We observe a pronounced pattern: the angle matrix can be roughly

divided into two sub-blocks (see the red lines in Fig. 2.2). The upper left sub-block behaves

like an identity matrix, suggesting that the leading eigenvectors of C are close to those of

C∗. The lower right block behaves like a white noise matrix, suggesting that the “small”

eigenvectors of C are far from those of C∗. When n grows, one can observe the upper

left block becomes larger and this the eigenvectors of C will sequentially get stabilized.

Leading eigenvectors are first stabilized, followed by smaller ones. Our algorithm leverages

this regularity by keeping only a suitable number of reliable eigenvectors from C while

ensuring not much information is lost when we throw away those “small” eigenvectors.

Implementing the rank selection. We rely on three interacting building blocks:

1. Dimension-free matrix concentration. First, we need to find a concentration behavior

of C for n ≤ d1 to decouple d1 from the MSE bound. We utilize a dimension-free matrix
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concentration inequality [121](also replicated as Lemma 2.3.5) . Roughly speaking, the

concentration behaves as ‖C −C∗‖2 ≈ n−
1
2 . This guarantees that |λi(C)− λi(C∗)| ≤ n−

1
2

by standard matrix perturbation results [79].

2. Davis-Kahan perturbation result. However, the pairwise closeness of the λi’s does

not imply the eigenvectors are also close. When λi(C
∗) and λi+1(C

∗) are close, the

corresponding eigenvectors in C can be “jammed” together. Thus, we need to identify an

index i, at which λi(C
∗)− λi+1(C

∗) exhibits significant gap, and use a Davis-Kahan result

to show that Pi(C) is close to Pi(C
∗). On the other hand, the map Π∗(, (Λ∗)−

1
2 (V ∗)T)

we aim to find depends on the square root of inverse (Λ∗)−
1
2 , so we need additional

manipulation to argue our estimate is close to (Λ∗)−
1
2 (V ∗)T.

3. The connection between gap and tail. Finally, the performance of our procedure is also

characterized by the total volume of signals that are discarded, i.e.,
∑

i>k1
λi(C

∗), where k1

is the location that exhibits the gap. The question becomes whether it is possible to identify

a k1 that simultaneously exhibits a large gap and ensures the tail after it is well-controlled,

e.g., the sum of the tail is O(n−c) for a constant c. We develop a combinatorial analysis

to show that it is always possible to find such a gap under the assumption that λi(C
∗)

is bounded by a power law distribution with exponent ω ≥ 2. Combining all these three

building blocks, we have:

Proposition 2.3.1. Let ε and δ be two tunable parameters such that ε = ω(log3 n/
√
n) and

δ3 = ω(ε). Assume that λ∗i ≤ c · i−ω. Consider running Step-1-PCA-X in Fig. 2.1, with

high probability, we have (i) Leading eigenvectors/values are close: there exists a unitary

matrix W and a constant c1 such that ‖Vk1(Λk1)
− 1

2 − V ∗k1(Λ
∗
k1
)−

1
2W‖ ≤ c1ε

δ3
. (ii) Small tail:∑

i≥k1 λ
∗
i ≤ c2δ

ω−1
ω+1 for a constant c2.

Prop. 2.3.1 implies that our estimate ẑ+ = Π̂(x) is sufficiently close to z = Π∗(x), up

to a unitary transform. We then execute Step-2-PCA-Denoise to reduce the problem

to a matrix denoising one and solve it by hard-thresholding. Let us refer to y = Nz+ ε,

where z is a standard multivariate Gaussian and N = MV ∗(Λ∗)
1
2 as the orthogonalized

form of the problem. While we do not directly observe z, our performance is characterized
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by spectra structure of N .

Theorem 2.3.2. Consider running Adaptive-RRR in Fig. 2.1 on n independent samples

(x,y) from the model y =Mx+ ε, where x ∈ Rd1 and y ∈ Rd2 . Let C∗ = E[xxT]. Assume

that (i) ‖M‖2 ≤ Υ = O(1), and (ii) x is a multivariate Gaussian with ‖x‖2 = 1. In

addition, λ1(C
∗) < 1 and for all i, λi(C

∗) ≤ c/iω for a constant c, and (iii) ε ∼ N(0, σ2ε Id1),

where σε ≥ min{Υ, 1}.

Let ε = ω(log3 n/
√
n), δ3 = ω(ε), and θ be a suitably large constant. Let y = Nz+ ε be

the orthogonalized form of the problem. Let `∗ be the largest index such that σN`∗ > θσε

√
d2
n .

Let ŷ be our testing forecast. With high probability over the training data:

E[‖ŷ − y‖22] ≤
∑
i≥`∗

(σNi )2 +O

(
`∗d2θ

2σ2ε
n

)
+O

(√
ε

δ3

)
+O

(
δ

ω−1
4(ω+1)

)
(2.2)

The expectation is over the randomness of the test data.

Theorem 2.3.2 also implies that there exists a way to parametrize ε and δ such that

E[‖ŷ − y‖22] ≤
∑

i>`∗(σ
N
i )2 + O

(
`∗d2θ2σ2

ε
n

)
+ O(n−c0) for some constant c0. We next

interpret each term in (2.2).

Terms
∑

i>`∗(σ
N
i )2 + O

(
`∗d2θ2σ2

ε
n

)
are typical for solving a matrix denoising problem

N̂T
+ + E(≈ NT + E): we can extract signals associated with `∗ leading singular vectors of

N , so
∑

i>`∗(σ
N
i )2 starts at i > `∗. For each direction we extract, we need to pay a noise

term of order θ2σ2ε
d2
n , leading to the term O

(
`∗d2θ2σ2

ε
n

)
. Terms O

(√
ε
δ3

)
+ O

(
δ

ω−1
4(ω+1)

)
come from the estimations error of ẑ+ produced from Prop. 2.3.1, consisting of both

estimation errors of C∗’s leading eigenvectors and the error of cutting out a tail. We pay

an exponent of 1
4 on both terms (e.g., δ

ω−1
ω+1 in Prop. 2.3.1 becomes δ

ω−1
4(ω+1) ) because we

used Cauchy-Schwarz (CS) twice. One is used in running matrix denoising algorithm with

inaccurate z+; the other one is used to bound the impact of cutting a tail. It remains open

whether two CS is can be circumvented.

Sec. 2.4 explains how Thm 2.3.2 and the lower bound imply the algorithm is near-

optimal. Sec. 2.5 compares our result with existing ones under other parametrizations, e.g.
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Rank(M).

2.3.2 Analysis

We now analyze our algorithm. Our analysis consists of three steps. In step 1, we prove

Proposition 2.3.1. In step 2, we relate ZTY with the product produced by our estimate

ẐT
+Y. In step 3, we prove Theorem 2.3.2.

2.3.2.1 Step 1. PCA for the features (proof of Proposition 2.3.1)

This section proves Proposition 2.3.1. We shall first show that the algorithm always

terminates. We have the following lemma.

Lemma 2.3.3. Let {λi}i≤d be a sequence such that
∑

i≤n λi = 1, λi ≤ ci−ω for some

constant c, ω ≥ 2, and λ1 < 1. Define δi = λi − λi+1 for i ≥ 1. Let `0 be a sufficiently

large number, and c1 and c2 are two suitable constants. Let ` be any number such that

` ≥ `0. Let τ be any parameter such that τ < ρ− 1. There exists an i∗ such that (i) Gap is

sufficiently large: δi∗ ≥ c1 · `−(τω/(ω−1)+1), and (ii) tail sum is small:
∑

i≥i∗ λi ≤ c2/`−τ .

We remark that Lemma 2.3.3 will also be able to show part (ii) of Proposition 2.3.1

(this will be explained below). This lemma also corresponds to the “connection between

gap and tail” building block referred in Section 2.3.1.

Proof of Lemma 2.3.3. Define the function h(t) =
∑

i≥t c/i
ω = c3+o(1)

tω−1 (by EulerMaclaurin

formula), where o(1) is a function of t

Next, let us define

i1 = min

i∗ :∑
i≤i∗

λi ≥ 1− h(`
τ

ω−1 )

− 1

i2 = min

i∗ :∑
i≤i∗

λi ≥ 1− 1

2
× h(`

τ
ω−1 )

− 1.

Roughly speaking, we want to identify an i1 such that
∑

i≤i1 λi is smaller than 1 −

h
(
`

τ
ω−1

)
but is as close to it as possible. We can interpret i2 in a similar manner. i1, i2 ≥ 1
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because of the assumption λ1 < 1.

We can verify that i1 < `
τ

ω−1 because
∑

i≤`
τ

ω−1
λi ≥ 1 − h

(
`

τ
ω−1

)
. We can similarly

verify that i2 < c4`
τ

ω−1 for some constant c4. Now using

∑
i≤i2+1

λi ≥ 1− (c3 + o(1))`−τ

2∑
i≤i1

λi ≤ 1− (c3 + o(1))`−τ .

We may use an averaging argement and show that there exists an i3 ∈ [i1 + 1, i2 + 1] such

that

λi3 ≥
(c3 + o(1))`−τ

i2 − i1
≥ (c3 + o(1))`−τ

c4`
τ

ω−1

≥ c5`−τ−
τ

ω−1 = c5`
− τω

ω−1 .

Note that c5`
− τω

ω−1 ≥ 2c`−ω because τ < ω − 1. Next, using that λ` ≤ c/`ω, we have

λ` =

≥c5`
− τω

ω−1︷︸︸︷
λi3 +(λi3+1 − λi3) + · · ·+ (λ` − λ`−1) ≤

≤ c5
2
·`−

τω
ω−1︷︸︸︷

c/`ω . (2.3)

This implies one of (λi3 − λi3+1), . . . , (λ`−1 − λ`) is at least c5
2 · `

− τω
ω−1 /`. In other words,

there exists an i∗ ∈ [i3 + 1, `] such that λi∗ − λi∗+1 ≥ c5
2 `
−
(

τω
ω−1

+1
)
. Finally, we can check

that ∑
i≥i∗

λi∗ ≤
∑
i≥i1

λi∗ ≤ h
(
`

τ
ω−1

)
≤ c2
`τ
. (2.4)

2

We apply Lemma 2.3.3 by setting τ → ω − 1. There is a parameter ` that we can

tune, such that it is always possible to find an i∗ where δi∗ ≥ c1`
−(ω+1) and

∑
i≥i∗ λi ≤

1− c2`−(ω−1). For any δ = o(1) (a function of n), we can set ` = Θ
((

1
δ

) 1
ω+1

)
. In addition,∑

i≥k1 λi = O
(
δ

ω−1
ω+1

)
. This also proves the second part of the Proposition.

It remains to prove part (i) of Proposition 2.3.1. It consists of three steps.
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Step 1. Dimension-free Chernoff bound for matrices. We first give a bound on ‖C∗−C‖2,

which characterizes the tail probability by using the first and second moments of random

vectors. This is the key device enabling us to meaningfully recover signals even when

n� d1.

Lemma 2.3.4. Recall that C∗ = E[xxT] and C = 1
nX

TX. For any ε > 0,

Pr[‖C∗ − C‖2 ≥ ε] ≤ (2n2) exp(−nε2/(log4 n)) + n−10. (2.5)

The exponent 10 is chosen arbitrarily and is not optimized.

Proof of Lemma 2.3.4. We use the following specific form of Chernoff bound ([121])

Lemma 2.3.5. Let z1, z2, . . . , zn be i.i.d. random vectors such that ‖zi‖ ≤ α a.s. and

‖E[zizTi ]‖ ≤ β. Then for any ε > 0,

Pr

∥∥∥∥∥∥ 1n
∑
i≤n

ziz
T
i − E[zizTi ]

∥∥∥∥∥∥
2

≥ ε

 ≤ (2n2) exp

(
− nε2

16βα2 + 8α2ε

)
(2.6)

We aim to use Lemma 2.3.5 to show Lemma 2.3.4 and we set zi = xi. But the `2-norm

of zi’s are unbounded so we need to use a simple coupling technique to circumvent the

problem. Specifically, let c0 be a suitable constant and define

z̃i =

{
zi if |zi| ≤ c0 log2 n
0 otherwise.

(2.7)

By using a standard Chernoff bound, we have

Pr[∃i : z̃i 6= zi] ≤
1

n10
. (2.8)

Let us write C̃ = 1
n

∑
i≤n z̃iz̃

T
i . We set α = c0 log

2 n and β = Θ(1) in Lemma 2.3.5. One
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can see that

Pr[‖C∗−C‖2 ≥ ε] ≤ Pr
[
(‖C̃ − C‖2 ≥ ε) ∨ (C̃ 6= C)

]
≤ 2n2 exp

(
− nε2

log4 n

)
+

1

n10
. (2.9)

2

Step 2. Davis-Kahan bound. The above analysis gives us that ‖C∗ − C‖2 ≤ ε. We next

show that the first a few eigenvectors of C are close to those of C∗.

Lemma 2.3.6. Let ε = ω
(
log3 n√

n

)
and δ3 = ω(ε). Considering running Step-1-PCA-X

in Fig. 2.1. Let P∗ = V ∗k1(V
∗
k1
)T and P = Vk1V

T
k1
. When ‖C∗ − C‖2 ≤ ε, ‖P∗ − P‖2 ≤ 2ε

δ .

Proof. Recall that λ∗1, λ
∗
2, . . . , λ

∗
d1

are the eigenvalues of C∗. Let also λ1, λ2, . . . , λd1 be the

eigenvalues of C. Define

S1 = [λk1 − δ/10,∞] and S2 = [0, λk1+1 + δ/10]. (2.10)

The constant 10 is chosen in an arbitrary manner. Because ‖C∗ − C‖2 ≤ ε, we know that

S1 contains λ∗1, . . . , λ
∗
k and that S2 contains λ∗k1+1, . . . , λ

∗
d1

[79]. Using the Davis-Kahan

Theorem [37], we get

‖P∗ − P‖2 ≤
‖C∗ − C‖2

0.8δ
≤ 2ε

δ
(2.11)

2

We also need the following building block.

Lemma 2.3.7. [147] Let A and B be n× n positive semidefinite matrices with the same

rank of d. Let X and Y be of full column rank such that XXT = A and Y Y T = B. Let δ

be the smallest non-zero eigenvalue of B. Then there exists a unitary matrix W ∈ Rd×d

such that

‖XW − Y ‖2 ≤
‖A−B‖2(

√
‖A‖2 +

√
‖B‖2)

δ
.
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Step 3. Commuting the unitary matrix. Roughly speaking, Lemma 2.3.6 and Lemma 2.3.7

show that there exists a unitary matrix W such that ‖Vk1W −V ∗k1‖2 is close to 0. Standard

matrix perturbation result also shows that Λk1 and Λ∗k1 are close. This gives us that

Vk1WΛ
− 1

2
k1

and V ∗k1(Λ
∗
k1
)−

1
2 are close, whereas we need that Vk1Λ

− 1
2

k1
W and V ∗k1(Λ

∗
k1
)−

1
2 are

close. The unitary matrix W is not in the right place. This is a standard technical obstacle

for analyzing PCA based techniques [147, 48, 90]. We develop the following lemma to

address the issue.

Lemma 2.3.8. Let U1, U2 be n × d matrices such that U>1 U1 = U>2 U2 = I. Let S1, S2

be diagonal matrices with strictly positive entries, and let W ∈ Rd×d be a unitary matrix.

Then,

‖U1S
−1
1 W − U2S

−1
2 ‖ ≤

‖U1S1W − U2S2‖
min{(S1)ii} ·min{(S2)ii}

+
‖U1U

>
1 − U2U

>
2 ‖

min{(S2)ii}

Proof. Observe that,

U1S
−1
1 W − U2S

−1
2 = U1S

−1
1 W (S2U

>
2 −W>S1U>1 )U2S

−1
2 + U1U

>
1 U2S

−1
2 − U2U

>
2 U2S

−1
2 .

The result then follows by taking spectral norms of both sides, the triangle inequality and

the sub-multiplicativity of the spectral norm. 2

Results from Step 1 to Step 3 suffice to prove the first part of Proposition 2.3.1. First,

we use Lemma 2.3.6 and Lemma 2.3.7 (adopted from [147]) to get that

‖V ∗k1(Λ
∗
k1)

1
2W − Vk1(Λk1)

1
2 ‖2 ≤

c0ε

δ2
. (2.12)

Next, observe that λk1 , λ
∗
k1

= Ω(δ). By applying Lemma 2.3.8, with U1 = V ∗k1 and

S1 = (Λ∗k1)
1
2 , U2 = Vk1 and S2 = (Λk1)

1
2 , we obtain
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‖Vk1Λ
− 1

2
k1
W − V ∗k1Λ

∗− 1
2

k1
‖2 ≤

‖V ∗k1Λ
∗ 1

2
k1
W − Vk1Λ

1
2
k1
‖2

δ
+
‖P∗ − P‖2

δ
≤ c1ε

δ3

This completes the proof of Proposition 2.3.1.

2.3.2.2 Step 2. Analysis of ZTY

Proposition 2.3.9. Consider running Adaptive-RRR in Fig. 2.1 to solve the regression

problem y = Mx + ε. Let Ẑ+ be the output of the first stage Step-1-PCA-X. Let W

be the unitary matrix specified in Proposition 2.3.1. Let N̂+ = ẐT
+Y. We have with high

probability (over the training data),

N̂T
+ =WTNT + EL + ET ,

where

‖EL‖2 ≤ 2.2σε

√
d2
n

and ‖ET ‖F = O(ε/δ3).

The rest of this Section proves Proposition 2.3.9. Recall that Y = ZNT + E is the

orthogonalized form of our problem. Let us split N = [N+, N−], where N+ ∈ Rd2×k1

consists of the k1 leading columns of N and N− ∈ Rd2×(d1−k1) consists of the remaining

columns. Similarly, let z = [z+, z−], where z+ ∈ Rn×k1 and z− ∈ Rn×(d1−k1). Let

Z = [Z+,Z−], where Z+ ∈ Rn×k1 and Z− ∈ Rn×(d1−k1). Finally, when we refer to

estimated features of an individual instance produced from Step 1, we use ẑ+.

We have Y = Z+N
T
+ + Z−N

T
− + E. We let

δ+ = ẑ+ −WTz+

∆+ = Ẑ+ − Z+W,
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where ‖δ+‖2 = O(ε/δ3) and ‖∆+‖2 = O(
√
nε/δ3). We have

1

n
ẐT
+Y =

1

n
(∆+ + Z+W )T(Z+N

T
+ + Z−N

T
− + E)

=WTNT
+ +WT

(
1

n
ZT
+Z+ − Ik1×k1

)
NT

+ +
1

n
WTZT

+Z−N
T
− +

1

n
WTZT

+E

+
1

n
∆T

+(Z+N
T
+ + Z−N

T
− + E).

We shall let

N̂T
+ =WTNT + E , (2.13)

where

E = E1 + E2 + E3 + E4 + E5

E1 =WT

(
1

n
ZT
+Z+ − Ik1×k1

)
NT

+

E2 =
1

n
WTZT

+Z−N
T

E3 =
1

n
WTZT

+E

E4 =
1

n
∆T

+E

E5 =
1

n
∆T

+(Z+N
T
+ + Z−N

T
−).

We next analyze each term. We aim to find bounds in either spectral norm or Frobenius

norm. In some cases, it suffices to use ‖Ei‖2 ·Rank(Ei) to upper bound ‖Ei‖F . So we bound

only Ei’s spectral norm. On the other hand, in the case of analyzing E5, we can get a tight

Frobenius norm bound but we cannot get a non-trivial spectral bound.

From time to time, we will label the dimension of matrices in complex multiplication

operations to enable readers to do sanity checks.

Bounding E1. We use the following Lemmas.

Lemma 2.3.10. Let Z ∈ Rn×k1, where k1 < n. Let each entry of Z be an independent
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standard Gaussian. We have

∥∥∥∥ 1nZTZ− I
∥∥∥∥ ≤ max

{
10 log2 n√

n
, 4

√
k1
n

}
(2.14)

Proof of Lemma 2.3.10. We rely on the Lemma [134]:

Lemma 2.3.11. Let S ∈ Rn×k (n > k) be a random matrix so that each Si,j is an

independent standard Gaussian random variable. Let σmax(S) be the maximum singular

value of S and σmin(S) be the minimum singular value of it. We have

Pr[
√
n−
√
k − t ≤ σmin(S) ≤ σmax(S) ≤

√
n+
√
k + t] ≥ 1− 2× exp(−t2/2). (2.15)

We set t = max
{√

k1
10 , log

2 n
}
. Let us start with considering the case

√
k1
10 > log2 n. We

have

σmin(Z
TZ) ≥ n− 2.2

√
nk1 + 1.21k1 ≥ n− 2.2

√
nk1. (2.16)

and

σmax(Z
TZ) ≤ n+ 2.2

√
nk1 + 1.21k1 ≤ n+ 4

√
nk1. (2.17)

The case
√
k1
10 ≤ log2 n can be analyzed in a similar fashion so that we can get

∥∥∥∥ 1nZTZ− I
∥∥∥∥ ≤ max

{
10 log2 n√

n
, 4

√
k1
n

}
. (2.18)

2

Therefore, we have

‖E1‖2 ≤ max

{
10 log2 n√

n
, 4

√
k1
n

}
‖NT

+‖2 = Υmax

{
10 log2 n√

n
, 4

√
k1
n

}
.
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Bounding E2. Observe that E[‖Z−NT
−‖2F ] = n‖NT

−‖2F . Also,

E[‖ ZT
+︸︷︷︸

k1×n

Z−︸︷︷︸
n×(d1−k1)

NT
−︸︷︷︸

(d1−k1)×d2

‖2F | Z−NT
− ] = k1‖Z−NT

−‖2F .

Therefore,

E[ZT
+Z−N

T
− ] = k1n‖NT

−‖F . (2.19)

We next bound ‖N−‖F .

Lemma 2.3.12. Let N be the learnable parameter in normalized form N = [N+, N−],

where N+ ∈ Rd2×k1 and N− ∈ Rd2×(d1−k1), and k1 is determined by Step-1-PCA-X. We

have ‖N−‖F = O
(
δ

ω−1
ω+1

)
= o(1).

Proof of Lemma 2.3.12. Recall that

N = M︸︷︷︸
d2×d1

V ∗︸︷︷︸
d1×d1

(Λ∗)
1
2︸ ︷︷ ︸

d1×d1

.

We let Λ∗ = [Λ∗+,Λ
∗
−], where Λ∗+ ∈ Rd1×k1 and Λ∗− ∈ Rd1×(d1−k1). We have N− =

MV ∗(Λ∗−)
1
2 . Therefore,

‖N−‖2F ≤ ‖M‖22‖V ∗‖22
∥∥∥(Λ∗) 1

2

∥∥∥2
F
= O

(
Υδ

ω−1
ω+1

)
= o(1). (2.20)

Here, we used the assumption ‖M‖2 = O(1) and the last equation holds because of

Proposition 2.3.1. 2

By (2.19), (2.20), and a standard Chernoff bound, we have whp

‖E2‖2 ≤ ‖E2‖F ≤ 2

√
k1
n
‖N−‖F = o

(√
k1
n

)
.

Bounding E3. We have the following Lemma.
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Lemma 2.3.13. Let Z ∈ Rn×k1 so that each entry in Z is an independent standard

Gaussian and E ∈ Rn×d2 so that each entry in E is an independent Gaussian N(0, σ2ε ).

For sufficiently large n, k1, and d2, where k1 ≤ d2, we have

∥∥∥∥ 1nZTE

∥∥∥∥ ≤ 1.1σε√
n

(
√
k1 +

√
d2).

Proof of Lemma 2.3.13. Let t = max

{
10 log2 n√

n
, 4
√

k1
n

}
. By Lemma 2.3.10, with high

probability ‖ 1nZ
TZ− I‖ ≤ t. This implies that the eigenvalues of ZTZ are all within the

range n(1± t). Note that for 0 < η < 1/3, if ξ ∈ [1− η, 1 + η], then
√
ξ ∈ [1− 2η, 1 + 2η].

This implies that the singular values of Z are within the range
√
n(1± 2t).

Let ΣZ/
√
n = I +∆Z , where ‖∆Z‖ ≤ 2t. We have

1

n
ZTE = V Z

(
ΣZ

√
n

)
(UZ)T

E√
n
= V Z(I +∆Z)(UZ)T

E√
n

= V Z︸︷︷︸
k1×k1

(UZ)T︸ ︷︷ ︸
k1×n

E√
n︸︷︷︸

n×d2

+V Z∆Z(UZ)T
E√
n
. (2.21)

Using the fact that the columns of UZ are orthonormal vectors, V Z is a unitary matrix,

and k1 ≤ d2, we see that V Z(UZ)TE/
√
n is a matrix with i.i.d. Gaussian entries with

standard deviation σε/
√
n.

Let B = V Z(UZ)TE/σε and B̃ = (UZ)TE/σε. Then, from (2.21), we have

1

n
ZTE =

σε√
n

(
B + V Z∆ZB̃

)
. (2.22)

The entries in B (B̃) are all i.i.d Gaussian. By Marchenko-Pastar’s law (and the finite

sample bound of it [134]), we have with high probability ‖B̃‖, ‖B‖ =
√
k1 +

√
d2 + o(

√
k1 +

√
d2). Therefore, with high probability:

∥∥∥∥ 1nZTE

∥∥∥∥
2

≤ 1.1σε√
n

(
√
k1 +

√
d2).
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2

Lemma 2.3.13 implies that

‖E3‖2 ≤
1.1σε√
n

(
√
k1 +

√
d2).

Bounding E4. We have

E[‖E4‖2F ] =
1

n2
E[‖∆T

+E‖2F ] =
d2
n
‖∆+‖2F = O

(
d2ε

nδ3

)
= o

(
d2
n

)
.

Using a Chernoff bound, we have whp ‖E4‖F = o
(
d2
n

)
.

Bounding E5. Because E5 = 1
n∆

T
+(ZN

T), we have

‖E5‖2F ≤
1

n2
‖∆T

+‖22‖ZNT‖2F .

Using a simple Chernoff bound, we have whp,

‖ZNT‖2F ≤ 2n‖Mx‖22 ≤ 2n‖M‖22‖x‖22 ≤ 2Υn.

This implies ‖E5‖2F ≤ O
(

ε2

n2δ6
n2Υ2

)
= O

(
ε2

δ6

)
.

We may let

EL = E1 + E2 + E3 + E4

ET = E5.

30



We can check that

‖EL‖2 ≤ ‖E1‖2 + ‖E2‖2 + ‖E3‖2 + ‖E4‖2

≤ Υmax

{
10 log2 n√

n
, 4
k1
n

}
+ o

(√
k1
n

)
+

1.1σε√
n

(
√
k1 +

√
d2) + o

(
d2
n

)

≤ 2.2σσε

√
d2
n

Also, we can see that ‖ET ‖F = ‖E5‖F = O(ε/δ3). This completes the proof for

Proposition 2.3.9.

2.3.2.3 Step 3. Analysis of our algorithm’s MSE

Let us recall our notation:

1. z = (Λ∗)−
1
2 (V ∗)Tx and δ+ = ẑ+ −WTz+.

2. We let N̂T
+ = ẐT

+Y be the output of Step-1-PCA-X in Fig. 2.1.

3. All singular vectors in N̂+ whose associated singular values ≥ θσε
√

d2
n are kept.

Let ` be the largest index such that σ
N+

` ≥ θσε

√
d2
n . One can see that our testing

forecast is Pk2(N̂+)ẑ+. Therefore, we need to bound Ez[‖Pk2(N̂+)ẑ+ −Nz‖2].

By Proposition 2.3.9, we have N̂+ = (WTNT
+ + EL + ET )T, where ‖EL‖2 ≤ 2.2σε

√
d2
n

and ‖ET ‖F = O(ε/δ3) whp. Let E , EL + ET . We have

Pk2(N+W + ET)ẑ+ = Pk2(N+W + ET)(WTz+ + δ+)

= Pk2(N+W + ET)WTW (WTz+ + δ+)

= Pk2(( N+︸︷︷︸
d2×k1

W︸︷︷︸
k1×k1

+ ET︸︷︷︸
d2×k1

) WT︸︷︷︸
k1×k1

)(WWT︸ ︷︷ ︸
k1×k1

z+︸︷︷︸
k1×1

+ W︸︷︷︸
k1×k1

δ+︸︷︷︸
k1×1

)

= Pk2

(
N+ + (WE)T

)
(z+ +Wδ+).

Let E ′ = (WE)T, E ′L = (WEL)T, E ′T = (WET )T, and δ′+ = Wδ+. We still have

‖E ′L‖2 ≤ 2.2σε

√
d2
n , and ‖E ′T ‖F = O(ε/δ3).
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We next have

E
z

[
‖Pk2(N̂+)ẑ+ −Nz‖22

]
= E

z

[∥∥(Pk2(N+ + E ′)z+ −N+z+) +Pk2(N+ + E ′)δ′+ −N−z−
∥∥2
2

]
≤ E

z

[∥∥(Pk2(N+ + E ′)z+ −N+z+)
∥∥2
2

]
︸ ︷︷ ︸

,Φ1

+E
z

[∥∥Pk2(N+ + E ′)δ′+ −N−z−
∥∥2
2

]
︸ ︷︷ ︸

,Φ2

+ 2

√
E
z

[∥∥(Pk2(N+ + E ′)z+ −N+z+)
∥∥2
2

]
· E
z

[∥∥Pk2(N+ + E ′)δ′+ −N−z−
∥∥2
2

]
(Cauchy Schwarz for random variables)

= Φ1 +Φ2 + 2
√

Φ1Φ2.

We first bound Φ2 (the easier term). We have

Φ2 = E
z

[∥∥Pk2(N+ + E ′)δ′+ −N−z−
∥∥2
2

]
≤ 2E

z

[∥∥Pk2(N+ + E ′)δ′+
∥∥2
2

]
+ 2E

[∥∥N−z−∥∥22]

We first bound Ez

[∥∥Pk2(N+ + E ′)δ′+
∥∥2
2

]
. We consider two cases.

Case 1. σmax(N+) >
θ
2σε

√
d2
n . In this case, we observe that ‖E‖2 ≤ 2.2σε

√
d2
n + o(1).

This implies that ‖N+ + E ′‖2 = O(‖N+‖2) = O(1). Therefore, Ez

[∥∥Pk2(N+ + E ′)δ′+
∥∥2
2

]
≤

‖(N+ + E ′)δ′+‖22 = O(‖δ′+‖22).

Case 2. σmax(N+) ≤ θ
2σε

√
d2
n . In this case, ‖N+ + E ′‖2 ≤ θσ

√
d2
n . This implies

Pk2(N+ + E ′)δ′+ = 0 (i.e., the projection Pk2(·) will not keep any subspace).

This case also implies Ez

[∥∥Pk2(N+ + E ′)δ′+
∥∥2
2

]
= 0 = O(‖δ′+‖22)

Next, we have E[‖N−z−‖22] = ‖N−‖2F = O
(
δ

ω−1
ω+1

)
.

Therefore,

Φ2 = O

(
ε2

δ6
+ δ

ω−1
ω+1

)
.
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Next, we move to bound

E
z

[∥∥(Pk2(N+ + E ′)z+ −N+z+)
∥∥2
2

]
.

We shall construct an orthonormal basis on Rd2 and use the basis to “measure the

mass”. Let us describe this simple idea at high-level first. Let v1,v2, · · · ,vd2 be a basis

for Rd2 and let A ∈ Rd2×k1 be an arbitrary matrix. We have ‖A‖2F =
∑

i≤d2 ‖v
T
i A‖22. The

meaning of this equality is that we may apply a change of basis on the columns of A and

the “total mass” of A should remain unchanged after the basis change. Our orthonormal

basis consists of three groups of vectors.

Group 1. {UN+

:,i } for i ≤ `, where ` is the number of σi(N
+) such that σi(N

+) ≥ θσε
√

d2
n .

Group 2. The subspace in Span({U N̂
:,i }i≤k2) that is orthogonal to {U

N+

:,i }i≤`. Let us refer

to these vectors as û1, . . . , ûs and Û[s] = [û1, . . . ûs].

Group 3. An arbitrary basis that is orthogonal to vectors in group 1 and group 2. Let us

refer to them as r1, . . . , rt.

We have

‖Pk2(N+ + E ′)−N+‖2F

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T (
Pk2(N+ + E ′)−N+

)∥∥∥∥2
2

Term 1

+
∑
i≤s
‖ûT

i

(
Pk2(N+ + E ′)−N+

)
‖22 Term 2

+
∑
i≤r
‖rTi

(
Pk2(N+ + E ′)−N+

)
‖22 Term 3

To understand the reason we perform such grouping, we can imagine making a decision

for an (overly) simplified problem for each direction in the basis: consider a univariate

estimation problem y = µ+ ε with µ being the signal, ε ∼ N(0, σ2) being the noise, and y

being the observation. Let us consider the case we observe only one sample. Now when
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y � σ, we can use y as the estimator and E[(y − µ)2] = σ2. This high signal-to-noise

setting corresponds to the vectors in Group 1.

When y ≈ 3σ, we have µ2 = E[(y − ε)2] ≈ (3 − 1)2σ2 = 4σ2. On the other hand,

E[(y − µ)2] = σ2. This means if we use y as the estimator, the forecast is at least better

than trivial. The median signal-to-noise setting corresponds to the vectors in group 2.

When y � σ, we can simply use ŷ = 0 as the estimator. This low signal-to-noise setting

corresponds to vectors in group 3.

In other words, we expect: (i) In term 1, signals along each direction of vectors in group

1 can be extracted. Each direction also pays a σ2 term, which in our setting corresponds

to θσε

√
d2
n . Therefore, the MSE can be bounded by O(`θ2σ2εd2/n). (ii) In terms 2 and

3, we do at least (almost) as well as the “trivial forecast” (ŷ = 0). There is also an error

produced by the estimator error from ẑ+, and the tail error produced from cutting out

features in Step-1-PCA-X in Fig. 2.1.

Now we proceed to execute this idea.

Term 1.
∑

i≤`

∥∥∥∥(UN+

:,i

)T
(Pk2(N+ + E ′)−N+)

∥∥∥∥2
2

. Let Û ∈ Rd2×d2 be the left singular

vector of N+ + E ′. We let Û have d2 columns to include those vectors whose corresponding
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singular values are 0 for the ease of calculation. We have

∑
i≤`

∥∥∥∥(UN+

:,i

)T (
Pk2(N+ + E ′)−N+

)∥∥∥∥2
2

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T (
Û:,1:k2Û

T
:,1:k2(N+ + E ′)−N+

)∥∥∥∥2
2

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T ((
Û ÛT − Û:,k2+1:d2Û

T
:,k2+1:d2

)
(N+ + E ′)−N+

)∥∥∥∥2
2

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T (
E ′ − Û:,k2+1:d2Û

T
:,k2+1:d2(N+ + E ′)

)∥∥∥∥2
2

≤ 2

∑
i≤t

∥∥∥∥(UN+

:,i

)T
E ′
∥∥∥∥2
2

+
∑
i≤`

∥∥∥∥(UN+

:,i

)T
Û:,k2+1:d2Û

T
:,k2+1:d2(N+ + E ′)

∥∥∥∥2
2


≤ O

`‖E ′L‖22 + ‖E ′T ‖2F +
∑
i≤`

∥∥∥∥(UN+

:,i

)T∥∥∥∥2
2

∥∥∥Û:,k2+1:d2

∥∥∥2
2

∥∥∥ÛT
:,k2+1:d2(N+ + E ′)

∥∥∥2
2︸ ︷︷ ︸

≤ θ2σ2
ε d2
n

by the definition of k2.


= O

(
`‖E ′L‖22 + ‖E ′T ‖2F +

`d2θ
2σ2ε
n

)
= O

(
`d2θ

2σ2ε
n

++‖E ′T ‖2F
)

Term 2.
∑

i≤s ‖ûT
i (Pk2(N+ + E ′)−N+) ‖22. We have

∑
i≤s
‖ûT

i

(
Pk2(N+ + E ′)−N+

)
‖22 =

∑
i≤s
‖ûT

i

(
Pk2(N+ + E ′)− (N+ + E ′) + E ′

)
‖22

=
∑
i≤s
‖ûT

i E ′‖22
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On the other hand, note that

∑
i≤s
‖ûT

i N+‖22

=
∑
i≤s

∥∥ûT
i (N+ + E ′)− ûT

i E ′
∥∥2
2

=
∑
i≤s

(∥∥ûT
i (N+ + E ′)

∥∥2
2
+ ‖ûT

i E ′‖22 − 2
〈
ûT
i (N+ + E ′), ûT

i (E ′L + E ′T )
〉)

=
∑
i≤s

(∥∥ûT
i (N+ + E ′)

∥∥2
2
− 2〈ûT

i (N+ + E ′), ûT
i E ′L〉

)
+
∑
i≤s
‖ûT

i E ′‖22︸ ︷︷ ︸
= Term 2.

−2
∑
i≤s
〈ûT

i (N+ + E ′), ûT
i E ′T 〉

(2.23)

Note that

∑
i≤s

(∥∥ûT
i (N+ + E ′)

∥∥2
2
− 2〈ûT

i (N+ + E ′), ûT
i E ′L〉

)
≥
∑
i≤s
‖ûT

i (N+ + E ′)‖2
(
‖ûT

i (N+ + E ′)‖2︸ ︷︷ ︸
≥θσε

√
d2
n

−2 ‖ûT
i E ′L‖2︸ ︷︷ ︸

≤2.2σε

√
d2
n

)

≥ 0 (using the fact that θ is sufficiently large). (2.24)

Next, we examine the term −2
∑

i≤s〈ûT
i (N+ + E ′), ûT

i E ′T 〉.
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− 2
∑
i≤s
〈ûT

i (N+ + E ′), ûT
i E ′T 〉

= −2〈ÛT
[s](N+ + E ′), ÛT

[s]E
′
T 〉

= −2trace
(
ÛT
[s]E
′
T (N+ + E ′)TÛ[s]

)
≥ −2

∥∥trace(E ′T (N+ + E ′)T
∥∥
2

∥∥∥ÛT
[s]Û[s]

∥∥∥
2

= −2
∣∣〈(E ′T )T, N+ + E ′〉

∣∣
≥ −2‖E ′T ‖F ‖N+ + E ′‖F (Cauchy Schwarz)

≥ −2‖E ′T ‖F (‖N+‖F + ‖E ′‖F ))

≥ −O(‖E ′T ‖F ) (‖N+‖2F ≤ ‖N‖2F = E[‖Nz‖2] = E[‖Mx‖2] = O(1))

(2.25)

(2.23), (2.24), and (2.25) imply that

∑
i≤s

∥∥Pk2(N+ + E ′)−N+

∥∥2
2
≤
∑
i≤s

∥∥∥ÛTN+

∥∥∥2
2
+O(‖E ′T ‖F ).

Term 3. We have

∑
i≤r
‖rTi

(
Pk2(N+ + E ′)−N+

)
‖22 =

∑
i≤r
‖rTi N+‖22.

This is because ri’s are orthogonal to the first k2 left singular vectors of N+ + E ′.

We sum together all the terms:

∥∥Pk2(N+ + E ′)−N+

∥∥2
F
≤ O

(
`d2θ

2σ2ε
n

)
+
∑
i≤s

∥∥∥ÛT
i N+

∥∥∥2
2︸ ︷︷ ︸

(∗)

+
∑
i≤t
‖rTi N+‖22︸ ︷︷ ︸
(∗∗)

+O
(
‖E ′T ‖F

)
.

= O

(
`d2θ

2σ2ε
n

)
+ ‖N+‖2F −

∑
i≤`

(
σ
N+

i

)2
+O

(
‖E ′T ‖F

)
(2.26)
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In the above analysis, we used Span({ûi}i≤s, {ri}i≤t) is orthogonal to Span({UN+

:,i }i≤`).

Therefore, we can collect (*) and (**) and obtain

∑
i≤s

∥∥∥ÛT
i N+

∥∥∥2
2
+
∑
i≤t
‖rTi N+‖22 = ‖N+‖2F −

∑
i≤`

(σ
N+

i )2.

Now the MSE is in terms of σ
N+

i . We aim to bound the MSE in σNi . So we next

relate
∑

i≤`(σ
N+

i )2 with
∑

i≤`(σ
N
i )2. Recall that Ñ+ = [N+,0], where 0 ∈ Rd2×(d1−k1).

The singular values of Ñ+ are the same as those of N+. By using a standard matrix

perturbation result, we have

∑
i≤`

(
σ
N+

i − σNi
)2

=
∑
i≤`

(
σ
Ñ+

i − σNi
)2
≤ ‖N−‖2F = cδ

ω−1
ω+1 (2.27)

for some constant c. We may think (2.27) as a constraint and maximize the difference∑
i≤`(σ

N
i )2 −

∑
i≤`(σ

N+

i )2. This is maximized when σN1 = σ
N+

1 +

√
cδ

ω−1
ω+1 and σNi = σ

N+

i

for i > 1.

Therefore,

∑
i≤`

(
σNi
)2 ≤ ∑

1≤i≤`

(
σ
N+

i

)2
+

(
σ
N+

1 +

√
cδ

ω−1
ω+1

)2

=
∑

1≤i≤`

(
σ
N+

i

)2
+O

(√
δ

ω−1
ω+1

)
. (2.28)

Now (2.26) becomes

(2.26) ≤ ‖N+‖2F −
∑
i≤`

(σNi )2 +O

(
`d2θ

2σ2ε
n

)
+O(ε/δ3) +O

(√
δ

ω−1
ω+1

)
. (2.29)

Next, we assert that ` ≥ `∗. Recall that ‖σN+

i − σNi ‖22 = ‖N−‖2F = o(1). This implies
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σ
N+

i > θσε

√
d2
n for i ≤ `∗, i.e., ` ≥ `∗. So we have

Φ1 = ‖Pk2(N++E ′)−N+‖2F ≤ ‖N‖2F−
∑
i≤`∗

(σNi )2+O

(
`∗d2θ

2σ2ε
n

)
+O(ε/δ3)+O

(√
δ

ω−1
ω+1

)
.

(2.30)

Finally, we obtain the bound for Φ1 +Φ2 + 2
√
Φ1Φ2. Note that

Φ2

Φ1
≤

O
(
ε2

δ6
+ δ

ω−1
ω+1

)
O

(
ε
δ3

+

√
δ

ω−1
ω+1

) ≤ min

{
ε

δ3
,

√
δ

ω−1
ω+1

}
(= o(1)).

We have

Φ1 +Φ2 + 2
√
Φ1Φ2

= Φ1(1 + 2

√
Φ2

Φ1
) + Φ2

=

‖N‖2F −∑
i≤`∗

(σNi )2 +O

(
`∗d2θ

2σ2ε
n

)
+O(ε/δ3) +O

(√
δ

ω−1
ω+1

)
×
{
1 + min

{√
ε

δ3
+
(
δ

ω−1
ω+1

) 1
4

}}
+O

(
ε2

δ6

)
+O

(
δ

ω−1
ω+1

)
≤ ‖N‖2F −

∑
i≤`∗

(σNi )2 +O

(
`∗d2θ

2σ2ε
n

)
+O

(√
ε

δ3

)
+O

(
δ

ω−1
4(ω+1)

)
. (2.31)

This completes the proof of Theorem 2.3.2.

2.4 Lower bound

Our algorithm accurately estimates the singular vectors of N that correspond to singular

values above the threshold τ = θσε

√
d2
n . However, it may well happen that most of the

spectral ‘mass’ of N lies only slightly below this threshold τ . In this section, we establish

that no algorithm can do better than us, in a bi-criteria sense, i.e. we show that any

algorithm that has a slightly smaller sample than ours can only minimally outperform ours

in terms of MSE.

We establish ‘instance dependent’ lower bounds: When there is more ‘spectral mass’
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Figure 2.3: (a) Major result: signals in N are partitioned into four blocks. All signals in block
1 can be estimated (Thm 2.3.2). All signals in block 3 cannot be estimated (Prop 2.4.2). Our lower
bound techniques does not handle a small tail in Block 4. A gap in block 2 exists between upper
and lower bounds. (b)-(d) Constructing N: Step 1 and 2 belong to the first stage; step 3 belongs
to the second stage. (b) Step 1. Generate a random subset D(i) for each row i, representing its
non-zero positions. (c) Step 2. Randomly sample from D, where D is the Cartesian product of D(i).
(d) Step 3. Fill in non-zero entries sequentially from left to right.

below the threshold, the performance of our algorithm will be worse, and we will need to

establish that no algorithm can do much better. This departs from the standard minimax

framework, in which one examines the entire parameter space of N , e.g. all rank r matrices,

and produces a large set of statistically indistinguishable ‘bad’ instances [150]. These lower

bounds are not sensitive to instance-specific quantities such as the spectrum of N , and in

particular, if prior knowledge suggests that the unknown parameter N is far from these

bad instances, the minimax lower bound cannot be applied.

We introduce the notion of local minimax. We partition the space into parts so that

similar matrices are together. Similar matrices are those N that have the same singular

values and right singular vectors; we establish strong lower bounds even against algorithms

that know the singular values and right singular vectors of N . An equivalent view is to

assume that the algorithm has oracle access to C∗, M ’s singular values, and M ’s right

singular vectors. This algorithm can solve the orthogonalized form as N ’s singular values

and right singular vectors can easily be deduced. Thus, the only reason why the algorithm

needs data is to learn the left singular vectors of N . The lower bound we establish is the

minimax bound for this ‘unfair’ comparison, where the competing algorithm is given more

information. In fact, this can be reduced further, i.e., even if the algorithm ‘knows’ that
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the left singular vectors of N are sparse, identifying the locations of the non-zero entries is

the key difficulty that leads to the lower bound.

Definition 2.4.1 (Local minimax bound). Consider a model y =Mx+ ε, where x is a

random vector, so C∗(x) = E[xxT] represents the co-variance matrix of the data distribution,

and M = UMΣM (VM )T. The relation (M,x) ∼ (M ′,x′) ⇔ (ΣM = ΣM ′ ∧ VM =

VM ′ ∧C∗(x) = C∗(x′)) is an equivalence relation and let the equivalence class of (M,x) be

R(M,x) = {(M ′,x′) : ΣM ′
= ΣM , VM ′

= VM , and C∗(x′) = C∗(x)}. (2.32)

The local minimax bound for y =Mx+ε with n independent samples and ε ∼ N(0, σ2ε Id2×d2)

is

r(x,M, n, σε) = min
M̂

max
(M ′,x′)∈R(M,x)

E
X,Y from
y∼M′x′+ε

[E
x′
[‖M̂(X,Y)x′ −M ′x′‖22 | X,Y]]. (2.33)

It is worth interpreting (2.33) in some detail. For any two (M,x), (M ′,x′) in R(M,x),

the algorithm has the same ‘prior knowledge’, so it can only distinguish between the two

instances by using the observed data, in particular M̂ is a function only of X and Y, and we

denote it as M̂(X,Y) to emphasize this. Thus, we can evaluate the performance of M̂ by

looking at the worst possible (M ′,x′) and considering the MSE E ‖M̂(X,Y)x′ −M ′x′‖2.

Proposition 2.4.2. Consider the problem y =Mx+ ε with normalized form y = Nz+

ε. Let ε be a sufficient small constant. There exists a sufficiently small constant ρ0

(that depends on ε) and a constant c such that for any ρ ≤ ρ0, r(x,M, n, σε) ≥ (1 −

cρ
1
2
−ε)
∑

i≥t(σ
N
i )2 −O

(
ρ
1
2−ε

dω−1
2

)
, where t is the smallest index such that σNt ≤ ρσε

√
d2
n .

Proposition 2.4.2 gives the lower bound on the MSE in expectation; it can be turned

into a high probability result with suitable modifications. The proof of the lower bound

uses a similar ‘trick’ to the one used in the analysis of the upper bound analysis to cut the

tail. This results in an additional term O
(
ρ
1
2−ε

dω−1
2

)
which is generally smaller than the n−c0

tail term in Theorem 2.3.2 and does not dominate the gap.
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Gap requirement and bi-criteria approximation algorithms. Let τ = σε

√
d2
n .

Theorem 2.3.2 asserts that any signal above the threshold θτ can be detected, i.e., the MSE

is at most
∑

σN
i >θτ σ

2
i (N) (plus inevitable noise), whereas Proposition 2.4.2 asserts that

any signal below the threshold ρτ cannot be detected, i.e., the MSE is approximately at

least
∑

σN
i ≥ρτ

(1− poly(ρ))σ2i (N). There is a ‘gap’ between θτ and ρτ , as θ > 1 and ρ < 1.

See Fig. 2.3(a). This kind of gap is inevitable because both bounds are ‘high probability’

statements. This gap phenomenon appears naturally when the sample size is small as can

be illustrated by this simple example. Consider the problem of estimating µ when we see

one sample from N(µ, σ2). Roughly speaking, when µ� σ, the estimation is feasible, and

whereas µ� σ, the estimation is impossible. For the region µ ≈ σ, algorithms fail with

constant probability and we cannot prove a high probability lower bound either.

While many of the signals can ‘hide’ in the gap, the inability to detect signals in the

gap is a transient phenomenon. When the number of samples n is modestly increased, our

detection threshold τ = θσε

√
d2
n shrinks, and this hidden signal can be fully recovered.

This observation naturally leads to a notion of bi-criteria optimization that frequently

arises in approximation algorithms.

Definition 2.4.3. An algorithm for solving the y =Mx+ ε problem is (α, β)-optimal if,

when given an i.i.d. sample of size αn as input, it outputs an estimator whose MSE is at

most β worse than the local minimax bound, i.e., E[‖ŷ − y‖22] ≤ r(x,M, n, σε) + β.

Corollary 2.4.4. Let ε and c0 be small constants and ρ be a tunable parameter. Our

algorithm is (α, β)-optimal for

α =
θ2

ρ
5
2

β = O(ρ
1
2
−ε)‖Mx‖22 +O(n−c0)

The error term β consists of ρ
1
2
−ε‖Mx‖22 that is directly characterized by the signal

strength and an additive term O(n−c0) = o(1). Assuming that ‖Mx‖ = Ω(1), i.e., the signal

is not too weak, the term β becomes a single multiplicative bound O(ρ
1
2
−ε + n−c0)‖Mx‖22.
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This gives an easily interpretable result. For example, when our data size is n log n, the

performance gap between our algorithm and any algorithm that uses n samples is at

most o(‖Mx‖22). The improvement is significant when other baselines deliver MSE in the

additive form that could be larger than ‖Mx‖22 in the regime n ≤ d1.
Preview of techniques. Let N = UNΣN (V N )T be the instance (in orthogonalized

form). Our goal is to construct a collection N = {N1, . . . , NK} of K matrices so that (i)

For any Ni ∈ N , ΣNi = ΣN and V Ni = V N . (ii) For any two Ni, Nj ∈ N , ‖N −N ′‖F is

large, and (iii) K = exp(Ω(poly(ρ)d2)) (cf. [150, Chap. 2]).

Condition (i) ensures that it suffices to construct unitary matrices UNi ’s for N , and

that the resulting instances will be in the same equivalence class. Conditions (ii) and

(iii) resemble standard construction of codes in information theory: we need a large ‘code

rate’, corresponding to requiring a large K as well as large distances between codewords,

corresponding to requiring that ‖Ui−Uj‖F be large. Standard approaches for constructing

such collections run into difficulties. Getting a sufficiently tight concentration bound on

the distance between two random unitary matrices is difficult as the matrix entries, by

necessity, are correlated. On the other hand, starting with a large collection of random

unit vectors and using its Cartesian product to build matrices does not necessarily yield

unitary matrices.

We design a two-stage approach to decouple condition (iii) from (i) and (ii) by only

generating sparse matrices UNi . See Fig. 2.3(b)-(d). In the first stage (Steps 1 & 2 in

Fig. 2.3(b)-(c)), we only specify the non-zero positions (sparsity pattern) in each UNi . It

suffices to guarantee that the sparsity patterns of the matrices UNi and UNj have little

overlap. The existence of such objects can easily be proved using the probabilistic method.

Thus, in the first stage, we can build up a large number of sparsity patterns. In the

second stage (Step 3 in Fig. 2.3(d)), we carefully fill in values in the non-zero positions for

each UNi . When the number of non-zero entries is not too small, satisfying the unitary

constraint is feasible. As the overlap of sparsity patterns of any two matrices is small,

we can argue the distance between them is large. By carefully trading off the number
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of non-zero positions and the portion of overlap, we can simultaneously satisfy all three

conditions.

2.4.1 Roadmap

This section describes the roadmap for executing the above idea.

Normalized form. Recall that d2 ≤ d1, we have

Mx = UM︸︷︷︸
d2×d2

ΣM︸︷︷︸
d2×d2

(VM )T︸ ︷︷ ︸
d2×d1

V ∗︸︷︷︸
d1×d1

(Λ∗)
1
2︸ ︷︷ ︸

d1×d1

z︸︷︷︸
d1×1

(2.34)

We may perform an SVD on ΣM (VM )TV ∗(Λ∗)
1
2 = A︸︷︷︸

d2×d2

L†︸︷︷︸
d2×d2

BT︸︷︷︸
d2×d1

. We may also set

z† = BTz, which is a standard multi-variate Gaussian in Rd2 . Then we have

Mx = UMAL†BTz = (UMA)L†z†. (2.35)

Let N † = (UMA)L†. The SVD of N † is exactly (UM )AL†Id2×d2 because UMA is unitary.

The normalized form of our problem is

y = N †z† + ε. (2.36)

Recall our local minimax has an oracle access interpretation. An algorithm with the

oracle can reduce a problem into the normalized form on its own, and the algorithm knows

L†. But the oracle still does not have any information on N †’s left singular vectors because

being able to manipulate UM is the same as being able to manipulate UMA. Therefore,

we can analyze the lower bound in normalized form, with the assumption that the SVD of

N † = U †L†Id2×d2 , in which L† is known to the algorithm. We shall also let σ†i = L†i,i = σN
†

i .

Because N † is square, we let d = d2 in the analysis below.

We make two remarks in comparison to the orthogonalized form y = Nz + ε. (i)

z† ∈ Rd2 , whereas z ∈ Rd1 . z†’s dimension is smaller because the knowledge of ΣM and
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VM enable us to remove the directions from x that are orthogonal to M ’s row space. (ii)

σNi = σN
†

i for i ≤ d2.

We rely on the following theorem (Chapter 2 in [150]) to construct the lower bound.

Theorem 2.4.5. Let N† = {N †1 , N
†
2 , . . . , N

†
K}, where K ≥ 2. Let Pi be distribution of the

training data produced from the model y = N †i z
† + ε. Assume that

• ‖N †i −N
†
j ‖2F ≥ 2s > 0 for any 0 ≤ j ≤ k ≤ K.

• For any j = 1, . . .K and

1

K

K∑
j=1

KL(Pj , P1) ≤ α logK (2.37)

with 0 ≤ α ≤ 1
8 .

Then

inf
N̂†

sup
N†∈N†

Pr
N†

(‖N̂ †, N †‖ ≥ s) ≥
√
K

1 +
√
K

(1− 2α−
√

2α

logK
). (2.38)

Because L† is fixed, this problem boils down to finding a collection U† of unitary

matrices in Rd×d such that any two elements in U† are sufficiently far. Then we can

construct N† = {U †L† : U † ∈ U}.

We next reiterate (with elaboration) the challenge we face when using existing techniques.

Then we describe our approach. We shall first examine a simple case, in which we need

only design vectors for one column. Then we explain the difficulties of using an existing

technique to generalize the design. Finally, we explain our solution.

Recall that (Z†)TY = (N †)T+E , where we can roughly view E as a matrix that consists

of independent Gaussian (0, σε/
√
n). For the sake of discussion, we assume σε = 1 in our

discussion below.

Warmup: one colume case. The problem of packing one column roughly corresponds

to establishing a lower bound on the estimation problem y = u+ ε, where y,u, ε ∈ Rd.

ε corresponds to a column in E and consists of d independent Gaussian N(0, 1/
√
n). u

correpsonds to a column in U † and we require ‖u‖2 ≈ ρ
√
d/n. To apply Theorem 2.4.5,
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we shall construct a D = {u1, . . . ,uK} such that ‖ui − uj‖ is large for each {i, j} pair and

K is also large. Specifically, we require ‖ui − uj‖22 ≈ 2ρ2 d
n (large distance requirement)

and K = exp(Θ(
√
ρd)) (large set requirement).

√
ρ is carefully optimized and we will

defer the reasoning to the full analysis below. A standard tool to construct D is to use a

probabilistic method. We sample ui independently from the same distribution and argue

that with high probability ‖ui−uj‖22 is sufficiently large. Then a union bound can be used

to derive K. For example, we may set ui ∼ N(0, ρ
√

d
nId×d) for all i, and the concentration

quality suffices for us to sample K vectors.

Multiple column case. We now move to the problem of packing multiple columns in

U together. K is required to be much larger, e.g., K = exp(Θ(
√
ρd2)) for certain problem

instances. A natural generalization of one-column case is to build our parameter set by

taking the Cartesian product of multiple copies of D. This gives us a large K for free

but the key issue is that vectors in D are generated independently. So there is no way to

guarantee they are independent to each other. In fact, it is straightforward to show that

many elements in the Cartesian product are far from unitary. One may also directly sample

random unitary matrices and argue that they are far from each other. But there seems to

exist no tool that enables us to build up a concentration of exp(−Θ(
√
ρd2)) between two

random unitary matrices.

Therefore, a fundamental problem is that we need independence to build up a large set

but the unitary constraint limits the independence. So we either cannot satisfy the unitary

requirement (Cartesian product approach) or cannot properly use the independence to

build concentrations (random unitary matrix approach).

Our approach. We develop a technique that decouples the three requirements (unitary

matrices, large distance, and large K). Let us re-examine the Cartesian product approach.

When the vectors for each column are completely determined, then it is remarkably difficult

to build a Cartesian product that guarantees orthogonality between columns. To address

this issue, our approach only “partially” specify vectors in each column. Then we take
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a Cartesian product of these partial specifications. So the size of the Cartesian product

is sufficiently large; meanwhile an element in the product does not fully specify U † so we

still have room to make them unitary. Thus, our final step is to transform each partial

specification in the Cartesian product into a unitary matrix. Specifically, it consists of

three steps (See Fig. 2.3)

Step 1. Partial specification of each column. For each column i of interest, we build

up a collection D(i) = {R(i,1), . . . , R(i,K)}. Each R(i,j) ⊂ [d] specifies only the positions of

non-zero entire for a vector prepared for filling in U:,i.

Step 2. Cartesian product. Then we randomly sample elements from the Cartesian

product D ,
⊗

iD(i). Each element in the product specifies the non-zero entries of U †. We

need to do another random sampling instead of using the full Cartesian product because

we need to guarantee that any two matrices share a small number of non-zero entries. For

example, (R(1,1), R(2,1), R(3,1)) and (R(1,1), R(2,1), R(3,2)) are two elements in
⊗

iD(i) but

they specify two matrices with the same locations of non-zero entries for the first two

columns.

Step 3. Building up unitary matrices. Finally, for each element ~R ∈ D (that specify

positions of non-zero entries), we carefully fill in the values of the non-zero entries so that

all our matrices are unitary and far from each other. We shall show that it is always

possible to construct unitary matrices that “comply with” ~R. In addition, our unitary

matrices have few entries with large magnitude so when two matrices share few positions

of non-zero entries, they are far.

2.4.2 Analysis

We now execute the plan outlined in the roadmap. Let K and λ be tunable parameters.

For the purpose of getting intuition, K is related to the size of U† so it can be thought as

being exponential in d, whereas λ is a constant and we use ρλ to control the density of

non-zero entries in each U † ∈ U†.

Let D(i) = {R(i,1), R(i,2), · · · , R(i,K)} be a collection of random subsets in [d], in which
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each R(i,j) is of size ρλd. We sample the subsets without replacement. Recall that t

is the smallest index such that σ†t ≤ ρσε

√
d
n and let us also define t = bρ

λd
2 c. We let

γ = t− t+ 1. We assume that t ≥ t; otherwise Proposition 2.4.2 becomes trivial. Let D be

the Cartesian product of D(i) for integers i ∈ [t, t]. We use ~R to denote an element in D.

~R = (~Rt, ~Rt+1, · · · , ~Rt) is a γ-tuple so that each element ~Ri corresponds to an element in

D(i). There are two ways to represent ~R. Both are found useful in our analysis.

1. Set representation. We treat ~Ri as a set in D(i).

2. Index representation. We treat ~Ri as an index from [K] that specifies the index of

the set that ~Ri refers to.

Note that the subscript i of ~Ri starts at t (instead of 1 or 0) for convenience.

Example 2.4.1. The index of Di starts at t. Assume that t = t + 1. Let D(t) =(
{2, 3}, {1, 4}, {1, 2}

)
and D(t+1) =

(
{1, 3}, {2, 4}, {3, 4}

)
. The element

(
{1, 2}, {2, 4}

)
∈

D(t) ⊗ D(t+1). There are two ways to represent this element. (i) Set representation.

~R =
(
{1, 2}, {2, 4}

)
, in which ~Rt = {1, 2} and ~Rt+1 = {2, 4}. (ii) Index representation.

~R = (3, 2). ~Rt = 3 refers to that the third element {1, 2} in D(t) is selected.

We now describe our proof in detail. We remark that throughout our analysis, constants

are re-used in different proofs.

2.4.2.1 Step 1. Partial specification for each column

This step needs only characterize the behavior of an individual D(i).

Lemma 2.4.6. Let ρ < 1 be a sufficiently small variable, λ be a tunable parameter and let

D(i) = {R(i,1), R(i,2), · · · , R(i,K)} be a collection of random subsets in [d] (sampled without

replacement) such that |R(i,j)| = ρλd for all j. There exist constants c0, c1, and c2 such

that when K = exp(c0ρ
2λd), with probability 1− exp(−c1ρ2λd), for any two distinct R(i)

and R(j), |R(i,j) ∩R(i,k)| ≤ c2ρ2λd.

Proof of Lemma 2.4.6. This can be proved by a standard probabilistic argument. Let

R(i,j) be an arbitrary subset such that |R(i,j)| = ρλd. Let R(i,k) be a random subset of size
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ρλd. We compute the probability that |R(i,j) ∩R(i,k)| ≥ c2ρ2λd for a fixed R(i,j).

Let us sequentially sample elements from R(i,k) (without replacement). Let It be an

indicator random variable that sets to 1 if and only if the t-th random element in R(i,k)

hits an element in R(i,j). We have

Pr[It = 1] ≤ ρλd

(1− ρλ)d
≤ ρλ

2
. (2.39)

By using a Chernoff bound, we have

Pr

| ρλd∑
i=1

It| ≥
c2ρ

2λd

2

 ≤ exp(−Ω(ρ2λd)). (2.40)

By using a union bound, we have

Pr[∃i, j : |R(i,j) ∩R(i,k)| ≥ c2ρ
2λd

2
] ≤

(
K

2

)
exp(−Ω(ρ2λd)) ≤ exp(−Ω(ρ2λd) + 2 logK).

(2.41)

Therefore, when we set K = exp(c0ρ
2λd), the failure probability is 1− exp(−Θ(ρ2λd)). 2

2.4.2.2 Step 2. Random samples from the Cartesian product

We let D =
⊗

i∈[t,t]D(i). Note that each D(i) is sampled independently. We define S be

a random subset of D. We next explain the reason we need to sample random subsets.

Recall that for each ~R ∈ S, we aim to construct a unitary matrix U † (to be discussed in

Step 3) such that the positions of non-zero entries in U †:,i are specified by ~Ri (i.e., U
†
j,i 6= 0

only when j ∈ ~Ri).

Let ~R and ~R′ be two distinct elements in D. Let U † and Ũ † be two unitary matrices

generated by ~R and ~R′. We ultimately aim to have that ‖U †L† − Ũ †L†‖2F being large. We

shall make sure (i) U † and Ũ † share few non-zero positions (Step 2; this step), and (ii)

few entries in U † and Ũ † have excessive magnitude (Step 3). These two conditions will

imply that U † and Ũ † are far, which then implies a lower bound on U †L† and Ũ †L†.

Because we do not want U † and Ũ † share non-zero positions, we want to maximize the
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Hamming distance (in index representation) between ~R and ~R′ (i.e., ~Ri = ~R′i implies U †:,i

and Ũ †:,i share all non-zero positions, which is a bad event). We sample S randomly from D

because random sample is a known procedure that generates “code” with large Hamming

distance [106].

Before proceeding, we note one catch in the above explanation, i.e., different columns

are of different importance. Specifically, ‖U †L†−Ũ †L†‖2F =
∑

i∈[d](σ
†
i )

2‖U †:,i−Ũ
†
:,i‖2. When

~Ri and ~R′i collide for a large (σ†i )
2, it makes more impact to the Frobenius norm. Thus, we

define a weighted cost function that resembles the structure of Hamming distance.

c(~R, ~R′) =
∑
i∈[t,t]

(σ†i )
2I(~Ri = ~R′i). (2.42)

Note that the direction we need for c(~R, ~R′) is opposite to Hamming distance. One

usually maximizes Hamming distance whereas we need to minimize the weighted cost.

We need to develop a specialized technique to produce concentration behavior for S

because c(~R, ~R′) is weighted.

Lemma 2.4.7. Let ρ and λ be the parameters for producting D(i). Let ζ < 1 be a tunable

parameter. Let S be a random subset of D of D ,
⊗

i∈[t,t]D(i) such that

|S| = exp

c3nρ2λ+ζ

ρ2σ2ε

∑
i∈[t,t]

(σ†i )
2

 (2.43)

for some constant c3. With high probability at least 1− exp(−c4ρ2λd) (c4 a constant), for

any ~R and ~R′ in S, c(~R, ~R′) ≤ ρζ(
∑

i∈[t,t](σ
†
i )

2).

Proof. Let Ψ =
∑

i∈[t,t](σ
†
i )

2. Let ~R and ~R′ be two different random elements in D. We

shall first compute that Pr
[
c(~R, ~R′) ≥ ρζΨ

]
. Here, we assume that ~R is an arbitrary fixed

element and ~R′ is random.

Recall that σ†i ∈ [0, ρσε
√

n
d ] for i ∈ [t, t]. We shall partition [0, ρσε

√
n
d ] into subintervals

and group σ†i by these intervals. Let It be the set of σ†i that are in [2−t−1ρσε
√

n
d , 2
−tρσε

√
n
d ]
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(t ≥ 0). Let T be the largest integer such that IT is not empty. Let Lt = |It| and

`t =
∑

i∈It I(
~Ri = ~R′i). We call {`t}t≤T the overlapping coefficients between ~R and ~R′.

Note that c(~R, ~R′) ≤
∑

t≤T `t2
−2tρ2σ2εd/n. Therefore, a necessary condition for

c(~R, ~R′) ≥ ρζΨ is
∑

t≤T
`t2−2tρ2σ2

ε d
n ≥ ρηΨ. Together with the requirement that

∑
t≤T `t ≥

1, we need ∑
t≤T

`t ≥ max

{
nρζΨ

dρ2σ2ε
, 1

}
(2.44)

Recall that we assume that ~R is fixed and ~R′ is random. When c(~R, ~R′) ≥ ρζΨ, we say

~R′ is bad. We next partition all bad ~R′ into sets indexed by {`t}t≤T . Let C({`t}t≤T ) be all

the bad ~R′ such that the overlapping coefficients between ~R and ~R′ are {`t}t≤T . We have

Pr[c(~R, ~R′) ≥ ρζΨ] = Pr[~R′ is bad ] = Pr

~R′ ∈
⋃

{`t}t≤T

C({`t}t≤T )

 =
∑
k≥1

∑
all C({`i})

s.t.
∑

t `t = k

Pr[~R′ ∈ C({`t}t≤T )]

Next also note that

Pr[~R′ ∈ C({`t}t≤T )] ≤
∏
t≤T

(
Lt

`t

)(
1

K

)∑
t≤T `t

,

where K is the size of each D(i).
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The number of possible {`i}t≤T such that
∑

t≤T `i = k is at most
(
d+k
k

)
. Therefore,

∑
k≥1

∑
all C({`i})

s.t.
∑

t `t = k

Pr
[
~R′ ∈ C({`i}i≤T )

]

≤
∑
k≥1

∑
all C({`i})

s.t.
∑

t `t = k

∏
t≤T

(
Lt

`t

)(
1

K

)`t

≤
∑
k≥1

∑
all C({`i})

s.t.
∑

t `t = k

∏
t≤T

(
eLt

K

)`t

(using
(
Lt

`t

)
≤
(
eLt
`t

)`t
≤ (eLi)

`i)

≤
∑
k≥1

(
d+ k

k

)∏
t≤T

(
eLt

K

)`t

≤ d max
k s.t.∑
t `t=k

(
d+ k

k

)∏
i≤T

(
eLi

K

)`t

≤ d
(
e(d+ k)

k

)k ∏
t≤T

(
eLt

K

)`t

(where k =
∑

t≤T `t from the previous line)

≤ d(2ed)k
∏
t≤T

(
eLt

K

)`t

≤ d
∏
t≤T

(
2e2d2

K

)`t

≤ exp

−cρ2λd(∑
t≤T

`t)

 (c is a suitable constant;)

≤ exp

(
−cρ2λdmax

{
nρζΨ

dρ2σ2ε
, 1

})

By using a union bound on all pairs of ~R and ~R′ in S, we have for sufficiently small c3,

there exists a c4 such that

Pr
[
∃~R, ~R′ ∈ S : c(~R, ~R′) ≥ ρζΨ

]
≤ exp

(
−c4ρ2λdmax

{
nρζΨ

dρ2σ2ε
, 1

})
≤ exp(−c4ρ2λd).

2
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2.4.2.3 Step 3. Building up unitary matrices

We next construct a set of unitary matrices in Rd×d based on elements in S. We shall refer

to the procedure to generate a unitary U from an element ~R ∈ S as q(~R).

Procedure q(~R): Let U ∈ Rd×d be the matrix q(~R) aims to fill in.

Let v(1),v(2), . . . ,v(t−1) ∈ Rd be an arbitrary set of orthonormal vectors. q(~R) partitions

the matrix U into three regions of columns and it fills different regions with different

strategies. See also three regions illustrated by matrices in Fig. 2.3.

Region 1: U:,i for i < t. We set U:,i = v(i) when i < t. This means all the unitary matrices

we construct share the first t− 1 columns.

Region 2: U:,i for i ∈ [t, t]. We next fill in non-zero entries of each U:,i by ~Ri for i ∈ [t, t].

We fill in each U:,i sequentially from left to right (from small i to large i). We need to make

sure that (i) it is feasible to construct U:,i that is orthogonal to all U:.j (j < i) by using

only entries specified by Ri. (ii) there is a way to fill in U:,i so that not too many entries

are excessively large. (ii) is needed because for any ~R and ~R′, ~Ri and ~R′i still share a small

number of non-zero positions (whp |~Ri ∩ ~R′i| = O(ρ2λd), according to Lemma 2.4.6). When

the mass in |~Ri ∩ ~R′i| is large, the distance between U and U ′ is harder to control.

Region 3: U:,i for i > t. q(~R) fills in the rest of the vectors arbitrarily so long as U is

unitary. Unlike the first t− 1 columns, these columns depend on ~R so each U ∈ U has a

different set of ending column vectors.

Analysis for region 2. Our analysis focuses on two asserted properties for Region 2

are true. We first show (i) is true and describe a procedure to make sure (ii) happens.

For j ≤ i− 1, let w(j) ∈ Rρλd be the projection of U:,j onto the coordinates specified

by ~Ri. See Fig. 2.3(d) for an illustration. Note that t = ρλd
2 , the dimension of the subspace

spanned by w(1), . . .w(i−1) is at most ρλd/2. Therefore, we can find a set of orthonormal

vectors {u(1), . . .u(κ)} ⊆ Rρλd (κ ≥ ρλd
2 ) that are orthogonal to w(j) (j ≤ i− 1). To build

a U:,i that’s orthogonal to all U:,j (j ≤ i − 1), we can first find a u ∈ Rρλd that is a

linear combination of {u(j)}j≤κ, and then “inflate” u back to Rd, i.e., the k-th non-zero
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coordinate of U:,i is uk. One can see that

〈U:,j , U:,i〉 = 〈w(j),u〉 = 0

for any j < i.

We now make sure (ii) happens. We have the following Lemma.

Lemma 2.4.8. Let {u(1), . . . ,u(κ)} (κ ≥ ρλd/2) be a collection of orthonormal vectors in

Rρλd. Let η be a small tunable parameter. There exists a set of coefficients β1, . . . , βκ such

that u =
∑κ

i=1 βiu
(i) is a unit vector and there exist constant c5, c6, and c7 such that

∑
i≤ρλd

u2
i I

(
ui ≥

c5√
ρλ+ηd

)
≤ c7ε, (2.45)

where ε = exp(− c6
ρη ).

Proof of Lemma 2.4.8. We use a probabilistic method to find u. Let zi ∼ N(0, 1/
√
ρλd)

for i ∈ [ρλd]. Let S =
√∑

i≤ρλd z
2
i . We shall set βi = zi/S. One can check that

u =
∑

i∈[ρλd] βiu
(i) is a unit vector. We then examine whether (2.45) is satisfied for these

βi’s we created. If not, we re-generate a new set of zi’s and βi’s. We repeat this process

until (2.45) is satisfied.

Because βi’s are normalized, setting the standard deviation of zi is unnecessary. We

nevertheless do so because S will be approximately a constant, which helps us simplify the

calculation.

We claim that there exists a constant c such that for any `,

E

[
u2
`I

(
u` ≥

c5√
ρλ+ηd

)]
≤ cε

ρλd
. (2.46)

We first show that (2.46) implies Lemma 2.4.8. Then we will show (2.46).
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By linearity of expectation, (2.46) implies

E

 ∑
`≤ρλd

u2
`I

(
u` ≥

c5√
ρλ+ηd

) ≤ cε.
Then we use a Markov inequality and obtain

Pr

 ∑
`≤ρλd

u2
`I

(
u` ≥

c5√
ρλ+ηd

) ≥ 2cε

 ≤ 1

2

So our probabilistic method described above is guaranteed to find a u that satisfies

(2.45)

We next move to showing (2.46). Recall that

u` =
1

S
(
∑
i≤κ

ziu
(i)
` ).

We also let Z` =
∑

i≤κ ziu
(i)
` . We can see that Z` is a Gaussian random variable with

a standard deviation
√

1
ρλd

∑
i≤κ(u

(i)
` )2 ≤

√
1

ρλd
. The inequality uses the fact that u(i)’s

are orthonormal to each other and therefore
∑

i≤κ(u
(i)
` )2 ≤ 1.

On the other hand, one can see that

E[S] = E[
∑
i≤κ

z2i ] =

(
1√
ρλd

)2

· κ ≥ 1

2
.

Therefore, by a standard Chernoff bound, Pr
[
S ≤ 1

4

]
≤ exp(−Θ(κ)).

Next, because {zi}i≤κ collectively form a spherical distribution, we have
{
zi
S

}
i≤κ is

independent to S. Therefore,

E

[
u2
`I

(
u` ≥

c5√
ρλ+ηd

)]
= E

[
u2
`I

(
u` ≥

c5√
ρλ+ηd

)
| S ≥ 1

4

]
(2.47)
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Conditioned on S ≥ 1
4 , we use the fact that u` = Z`/S to get u` ≤ 4Z` and

I

(
u` ≥

c5√
ρλ+ηd

)
= I

(
Z` ≥

c5√
ρλ+ηd

S

)
≤ I

(
Z` ≥

c5

4
√
ρλ+ηd

)
. (2.48)

Therefore,

(2.47)

≤ 16E

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)
| S ≥ 1

4

]

=
16

Pr
[
S ≥ 1

4

] (E[Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)]
− E

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)
| S < 1

4

]
Pr

[
S ≤ 1

4

])

≤ 16(1 + exp(−Θ(κ)))

(
E

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)])

≤ 16(1 + exp(−Θ(κ)))E

[
Z2
` I

(
Z` ≥

2c5√
ρλ+ηd

)]

≤ 16(1 + exp(−Θ(κ)))√
2πσZ`

∫ ∞
2c5√
ρλ+ηd

z2 exp

(
z2

σ2Z`

)
dz

≤ c

ρλ+ηd
exp

(
−Θ(ρ−η)

)
(using σZ`

≤
√

1
ρλd

)

≤ O(
ε

ρλd
)

2

2.4.2.4 Proof of Proposition 2.4.2

Now we are ready to use Theorem 2.4.5 to prove Proposition 2.4.2. Let S be the set

constructed from Step 1 and U† = {U † : U † = q(~R), ~R ∈ S}. Let N† = {U †L† : U † ∈ U†}.

Let also PN† be the distribution of (y, z†) generated from the model y = N †z† + ε. Let

PN†|z† be the distribution of y from the normalized model when z† is given. Let PN†,n be

the product distribution when we observe n samples from the model y = N †z† + ε. Let

fN†(y, z†) be the pdf of for PN† , fN†(y | z†) be the pdf of y given z†, and f(z†) be the
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pdf of z†.

We need to show that for any N †, Ñ † ∈ N (i) ‖N † − Ñ †‖F is large, and (ii) the

KL-divergence between PN†,n and PN†,n is bounded.

Lemma 2.4.9. Let S, U†, and N† be generated by the parameters λ, η, and ζ (see Steps 1

to 3). For any N † and Ñ † in N, we have

‖N † − Ñ †‖2F ≥
∑
i∈[t,t]

σ†i (2− c8ρ
λ−η − c9ρζ) (2.49)

for some constant c8 and c9.

Proof. Let U †, Ũ † ∈ U† such that N † = U †L† and Ñ † = Ũ †L†; let ~R, ~R′ ∈ S be that

U † = q(~R) and Ũ † = q(~R′). Also, recall that we let Ψ =
∑

i∈[t,t](σ
†
i )

2.

We have

‖N † − Ñ †‖2F =
∑
i∈[d]

‖(U †:,i − Ũ
†
:,i)σ

†
i ‖

2
2 ≥

∑
i∈[t,t]

‖(U †:,i − Ũ
†
:,i)σ

†
i ‖

2
2

Let also H = {~Ri = ~R′i, i ∈ [t, t]}, i.e., the set of coordinates that ~R and ~R′ agree. Whp,

we have

Ψ =
∑
i∈H

(σ†i )
2 +

∑
i∈[t,t]
i/∈H

(σ†i )
2 = c(~R, ~R′) +

∑
i∈[t,t]
i/∈H

(σ†i )
2 ≤ ρζΨ+

∑
i∈[t,t]
i/∈H

(σ†i )
2 (2.50)

The last inequality holds because of Lemma 2.4.7. Therefore, we have
∑

i∈[t,t]
i/∈H

(σ†i )
2 ≥

(1− ρζ)Ψ.

Now we have

∑
i∈[t,t]

‖(U †:,i − Ũ
†
:,i)σ

†
i ‖

2
2 ≥

∑
i∈[t,t]
i/∈H

‖(U †:,i − Ũ
†
:,i‖

2
2(σ
†
i )

2.
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Next we bound ‖U †:,i − Ũ
†
:,i‖22 when ~Ri 6= ~R′i. We have

‖U †:,i − Ũ
†
:,i‖

2
2 ≥ 2−

∑
j∈~Ri∩~R′

i

(
(U †j,i)

2 + (Ũ †j,i)
2
)
. (2.51)

By Lemma 2.4.6, whp |~Ri ∩ ~R′i| ≤ c2ρ2λd. Next, we give a bound for
∑

j∈~Ri∩~R′
i
(U †j,i)

2. The

bound for
∑

j∈~Ri∩~R′
i
(Ũ †j,i)

2 can be derived in a similar manner.

For each j ∈ |~Ri ∩ ~R′i|, we check whether U †j,i ≥
c5√
ρλ+ηd

:

∑
j∈~Ri∩~R′

i

(U †j,i)
2 =

∑
j∈~Ri∩~R′

i

[
(U †j,i)

2I(U †j,i ≤
c5√
ρλ+ηd

) + (U †j,i)
2I(U †j,i >

c5√
ρλ+ηd

)

]

≤ O
(
ρ2λd

ρλ+ηd
+ exp(−Θ(1/ρη))

)
= O(ρλ−η).

Therefore,

∑
i∈[t,t]

‖(U †:,i − Ũ
†
:,i)(σ

†
i )

2‖22 ≥
∑
i∈[t,t]

(σ†i )
2(2−O(ρλ−η)(1− ρζ)) ≥

∑
i∈[t,t]

(σ†i )
2(2− c8ρλ−η − c9ρζ).

2

We need two additional building blocks.

Lemma 2.4.10. Consider the regression problem y = Mx+ ε, where ‖M‖ ≤ Υ = O(1)

and the eigenvalues σi(E[xxT)] of the features follow a power law distribution with exponent

ω. Consider the problem y = Nz+ ε in orthogonalized form. Let σNi be the i-th singular

value of N . Let t be an arbitrary value in [0,min{d1, d2}]. There exists a constant c10 such

that ∑
i≥t

σ2i (N) ≤ c10
tω−1

.

Proof of Lemma 2.4.10. Without loss of generality, assume that d1 ≥ d2. We first split

the columns of N into two parts, N = [N+, N−], in which N+ ∈ Rd2×t consists of the first

t columns of N and N− ∈ Rd2×(d1−t) consists of the remaining columns. Let 0 be a zero
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matrix in Rd2×(d1−t). [N+,0] is a matrix of rank at most t.

Let us split other matrices in a similar manner.

• M = [M+,M−], where M+ ∈ Rd2×t and M− ∈ Rd2×(d1−t),

• V ∗ = [V ∗+, V
∗
−], where V

∗
+ ∈ Rd1×t, and V ∗− ∈ Rd1×(d1−t), and

• Λ∗ = [Λ∗+,Λ
∗
−], where Λ∗+ ∈ Rd1×t and Λ∗− ∈ Rd1×(d1−t).

We have

∑
i≥t

(σNi )2 = ‖N −Pt(N)‖2F

≤ ‖N − [N+,0]‖2F (Pt(N) gives an optimal rank-t approximation of N).

= ‖N−‖2F ≤ ‖M−V ∗−‖2‖(Λ∗−)
1
2 ‖2F ≤

c10
tω−1

2

We next move to our second building block.

Fact 2.4.1.

KL(PN†,n,PÑ†,n) =
n‖N † − Ñ †‖2F

2σ2ε
. (2.52)

Proof of Fact 2.4.1.

KL(PN†,n,PÑ†,n)

= nKL(PN† ,PÑ†)

= n E
y=N†z†+ε

[
log

(
fN†(y, z†)

fÑ†(y, z†)

)]
= n E

z†

[
E

y=N†z†+ε

[
log

(
fN†(y, z†)

fÑ†(y, z†)

)
| z†
]]

= n E
z†

[
E

y=N†z†+ε

[
log

(
fN†(y | z†)f(z†)
fÑ†(y | z†)f(z†)

)
| z†
]]

= nE
z

E
y=N†z†+ε

[[
log

(
fN†(y | z†)
fÑ†(y | z†)

)
| z†
]]

= nE
z

[
KL(PN†|z† ,PÑ†|z†)

]
=
n‖N † − Ñ †‖2F

2σ2ε
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2

We now complete the proof for Proposition 2.4.2. First, define ψ ,
∑

i≥t+1(σ
†
i )

2∑
i∈[t,t](σ

†
i )

2
. For

any N † and Ñ † in N, we have

‖N † − Ñ †‖2F =
∑
i≥t

(σ†i )
2 = (1 + ψ)Ψ,

where recall that Ψ =
∑

i∈[t,t](σ
†
i )

2. Using Lemma 2.4.9, we have KL(PN†,n,PÑ†,n) =

n(1 + ψ)Ψ.

Next, we find a smallest α such that

max
N†,Ñ†

KL(PN†,n,PÑ†,n) ≤ α log |N|. (2.53)

By Lemma 2.4.7, we have |N| = exp(c3
nρ2λ+ζ−2

σ2
ε

Ψ). (2.53) is equivalent to requiring

n(1 + ψ)Ψ

2σ2ε
≤ αc3nρ

2λ+ζ−2Ψ

σ2ε
.

We may thus set α = O(ρ2−2λ+ζ(1 + ψ)). Now we may invoke Theorem 2.4.5 and get

r(x,M, n, σε) ≥ Ψ

(
1− 1√

|N|

)
(2− c8ρλ−η − c9ρζ)︸ ︷︷ ︸

Lemma 2.4.9

(
1−O(ρ2−2λ−ζ)(1 + ψ)

)

≥ Ψ(1−O(ρλ−η + ρζ + ρ2−2λ−ζ))− Ψψ︸︷︷︸
=
∑

i>t(σ
†
i )

2

ρ2−2λ−ζ

≥ Ψ(1−O(ρλ−η + ρζ + ρ2−2λ−ζ))−O
(

1

(ρλd)ω−1

)
ρ2−2λ−ζ

(Use Lemma 2.4.10 to bound
∑

i>t(σ
†
i )

2 )

We shall set ε = η be a small constant (say 0.001), λ = 1
2 + ε, and ζ = 1

2 . This gives us

r(x,M, n, σε) ≥ Ψ(1−O(ρ
1
2 + ρ

1
2
−2ε))− ρ

1
2
−2ε−(ω−1)( 1

2
+ε)

dω−1
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Together with the fact that
∑

i>t(σ
†
i )

2 = O
(

1
(ρλω)ω−1

)
, we complete the proof of Proposi-

tion 2.4.2.

2.5 Related work and comparison

In this section, we compare our results to other regression algorithms that make low rank

constraints on M . Most existing MSE results are parametrized by the rank or spectral

properties of M , e.g. [118]defined a generalized notion of rank

Bq(R
A
q ) ∈

{
A ∈ Rd2×d1 :

min{d1,d2}∑
i=1

|σAi |q ≤ Rq

}
, q ∈ [0, 1], A ∈ {N,M}, (2.54)

i.e. RN
q characterizes the generalized rank of N whereas RM

q characterizes that ofM . When

q = 0, RN
q = RM

q is the rank of the N because Rank(N) = Rank(M) in our setting. In their

setting, the MSE is parametrized by RM and is shown to be O
(
RM

q

(
σ2
ελ

∗
1(d1+d2)

(λ∗
min)

2n

)1−q/2)
.

In the special case when q = 0, this reduces to O
(
σ2
ελ

∗
1Rank(M)(d1+d2)

(λ∗
min)

2·n

)
. On the other

hand, the MSE in our case is bounded by (cf. Thm. 2.3.2). We have E[‖ŷ − y‖22] =

O
(
RN

q (σ
2
ε d2
n )1−q/2 + n−c0

)
. When q = 0, this becomes O

(σ2
εRank(M)d2

n + n−c0
)
.

The improvement here is twofold. First, our bound is directly characterized by N in

orthogonalized form, whereas result of [118]needs to examine the interaction between M

and C∗, so their MSE depends on both RM
q and λ∗min. Second, our bound no longer depends

on d1 and pays only an additive factor n−c0 , thus, when n < d1, our result is significantly

better. Other works have different parameters in the upper bounds, but all of these existing

results require that n > d1 to obtain non-trivial upper bounds [84, 20, 27, 84]. Unlike these

prior work, we require a stochastic assumption on X (the rows are i.i.d.) to ensure that the

model is identifiable when n < d1, e.g. there could be two sets of disjoint features that fit

the training data equally well. Our algorithm produces an adaptive model whose complexity

is controlled by k1 and k2, which are adjusted dynamically depending on the sample size

and noise level. [20] and [27] also point out the need for adaptivity; however they still

require n > d1 and make some strong assumptions. For instance, [20]assumes that there is a
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gap between σi(XM
T) and σi+1(XM

T) for some i. In comparison, our sufficient condition,

the decay of λ∗i , is more natural. Our work is not directly comparable to standard variable

selection techniques such as LASSO [148] because they handle univariate y. Column

selection algorithms [35] generalize variable selection methods for vector responses, but

they cannot address the identifiability concern.

2.5.1 Missing proof in comparison

This section proves the following corollary.

Corollary 2.5.1. Use the notation appeared in Theorem 2.3.2. Let the ground-truth matrix

N ∈ Bq(R
N
q ) for q ∈ [0, 1]. We have whp

E[‖ŷ − y‖22] = O

(
RN

q

(
σ2εd2
n

)1−q/2
+ n−c0

)
. (2.55)

Proof. We first prove the case q = 0 as a warmup. Observe that

‖N‖2F −
∑
i≤`∗

(σNi )2 =
∑

`∗<i≤r
(σNi )2 ≤ θ2σ2εd2(r − `)

n
.

The last inequality uses σNi ≤ θσε
√

d2
n for i > `∗. Therefore, we have

E[‖ŷ − y‖2)2] ≤ O
(
(r − `∗)θ2σ2εd2

n
+
`∗d2θ

2σ2ε
n

+ n−c0
)

= O

(
rθ2σ2εd2

n
+ n−c0

)
.

Next, we prove the general case q ∈ (0, 1]. We can again use an optimization view to

give an upper bound of the MSE. We view
∑

i≤d2(σ
N
i )q ≤ Rq as a constraint. We aim to

maximize the uncaptured signals, i.e., solve the following optimization problem
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maximize:
∑
i>`∗

(σNi )2

subject to:
∑
i>`

(σNi )q ≤ R−, where R− = Rq −
∑

i≤`∗(σ
N
i )q

σNi ≤
θ2σ2εd2
n

, for i ≥ `∗.

The optimal solution is achieved when (σNi )2 = θ2σ2
ε d2
n for `∗ < i ≤ `∗ + k, where

k = R−(
θ2σ2

ε d2
n

) q
2
, and σNi = 0 for i > `∗ + k. We have

E[‖ŷ − y‖22]

≤
∑
i>`∗

(σNi )2 +O

(
`∗d2θ

2σ2ε
n

+ n−c0
)

=

Rq −
∑
i≤`∗

(σNi )q

(θ2σ2εd2
n

)1−q/2
+O

(
`∗d2θ

2σ2ε
n

+ n−c0
)

(2.56)

We can also see that

∑
i≤`∗

(σNi )q
(
θ2σ2εd2
n

)1−q/2
≥
∑
i≤`∗

(
θ2σ2εd2
n

)q/2(
θ2σ2εd2
n

)1−q/2
= `∗

(
θ2σ2εd2
n

)
.

Therefore,

(2.56) ≤ O

(
Rq

(
θ2σ2εd2
n

)1−q/2
+ n−c0

)
.

2

2.6 Experiments

We apply our algorithm on an equity market and a social network dataset to predict equity

returns and user popularity respectively. Our baselines include ridge regression (“Ridge”),

reduced rank ridge regression [114] (“Reduced ridge”), LASSO (“Lasso”), nuclear norm
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Model MSEout MSEin MSEout−in R2
out(bps) R2

in (bps) Sharpe t-statistic

ARRR, N= 983 0.9935 1.0140 -0.0205 46.3761 158.2564 2.4350 8.3268
Lasso 1.1158 0.3953 0.7205 6.6049 7147.0116 2.1462 0.0601
Ridge 1.2158 0.1667 1.0491 9.8596 8511.9076 0.6603 -0.0497
Reduced ridge 1.0900 0.8687 0.2213 13.0321 1555.5136 0.3065 -0.3275
RRR 1.2200 0.5867 0.6332 7.0830 4121.2548 0.3647 -0.6626
Nuclear norm 1.2995 0.12078 1.1787 4.7297 8789.0625 0.6710 0.2340
PCR 1.0259 0.8456 0.1802 1.1278 1544.7258 1.8070 0.3947

ARRR, N= 2838 1.0056 0.9050 0.1006 18.5761 689.0625 1.6239 15.4134
Lasso 1.0625 0.5286 0.5339 1.1236 6029.5225 0.5954 0.0179
Ridge 1.0289 0.6741 0.3548 0.2116 5342.1481 0.5739 0.0670
Reduced ridge 1.9722 0.7373 1.2349 1.0816 2416.7056 1.5482 0.0619
RRR 1.0873 0.61376 0.4735 4.5795 3844.124 -0.477 0.6399
Nuclear norm 1.1086 0.15346 0.9551 2.2097 8461.2402 -0.3698 -0.8986
PCR 1.0263 0.5336 0.4927 5.233 4653.9684 1.2799 0.6990

Table 2.1: Summary of results for equity return forecasts. R2 are measured by basis
points (bps). 1bps = 10−4. Bold font denotes the best out-of-sample results and

smallest gap.

Model MSEin MSEout MSEout−in Corrin Corrout
ARRR 5.0104 ± 0.38 9.4276 ± 2.31 4.4172 0.7425 ± 0.07 0.6730 ± 0.13
Lasso 2.3755 ± 1.95 14.8279 ± 4.81 12.4524 0.9171 ± 0.09 0.4754 ± 0.15
Ridge 1.3974 ± 0.53 13.6244 ± 4.39 12.2270 0.9555 ± 0.04 0.4742 ± 0.17
Reduced ridge 4.5260 ± 1.93 12.2339 ± 2.70 7.7079 0.7905 ± 0.09 0.4972 ± 0.18
RRR 4.3456 ± 0.47 13.0768 ± 2.63 8.7313 0.7725 ± 0.12 0.3820 ± 0.22
Nuclear norm 4.9190 ± 2.04 13.0532 ± 4.38 8.6677 0.7872 ± 0.10 0.4869 ± 0.16
PCR 6.4037 ± 1.99 13.0847± 4.19 8.8892 0.7199 ± 0.05 0.4861 ± 0.15

Table 2.2: Average results for Twitter dataset from 10 random samples. Bold font
denotes the best out-of-sample results and smallest gap

regularized regression (“Nuclear norm”), and reduced rank regression [153] (“RRR”), and

principal component regression [3] (“PCR”).

Predicting equity returns. We use a stock market dataset from an emerging market

that consists of approximately 3600 stocks between 2011 and 2018. We focus on predicting

the next 5-day returns. For each asset in the universe, we compute its past 1-day, past 5-day

and past 10-day returns as features. We use a standard approach to translate forecasts into

positions [8, 169]. We examine two universes in this market: (i) Universe 1 is equivalent

to S&P 500 and consists of 983 stocks, and (ii) Full universe consists of all stocks except

for illiquid ones.

Results. Table 2.1 reports the forecasting power and portfolio return for out-of-sample

periods in two universes. We observe that (i) The data has a low signal-to-noise ratio.
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The out-of-sample R2 values of all the methods are close to 0. (ii) Adaptive-RRR

has the highest forecasting power. (iii) Adaptive-RRR has the smallest in-sample and

out-of-sample gap (see column MSEout−in), suggesting that our model is better at avoiding

spurious signals.

Predicting user popularity in social networks. We collected tweet data on political

topics from October 2016 to December 2017. Our goal is to predict a user’s next 1-day

popularity, which is defined as the sum of retweets, quotes, and replies received by the

user. There are a total of 19 million distinct users, and due to the huge size, we extract

the subset of 2000 users with the most interactions for evaluation. For each user in the

2000-user set, we use its past 5 days’ popularity as features. We further randomly sample

200 users and make predictions for them, i.e., setting d2 = 200 to make d2 of the same

magnitude as n.

Results. We randomly sample users for 10 times and report the average MSE and correla-

tion (with standard deviations) for both in-sample and out-of-sample data. In Table 2.2

we can see results consistent with the equity returns experiment: (i) Adaptive-RRR

yields the best performance in out-of-sample MSE and correlation. (ii) Adaptive-RRR

achieves the best generalization error by having a much smaller gap between training and

test metrics.

2.6.1 Setup of experiments

2.6.1.1 Equity returns

We use daily historical stock prices and volumes from an emerging market to build our

model. Our license agreement prohibits us to redistribute the data so we include only a

subset of samples. Full datasets can be purchased by standard vendors such as quandl or

algoseek. Our dataset consists of approximately 3,600 stocks between 2011 and 2018.

Universes. We examine two different universes in this market (i) Universe 1 is equivalent

to S&P 500. It consists of 800 stocks at any moment. Similar to S&P 500, the list of
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stocks appeared in universe 1 is updated every 6 months. A total number of 983 stocks

have appeared in universe 1 at least once. (ii) Universe 2 consists of all stocks except for

illiquid ones. This excludes the smallest 5% stocks in capital and the smallest 5% stocks

in trading volume. Standard procedure is used to avoid universe look-ahead and survival

bias [169].

Returns. We use return information to produce both features and responses. Our returns

are the “log-transform” of all open-to-open returns [169]. For example, the next 5-day

return of stock i is log(pi,t+5/pi,t), where pi,t is the open price for stock i on trading day t.

Note that all non-trading days need to be removed from the time series pi,t. Similarly, the

past 1-day return is log(pi,t/pi,t−1).

Model. We focus on predicting the next 5-day returns for different universes. Let

rt = (r1,t, r2,t, . . . , rd2,t), where ri,t is the next 5-day return of stock i on day t. Our

regression model is

rt+1 =Mxt + ε. (2.57)

The features consist of the past 1-day, past 5-day, and past 10-day returns of all the

stocks in the same universe. For example, in Universe 1, the number of responses is

d2 = 800. The number of features is d1 = 800 × 3 = 2, 400. We further optimize the

hyperparameters k1 and k2 by using a validation set because our theoretical results are

asymptotic ones (with unoptimized constants). Baseline models use the same set of features

and the same hyper-parameter tuning procedure.

We use three years of data for training, one year for validation, and one year for testing.

The model is re-trained every test year. For example, the first training period is May

1, 2011 to May 1, 2014. The corresponding validation period is from June 1, 2014 to

June 1, 2015. We use the validation set to determine the hyperparameters and build

the model, and then we use the trained model to forecast returns of equity in the same

universe from July 1, 2015 to July 1, 2016. Then the model is retrained by using data in
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the second training period (May 1, 2012 to May 1, 2015). This workflow repeats. To avoid

looking-ahead, there is a gap of one month between training and validation periods, and

between validation and test periods.

We use standard approach to translate forecasts into positions [60, 126, 8, 169]. Roughly

speaking, the position is proportional to the product of forecasts and a function of average

dollar volume. We allow short-selling. We do not consider transaction cost and market

impact. We use Newey-West estimator to produce t-statistics of our forecasts.

2.6.1.2 User popularity

We use Twitter dataset to build models for predicting a user’s next 1-day popularity, which

is defined as the sum of retweets, quotes, and replies received by the user.

Data collection. We collected 15 months Twitter data from October 01, 2016 to

December 31, 2017, using the Twitter streaming API. We tracked the tweets with topics

related to politics with keywords “trump, “clinton, “kaine, “pence, and “election2016.

There are a total of 804 million tweets and 19 million distinct users. User u has one

interaction if and only if he or she is retweeted/replied/quoted by another user v. Due to

the huge size, we extract the subset of 2000 users with the most interactions for evaluation.

Model. Our goal is to forecast the popularity of a random subset of 200 users. Let

yt = (y1,t, . . . , yd2,t), where d2 = 200 and yi,t is the popularity of user i at time t. Our

regression model is

yt+1 =Mxt + ε. (2.58)

Features. For each user, we compute his/her daily popularity for 5 days prior to day t.

Therefore, the total number of features is d1 = 2000× 5 = 10, 000.

We remark that there are n = 240 observations. This setup follows our assumption

d1 � d2 ≈ n.

Training and hyper-parameters. We use the period from October 01, 2016 to June

30, 2017 as the training dataset, the period from July 01, 2017 to October 30 as validation

67



dataset to optimize the hyper-parameters, and the rest of the period, from September 10,

2017 to December 31, 2017, is used for the performance evaluation.

2.7 Conclusion

This paper examines the low-rank regression problem under the high-dimensional setting.

We design the first learning algorithm with provable statistical guarantees under a mild

condition on the features’ covariance matrix. Our algorithm is simple and computationally

more efficient than low rank methods based on optimizing nuclear norms. Our theoretical

analysis of the upper bound and lower bound can be of independent interest. Our

preliminary experimental results demonstrate the efficacy of our algorithm. The full version

explains why our (algorithm) result is unlikely to be known or trivial.
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Chapter 3

On Embedding Stocks:

Orchestrating High-dimensional

Techniques for Financial Machine

Learning Models

3.1 Introduction

We study the problem of forecasting equity (stock) returns as there is a direct link between

a portfolio’s profitability and its forecasting quality. Our proposed forecasting model uses

information available up to time t to predict pt+1,i, the price of stock i at time t+ 1, for a

total number of d stocks in the financial market. While there has been extensive research

concerning the predictability of stock prices [43, 113, 139], many anomalies have been

discovered and recent studies suggest that machine learning (ML) techniques can also be

effective in forecasting returns [155, 26, 72, 166, 161]. The relevant learning models can be

categorized into two groups:

Univariate models (UM) to learn feature interactions. Univariate models fit a function

pt+1,i = f(xt,i) + ξt,i to forecast one stock’s future price (return) by using features
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constructed from that stock’s historical data. Univariate models primarily learn interactions

between features by using off-the-shelf ML techniques. See e.g., [51, 62, 28].

Cross-asset models (CAM) to learn stock interactions. Cross-asset models solve a vector

regression problem pt+1 = f(xt)+ξt, to forecast the future prices of all stocks in a universe,

where pt+1 , (pt+1,1, . . . ,pt+1,d), and xt denotes the features of all stocks, constructed from

their historical data. Since the features of one stock can be used to predict the future prices

of another (such as co-movement, lead-lag relation etc.), CAMs have stronger expressive

and predictive power. CAMs are both computationally and statistically challenging because

we need to solve the “high-dimensional” (overparametrized) problem, i.e., the total number

of learnable parameters far exceeds the number of observations. Consider, for example, a

vector auto-regressive model yt =Myt−1 + ξt for predicting next-day returns of d = 3, 000

stocks in Russell 3000 using their past 1-day returns. There are d2 ≈ 10 million learnable

parameters in M , but there are usually less than n = 3, 000 observations (using 10 years of

approximately 3,000 trading days of training data). The model can exactly fit the training

data, but may not deliver predictive power. Extensive research has been undertaken

to design regularization techniques to address the issue, most of which focus on linear

models [118, 161].

In this paper, we design models that are expressive enough to capture interactions

between features and between stocks, and develop new learning methodologies that can

easily leverage modern ML algorithms and are less prone to overfitting issues. Our major

challenge is to integrate two seemingly incompatible modeling processes (i.e., UM and

CAM) with different design philosophies, which we briefly discuss below.

In high-dim models for stock interactions, because fitting is straightforward and pro-

ducing meaningful generalization errors is challenging, theoretical tools are used to develop

algorithms with provable guarantee, to alleviate the data scarcity problems. In univariate

models for feature interactions, fitting is typically non-trivial, but since the generalization

errors are usually manageable, an experiment-driven process is used to fit the model.
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Here, the theoretical analysis is more difficult, but also less important, because the model

performance can be assessed by using standard (cross)-validation methods. It remains

unclear how we can reconcile a design process that promotes theoretical analysis and

down-weighs the role of fitting, with an experiment-driven one that relies heavily on fitting

and has a lower demand on theoretical guarantees.

Our approach & contribution. We propose a latent position model for equity returns,

dubbed as the additive influence model, that enables us to orchestrate mathematically

rigorous high-dim techniques with practically effective machine learning algorithms. Our

model assumes that each stock i is associated with a vector representation zi in a (latent)

Euclidean space, and characterizes the interactions between stocks in the form of yt,i =∑
j∈[d] κ(zi, zj)g(xj,t) + ξt,i, where yt,i ∈ R is the next period return at time t for stock i,

xt,j ∈ Rk are the features associated with stock j at time t, ξt,i is a noise term, g : Rk → R

is an unknown function, and κ is a function that measures the interaction strength between

stocks based on their vector representations. When zi and zj are close, κ(zi, zj) will be

large, and thus the variable g(xt,j) from stock j’s has a stronger impact on i’s return.

Our proposed model allows for feature interactions through g(·), and addresses the

overfitting problem arising from stock interactions because the distances (interaction

strength) between stocks are constrained by the latent Euclidean space: when zi − zj and

zj−zk are small, zi−zk is also small, and thus the degree of freedom for stock interactions

becomes substantially smaller than O(d2).

Our goal is to learn both the zi’s and g(·). We note that these two learning tasks can

be decoupled : high-dim methods can be developed to provably estimate the zi’s without the

knowledge of g(·), and when estimates of zi’s are given, an experiment-driven process can

be used to learn g(·) by examining prominent machine learning methods such as neural

nets and boosting. In other words, when we learn stock interactions, we do not need to be

troubled by the overfitting problem escalated by fine-tuning g(·), and when we learn feature

interactions, the generalization error will not be jeopardized by the curse of dimensionality
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from stock interactions.

To learn the zi’s, we design a simple algorithm that uses low-rank approximation of

yt’s covariance matrix to find the closeness of the stocks, and develop a novel theoretical

analysis based on recent techniques from high-dim and kernel learning [15, 147, 161].

To learn g(·), we generalize major machine learning techniques, including neural nets,

non-parametric, and boosting methods, to the additive influence model when estimates

of zi’s are known. We specifically develop a moment-based algorithm for non-parametric

learning of g(·), and a computationally efficient boosting algorithm based on linear learners

by using the domain knowledge of equity data sets.

Finally, we perform extensive experiments on data sets from a major equity market to

confirm the efficacy of our modeling approaches and analysis.

3.2 Problem definition

Notations. For a matrix A, Pr(A) denotes its rank-r approximation obtained by keeping

the top r singular values and the corresponding singular vectors. σi(A) (resp. λi(A)) is

the i-th singular value (resp. eigenvalue) of A. We use Python/MATLAB notation when

we refer to a specific row or column. For example, A1,: is the first row of A, and A:,1 is the

first column. ‖A‖F and ‖A‖2 denote the Frobenius and spectral norms, respectively, of

A. In general, we use boldface upper case (e.g., X) to denote data matrices and boldface

lower case (e.g., x) to denote one sample. xt,i, which refers to the features associated

with stock i at time t, can be one or multi-dimensional. Let (xt,i)j be the j-th coordinate

(feature) of xt,i. An event occurring with high probability (whp) means that it happens

with probability ≥ 1 − n10, where 10 is an arbitrarily chosen large constant and is not

optimized. A bivariate function is a Gaussian kernel if κ(x,x′) = exp(−‖x− x′‖2/σ2), an

inverse multi-quadratic (IMQ) kernel if κ(x,x′) = (c2+ ‖x−x′‖2)−α (α > 0), and an inner

product kernel if κ(x,x′) = 〈x,x′〉.

A function g(·) is Lipschitz-continuous if |g(x1)− g(x2)| ≤ c‖x1 − x2‖ for a constant c.

A distribution D with bounded domain and probability density function fD is near-uniform
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if sup fD(x)
inf fD(x) = O(1).

The forecasting problem. Let d denote the total number of stocks in our universe of

interest. Our model assumes that the equity market proceeds in rounds. Let yt,i ∈ R be

the next-period return of stock i at the t-th round, and yt = (yt,1, . . . ,yt,d) ∈ Rd. Our

goal is to forecast yt based on all information available up to round t. We are primarily

interested in forecasting the next 5-day return (i.e., each round consists of 5 days) and using

only technical factors as features because our forecasting horizon is short and unsuitable

for fundamental factors [38]. In practice, we use standard overlapping techniques to train

the model [169]. See also App. 3.13.1.

Model Assumptions. Under the additive influence model

yt,i =
∑
j≤d

κ(zi, zj)g(xt,j) + ξt,i, (3.1)

our goal is to learn g(·) and zi’s with a total number of n observations. Let also K ∈ Rd×d

such that Ki,j = κ(zi, zj). Here, we assume that • (A.1) vector representations zi’s of the

stocks and features xt,i are i.i.d. samples from (two different) near-uniform distributions

on bounded supports, • (A.2) xt,i ∈ [−1, 1] and E[g(xt,i)] = 0, • (A.3) g(·) is Lipschitz-

continous, and • (A.4) ξt,i’s are zero-mean i.i.d. Gaussian random variables with standard

deviation σξ.

(A.1) is standard in the literature [2, 146, 147, 90, 131]. Assuming (A.2) simplifies the

calculation and is without loss of generality, and (A.4) can also be relaxed to settings in

which ξt,i are sub-Gaussian. See App. 3.7 for more discussion of the assumptions.

3.3 Our algorithms

Sec. 3.3.1 describes an algorithm for learning the embedding without knowing g(·), and

Sec. 3.3.2 explains estimation of g(·) using machine learning techniques. Due to the space

limit, detailed proofs of all the Props can be found in App. 3.8.
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Figure 3.1: (a) We use the square root of Pi∗(Y
TY) to approximate K so that we pay a

factor of 1/σi∗(K), instead of 1/σmin(K). (b) Three key requirements for i∗: σi∗(K) is large
(R1), Pi∗(K

2) is close to K2 (R2), and σi∗(K)− σi∗+1(K) is large (R3).

3.3.1 Learning vector representation provably

This section presents a provable algorithm to estimate the kernel matrix K and the

embedding zi’s. Our algorithm does not need to know g(·), thus it provides a conceptually

new approach to construct CAMs: high-dim learning of stock interactions can be decoupled

from using ML techniques to fit the features. Because learning stock-interactions could

be a major source for causing overfitting, disentangling it from the downstream task of

learning g(·) enables us to leverage the function-fitting power of ML techniques without

the cost of amplifying generalization errors.

We next walk through our design intuition. We first need to introduce additional

notations. Let Y ∈ Rn×d be such that Yt,i = yt,i (Y is a matrix and y a random variable),

S ∈ Rn×d with St,i = st,i , g(xt,i), and E ∈ Rn×d with Et,i = ξt,i. Recall that K ∈ Rd×d

s.t. Ki,j = κ(zi, zj), and Pr(A) denotes A’s rank-r approximation obtained by keeping the

top r singular values and vectors. Finally, for any PSD matrix A with SVD A = UΣUT,

let
√
A , UΣ

1
2UT.

Eq. (3.1) can be re-written as Y = SK + E, in which we need to infer K using

only Y. We first observe that while none of the entries in S are known, St,i’s are i.i.d.

random variables (because xt,i’s are i.i.d.); therefore, our problem resembles a dictionary

learning problem, in which K can be viewed as the dictionary to be learned, and S is the

measurement matrix (see e.g., [9]). However, in our case, K is neither low-rank nor sparse,

we cannot use standard dictionary learning techniques.
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First, we observe that if we have infinitely many samples, YTY/n approaches to K2.

Hence, intuitively we could use
√
YTY/n to approximate

√
K2 = K. However, existing

matrix square root result has the notorious “1/σmin-blowup” problem, i.e., it gives us

only ‖
√
YTY/n−KW‖F ∝ 1/σmin(K) (W a unitary matrix), where typically σmin(K) is

extremely small, so the bound is too loose to be useful [18].

To tackle the problem, our algorithm uses
√
Pi∗(YTY)/n to approximate K for a

carefully chosen i∗ so that we pay a factor of σi∗(K), instead of σmin(K), to substantially

tighten the error. See Alg. 2 in App. 3.8.2 and Fig. 3.1(a). To implement this idea, we need

to show that there always exists an i∗ such that • (R1): σi∗(K) is sufficiently large, • (R2):

Pi∗(K2) is close to K2, and • (R3): the spectral gap σi∗(K)−σi∗+1(K) is sufficiently large

so that we can use the Davis-Kahan theorem to prove that Pi∗(K2) ∝ Pi∗(Y TY ) [141].

See also Fig. 3.1(b).

These three requirements may not always be met simultaneously. For example, when

σi(K
2) ∝ 1

i , the gap is insufficient and the tail diverges (R2 and R3 are violated). Therefore,

we integrate the following two results. • (i) The eigenvalues decay fast. This stems from

two classical results from the kernel learning literature. First, when κ(·, ·) is sufficiently

smooth (such as the Gaussian, IMQ, or inner product kernels), the eigenvalues of the

kernel operator K associated with κ(·, ·) decay exponentially (e.g., λi(K) ≤ exp(−Ci
1
r )

for Gaussian kernels [15]). Second, it holds true that
∑

i≥1 |λi(K)− λi(K/d)|
2
F ∝

1
n , a

convergence result under the PAC setting [147]. Therefore, λi(K) also approximately

decays exponentially. • (ii) Combinatorial analysis between gaps and tails. We then

leverage a recent analysis [161] showing that when λi(K) decays fast, it is always possible

to find an i∗ such that λi∗(K)− λi∗+1(K) is sufficiently large (R1 & R3 are satisfied) and∑
j≥i∗ λ

2
j (K) = o(1) (R2 is satisfied). We have

Proposition 3.3.1. Consider the additive influence model. Let κ(zi, zj) be a Gaussian,

inverse multi-quadratic (IMQ) or inner product kernel. Let n ≥ d be the number of

observations and ε = c0 log
3 d√
d

. Assume that the noise level σξ = O(
√
d). Let δ be a tunable
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parameter (also appeared in Alg. 2 in App. 3.8.2) such that δ3 = ω(ε2). There exists an

efficient algorithm that outputs K̂ such that 1
d2
‖K̂ −K‖2F = O( ε

2

δ3
+ δ

4
5 )(= Õ(d−Θ(1))).

We remark that (i) the algorithm does not need to know the exact form of κ, so long

as it is one of Gaussian, IMQ, or inner product kernels, (ii) once K is estimated, an

Isomap-flavored algorithm may be used to estimate zi’s [90], and (iii) knowing K̂ (without

reconstructing zi’s) is sufficient for the downstream g(·)-learners we consider in this work.

Generalization. Our algorithm needs only the covariance matrix of returns (aka the

“risk” of the assets [45]). We polish the risk model by exploiting the equity market specific

structure (e.g., the returns’ volatility possesses a momentum property [19]) and use an

enhanced risk model to improve the estimation of K. We may also use news data to

estimate the risk matrix under other suitable assumptions [162]. See App. 3.8.3.

3.3.2 Learning g(·)

Here, we explain how prominent machine learning techniques, including neural nets (deep

learning), non-parametric methods, and boosting, can be used to learn g(·). These

techniques make different functional form assumptions of g(·), and possess different “iconic”

properties: deep learning assumes that g(·) can be represented by a possibly sophisticated

neural net and uses stochastic gradient descent to train the model; non-parametric methods

learn a Lipschitz-continuous g(·) with statistical guarantees; boosting consolidates forecasts

produced from computationally efficient weak learners.

The cost structure in our setting is different: in univariate models, g(xt,j) controls

only one response ŷt,j , whereas here, g(xt,j) impacts all responses ŷt,i for i ∈ [d] because

ŷt,i =
∑

j Ki,jg(xt,j). We aim to generalize ML techniques under the new cost functions,

while retaining the iconic properties of each technique.

Technique 1. Learn g(·) using neural nets. When an estimate K̂ is given, the

training cost is
∑

t,i(yt,i −
∑

j∈[d] K̂i,jg(xt,j))
2 and we can use stochastic gradient descent

when g(·) is a neural net.

Technique 2. Learn g(·) using non-parametric methods. When the response is

76



univariate, e.g., yt,i = g(xt,i) + ξt,i, we can use a neighbor-based approach to estimate

g(x) for a new x: we find one or multiple xt,i’s in the training set that are close to x, and

output yt,i or their averages when multiple xt,i are chosen, using g(x) ≈ g(xt,i) when x is

close to xt,i.

Algorithm 1 nparam-gEST:

Input X, Y, K̂; Output µ1 (estimating other µi’s is similar)

1: procedure nparam-gEST(K̂,X,Y)

2: for all t← 1 to n do

3: qt = Rand(d)

4: L(t,qt),j = Map-Regress(qt, K̂,Xt,:)

5: end for

6: return µ1 ← FlipSign (qt, {yt, L(t,qt),j}t≤n)

7: end procedure

8: procedure Map-Regress(qt, K̂,xt)

9: Let L(t,qt),j = 0

10: for all k ← 1 to d do

11: L(t,qt),j+ = K̂qt,k with j s.t. xt,k ∈ Ωj .

12: end for

13: return L(t,qt),j

14: end procedure

15: procedure FlipSign(qt, {yt, L(t,qt),j}t≤n)

16: for all t← 1 to n do

17: Π̂
(qt)
1 (t) , L(t,qt),1 − 1

`−1

(∑
j 6=1 L(t,qt),j

)

18: b̃t,qt =


1 if Π̂

(qt)
1 (t) ≥ c

log d

√
d
`

−1 if Π̂
(qt)
1 (t) < − c

log d

√
d
`

0 otherwise

19: end for

20: return µ1 =
∑

t≤n b̃t,qtyt,qt∑
t≤n b̃t,qt Π̂

(qt)
1 (t)

21: end procedure

Here, we do not directly observe the values of individual g(xt,i)’s. Instead, each

response is a linear combination of multiple g(·)’s evaluated at different points, e.g.,

yt,1 = Ki,1 · g(xt,1) + · · · +Ki,d · g(xt,d) + ξt,i. We show that finding neighbors reduces

to solving a linear system. Furthermore, we design a moment-based algorithm, namely

77



“nparam-gEST”, which estimates g(·) with provable guarantees.

Proposition 3.3.2. Consider the problem of learning additive influence model with the

same setup/parameters as in Prop. 3.3.1. Assume that xt,i ∈ RO(1). Let ` be a tunable

parameter. There exists an efficient algorithm to compute ĝ(·), based on K̂ such that

supx |ĝ(x) − g(x)| ≤ (log6 n)
(√
γ +

√
`
n + 1

`

)
= Õ(d−c) for suitable parameters, where

γ , ε2

δ3
+ δ

4
5 .

Our algorithm (Alg. 1) consists of the following 3 steps:

Step 1. Approximation of g(·). Partition Ω = [−1, 1]k into subsets {Ωj}j≤`, and use

piece-wise constant function to approximate g(·), i.e., g̃(xt,i) take the same value for all

xt,i in the same Ωj . We partition {Ωj}j≤` in a way such that Pr[xt,i ∈ Ωj ] are the same

for all j.

Step 2. Reduction to linear regression. Each observation can be construed as a linear

combination of µj ’s (j ∈ [`]), where µj = E[g(xt,i) | xt,i ∈ Ωj ]. For example, yt,1 =∑
i≤dK1,iµji + ξt,1 + o(1), where xt,i ∈ Ωji , and in general, we have

yt,i =
∑
j≤`

L(t,i),jµj + ξt,i + o(1), (3.2)

where L(t,i),j =
∑

m∈Lt,j

Ki,m and Lt,j = {m : xt,m ∈ Ωj}.

Therefore, our learning problem reduces to a linear regression problem, in which the

L(t,i),j ’s are features and the {µj}j≤` are coefficients to be learned.

Step 3. Moment-based estimation. An MSE-based estimator is consistent but finding its

confidence interval (error bound) requires knowing the spectrum of the features’ covariance

matrix, which is remarkably difficult in our setting. Therefore, we propose a moment-based

algorithm with provable performance (FlipSign in Alg. 1).

We illustrate each steps above through a toy example, in which we assume Ki,j = 1 for

all i and j so the model simplifies to yt,1 =
∑

j≤d g(xt,j) + ξt,1. See Fig. 3.2.
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Figure 3.2: A toy example of nparam-gEST when Ki,j = 1 for all i and j and Ω = [−1, 1] and
is uniformly partitioned into 10 pieces. Sampling a g(xt,i) corresponds to randomly placing
a ball into a total number of 10 bins. For example, xt,2 falls into the 8-th interval so µ8 is
used to approximate g(xt,2), which may be viewed as a new ball of type µ8 (or in 8-th bin) is
created. The mean load for each bin is d/` = d/10. We calculate

∑
i≤d g(xt,i) by counting the

balls in each bin: yt,1 = 5× µ1 + 1× µ2 + ...+ 6× µ8 + 3× µ9 + 1× µ10 + ξt,1.

First, we view the generation of samples as a balls-and-bins process so that the g(·)-

estimation problem reduces to a regression problem (Steps 1 & 2). Specifically, we generate

(yt,1, {xt,i}i≤d) as first sequentially sampling {xt,i}i≤d and computing the corresponding

g(xt,i), then summing each term up together with ξt,1 to produce yt,1. When an xt,i is

sampled, it falls into one of Ωi’s with uniform probability. Let ji be the bin that xt,i

falls into. Then g(xt,i) is approximated by µji according to Step 1. Thus, we may view

a ball of “type µji” (or in ji-th bin) is created. For example, in Fig. 3.2, xt,2 falls into

the 8-th interval so a ball is added in the 8-th bin. After all xt,i’s are sampled, compute

yt,1 by counting the numbers of balls in different bins. Recalling that the load of j-th bin

is L(t,1),j , we have yt,1 ≈
∑

j≤d L(t,1),j · µj + ξt,1. Let ∆t,j = L(t,1),j − d/` and using that

E[L(t,1),j ] = d/` and
∑

j≤d µj = 0, we have

yt,1 = ∆t,1µ1 + · · ·+∆t,`µ` + ξt,1. (3.3)

Eq. (3.3) is a standard (univariate) regression: for each t, we know yt,1, and know all ∆t,j ’s

because all xt,j ’s are observed so the number of balls in each bin can be calculated. We

need to estimate the unknown µj ’s. Note that E[∆t,j ] = 0.

79



Next, we solve the regression (Step 3). Our algorithm “tweaks” the observations so

that the features associated with µ1 are always positive: let bt,1 = 1 if ∆t,1 > 0 and −1

otherwise. Multiply bt,1 to both sides of Eq. (3.3) for each t:

bt,1yt,1 = |∆t,1|µ1 + · · ·+ bt,1 ·∆t,` · µ` + bt,1ξt,1 (3.4)

We sum up lhs and rhs of (3.4) and obtain

∑
t≤n

bt,1yt,1 =
(∑
t≤n

|∆t,1|
)
µ1 + · · ·+

(∑
t≤n

bt,1 ·∆t,`

)
µ` +

∑
t≤n

bt,1ξt,1 (3.5)

Next, we have
∑

t≤n |∆t,1| = Θ(n) whp. Also, we can see that bt,1 and ∆t,j are “roughly”

independent for j 6= 1 (careful analysis will make it rigorous). Therefore, for any j 6= 1,

E[bt,1·∆t,j ] = 0, and thus
∑

t≤n bt,1·∆t,j = O(
√
n) whp. Now (3.5) becomes

∑
t≤n bt,1·yt,1 =(∑

t |∆t,1|
)
µ1+O(`·

√
n). So our estimator is µ̂1 ,

∑
t bt,1·yt,1(∑
t |∆t,1|

) = µ1+
O(`·
√
n)

Θ(n) = µ1+O
(
√̀
n

)
.

Here analysis of covariance for ∆t,j ’s is circumvented because ∆t,j ’s interactions are

compressed into the term O
(
√̀
n

)
. We remark that the analysis contains some crude steps

and can be tightened up (App. 3.9.2).

Technique 3. Learn g(·) using boosting. In the univariate setting, we have yt,i =∑
m≤b gm(xt,i)+ξt,i, in which each gm(xt,i) is a weak learner. Standard boosting algorithms

[128, 29] assume that each gm(·) is represented by a regression tree and constructed

sequentially. A greedy strategy is used to build a new tree e.g., iteratively splitting a

node in a tree by choosing a variable that optimizes prediction improvement. In our

setting, yt,i depends on evaluating gm(·) at d different locations xt,1, . . . ,xt,d, so the

splitting procedure either is d (3000) times slower in a standard implementation, or requires

excessive engineering tweak of existing systems.

Here, we propose a simple and effective weak learner based on intuition of the tree

structure and equity data. Let

(xt)i =
(
(xt,1)i, (xt,2)i, . . . , (xt,d)i

)
∈ Rd,

(xt)i,j =
(
(xt,1)i · (xt,1)j , . . . , (xt,d)i · (xt,d)j

)
∈ Rd,
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and (xt)i,j,k can be defined in a similar manner. We observe that regression trees used in

GBRT models for equity return are usually shallow and can be linearized (See Fig. 3.3): we

may unfold a tree into disjunctive normal form (DNF) [1], and approximate the DNF by a

sum of multiple interaction terms, e.g., I((xt,i)1 > 0) · I((xt,i)2 > 0) can be approximated

by (xt,i)1 · (xt,i)2.

Our algorithm, namely Lin-PVEL (linear projected vector ensemble learner), consists

of weak learners in linear forms. Each linear learner consists of a subset of features and

their interactions. The number of features included and the depth of their interactions are

hyper-parameters corresponding to the depth of the decision tree. For example, if the first

three features are included in the learner, we then need to fit yt,i ∼

∑
j∈[d]

K̂i,j︸︷︷︸
given

·
[
β1(xt,j)1 + . . .︸ ︷︷ ︸
linear terms

+β4(xt,j)1,2 + · · ·+ β7(xt,j)1,2,3︸ ︷︷ ︸
interaction terms

]
, (3.6)

by MSE. Conceptually, although we use linearized models to approximate the trees, the

“target” trees are unavailable (for the computational efficiency reasons above). We need a

new procedure to select features for each learner. Our intuition is that, in equity data sets,

if an interaction term could have predictive power, each feature involved in the interaction

should also have predictive power. Our procedure is simply to select a fixed number of i’s

with the largest corr((yRes)t, K̂(xt)i), where (yRes)t is the residual error. See Table. 3.1.

Domain knowledge of the equity data sets is used in our design. First, using feature

interactions to approximate DNF (I((xt,i)1 > 0) · I((xt,i)2 > 0) ≈ (xt,i)1 · (xt,i)2 may not

always be accurate). In our setting, however, linear interaction models often outperform

decision trees or DNFs. We believe this occurs because interaction terms are continuous

(whereas DNFs are discrete functions), and thus they are more suitable to model smooth

price changes. Second, we use the predictive power of linear terms to select the variables,

which is effective for equity return models because, in part, the features are constructed

from trading activity data (i.e., technical factors) and have economics interpretation, and
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may not remain valid for generic machine learning problems.

Steps GBRT Lin-PVEL

1. Approximation Multiple trees
Linear model
with interaction terms

2. Choose variables Split algorithm
to determine
variable selections
and trees.

Choose three i’s with
largest corr((yRes)t, K(xt)i)
Assume K(xt)i,j is predictive,
then either K(xt)i or
K(xt)j is predictive.

3. Determine the model
Fit a linear model with
interaction terms (Eq. 3.6)

4. Find residual errors YRes ← YRes − η(Ŷ)k Same as GBRT.

Table 3.1: Comparison between GBRT and Lin-PVEL.

x1 > 2

x2 > 0 x4 < 0

1 0 10

T= ((x1 > 2)∧ (x2 > 0))∨
(¬(x1 > 2)∧¬(x4 < 0))

Formula

≈ (x1 −2)x2 − (x1 −2)x4

1

Figure 3.3: An example of representing trees as a DNF formula.

Universe 800 Full universe Backtesting

Models Our CAMs corr w corr t-stat w t-stat corr w corr t-stat w t-stat PnL Sharpe

Lin-PVEL Opt. 0.0764 0.0936 6.7939 6.3362 0.0944 0.1009 8.2607 6.4435 0.5261 10.97
DD 0.0692 0.0874 6.3141 5.8140 0.0934 0.1000 9.0551 6.9076 0.5181 11.80

nparam-gEST Opt. 0.0446 0.0320 3.2961 1.5753 0.0618 0.0553 5.7327 3.5212 0.3386 7.59
DD 0.0445 0.0307 3.2781 1.5399 0.0603 0.0507 5.0648 3.0551 0.3330 7.04

MLP Opt. 0.0550 0.0567 6.4782 5.0172 0.0738 0.0692 9.2034 6.4151 0.4202 9.43
DD 0.0540 0.0562 6.4396 4.9953 0.0671 0.0640 8.9526 6.1564 0.3493 8.16

LSTM Opt. 0.0286 0.0347 3.4517 3.0261 0.0473 0.0491 6.3615 4.2385 0.2487 7.10
DD 0.0231 0.0352 2.6108 2.9779 0.0415 0.0429 6.0979 4.0582 0.2012 5.62

Linear Opt. 0.0449 0.0517 4.802 4.5514 0.0548 0.056 6.3589 4.9856 0.3218 6.47

UM: poor man Lin-PVEL 0.0674 0.0866 6.0947 5.7312 0.0827 0.0884 7.4297 5.6659 0.4565 9.76
UM: poor man nparam-gEST 0.0432 0.0309 3.1505 1.4912 0.0584 0.0509 5.0098 3.0844 0.3070 6.59
UM: MLP 0.0507 0.5050 6.0234 4.4966 0.0606 0.0467 8.2857 4.4555 0.2782 6.38
UM: LSTM 0.0178 0.0200 2.2136 1.8077 0.0352 0.0297 4.0602 2.3619 0.175 4.33
UM: Lasso 0.0106 0.0192 1.6471 2.3030 0.0290 0.0251 4.4711 2.6010 0.1888 4.79
UM: Ridge 0.0247 0.0246 2.3553 1.9628 0.0358 0.0406 4.5172 3.6941 0.1839 3.98
UM: GBRT 0.0516 0.0591 7.5739 5.6310 0.0673 0.0747 9.3379 7.8931 0.3858 4.45
UM: SFM 0.0027 0.0032 0.4688 0.4050 0.0147 0.0051 1.2683 0.3892 0.0169 0.54

Existing CAM: VR 0.0156 0.0159 2.4997 1.7046 0.0041 -0.0025 0.8847 -0.3021 0.0430 1.20
Existing CAM: ARRR 0.0314 0.0382 2.5336 2.4213 0.0222 0.0273 1.8557 1.8968 0.1674 3.24
Existing CAM: AlphaStock 0.0085 0.0063 2.1045 1.2516 0.0027 0.0032 0.4688 0.4050 0.0045 0.10
Existing CAM: HAN 0.0105 0.0081 1.7992 1.0017 0.0080 0.0050 1.5716 0.7340 0.0570 2.02

Consolidated: all 0.0775 0.0950 6.8687 6.4108 0.0958 0.1025 8.5703 6.6487 0.5346 11.30

Table 3.2: Summary of results for equity raw return forecasts. Lin-PVEL is the gradient boosting
method with linear learner. Bold face denotes the best performance in each group. DD denotes the
method using Alg. 2. Opt. denotes the optimal results from different estimators of K (App. 3.8.3).
Backtesting results pertain to the Full universe. See App. 4.6.
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3.4 Related work and comparison

Recent ML works. Univariate machine learning models for handling feature-interactions

include [165, 39, 167, 51, 68, 62, 28, 81, 80, 26, 92]. The models mostly rely on deep learning,

and some use transfer learning techniques (i.e., use one stock’s data to build a model for

another stock) [26, 92] but they are not CAMs (cannot use one stock’s features to predict

another’s return). Recent cross-asset models are mostly linear models [20, 84, 118, 161, 73]

that have theoretical guarantees, but they cannot automatically extract signals from feature

interactions. Efforts for building non-linear CAMs include [155, 49, 72] but [72, 155] have

reproducibility issues (see Sec. 3.5) whereas [49] uses non-market information.

Serial correlations and risk. We do not consider serial correlation in modeling, even

though it is considered in some linear CAMs [67, 97]. We remark that • (i) the standard

tools used to “de-serialize” data (e.g., using residuals of AR as response) do not help in

our settings, and • (ii) it remains an open problem to design a model that simultaneously

leverages stock-interactions, feature-interactions, and serial correlations.

Our algorithm relies on YTY (i.e., the risk matrix [88]) for learning the embedding.

While the risk matrix was extensively studied and sometimes used to produce forecasting

models [19, 88]), our model is conceptually new: a provable embedding can be learned from

the risk matrix, and it can be supplied to downstream ML g(·)-learners to build CAMs.

3.5 Evaluation

Experimental setup. We use 10 years of equity data from the Chinese market to

evaluate our algorithms and focus on predicting the next 5-day returns, in which the last

three years are out-of-sample. The test period is substantially longer than those in recent

works [167, 72, 92]. We constructed 337 standard technical factors to serve as a feature

database for all models (App. 3.15). We consider two universes: (i) Universe 800 can be

construed as an equivalence to the S&P 500 in the US, and consists of 800 stocks, and

(ii) Full universe consists of all stocks except for the very illiquid ones. Visualizations are
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shown in App. 4.6.

We next explain our metrics and argue why they are different from those for standard

ML problems (see App. 3.13.2) • (i) Correlation vs MSE. While the MSE is a standard

metric for regression problems, correlations are better suited metrics for our setting [169].

• (ii) Significance testing. The use of t-statistics estimators [119] can account for the serial

and cross-sectional correlations (App. 3.13.2) • (iii) Stock capacity/liquidity considerations.

Predicting illiquid stocks is less valuable compared to predicting liquid ones because they

cannot be used to build large portfolios. We use a standard approach to weight correlations

(w corr) and t-statistics by a function of historical notional (dollar) traded volume to reflect

the capacity of the signals.

New CAMs from our model. We estimate K and g(·) separately. To estimate K, we

use both the algorithm discussed in Sec. 3.3.1 and other refinements discussed in App. 3.8.3.

To estimate g(·), we use SGD-based algorithms (MLP, LSTM, and linear), nparam-gEST,

and Lin-PVEL.

Baselines. (i) The UMs include linear, MLP, LSTM, GBRT, and SFM [167]. We also

implement a “poor man’s version” of both Lin-PVEL and nparam-gEST for UM, which

assumes that influences from other stocks are 0; (ii) The CAMs include a standard linear

VAR [118], ARRR [161], AlphaStock [155], and HAN [72].

Results. See Table 3.2 for the results and Fig. 3.4 for the simulated Profit & Loss

(PnL). App. 3.13 describes additional details and experiments. The experiments confirm

that • (i) generic ML techniques are effective for UMs but ineffective for CAMs; • (ii)

CAMs produced out of our model consistently outperform prior works. In addition, our

Lin-PVEL model has the best performance; • (iii) By using a simple consolidation

algorithm, the aggregated signal outperforms all individual ones. Our new models pick up

signals that are orthogonal to existing ones because we rely on a new mechanism to use

stock and feature interactions.

Discussion about prior evaluations. SFM ([167]) is open-sourced, and other studies

reported similar performance of SFM. SFM, HAN, and AlphaStock did not compute
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Figure 3.4: Cumulative PnL (Profit and Loss) curves of the top quintile portfolio from Full
universe (i.e., on any given day, we consider a portfolio with only the top 20% strongest predictions
in magnitude, against future market excess returns). See App. 4.6

t-statistics. HAN’s PnL is positive, but its signal is not significant. AlphaStock cannot

beat the market and generates negative PnL returns since 2010.

3.6 Conclusion

This paper proposes an additive influence model for equity returns that enables us to

decouple the learning of stock-interactions from the learning of feature-interactions. Our

upstream stock-interaction learner has provable performance guarantees, thanks to the

deployment of high-dim and kernel learning techniques, whereas our downstream g(·)-

learners can leverage a wide set of effective ML techniques. Our algorithms are proven to

be superior to the existing baselines, especially those CAMs developed recently. App. 3.14

gives the answers to commonly asked questions (e.g., “why don’t we trade ourselves”).
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3.7 Additional notes on problem definition

Independence of xt,i. Our analysis assumes that xt,i are independent across t’s and

i’s. Our discussion assumes that xt,i ∈ R. The arguments can easily generalize to multi-

dimensional xt,i. When xt,i are correlated across stocks, we can apply a factor model to

obtain

xt = Lft + x̃t, (3.7)

where xt = (xt,1,xt,2, . . . ,xt,d) ∈ Rd, ft is a low-dimensional vector that explains the co-

moving (correlated) components, L is the factor loading matrix, and x̃t = (x̃t,1, . . . , x̃t,d) ∈

Rd is the idiosyncratic component. There exists a rich literature on algorithms that

identify latent factors [34, 45, 74, 78]. The shared factors driving the co-movements of

the features can be utilized in other ways to forecast equity returns [111]. We can use the

idiosyncratic component x̃t as input features in our model, since the coordinates in x̃t are

independent. In the setting where serial correlation is presented in x̃t, one can use the

standard differencing operator for decorrelating purposes [66].

3.8 Estimation of K

We prove Proposition 3.3.1 and explain other variations of estimating K. For exposition

purposes, our analysis focuses on the case where κ is Gaussian kernel or IMQ. The case for

κ being an inner product function can be analyzed in a similar manner. See also Remark

at the end of this section.

In Sec. 3.8.1, we first describe the background (e.g., notation and building blocks)

needed. In Sec. 3.8.1, we present our proof for Prop 3.3.1. Our analysis assumes that

n ≤ d2 to simplify calculations and ease the exposition. The case n ≥ d2 corresponds to

the scenario when abundant samples are available, and is easier to analyze. In Sec. 3.8, we

explain additional algorithms for estimating K.
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3.8.1 Background

Notation. Let A = 1
d2
KTK and B = 1

d2n
Y TY . Let V A

k be the first k eigenvectors

associated with A and V B
k be the first k eigenvectors associated with B. Note that A and

B are symmetric. Let PA = V A
i∗ (V

A
i∗ )

T and PB = V B
i∗ (V

B
i∗ )

T, where i∗ is defined in Alg. 2.

Distance between matrices. For any positive-definite matrix A, there could be

multiple square roots of A (the square root is defined as any matrix B such that BBT = A).

Any pair of square roots of the same matrix differ only by a unitary matrix and should

be considered as “the same” in most of our analysis. We adopt the following (standard)

definition to measure the difference between two matrices.

Definition 3.8.1. (Distance between two matrices) Let X,Y ∈ Rd1×d2. The distance

between X and Y is defined as

Dist2(X,Y ) = min
W unitary

‖XW − Y ‖2F . (3.8)

Building blocks related to distances.

Lemma 3.8.2. (From [18]) For any two rank-r matrices U and X, we have

Dist2(U,X) ≤ 1

2(
√
2− 1)σ2r (X)

‖UUT −XXT‖2F .

Lemma 3.8.3. (From [56]) Let M1 and M2 be two matrices such that

M1 = U1D1V
T
1 and M2 = U2D2V

T
2 . (3.9)

It holds true that

‖U1D1U
T
1 − U2D2U

T
2 ‖2F + ‖V1D1V

T
1 − V2D2V

T
2 ‖2F ≤ 2‖M1 −M2‖2F . (3.10)

Building block related to gap vs. tail.

Lemma 3.8.4. Let {λi}i≥1 be a sequence such that
∑

i≥1 λi = 1, λi ≤ ci−ω for some

constant c and ω ≥ 2. Assume also that λ1 < 1. Define δi = λi − λi+1, for i ≥ 1. Let δ0 be

a sufficiently small number, and c1 and c2 be two suitable constants. For any δ < δ0, there

exists an i∗ such that δi∗ ≥ δ and
∑

j≥i∗ λj = O
(
δ

4
5

)
.
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Kernel learning. Let κ(x,x′) be a smooth radial basis function, i.e., κ(x,x′) =

κ(‖x− x′‖), and use the notation f(·) = κ(
√
·). We assume that |f (`)(r)| ≤ `!M `, for all `

sufficiently large and r > 0 . Note that both Gaussian kernels and inverse multi-quadratic

kernels satisfy this property.

Define an integral operator K as

Kf(x) =
∫
κ(x,x′)f(x′)dF (x′), (3.11)

where F (·) is the cumulative probability function over the support of x. LetH be the rank of

K, which can be either finite or countably infinite. Let ψ1, ψ2, . . . , ψH be the eigenfunctions

of K, and λ1, λ2, . . . , λH be the corresponding eigenvalues such that λ1 ≥ λ2 ≥ . . . . Let

K ∈ Rd×d be the Gram matrix such that Ki,j = κ(‖zi − zj‖).

Our analysis relies on the following two key building blocks.

Lemma 3.8.5. ([15]) Let λ∗i be the i-th eigenvalue of K. There exist constants C and C ′

such that

λ∗i ≤ C ′ exp(−Ci
1
r ). (3.12)

Lemma 3.8.6. Let λ∗i be the i-th eigenvalue of K. Let λi(K) be the i-th eigenvalue of

K. Let λ̂j = λj(K)/d. Let τ > 0 be a tunable parameter. With probability at least

1− exp(−c0τ) for some constant c0, it holds true that∑
j≥1

(λ∗j − λ̂j)2
 1

2

≤ 2

√
τ

d
. (3.13)

In addition, with probability at least 1− exp(−c0τ),∑
j≥1

(
(λ∗j )

2 − (λ̂j)
2
)2 1

2

≤ c
√
τ

d
(3.14)

for some constant c.

Proof of Lemma 3.8.6. Eq. 3.13 is from Theorem B.2 from [147]. Now to prove Eq. 3.14,

we have∑
j≥1

(
(λ∗j )

2 − (λ̂j)
2
)2 1

2

=

∑
j≥1

(λ∗j − λ̂j)2(λ∗j + λ̂j)
2

 1
2

≤ c
′

∑
j≥1

(λ∗j − λj)2
 1

2

≤c
√
τ

d
.

2
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3.8.2 Proof for Prop 3.3.1

Algorithm 2 Data-driven (DD) estimation of K

Input X,Y; Output K̂

1: [V,Σ, V T] = svd
(
1
n
YTY

)
2: Let σi = Σi,i

3: i∗ = max{i : σi∗ − σi∗+1 ≥ δd2} . δ is tunable

4: return K̂ = Pi∗(V Σ
1
2 V T)

Our analysis consists of four steps:

• Step 1. Show that 1
nY

TY −KTK is sufficiently small.

• Step 2. Show that a low rank approximation of YTY is sufficiently close to YTY.

• Step 3. Show that Pi∗( 1nY
TY) is close to Pi∗(KTK).

• Step 4. Use results from the first three steps, together with Lemma 3.8.4, to prove

the first part of Theorem 3.3.1.

Step 1. 1
nY

TY and KTK are close. To formally prove this step, we rely on the

following proposition.

Proposition 3.8.7. Consider the problem of learning the stock latent embedding model.

Let n be the number of observations. Let Y ∈ Rn×d be such that Yi,: contains the i-th

observation. Assume that n ≤ d2 and σξ = O(
√
d). With overwhelming probability, it holds

true that ∥∥∥∥ 1nYTY −KTK

∥∥∥∥
F

= O

(
d2 log3 n√

n

)
. (3.15)

Proving Proposition 3.8.7 requires a standard manipulation of concentration inequalities

for matrices. See the proof in App. 3.12.1.

Step 2. Pi∗(KTK) is close to KTK.

Lemma 3.8.8. There exists a sufficiently large d0 so that when d ≥ d0, Algorithm 2 always

terminates. In addition, it holds true that∑
i≥i∗

λ2i

(
K

d

)
= O(δ

4
5 ).
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Proof. Let δ̃ = 10δ ≥ c log3 d√
d

for a suitably large c. By Lemma 3.8.4, we have that there

exists an ĩ such that

1. (λ∗
ĩ
)2 − (λ∗

ĩ+1
)2 ≥ δ̃.

2.
∑

i≥ĩ(λ
∗
i )

2 ≤
(
δ̃
) 4

5
.

We first show that the algorithm terminates. We have that∣∣(λ∗i )2 − λ2i (K/d)∣∣ = O (|λ∗i − λi(K/d)|) = O

(√
log d

d

)
The last equality uses Proposition 3.8.7. Next, by using Lemma 3.8.4, we have∣∣∣∣λi( 1

nd2
YTY

)
− λi

(
K2

d2

)∣∣∣∣ = O

(
log3 n√

n

)
.

Therefore, we can also see that

λĩ

(
1

nd2
YTY

)
− λĩ+1

(
1

nd2
YTY

)
≥ δ.

Our algorithm always terminates. In addition, we have i∗ ≥ ĩ. Finally, we have∑
i≥i∗

λ2i

(
K

d

)
≤
∑
i≥ĩ

λ2i

(
K

d

)

≤ 2

∑
i≥ĩ

(λ∗
ĩ
)2 +

(
λ∗
ĩ
− λi (K/d)

)2
= O

(
δ̃

4
5

)
= O

(
δ

4
5

)
.

2

Step 3. Analysis of the projection. To show that Pi∗
(
1
nY

TY
)
and Pi∗(KTK) are

close. We have the following lemma.

Lemma 3.8.9. Consider running Algorithm Estimate-K in Alg. 2 for estimating K. Let

A = 1
d2
KTK and B = 1

d2n
YTY. Let PA and PB be defined as above. Let ε ≤ c0 log

3 d√
d

for

some constant c0, and δ be the gap parameter in Alg. 2 such that δ3 = ω(ε2). With high

probability, we have

‖PA − PB‖2 = O

(
‖A−B‖2

δ

)
. (3.16)

Proof of Lemma 3.8.9. Define S1 = [λi∗(A) − δ/10,∞) and S2 = [0, λi∗(A) + δ/10]. By

Lemma 3.8.7, we have
∥∥ 1
nd2

YTY − 1
d2
KTK

∥∥
F
= O

(
log2 n√

n

)
. Also using that δ ≥ c log3 n√

n
,
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we have that S1 contains the first i∗ eigenvalues of A and B, whereas S2 contains the rest

of eigenvalues. We may then use a variant of the Davis-Kahan [141] theorem to show that

‖PA − PB‖2 ≤
‖A−B‖2

0.8δ
≤ 2ε

δ
.

2

Step 4. Gluing everything. Recall that A = 1
d2
KTK and B = 1

d2n
Y TY . Let

Ai∗ = PA(A)(= Pi∗(A)) and Bi∗ = Pi∗(B). By Lemma 3.8.9, we have

‖Ai∗ −Bi∗‖F =‖PA(A)− PB(B)‖F ,

=‖PA(A)− PB(A) + PB(A)− PB(B)‖F ,

≤‖PA − PB‖2‖A‖F + ‖A−B‖F ,

≤Θ
( ε
δ
+ ε
)
= Θ(ε/δ).

Next, we define the following matrix notation

A
1
2
i∗ = UA

i∗ (Σ
A
i∗)

1
2 and B

1
2
i∗ = UB

i∗ (Σ
B
i∗)

1
2 .

By Lemma 3.8.2, there exists a unitary matrix W such that∥∥∥UA
i∗ (Σ

A
i∗)

1
2W − UB

i∗ (Σ
B
i∗)

1
2

∥∥∥2
F
= O

(
ε2

δ3

)
. (3.17)

By Lemma 3.8.3, we obtain

‖UA
i∗ (Σ

A
i∗)

1
2UA

i∗ − UB
i∗ (Σ

B
i∗)

1
2UB

i∗ ‖2F =

∥∥∥∥UA
i∗ (Σ

A
i∗)

1
2W − Pi∗

(
K

d

)∥∥∥∥2
F

= O

(
ε2

δ3

)
.

Together with ‖Pi∗(K/d)−K/d‖2F = O
(
δ

4
5

)
, we have

∥∥∥∥ 1

d2
K̂ − 1

d2
K

∥∥∥∥
F

=

∥∥∥∥UA
i∗ (Σ

A
i∗)

1
2W − K

d

∥∥∥∥
F

=

∥∥∥∥UA
i∗ (Σ

A
i∗)

1
2W − Pi∗

(
K

d

)∥∥∥∥
F

+

∥∥∥∥Pi∗ (Kd
)
+
K

d

∥∥∥∥
= O

(√
ε2

δ3
+

√
δ

4
5

)
.

Remark. Our analysis relies only on the eigenvalues of K decaying sufficiently fast.

Many other kernels, such as inner product kernels with points on the surface of a unit

ball [65, 10], also exhibit this property. In conclusion, our algorithms for estimating K can
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be generalized to these κ(·, ·) functions.

3.8.3 Additional estimators for K

This section explains additional possible ways to estimate K. Our intuition is that

estimations of K effectively rely only on 1
nY

TY, which is the empirical covariance (aka

risk) of the equities’ returns. There are multiple ways to enhance the estimation of returns’

covariance matrix such as using third-party risk models.

Estimation based on dynamically evolving hints. Here, we focus on describing the

estimation algorithm that is most effective in practice. Specifically, we assume that the

latent positions evolve. Let Kt be the Gram matrix at round t. Because Kt is evolving, we

may not have sufficient data to track K̂. Therefore, we derive a new algorithm to estimate

K̂ using the so-called “hint” matrices, based on two observations: (i) YTY is effectively

the covariance matrix of the returns. Third-party risk models such as Barra provide a more

accurate estimation of the covariance matrix in practice. Thus, we may directly use the risk

matrix produced by Barra as our estimation for K. (ii) The movements of two stocks are

related because they are economically linked. It is possible to estimate these links by using

fundamental and news data. Specifically, we assume that Kt = exp(β1K
(1)
t + · · ·+ βcK

(c)
t ),

where K
(i)
t (i ≤ c) can be observed. We then need only tune βi’s to determine K̂. Each of

K
(i)
t is considered as our “hint”. We use a hint matrix K

(1)
t constructed from Barra factor

loading and a hint matrix K(2) constructed from news so that K̂t = exp(β1K
(1)
t + β2K

(2)).

The hint matrices are constructed as follows.

K
(1)
t from Barra loading. Let Ft,i ∈ R10 be the factor exposure of the i-th stock on day t.

Construct K̂
(1)
t using two standard methods.

• Inner product. (K̂
(1)
t )i,j = 〈Ft,i, Ft,j〉.

• Distance. (K̂
(1)
t )i,j = exp(−λ|Ft,i − Ft,j |2), where λ is a hyperparameter

K
(2)
t from News Data. We next build K

(2)
t from the news using two steps. Step 1.

Construct K̃
(2)
t ∈ Rd×d such that (K̃

(2)
t )i,j represents the number of news articles that

mention both stock i and stock j between day t− k and day t (i.e., we maintain a sliding
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window of k days and k is a hyper parameter). Step 2. Then construct K̂
(2)
t by taking a

moving average of K̃
(2)
t .

Construction of K̂t. K̂t be constructed from K̂
(1)
t (produced from Barra data) or K̂

(2)
t

(constructed from news data set), or a consolidation of K̂
(1)
t and K̂

(2)
t . We shall examine

the following consolidation algorithm. Specifically, we let K̂t = exp(βK̂
(1)
t + (1− β)K̂(2)

t ),

where β ∈ [0, 1] and β is a hyperparameter.

3.9 Estimating g(·) with non-parametric methods

This section proves Proposition 3.3.2, i.e., we describe our non-parametric algorithm

(nparam-gEST) for xt,i ∈ RO(i) and analyze its performance. Assume that the probability

cumulative density function Fx(·) of xt,i is known. In practice, this can be substituted by

standard non-parametric density estimation methods [150].

We first describe a high-level roadmap of our algorithm analysis and then proceed to

present the full analysis.

3.9.1 Overview of our algorithms

As shown in Alg. 1, our algorithm consists of three steps.

• Step 1. Partition the feature space [−1, 1]k into {Ωj}j≤` so that Pr[xt,i ∈ Ωj ] are

equal for all j.

• Step 2. Reduce the original problem to a linear regression problem.

• Step 3. Implement the FlipSign algorithm for the scenario when only an estimated

K̂ available.

We first comment on Steps 1 and 2. Then we explain the challenges in implementing

the FlipSign idea, as well as our solution.

Step 1. Construction of {Ωj}j≤`. We use a simple algorithm to find axis-parallel Ωj ’s

so that Pr[xt,i ∈ Ωj ] is uniform for all j. Recall that we assume that the cumulative

probability function of xt,i is known (denoted as Fx(·)).
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We describe the method for the case k = 1, 2 (recall that k is the dimension of the

feature xt,i). Extensions to the case where k ≥ 3 can be easily generalized. When k = 1,

each Ωj is simply an interval, and thus we only need to find {x1 = −1,x2, . . . ,x`+1 = 1}

such that Fx(xt+1)− Fx(xt) = 1/` for all 1 ≤ t ≤ `. For example, note that in the k = 1

case, for l = 4, the recovered values {x1, . . . ,x5} are simply identified with the usual

quantiles of the distribution.

When k = 2, we can find Ωi’s recursively. Specifically, we first “chop” along the x-axis

into
√
` pieces so that each piece has uniform probability mass. Then we chop each of the

√
` “bars” into smaller rectangles so that each rectangle has probability mass 1/`. See

Fig. 3.5. This procedure can be generalized for any k = O(1).

Figure 3.5: Example of a two-dimensional scenario for the construction of {Ωj}j≤`. Each
rectangle in the graph has the same probability mass.

Step 2. We next explain how the original problem can be reduced to a set of regression

problems. Using MAP-REGRESS (line 8 in Alg. 1). Recalling that for any yt,i =∑
j≤dKi,jg(xt,j)+ξt,i (with fixed i and t), we can approximate it as yt,i =

∑
j≤dKi,j g̃(xt,j)+

ξt,i. We may then re-arrange the terms and obtain

yt,i ≈
∑
j≤`

L(t,i),jµj + ξt,i, where L(t,i),j =
∑

m∈Lt,j

Ki,m and Lt,j = {m : xt,m ∈ Ωj}. (3.18)

Here, {µj}j≤` are unknown coefficients whereas yt,i and L(t,i),j are observable.

Note that for any fixed t, there is a total number of d observations (i.e., {(yt,i, {L(t,i),j}i≤d)}i≤d
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and these observations are all correlated: L(t,i),j and L(t,i′),j depend on the same set Lt,j .

So our algorithm chooses only one i for each fixed t.

Sec 3.3.2 asserts that we can use the same i for different t when we have accurate

information on K. In practice, we have only an estimate K̂ of K. In addition, the

estimation quality for any fixed i depends on ‖Ki,: − K̂i,:‖2F . We do not know a priori

which row of K̂ is more accurate, although we know that on average, K̂ is sufficiently close

to K (i.e., 1
d2
‖K − K̂‖2F = o(1) from Proposition 3.3.1). To avoid the same “bad” i being

picked up repeatedly, we run a randomized procedure: let qt be a random number from [d].

We use the observations {(yt,qt , {L(t,qt),1}}t≤n to learn the variables µ1.

3.9.2 Implementing the FlipSign algorithm

Building a robust estimator. We focus on estimating µ1 (See Line 15 in Algorithm 1).

The estimations for other µi’s are the same. Let bt,qt be the sign of L(t,qt),1 − d/` but we

only observe an estimate of L(t,qt),1 (referred to as L̂(t,qt),1 in the forthcoming discussion).

A major error source is that when L(t,qt),1 gets too close to d/`, the sign of L̂(t,qt),1 can

be different from L(t,qt),1 (i.e., bt,qt is calculated incorrectly). We slove this problem by

keeping only the observations when |L̂(t,qt),1 − d/`| is large. Specifically, let

Π
(qt)
1 (t) ,

∑
k∈Lt,1

Kqt,k −

 ∑
k/∈Lt,1

Kqt,k

 1

`− 1
, (3.19)

and let Π̂
(qt)
1 (t) be computed using the estimate K̂. We now define a robust variable b̃t,qt

to control the estimator

b̃t,qt =


1 if Π

(qt)
1 (t) ≥ c

log d

√
d
`

−1 if Π
(qt)
1 (t) < − c

log d

√
d
`

0 otherwise.

(3.20)

In this case, the chance of obtaining an incorrect b̃t,qt (i.e., Π̂qt
1 (t) >

c
log d

√
d
` but

Π
(qt)
1 ≤ − c

log d

√
d
` or vice verse) is significantly reduced (see line 19 in Alg. 1).

Analysis of the estimator. Recall that {Ωj}j≤` is a partition such that Pr[xt,i ∈ Ωj ] is
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uniform for all j. We first formalize the “ideal” µj that we want to track. Specifically, let

µj = E[g(xt,i) | xt,i ∈ Ωj ]. Our error analysis aims to track {µj}j≤` (i.e., we aim to find

(µ̂j − µj)2). We then articulate g̃(x) as

g̃(x) = µj , where x ∈ Ωj .

Our analysis consists of two parts.

Part 1. Analysis of a stylized model. We analyze a model in which the observations are

assumed to be generated from

yt,i =
∑
j≤d

Ki,j g̃(xt,j) + ξt,i, (3.21)

where Ki,j is assumed to be known.

Next, we analyze Alg. 1 when it is executed over this stylized model with the assumption

that K is given.

Part 2. Analysis of the original problem with g(·) and unknown K. When we run Alg. 1

over the original process, we need to analyze two perturbations (deviations):

1. yt,i is generated through g(·), instead of g̃(·).

2. Our algorithm uses only an estimate of K.

Warm-up and notation. Before proceeding, let us introduce additional notation. Recall

that Lt,j = {k : xt,k ∈ Ωj}, i.e., the set of xt,k that falls into the j-th bin Ωj on time t.

Also, recall that

L(t,i),j =
∑

k∈Lt,j

Ki,k.

We have

yt,i =
∑
j≤d

L(t,i),jµj + ξt,i =

 ∑
k∈Lt,1

Ki,k

µ1 +
∑

k/∈Lt,1

Ki,kg̃(xt,k | xt,k /∈ Ω1) + ξt,i.

We interpret the meaning of the above equation. We treat xt,k and Lt,j as random

variables and the Lt,j ’s are measurable by xt,i. We imagine that an observation is generated

by using the following procedure:

• Step 1. Generate Lt,1. That is, we determine the subset of “balls” (those xt,i for a

fixed t) that fall into Ω1.
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• Step 2. Generate the rest of xt,k for k /∈ Lt,1 sequentially. This corresponds to

the terms
∑

k/∈Lt,1 Ki,kg̃(xt,k | xt,k /∈ Ω1). xt,k is sampled from the conditional

distribution xt,k | xt,k /∈ Ω1. This explains why we write g̃(xt,k | xt,k /∈ Ω1).

• Step 3. After Lt,1 and xt,k | xt,k /∈ Ω1 are fixed, we generate yt,i using the stylized

model.

Let

g̃j(xt,i) = g̃(xt,i)− E[g̃(xt,i) | xt,i /∈ Ωj ] = g̃(xt,i) +
µj
`− 1

.

We have

yt,i =

 ∑
k∈Lt,1

Ki,k −

 ∑
k/∈Lt,1

Ki,k

 1

`− 1


︸ ︷︷ ︸

Π
(i)
1 (t)

µ1 +
∑

k∈Lt,1

Ki,kg̃j(xt,i | xt,i /∈ Ω1)︸ ︷︷ ︸
Π

(i)
2 (t)

+ξt,i (3.22)

= Π
(i)
1 (t)µ1 +Π

(i)
2 (t) + ξt,i.

We use the following abbreviation.

• b̂t is an abbreviation for b̂t,qt .

• Π1(t) is an abbreviation for Π
(qt)
1 (t).

• Π2(t) is an abbreviation for Π
(qt)
2 (t).

Let ∆ = K̂ −K ∈ Rd×d and ∆2(qt) =
∑

i≤d∆
2
qt,i

. Let B̂ = {t ∈ [n] : b̂t,qt = 1}. Also,

let

st =

{
1 if Π1(t) > 0
−1 otherwise. (3.23)

3.9.2.1 Part 1. Analysis of the stylized model

Our main lemma in this section is an anti-concentration result on Π
(i)
1 (t) for any i and t.

Lemma 3.9.1. Let ` = O(d/ log2 d). There exist constants c0 and c1 such that

Pr

[
|Π(i)

1 (t)| ≥ c0
log d

√
d

`

]
≥ c1

The probability is over the random tosses of {xt,i}i≤d.

Proof. We use a random-walk interpretation of Π
(i)
1 . For each k ∈ [d], with probability

1/`, it (i.e., xt,k) falls into Lt,j . When this happens, Π
(i)
1 (t) is incremented by Ki,k. With
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probability 1 − 1/`, it does not fall into Lt,j . In this case, Π
(i)
1 (t) is decremented by

Ki,t/(`− 1).

We define a sequence {Zk}k≤d to clarify the random-walk interpretation.

Zk =

{
Ki,k with probability 1

` .

−Ki,k

`−1 with probability 1− 1
` .

We couple Π
(i)
1 (t) with {Zi}i≤d such that Π

(i)
1 (t) =

∑
k≤d Zk. Apply Lemma 3.12.4 (a

folklore that generalizes Littlewood-Offord-Erdős) to prove our Lemma. 2

3.9.2.2 Part 2. Analysis of the original problem with g(·) and unknown K

Our analysis consists of three components.

Part 2.1. Building blocks. We develop the essential building blocks needed in our analysis.

Part 2.2. Using K̂. We show that when K is substituted by K̂, the error of the estimator

is well-managed.

Part 2.3. Using g(·). We show that when g̃(·) is substituted by g(·), not much additional

error is introduced.

Part 2.1. Building blocks. We start with a variance-based Chernoff bound [32].

Theorem 3.9.2. Suppose that Xi are independent random variables satisfying Xi ≤M

for 1 ≤ i ≤ n. Let X =
∑n

i=1Xi and ‖X‖ =
√∑n

i=1 E[X2
i ]. Then we have

Pr[X ≥ E[X] + λ] ≤ exp

(
− λ2

2(‖X‖2 +Mλ/3

)
. (3.24)

Lemma 3.9.3. Consider running Alg. 1 to learn the stylized model. Let K̂ be such that

|K̂ −K|2F ≤ γd2, for γ = o(1). Let Π
(i)
1 (t) and Π̂

(i)
1 (t) be those defined around Eq. 3.19.

Let ∆ = K̂ −K ∈ Rd×d and ∆2(qt) =
∑

i≤d∆
2
qt,t. Let λt be any random variable that is

measurable by qt. With high probability we have

Pr
[∣∣∣Π̂(qt)

1 (t)−Π
(qt)
1 (t)

∣∣∣ ≥ λt | qt] ≤ exp

(
− λ2t
∆2(qt)/`+ λt/3

)
,

and ∑
t≤n

∣∣∣Π̂(qt)
1 (t)−Π

(qt)
1 (t)

∣∣∣ = O

(
n log n

√
γd

`

)
.
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Proof. We shall again use random-walk techniques to analyze
∣∣∣Π̂(qt)

i (t)−Π
(qt)
i (t)

∣∣∣. Let
Zi =

{
∆qt,i with probability1

`

−∆qt,i

`−1 with probability 1− 1
` .

We have E[Z2
i ] = O

(
∆2

qt,i

`

)
, which implies that

√∑
i≤d E[Z2

i ] =

√∑
i≤d ∆2

qt,i

` . Also, we

can use a standard way to couple Zi’s with Π̂
(qt)
1 (t) and Π

(qt)
1 (t) such that∣∣∣∣∣∣

∑
i≤d

Zi

∣∣∣∣∣∣ =
∣∣∣Π̂(qt)

i (t)−Π
(qt)
i (t)

∣∣∣ .
By using a Chernoff bound from Theorem 3.9.2, we have

Pr

∣∣∣∣∣∣
∑
i≤d

Zi

∣∣∣∣∣∣ ≥ λt | qt
 ≤ exp

− λ2t
1
`

(∑
i≤d∆

2
qt,i

)
+ λ

3

 = exp

(
− λ2t
∆2(qt)/`+ λt/3

)
.

This proves the first part of the Lemma. Next, we set λt = c0(log d)

√
∆2(qt)

` . Then we

obtain Pr
[∣∣∣∑i≤d Zi

∣∣∣ ≥ λt | qt] = exp(−Θ(log2 d)). Now, conditioned on knowing {qt}t≤n,

with high probability, we have∑
t≤n

∣∣∣Π̂(i)
1 (t)−Π

(i)
1 (t)

∣∣∣ ≤∑
t≤n

λt =
log d√
`

∑
t≤n

√
∆2(qt).

Next, we give a concentration bound for
∑

t≤n
√

∆2(qt). Let v
2
i = ‖Ki,:− K̂i,:‖2. We know

that ∆2(qt) can only take values from v21, . . . , v
2
d with

∑
i≤d v

2
i = ‖K̂ −K‖2F ≤ γd2. We

have
√

∆2(qt) ≤
√
γd.

Again using the condition that ‖K̂ − K‖22 ≤ γd2 and Jensen’s inequality, we have

E[
√

∆2(qt)] ≤
√
γd.

Use the Chernoff bound, we have

Pr

∑
t≤n

√
∆2(qt) ≥ E

∑
t≤n

√
∆2(qt)

+ λ

 ≤ exp

(
− λ2

γdn+
√
γdλ/3

)
.

We set λ =
√
γdn

log2 d
such that the right hand side is negligible. Now with high probability we

have ∑
t≤n

∣∣∣Π̂(i)
1 (t)− Π̂

(i)
1 (t)

∣∣∣ ≤ log d√
`

∑
t≤n

√
∆2(qt) = O

(
n log n

√
γd

`

)
.

2
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Fact 3.9.1. For any j,

E[g(xt,k) | xt,k /∈ Ωj ] = E[g̃(xt,k) | xt,k /∈ Ωj ] = −
µj
`− 1

Proof. By our model assumption,

E[st,k] = E[g(xt,k)] = µ1 + · · ·+ µ` = 0. (3.25)

On the other hand,

E[g(xt,k) | xt,k /∈ Ωj ] =
µ1 + · · ·+ µj−1 + µj+1 + · · ·+ µ`

`− 1
= − µj

`− 1
.

Similarly, we prove that E[g(xt,k) | xt,k /∈ Ωj ] = E[g̃(xt,k) | xt,k /∈ Ωj ]. 2

Lemma 3.9.4. Let B̂ = {t ∈ [n] : b̂t,qt = 0}, where b̂t,qt is defined in Sec 3.9.2. With high

probability we have |B̂| = Ω(n).

This can be shown by Lemma 3.9.1 and a Chernoff bound.

Lemma 3.9.5. Let st be defined in Eq. 3.23. Recall that B̂ = {t ∈ [n] : b̂t,qt = 1}. We

have ∑
t∈B̂

Π2(t)st =
∑
t∈B̂

st

 ∑
k/∈Lt,1

Kqt,kg̃1(xt,k | xt,k /∈ Ω1)

 = O(
√
nd).

Proof. Our key observation is that conditioned on t ∈ B̂ and xt,k /∈ Ω1, g̃1(xt,k)’s are

bounded independent zero-mean random variables. Also |B̂| = Ω(n) (Lemma 3.9.1).

Therefore, a standard Chernoff bound gives
∑

t∈B̂ stΠ2(t) = O(
√
nd). 2

Lemma 3.9.6. Recall that B̂ = {t ∈ [n] : b̂t,qt = 1}, we have∣∣∣∣∣∣
∑
t∈B̂

b̂tΠ1(t)−
∑
t∈B̂

|Π1(t)|

∣∣∣∣∣∣ ≤ 2n log5 d

√
d

`
γ

Proof. Recall that

st =

{
1 if Π1(t) > 0
−1 otherwise.

We have ∥∥∥∥∥∥
∑
t∈B̂

b̂tΠ1(t)−
∑
t∈B̂

|Π1(t)|

∥∥∥∥∥∥ ≤ 2
∑
t∈B̂

|Π1(t)|I(b̂t 6= st),

where I(·) is an indicator function that sets to 1 if and only if its argument evaluates to

true. Note that I(b̂t 6= st)’s are i.i.d. random variables for different t’s. We compute
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Pr[I(b̂t 6= st)]

≤Pr[st = −1 ∧ b̂t = 1] + Pr[st = 1 ∧ b̂t = −1]

=Pr

[
Π1(t) < 0 ∧ Π̂1(t) >

c0
log d

√
d

`

]
+ Pr

[
Π1(t) > 0 ∧ Π̂1(t) < −

c0
log d

√
d

`

]

≤Pr

[∣∣∣Π1(t)− Π̂1(t)
∣∣∣ > c0

log d

√
d

`

]

≤Pr

[(
|Π1(t)− Π̂1(t)| > log d

√
∆2(qt)

`

)
∨

(
log d ·

√
∆2(qt)

`
≥
√
d

`

c0
log d

)]

≤ 1

n10
+ Pr

[
log d ·

√
∆2(qt)

`
≥
√
d

`

c0
log d

]
(by Lemma 3.9.3)

=Pr
[
(log4 d)∆2(qt) ≥ d

]
+ n−10.

Note that E[∆2(qt)] = γd. Using a Markov inequality, we have

Pr
[
log4 d∆2(qt) > d

]
≤ γ log4 d. (3.26)

Using the fact that I(b̂t 6= st) are independent across t, with high probability we have

∣∣∣∣∣∣
∑
t∈B̂

b̂tΠ1(t)−
∑
t∈B̂

|Π1(t)|

∣∣∣∣∣∣ ≤ 2n log5 d

√
d

`
γ

2

Part 2.2. When K is substituted by K̂. When K is substituted by K̂, our estimator

becomes

µ̂1 =

(∑
t∈B̂ b̂tΠ1(t)

)
+
∑

t∈B̂

(
b̂tΠ2(t) + b̂tξt,qt

)
∑

t∈B̂ b̂tΠ̂1(t).

=

∑
t∈B̂ b̂tΠ1(t)∑
t∈B̂ Π̂1(t)

µ1 +

∑
t∈B̂

(
b̂tΠ2(t) + b̂tξt,qt

)
∑

t∈B̂ b̂tΠ̂1(t)
.

We note that∣∣∣∣∣∣
∑
t∈B̂

b̂tΠ̂1(t)−
∑
t∈B̂

b̂tΠ1(t)

∣∣∣∣∣∣ ≤
∑
t∈B̂

∣∣∣Π̂1(t)−Π1(t)
∣∣∣ ≤∑

t≤n

∣∣∣Π̂1(t)−Π1(t)
∣∣∣ ≤ n

√
γd

`
log d (Lemma 3.9.3).
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Also, we can see that (Lemma 3.9.6)∣∣∣∣∣∣
∑
t∈B̂

b̂tΠ1(t)−
∑
t∈B̂

|Π1(t)|

∣∣∣∣∣∣ ≤ c0n log5 d
√
d

`
γ.

Both of the inequalities above imply that with high probability, the following holds true∣∣∣∣∣∣
∑
t∈B̂

b̂tΠ̂1(t)−
∑
t∈B̂

|Π1(t)|

∣∣∣∣∣∣ = O

(
n log5 d

√
d

`

√
γ

)
.

Next, by Lemma 3.9.4 and Lemma 3.9.1, we have∑
t∈B̂

|Π1(t)| = Ω

(
n

log n

√
`

d

)
.

Therefore, ∑
t∈B̂

b̂tΠ1(t) = (1 + τ1)
∑
t∈B̂

|Π1(t)|

∑
t∈B̂

b̂tΠ̂1(t) = (1 + τ2)
∑
t∈B̂

|Π1(t)|,

where |τ1|, |τ2| = O
(
log6 n

√
γ
)
. This implies that∣∣∣∣∣

∑
t∈B̂ b̂tΠ1(t)∑
t∈B̂ b̂tΠ̂1(t)

− 1

∣∣∣∣∣ = O(τ1).

Now we analyze the second term. By Lemma 3.9.4 and Lemma 3.9.1, we have∑
t∈B̂ b̂tΠ̂1(t) = Ω

(
n

log d

√
d
`

)
. By Lemma 3.9.5, we have

∑
t∈B̂

(
b̂tΠ2(t) + b̂tξt,qt

)
=

O(
√
nd), which implies∑

t∈B̂

(
b̂tΠ2(t) + b̂tξt,qt

)
∑

t∈B̂ b̂tΠ̂1(t)
= O

(
log d

√
`

n

)
.

Therefore,

µ̂1 = (1 +O(τ))µ1 +O

(
log d

√
`

n

)
,

where τ = log6 n
√
γ.

Part 2.3. Analysis when observations are from g(·). We assume that the process

is generated by g(·) instead of g̃(·). We aim to understand how the estimator changes. To

distinguish the observations produced from two “worlds”, we let
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y
(1)
t,i =

∑
j≤d

Ki,j g̃(xt,j) + ξt,i,

y
(2)
t,i =

∑
j≤d

Ki,jg(xt,j) + ξt,i.

Let their corresponding estimators be µ
(1)
1 and µ

(2)
1 . We next bound the difference

between these two estimators. Our crucial observation is that each g̃(xt,i) − g(xt,i) are

bounded zero mean independent random variables. Seeing that |µ̂(1)1 − µ̂
(2)
1 | = O(

√
nd).

Therefore, we still have

µ̂
(2)
1 =

(
1 +O(

√
γ log6 n)

)
µ1 +O

(
log d

√
`

n

)
.

This proves the second part of the theorem.

Remark. We use only 1 observation for each day because our analysis relies on different

Π
(i)
1 (t) and Π

(i)
2 (t) are being independent. The FlipSign algorithm does not need more

samples because K is near low-rank (Theorem 3.8.5).

3.10 Estimating g(·) with boosting

As shown in Alg. 3 and Fig. 3.6, Lin-PVEL’s weak learner first performs a variable

selection (i.e., selects the 3 features that correlate the most with the residual returns), and

then fits a linear model with both linear and quadratic interaction terms over the selected

variables. The final model is a linear one with features and their interactions terms.
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Algorithm 3 Lin-PVEL

Input X, Y, K̂, η, b

Output {gm(·)}m≤b

1: procedure Boosting-Algorithm(Y, X, K̂, η, b)

2: YRes ← Y . η is the learning rate

3: for all m← 1 to b do

4: gm ← Linear-Fit(YRes,X, K̂)

5: (Ŷ)m ← K̂gm(X).

6: YRes ← YRes − η(Ŷ)m

7: end for

8: return {gm(·)}m≤b

9: end procedure

10: procedure Linear-Fit(Y, X, K̂) . xt,i ∈ Rk and F(t) ∈ Rk×d

11: for all i← 1 to d do

12: F
(t)
:,i =

∑
j∈[d] K̂i,jxt,j

13: end for

14: for all j ← 1 to k do

15: rj =
∑

t≤n corr(F
(t)
j,: ,yt).

16: end for

17: Let j1, j2, j3 be the indices with the largest rj .

18: g(·) = argminβ1,...,β6

∑
t≤n
i∈[d]

(yt,i −
∑

j∈[d]

K̂i,j (β1(xt,j)j1 + · · ·+ β6(xt,j)j2 · (xt,j)j3 )))
2. . Fits a linear model with linear and

quadratic interaction terms.

19: return g(·)

20: end procedure

Figure 3.6: Left: training one weak learner. We first choose three features that are the most
correlated with the residualized response. Then we run a linear regression using linear and interaction
terms. Right: boosting. When we train learners sequentially, we can control gm(·) but not the
neighbors’ structure.
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3.11 Consolidation/Ensemble model

We next describe how we consolidate forecasts generated by multiple models. We do not

intend to design a new consolidation algorithm. Instead, we use a “folklore” algorithm

that weighs each model forecast by its recent historical performance. Specifically, we let

C = {ŷ1, . . . , ŷm} be the set of models to be consolidated. Our consolidated forecast is a

linear combination of all forecasts ŷ =
∑m

j=1wjŷj , where wj is simply the t-statistics of the

j-th model computed through the Newey-West estimation algorithm from the in-sample

data. For example, when m = 2 and the t-statistics for ŷ1 and ŷ2 are 3 and 5 respectively,

we set the consolidated forecast be proportional to 3×ŷ1+5×ŷ2. The consolidated forecast

needs to be properly re-scaled (e.g., set the daily standard deviation to be constant). In

the forecasting models, correlation with the ground-truth is more important than MSE.

Therefore, the scale of a forecast is less important than its direction. This t-statistics based

consolidation algorithm is used in the following two situations.

Allowing nparam-gEST to use all factors. Our theoretically sound algorithm in

Sec. 3.3 allows us to use only a small number of features. Now we may use a two-step

procedure to let this algorithm simultaneously use hundreds of technical factors constructed

in-house. Step 1. For each improvable factor, we build a model that uses only this factor

as the feature. Step 2. After we obtain multiple models (the number of models is the same

as the number of improvable factors), we use the above consolidation algorithm to produce

the final forecast.

Consolidating multiple models. We also use the consolidation trick to aggregate the

forecasts of all our models (Lin-PVEL, nparam-gEST, MLP). The result in Table 3.2

(last line) shows that the consolidated signal is stronger than any individual signal. Even

if a model may not have the best out-of-sample performance, it may still be useful for

constructing consolidated signals.
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3.12 Additional proofs and calculations

In this section we give some additional proofs and calculations for App. 3.8 and App. 3.9.

3.12.1 Proof of Proposition 3.8.7

We can see that

1

n
YTY =

1

n

(
KTSTSK +KTSTE + ETSK + ETE

)
(3.27)

= KTK + E1 + E2 + E3 + E4, (3.28)

where E1 = KT
(
STS
n − I

)
K, E2 = KTSTE

n , E3 = ETSK
n , and E4 = ETE

n

We next show that each Ei (i ≤ 4) is small.

Bounding E1. We need the following lemma.

Lemma 3.12.1. Let S ∈ Rn×d be such that each row Si,: is an i.i.d. random vector

‖Si,:‖∞ ≤ 1 and E[ST
i,:Si,:] = I. We have

Pr

[∥∥∥∥STS

n
− Id×d

∥∥∥∥
2

≥ ε
]
≤ 2n2 exp

(
− nε2

log4 n

)
, (3.29)

where ε is a tunable parameter.

Here, we shall set ε = log3 n√
n

. This implies that with high probability
∥∥∥STS

n − Id×d
∥∥∥
2
=

O
(
log3 n√

n

)
. On the other hand, we can see that ‖K‖2F = Θ(d2) and ‖K‖F = Θ(d). This

implies

‖E1‖F =

∥∥∥∥KT

(
STS

n
− Id×d

)
K

∥∥∥∥
F

≤
∥∥∥∥STS

n
− Id×d

∥∥∥∥
2

‖K‖2F = Θ

(
d2 log n√

n

)
(3.30)

Bounding E2 and E3. Recall that E2 = KTSTE
n and E3 = ETSK

n . We have the following

lemma.

Lemma 3.12.2. Let S ∈ Rn×d be such that each row Si,: is an i.i.d. random vector with

‖Si,:‖∞ ≤ 1 and E[ST
i,:Si,:] = I. Let E ∈ Rn×d be such that Ei,j are i.i.d. Gaussian with

standard deviation σξ. We have with overwhelming probability

‖STE‖2F ≤ c0σξd2n (3.31)
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for some constant c0.

Proof of Lemma 3.12.2. First, note that

E[‖STE:,i‖2F | S] = σ2ξ‖S‖2F .

Therefore, we have E[‖STE:,i‖2F ] = σ2ξdn. This also implies that

E[‖STE‖2F ] =
∑
i≤d

E[‖STE:,i‖2] = σ2ξd
2n.

By a standard Chernoff bound, we have whp

‖STE‖2F ≤ c0σ2ξd2n (3.32)

for some constant c0, i.e., whp ‖STE‖F = O(σξd
√
n). 2

We next use Lemma 3.12.2 to bound E2 and E3:

‖E2‖F = ‖E3‖F =
1

n
‖KTSTE‖F =

1

n
‖K‖2‖SE‖F . (3.33)

Now we have ‖K‖2 = O(d) and ‖SE‖F = O(d
√
n) whp. Therefore, with high probabil-

ity

‖E2‖F = ‖E3‖F = O

(
d2√
n

)
.

Bounding E4. With the assumption that d = O(n), we have∥∥∥∥ETE

n

∥∥∥∥2
F

≤ Rank(ETE)‖E‖22
n

= O

(
σ2ξdn

n

)
= O(σ2ξd). (3.34)

Above, we used a finite sample version of semi-circle law (i.e., ‖E‖22 = O(n) whp [134]).

Summing up above and using that n < d2 and σξ = O(
√
d), we have

∥∥ 1
nY

TY −KTK
∥∥
F
=

O
(
d2 log3 n√

n

)
.

3.12.2 Anti-concentrations

Theorem 3.12.3. (Littlewood-Offord-Erdos; e.g., [87]) Let L1, . . . , Ld ≥ 1. Let ξ1, . . . ξn

be independent Bernoulli ±1 unbiased random variables such that Pr[ξi = 1] = 1
2 . Let

S =
∑

i≤n ξiLi. For any open interval I of length 2, we have

Pr[S ∈ I] = O(n−
1
2 ). (3.35)
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Lemma 3.12.4. Let ` ≤ d/ log2 d. Let L1, L2, . . . , Ld be positive numbers such that

Li = Ω(1). Define a random variable

Zi =

{
Li with probability 1

`

− Li
`−1 with probability 1− 1

` .

There exist constants c0 and c1 such that

Pr

∑
i≤d

Zi ≥
c0

log d

√
d

`

 ≥ c1
Proof. We shall use Theorem 3.12.3 to prove Lemma 3.12.4. Theorem 3.12.3 requires that

random variables ξi (or Zi in our setting) to be symmetric, which is violated in our setting.

Our goal is to reduce our problem to the original setting.

We now show that this can be done through “debiasing” the walk. We first define

{Bi}i∈[d] such that Bi is a random binary indicator variable with Pr[Bi = 1] = `−2
` and

Pr[Bi = 0] = 2
` .

We may generate Zi by using Bi, i.e., when Bi = 1, we set Zi = − Li
`−1 , and when

Bi = 0, we set Zi = Li with half of the probability and Zi = − Li
`−1 with the other half of

the probability. Note that when Bi = 0, the probability that Zi takes one of the possible

values in 1
2 (thus is uniform).

Next, let B = {Bi : Bi = 1} and B̄ = {Bi : Bi = 0}. Let also that T = |B̄|. One can see

that E[T ] = 2d
` . In addition, because d = ω(` log `), with overwhelming probability that

T ≥ d
` .

We now can see that

E

[∑
i∈B

Zi

]
= −

∑
i≤d

Li

 `− 2

`(`− 1)

In addition, E[Zi | i ∈ B̄] = Li

(
1− 1

`−1

)
1
2 for any i ∈ B̄. Next, we define a random

variable to “debias” Zi, conditioned on i /∈ B, i.e., for any i ∈ B̄

Z̃i =

 Li − Li

(
1− 1

`−1

)
1
2 with probability 1

2

− Li
`−1 − Li

(
1− 1

`−1

)
1
2 with probability 1

2 .
(3.36)
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Note that E[Z̃i] = 0 and Li − Li

(
1− 1

`−1

)
1
2 = Li

`−1 + Li

(
1− 1

`−1

)
1
2 . Next, we have∑

i≤d
Zi =

∑
i∈B

[
− Li

`− 1

]
+
∑
i∈B̄

(
Z̃i + Li

(
1− 1

`− 1

)
1

2

)

=

(∑
i∈B

(
− Li

(`− 1)

)
+
∑
i/∈B

Li

(
1− 1

`− 1

)
1

2

)
︸ ︷︷ ︸

Ψ1

+

(∑
i/∈B

Z̃i

)
︸ ︷︷ ︸

Ψ2

.

One can see that (i) the sign of Ψ2 is independent of the sign of Ψ1, and (ii) one of

Pr[Ψ1 ≥ 0] ≥ 1
2 and Pr[Ψ1 ≤ 0] ≥ 1

2 must hold. Wlog, assume that Pr[Ψ1 ≥ 0] ≥ 1
2 . By

Theorem 3.12.3, we have Pr
[
Ψ2 ≥ c1

log d

√
T
]
= Ω(1).

Finally, we have

Pr

[
Ψ1 +Ψ2 ≥

c1
log d

√
d

`

]
≥ Pr[Ψ1 ≥ 0] Pr

[
Ψ2 ≥

c2
log d

√
T | Ψ1 ≥ 0

]

≥ Pr[Ψ≥0] Pr

[
Ψ2 ≥

c1
log d

√
d

`
| Ψ1 ≥ 0

]

= Ω(1).

The second inequality uses T ≥ d
` whp. 2

3.13 Experiments

We evaluate our algorithms on the Chinese market, the second largest market in the world

(by value). We describe the dataset collection and setup of experiments in Sec. 4.5.2,

and the evaluation metrics and additional explanation of baselines in Sec. 3.13.2. This

is followed by the improvement over individual factors, analysis for our performance and

trading simulation results, and visualization for our learned latent space and the importance

of factors in Sec. 4.6.

3.13.1 Datasets collection and experimental setup

Datasets collection. The specific description of the used dataset is as follows:

(1) Chinese stock data: Our data set consists of daily prices and trading volumes of

approximately 3,600 stocks between 2009 and 2018. We use open prices to compute the
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returns and we aim to predict the next 5-day returns, in which the last three years are

out-of-sample. We examine two universes. (i) Universe 800 is equivalent to the S&P 500

and consists of 800 stocks, and (ii) Full universe consists of all stocks except for illiquid

ones. The average “size” (in either capital or trading volume) in Universe 800 is larger

than the average “size” of the Full universe.

(2) Technical factors: We manually build 337 technical factors based on previous

studies [63, 34, 78, 6, 125]. All these factors are derived from price and dollar volume. See

also App. 3.15.

(3) Barra factor dataset: We use a third-party risk model known as the Barra factor

model [122]. The model uses 10 real-valued factors and 1 categorical variable to characterize

a stock. The real-valued factors known as “style factors” include beta, momentum, size,

earnings yield, residual volatility, growth, book-to-price, leverage, liquidity, and non-linear

size. The categorical variable represents the industrial sector the stock is in. We do not

use the categorical variable in our experiments. Table 3.3 defines the style factors.

Barra factors name Beta Momentum Size Earnings Yield Residual Volatility

Description
Measure of
volatility.

Rate of acceleration of
a security’s price or volume.

Total equity
value in market.

The percentage of how much
a company earned per share.

The volatility of daily
excess returns.

Barra factors name Growth Book-to-Price Leverage Liquidity Non-linear Size

Description
Measure of
the growth rate.

firm’s book value to its
market capitalization.

Measure of a firm’s
leverage rate.

Measure of a firm’s liquidity.
Non-linear transformation
of size factor.

Table 3.3: Barra style factors from [122].

(4) News dataset: We crawled financial news between 2012 and 2018 from a major

Chinese news website Sina. We collected a total number of 2.6 million news articles. Each

article can refer to one or multiple stocks. On average, a piece of news refers to 2.94 stocks.

We remark that our way to use news data sets deviates from standard news-based models

for predicting equity returns [39, 72]. Most news-based models aim to extract sentiments

and events that could directly impact one or more related stocks’ prices. Rather than

building links between events and the stock fluctuation, we use news dataset to identify

similarities between stocks. i.e., when two stocks are mentioned often, they are more likely

to be similar. This is orthogonal to how the news itself impacts the movement of stock
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prices.

Model and training. We use three years of data for training, 10 months of data for

validation and one year of data for testing. We re-train the model every testing year. For

example, the training set starts from Jan. 1, 2012, to Dec. 31, 2014. The corresponding

validation period is from Jan. 15, 2015, to Dec. 16, 2015. We use the validation set to

select the hyperparameters and build the model. Then we use the trained model to forecast

returns of equity in the same universe from Jan. 1, 2016, to Dec. 31, 2016, where we set

10 trading days as the “gap”. Then we re-train the model by using data in the second

training period (Jan. 1, 2013, to Dec. 17, 2015). We set a “gap” between the training and

validation periods, and the validation periods testing dataset to avoid looking-ahead issues.

3.13.2 Additional explanation about evaluation matrices and baselines

Computing t-statistics. Recall that yt ∈ Rd is a vector of responses and ŷt ∈ Rd is

the forecast of a model to be evaluated. We examine whether the signals are correlated

with the responses, i.e., for each t we run the regression model yt = βtŷt + ε and test

whether we can reject the null hypothesis that the series βt = 0 for all t. Note that the

noises in the regression model are serially correlated so we use Newey-West [119] estimator

to adjust serial correlation issues. Consider, for example, a coin-tossing game, in which

we make one dollar if our prediction of a coin toss is correct or lose one dollar otherwise.

When our forecast has 51% accuracy, we are guaranteed to generate positive returns in the

long run by standard concentration results. Testing whether our forecast has better than

51% accuracy needs many trials because, e.g., when there are only 100 tosses, there is a

≈ 40% probability that a random forecast has a ≥ 51% accuracy rate.

An example of compare correlation vs MSE. Consider a case where the true returns

of Google and Facebook are +2% and +4%, respectively. Let forecast A be -1% (Google)

and -1% (Facebook), and let forecast B be +20% (Google) and +40% (Facebook). While

forecast A has a smaller MSE, forecast B is more accurate and more profitable (e.g., the

directions of the returns are predicted correctly).
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Sharpe Ratio. The popular Sharpe Ratio measures the performance of an investment

by adjusting for its risk.

Sharpe Ratio =
Rp −Rf

σp
, (3.37)

where Rp is the return of the portfolio, Rf is the risk-free rate, and σp is the standard

deviation of the portfolio’s excess return.

PnL. Profit & Loss (PnL) is a standard performance measure used in trading and captures

the total profit or loss of a portfolio over a specified period. The PnL of all forecasts made

on day t is given by

PnL =
1

d

d∑
i

sign(ŷt,i) ∗ yt,i, t = 1, . . . , n, (3.38)

Additional explanation for recent CAMs

• SFM [167]. SFM decomposes the hidden states of an LSTM [132] network into

multiple frequencies by using Discrete Fourier Transform (DFT) so the model can capture

signals at different horizons.

• HAN [72]. This work introduces a so-called hybrid attention technique that translates

news into signals.

• AlphaStock [155]. This work is proposed by [155]. AlphaStock integrates deep

attention networks reinforcement learning with the optimization of the Sharpe Ratio. For

each stock, AlphaStock uses LSTM [135] with attention on hidden states to extract the

stock representation. Then AlphaStock uses CAAN, which is a self-attention layer, to

capture the interrelations among stocks. Specifically, CAAN takes the stock representations

as inputs to generate the stock’s winning score. We implement LSTM with basic CAAN

and change the forecast into return instead of winning scores.

• ARRR ARRR [161] is a new regularization technique designed to address the overfitting

issue in vector regression under the high-dimensional setting. Specifically, ARRR involves

two SVD, the first SVD is for estimating the precision matrix of the features, and the

second SVD is for solving the matrix denoising problem.
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Figure 3.7: Improving factor level forecasting power by the nparam-gEST algorithm.

3.13.3 Experiment evaluation

Improvement over individual factors We fit the nparam-gEST model, where xt,i is

a stand-alone technical factor to understand whether a technical factor’s forecasting power

can be improved by using neighborhood information (see App. 3.15). We say a factor is

“improvable” when its forecasting power in the in-sample data is better by a certain margin

(in correlation). We examine the behaviors of these improvable factors. Fig. 3.7 shows that

the average (out-of-sample) improvement in correlation is 17.27% for Universe 800, and

35.46% for Full universe.

Detailed results for each testing year Tables 3.4 and 3.5 list the results for each

testing year in Universe 800 and Full universe. The bold fonts denote the best performance

in each group. The results are consistent with the Table 3.2. Note that we also report

weighted correlation and weighted t-statistic. The weights are determined by the historical

dollar volume of the asset. These statistics are useful because the positions taken by the

optimizer are sensitive to historical dollar volumes.
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2016 2017 2018

Our CAMs core w corr t-stat w t-stat corr w corr t-stat w t-stat corr w corr t-stat w t-stat

Lin-PVEL Opt. 0.1084 0.1149 9.9081 7.9814 0.0388 0.0624 3.0441 3.8233 0.0820 0.1037 7.4293 7.2038
DD 0.1064 0.1109 9.7619 7.4212 0.0284 0.0541 2.1949 3.1475 0.0729 0.0972 6.9855 6.8733

nparam-gEST Opt. 0.0800 0.0595 6.1201 2.9453 -0.0067 -0.0095 -0.4554 -0.4800 0.0604 0.0461 4.2237 2.2608
DD 0.0805 0.0577 6.0357 2.7922 -0.0051 -0.0102 -0.3472 -0.5496 0.0582 0.0446 4.1457 2.3772

MLP Opt. 0.0958 0.0917 7.4846 5.0039 0.0050 0.0182 0.3610 0.9769 0.0641 0.0602 5.7370 3.4793
DD 0.0940 0.0919 7.3239 5.0924 0.0047 0.0165 0.3308 0.8749 0.0634 0.0604 6.0943 3.5154

LSTM Opt. 0.0662 0.0762 5.7290 4.5106 -0.0216 -0.0144 -1.5466 -0.7624 0.0413 0.0423 3.7099 2.4316
DD 0.0606 0.0682 4.8167 4.0641 -0.0025 0.0017 -0.1520 0.0803 0.0110 0.0356 0.9228 1.8596

Linear Opt. 0.0726 0.0708 5.1011 3.5324 0.0054 0.0166 0.3429 0.8720 0.0567 0.0679 4.1086 4.1605

UM: poor man Lin-PVEL 0.1093 0.1128 10.1352 7.5786 0.0242 0.0499 1.7650 2.9580 0.0688 0.0970 6.3840 6.6570
UM: poor man nparam-gEST 0.0788 0.0579 6.0820 2.8561 -0.0061 -0.0096 -0.4083 -0.4862 0.0569 0.0442 3.7779 2.1036
UM: MLP 0.0861 0.0812 5.8771 4.2409 0.0052 0.0132 0.3800 0.6764 0.0609 0.0571 6.1635 3.7053
UM: LSTM 0.0619 0.0632 6.5873 4.1299 -0.0253 -0.0215 -1.7873 -1.1504 0.0169 0.0183 1.4487 1.0374
UM: Lasso -0.0046 0.0088 -0.3889 0.5531 0.0282 0.0333 2.1633 2.0936 0.0083 0.0153 1.2997 1.6726
UM: Ridge 0.0290 0.0406 3.4617 2.8301 -0.0064 -0.0161 -1.3527 -1.3455 0.0091 0.0066 1.5421 0.5618
UM: GBRT 0.0655 0.0601 9.9051 5.4083 0.0419 0.0565 5.6987 5.0517 0.0476 0.0606 7.1179 6.4332
UM: SFM 0.0114 0.0102 0.9237 0.6828 0.0097 0.0081 0.6644 0.4479 0.0078 -0.0133 0.6194 -0.8263

Existing CAM: Alpha 0.0132 0.0165 2.3632 1.8841 0.0135 0.0133 2.5594 1.6109 -0.0062 -0.0110 -1.3995 -1.3236

Existing CAM: HAN 0.0096 0.0056 1.0205 0.4777 0.0060 0.0088 0.4980 0.5455 0.0160 0.0101 1.9352 0.7273

Existing CAM: VR 0.0207 0.0038 1.8590 0.2582 0.0087 0.0192 0.9239 1.6069 0.0174 0.0248 1.6513 1.3219

Existing CAM: ARRR 0.0593 0.0657 3.8366 3.2866 -0.0083 -0.0043 0.3975 0.578 0.0432 0.0533 3.3669 3.9343

Table 3.4: The by year results for Universe 800

2016 2017 2018

Method Our CAMs corr w corr t-stat w t-stat corr w corr t-stat w t-stat corr w corr t-stat w t-stat

Lin-PVEL Opt. 0.1328 0.1316 12.1131 8.9092 0.0564 0.0590 4.4505 3.3487 0.0939 0.1122 8.2186 7.0727
DD 0.1358 0.1308 12.7510 9.0186 0.0584 0.0632 4.8204 3.5678 0.0859 0.1062 9.5940 8.1365

nparam-gEST Opt. 0.1045 0.0969 10.3212 6.6829 0.0159 0.0129 1.2465 0.7205 0.0650 0.0559 5.6303 3.1603
DD 0.1039 0.0941 8.9599 6.1395 0.0174 0.0118 1.3356 0.6298 0.0596 0.0463 4.8991 2.3960

MLP Opt. 0.1072 0.0983 8.3802 6.1198 0.0290 0.0219 1.9765 1.0954 0.0851 0.0876 11.0013 5.9272
DD 0.0935 0.0921 8.4685 6.6603 0.0303 0.0212 2.1287 1.0544 0.0776 0.0788 8.4386 5.0757

LSTM Opt. 0.0744 0.0750 7.0918 4.5892 0.0210 0.0200 1.3738 0.8513 0.0465 0.0523 5.6732 3.3210
DD 0.0476 0.0532 4.1179 3.9801 0.0327 0.0292 2.7048 1.4664 0.0441 0.0462 4.5315 2.5036

Linear Opt. 0.0995 0.0956 7.6410 5.7275 0.0123 0.0041 0.7983 0.1940 0.0527 0.0684 5.1804 4.4595

UM: poor man Lin-PVEL 0.1279 0.1214 11.4010 8.2082 0.0488 0.0517 3.6993 2.8182 0.0713 0.0920 7.1887 5.9714
UM: poor man nparam-gEST 0.1002 0.0957 8.8982 6.2661 0.0169 0.0112 1.2822 0.5872 0.0580 0.0457 4.8490 2.4000
UM: MLP 0.0837 0.0830 6.3470 5.4216 0.0286 0.0123 2.3251 0.6869 0.0697 0.0449 8.1207 2.5859
UM: LSTM 0.0684 0.0577 5.7502 3.6079 -0.0007 -0.0057 -0.0401 -0.2410 0.0379 0.0370 3.4094 1.8486
UM: Lasso 0.0589 0.0612 9.4412 8.2446 -0.0032 -0.0028 -0.3080 -0.1819 0.0313 0.0169 2.6735 0.8430
UM: Ridge 0.0631 0.0636 5.9308 4.4291 0.0152 0.0168 0.9798 0.8296 0.0290 0.0413 2.7536 2.2439
UM: GBRT 0.0898 0.0842 13.6203 9.5775 0.0531 0.0687 5.8328 7.0454 0.0588 0.0711 8.5605 7.0563
UM: SFM -0.0055 -0.0058 -0.4868 -0.4281 0.003 0.0096 0.3578 0.708 0.0107 0.0057 1.2447 0.4851

Existing CAM: Alpha 0.0076 0.0109 1.2236 1.3496 0.0093 0.0123 2.3817 1.9694 0.003 0.008 0.778 1.4379

Existing CAM: HAN 0.0135 0.0081 1.7515 0.7924 -0.0008 -0.0020 -0.0791 -0.1253 0.0114 0.0098 1.5316 0.7547

Existing CAM: VR 0.0031 0.0033 0.3887 0.2949 -0.0056 -0.0245 -0.7108 -1.868 0.0148 0.0138 2.0156 0.8331

Existing CAM: ARRR 0.0527 0.0714 2.9072 3.2284 -0.0067 -0.0169 0.6266 -0.2307 0.0205 0.0275 2.0334 1.2328

Table 3.5: Yearly results for Full universe.

Simulation and PnL. Fig. 3.8 shows three ways to simulate investments on our signals

for testing years from 2016 to 2018 for Universe 800 and Full universe. (i) Long-index

portfolio: Long-only minus the market index. (ii) Long-short portfolio1: By allowing

short-selling, we can execute on negative forecasts to understand the overall forecasting

quality. (iii) Weighted-Long-short portfolio: We weight an investment by the historical

turnover of the asset. We conduct the trading in the daily granularity and select the stocks

from the top 20% strongest forecast signals. We can see that our signals are consistently

better than other baselines in both long/long-short. The results confirm that our method

1Short is implementable in the Chinese market only under special circumstances, e.g., through brokers
in Hong Kong under special arrangements.
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generates stronger and more robust signals for trading.

(a) Long-index. (b) Long-short. (c) Weighted-long-short.

(d) Long-index. (e) Long-short. (f) Weighted-long-short.

Figure 3.8: Cumulative PnL (Profit & Loss) curves of the top quintile portfolio (i.e., on any
given day, we consider a portfolios with only the top 20% strongest in magnitude predictions,
against future market excess returns). (a)-(c) are for the Universe 800 and (d)-(f) are for the
Full universe.

Visualization/Qualitative examination

(1) Visualization for learned stock latent space. We examine the latent positions

we learned, and draw two observations. (i) Latent positions are not driven by sectors. One

possible explanation of our models’ forecasting power is that they capture sector-related

signals, e.g., growth of one airline implies the growth of others. Our visualization in Fig. 3.9

shows this is not the case. (ii). Interactions are fine-grained. We also present the neighbors

uncovered by our pipeline, and also those found by AlphaStock for five stocks (all well

known to the public). Our algorithm picks up different embeddings for these five stocks

compared to AlphaStock, which indicates we discover an orthogonal signal.

(2) Factor importance. The linear boosting algorithm is based on a large collection

of “linear models” {gm(·)}m≤b. Each base learner is a linear model with 3 linear terms (3

features) and 3 quadratic interaction terms. Here one feature can be selected by different
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Figure 3.9: (a): t-SNE for our latent embedding (colors are coded by sectors); (b): Examples of
stocks and their neighbors.

base learners (See Sec. 3.3 for details). We examine the “feature importance” by counting

the number of times a feature is selected. Table 3.6 and Table 3.7 show the 10 most

important features in our model for different universes and different test years. We can

observe some factors, such as Amihuds 3 (an indicator to measure “illiquidity”), are

consistently important for different test years and different universes.

Year Features 1 Features 2 Features 3 Features 4 Features 5 Features 6 Features 7 Features 8 Features 9 Features 10

2016 Amihuds 3 Amihuds 6 Vol regress 1m alpha028 CO CCI 1 CR 5 PSY 12 PSY 26 VROC 15

2017 Amihuds 3 Amihuds 6 Vol regress 1m alpha028 alpha039 alpha074 VROC 15 vmacd 5 slow MI alpha072

2018 Amihuds 3 Vol regress 1m Vol regress 4m mf 020 alpha028 alpha074 VROC 15 mf 038 VCR med mf 005

Table 3.6: Feature Importance of Linear Boosting (Universe 800 ).

Year Features 1 Features 2 Features 3 Features 4 Features 5 Features 6 Features 7 Features 8 Features 9 Features 10

2016 Amihuds 3 Amihuds 6 Vol regress 1m alpha039 CO RSV 3 VCR quick vrsi 26 DMI 10 PSY 12

2017 Amihuds 3 Amihuds 6 Vol regress 1m alpha039 alpha044 D 10 K 5 MI alpha078 mf 038

2018 Amihuds 3 Vol regress 1m Vol regress 4m alpha041 alpha044 alpha050 MI VROC 15 alpha078 KDJ

Table 3.7: Feature Importance of Linear Boosting (Full universe).

3.14 FAQ

Why focus on technical features but fundamental features are not included?

Prediction models can be categorized into the following four groups based on the

technical and non-technical features used by the model. Group 1. Technical models.

Technical models rely on technical factors to predict stock returns. A technical feature

is constructed from information related to trading activities, such as a stocks historical
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price/trading volume, the evolution of the bid-ask spreads, or the number of transactions

worth 1 million dollars or more on the last trading day. A non-technical feature could be

the revenues of the underlying company (see models in group 2 discussed below), news

about the company, or postings on the social networks of its major shareholders. Group 2.

Fundamental models. Fundamental models rely on statistics related to a company’s financial

status, such as revenues, research expenses, and price-earning ratios. These technical factors,

also called fundamental factors, can characterize a company’s long-term behavior, such

as whether its products will stay competitive in the next few years. Fundamental factors

are usually extremely sparse. For example, quarterly revenue information provides four

datapoints points for one stock each year [36, 127, 81]. Group 3. Macro models. Macro

models rely on macroeconomic conditions’ of the nation which a company calls home, or

is registered to conduct business. For example, if a nation subsidizes renewable energy,

an electric vehicle company may benefit from a rise in its stock price. Group 4. Event

models. Event models capture price fluctuation due to the release/announcement of new

information to the market. For example, replacing the CEO can cause a positive price

fluctuation, whereas breaking news about merger and acquisition can drive down the

acquiring companys stock price.

Not using fundamental and macro factors. These two types of factors are usually not

used for building machine learning models forecasting 5-day returns. (i) fundamental and

macro factors have long-term (multiple months) impact to stock prices so they are not

suitable for forecasting 5-day returns. (ii) Simple linear regressions are widely used for

fundamental and macro models partly because of data sparsity.

Why do you perform experiments only on the China market? (i) The US and

Chinese markets are the two largest equity markets by trading volume [102], and the

Chinese market has attracted increasing attentions. (ii) Among important recent results,

many were evaluated soly in the Chinese market (e.g., [155, 49, 26, 161, 64, 39, 167, 72]).

(iii) The license cost for China market data is significantly lower than that of the US
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market.

Why not making money, instead of publishing? Empirical asset pricing is a long

and established area [63, 77, 43, 45, 34], in which the predictability of equity returns is

extensively studied. The reasons we share our research results are similar to those of

researchers in the same field. Some of our considerations include:

• Signal is only a part of a large system. Building a profitable system requires sub-

stantially more optimization and engineering efforts than merely discovering the

signals [50]. In other words, while identifying “alpha” signals is an important part of

a trading system, other parts (such as data acquisition and execution) also play an

important role in building a reliable and profitable trading system.

• Execution quality. Hundreds of stocks need to be traded every day. While building this

trading system (using standard brokers such as Interactive Broker or its equivalence

in China) is feasible, it involves a highly non-trivial amount of engineering work. An

effective and robust execution system without incurring large slippage cost is itself a

highly nontrivial component and is beyond the scope of this paper.

• Fees and robustness Although our strategy is stable and has a high Sharpe, we note

that we did not account for the the transaction cost and slippage, which are nontrivial

since the holding period is only 5-days. We estimate that after accounting for the

transaction cost and slippage, with approximately 5% to 10% probability that an

individual may still experience a loss in any specific year. This may not be acceptable

for extremely risk averse investors. Hence, to obtain a robust industry level strategy,

many components of our strategy need to be optimized.

3.15 Factor list

In this section, we provide a table to explain the technical factors we build. The last

column shows the number of features for one factor category since we can build several

factors for different time scales.
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In-

dex

Factor Description Number

1 AD [34] Accumulation/Distribution is a cumulative

indicator that uses price and volume to as-

sess whether an equity is cumulative or dis-

tributed.

3

2 MACD [34] Moving Average Convergence Divergence

(MACD) is a trend-following momentum in-

dicator that shows the relationship between

two moving averages of an equity’s price.

9

3 RSI [34] Relative strength index is a momentum indica-

tor to measure the magnitude of one equity’s

recent price changes.

3

4 SRMI [34] Shifted relative momentum index. 4

5 VRSI [34] VRSI is an indicator similar to RSI, but it

measures volume rather than price.

5

6 Amihud [6] Amihud illiquidity measure is mainly used to

calculate the level of illiquidity of a stock.

6

7 Volume Std Standard deviation of volume. 2

8 CR Cumulative return 3

Continued on next page
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In-

dex

Factor Description Number

9 ER [34] Elder-Ray indicator defines bull and bear

power by 13 days exponential moving average

of highest and lowest price.

1

10 DDI [34] The DDI indicator measures the relative re-

lationship of one stock’s highest and lowest

prices.

3

11 BBI [34] BBI measures the difference between the mov-

ing averages of stock indices closing prices in

different periods.

3

12 EoM [34] Exponential moving average of BBI indicator. 2

13 KDJ [34] KDJ indicator is a technical indicator used to

analyze and predict changes in stock trends

and price patterns in a traded asset.

3

14 Hurst [74] The Hurst indicator is used to do chaotic frac-

tal analysis for the capital market. It reflects

the result of a long series of interconnected

events.

3

Continued on next page
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In-

dex

Factor Description Number

15 Klinger [34] Klingers volume swing indicator determines

the long-term capital flow trend while main-

taining sensitivity to short-term capital flows,

so it can be used to predict short-term price

inflection points.

2

16 LQ [45] An indicator to measure one equity’s liquidity

for a time period.

8

17 MF [34] Money flow. 2

18 Close regres-

sion [34]

Linear regression on one equitys close prices. 2

19 High regres-

sion [34]

Linear regression on one stocks highest prices. 2

20 Low regres-

sion [34]

Linear regression on one stocks lowest prices. 2

21 Volume regres-

sion [34]

Linear regression on one stocks trading vol-

ume.

2

Continued on next page
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In-

dex

Factor Description Number

22 MFI [34] The MFI indicator combines price and quan-

tity and includes it in the scope of compre-

hensive consideration.

6

23 ROC [34] A momentum oscillator that measures the

percent change in price from one period to

the next.

5

24 SRMI [34] SRMI indicator revised momentum indicator

based on the relation of closing prices of the

day and the previous trading day.

3

25 TEMA [34] Triple exponential moving average on closing

prices.

3

26 TRIX [34] Smoothed TEMA indicator. 3

27 ULCER [34] ULCER indicator measures the relationship

between the highest price and closing price of

a stock over a period of time.

3

28 Volume

Std [45]

Standard deviation of trading volume over a

period of time.

3

Continued on next page
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In-

dex

Factor Description Number

29 Price Std [45] Standard deviation of closing prices over a

period of time.

3

30 Volume

Mean [45]

Average of trading volume over a period of

time.

3

31 Price

Mean [45]

Average of closing prices over a period of time. 3

32 ASI [34] The cumulative volatility index uses the

stock’s opening price, closing price, highest

price, and lowest price to measure long-term

trends.

3

33 EMV [34] Ease of Movement is an oscillator to measure

the ease of stock moving.

3

34 ATR [34] The Average True Range is the average of the

price range over the past n periods.

3

35 CO [34] The CO indicator measures the difference be-

tween the index moving averages of stock AD

indicators in different periods.

1

Continued on next page
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In-

dex

Factor Description Number

36 CV [34] CV measures the difference between the expo-

nential moving averages of stock price ranges

in different periods.

1

37 CMO [34] The Chande momentum oscillator is a price

volume oscillator which is closely related to

RSI indicator.

2

38 Ccurve [34] Exponential moving average of past 7 and

14days return.

1

39 DMI [34] The DMI indicator provides a basis for judg-

ing trends by analyzing changes in the balance

of power between buyers and sellers during

the rise and fall of stock prices.

13

40 VROC [34] Volume change rate indicator measures the

range of changes in trading volume at a certain

moment.

3

41 M2C [34] M2C indicator measures the relationship be-

tween stocks closing price and its exponential

moving average.

4

Continued on next page
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In-

dex

Factor Description Number

42 OBV [34] On-Balance Volume speculates on stock price

trends by counting the ‘number of trends’ in

volume changes.

2

43 PSY [34] PSY is an indicator to count the number of

rising days over a period of time.

4

44 PVT [34] Price Volume Trend not only measured the

price-volume trend relative to the previous

day but also measures the relative price-

volume trend N days ago.

2

45 RVI [34] RVI is used to predict the direction of volatil-

ity, which predicts the strength of prices by

calculating volatility rather than changes in

prices.

6

46 StochRSI [34] StochRSI is an oscillator indicator to measure

the RSI indicator.

3

47 VOSC [34] The volume moving average indicator mea-

sures the running trend of the volume and

determines the direction of the trend change.

2

Continued on next page
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In-

dex

Factor Description Number

48 VEMA [34] Exponential moving average of trading vol-

ume over a period of time.

2

49 RSV [34] Stochastic value for each period. 5

50 WR [34] Williams overbought/oversold index. 5

51 VR [34] A measure that helps investors follow the

volatility of a stock’s price.

3

52 VCR [34] Volume cumulative return. 3

53 EMA [34] Exponential moving average. 1

54 Momentum

Std [45]

Standard deviation of trading momentum over

a period of time.

3

55 Momentum

Mean [45]

Average of trading momentum over a period

of time.

3

56 101 AL-

PHA [78]

101 ALPHA is published recently which in-

cludes a collection of 101 technical indicators.

We choose 77 factors from them.

77

Continued on next page
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In-

dex

Factor Description Number

57 MF Series

1 [89]

Money flow indicators series one. This group

compares the volume-weighted average prices

of trading orders in different groups (extra

large, large, medium, and small).

12

58 MF Series

2 [89]

Money flow indicators series two. This group

compares the trading volume among different

group of buy and57 sell orders (extra large,

large, middle,small).

36

59 MF Series

3 [89]

Money flow indicators series three. This group

compares the volume of buy and sell orders

over different periods (extra large, large, mid-

dle,small).

30

Summary 337
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Chapter 4

Equity2Vec: End-to-end Deep

Learning Framework for

Cross-sectional Asset Pricing

4.1 Introduction

It is widely acknowledged that forecasting stock prices is a difficult task. Most traditional

efforts rely on time series analysis models, such as Autoregressive models [91], Kalman

Filters [115], and technical analysis [83, 116, 117]. Deep neural networks, especially

recurrent neural networks (RNN) [72, 149, 39, 59, 167, 132, 38] recently emerged as an

effective solution for stock prediction tasks. Such lines of work have significantly increased

in popularity in recent years, mostly fueled by the fact that a large collection of high-quality

financial data sets have become available.

We observe two fundamental limitations in the prior works: 1. Cross-sectional effects

are not properly leveraged. Most existing approaches treat each stock independently and

overlook the cross-sectional effect. The cross-sectional effect posits the fact that the

information from one stock may influence/impact another stock’s price change in both

static and dynamic aspects. Statically, the stocks that share the same intrinsic properties
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may move synchronously. For instance, when Twitter goes up, Facebook is more likely to

go up because they are in the same sector (social media advertising). Dynamically, stock

relation is also temporally evolving. For example, in early 2021, AMC theatres, GameStop,

and BlackBerry suddenly exhibit co-movement driven by investors on social media who

are buying up these stocks.

2. Heterogeneous data sets are not leveraged to their fullest extent. Most models use only one

type of data (i.e., either textual information or “technical factors” [111, 72, 112, 161, 123]

in numeric form). The latter is derived from prices and traded volumes. It remains open to

building a model that leverages heterogeneous data sources. This model needs to reconcile

and aggregate information from different data sources.
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(b) The co-mentions capture supply-chain relation between stocks

Figure 4.1: Examples showing our key observations: When the news mention stocks frequently,
the stocks are 1) likely to reflect relations, such as sector and supply-chain, 2) likely to have
similar movement on prices.

An efficient stock embedding scheme that addresses the first limitation must determine:

1) what data source includes the co-movement information, 2) how to extract the cross-

sectional signals from the data source, and 3) how to incorporate both the static and

dynamic stock relations into the stock embedding. We propose Equity2Vec that answers
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the three questions.

Ideally, the stock representation should reflect comprehensive relations such as sector,

supply chain, value, growth, business cycles, volatility, and analysts’ confidence towards the

stock. One possible way is to collect such information manually from experts and analysts,

but it is inefficient and costly. Further, there are no widely agreed upon standard approaches

to converts people’s opinions into stock representations. Since millions of investors, analysts,

and financial experts share opinions, events, comments, and transactions about stocks in

the news, we consider using news as a data source to learn stock representations.

Next, we make two key observations by analyzing news on stocks. When two stocks

are frequently co-mentioned, 1) they are likely to share common characteristics such as

sector and supply-chain relation, 2) their prices tend to have a similar trend. For example,

the co-mentioned stocks in Figure 4.1 (a) are in the same sector (energy), while Figure 4.1

(b) shows they have a supply-chain relationship (i.e., LJJX is a supplier of BYD). In both

cases, the prices of these co-mentioned stocks often move synchronously and most often in

the same direction. Based on our observations, we use news co-mention1 to learn the stock

representation.

Moreover, Equity2Vec extracts the long-term (static) and evolving (dynamic) stock

relations by the following approach. To capture the long-term relation, we build a global

stock co-occurrence matrix with a long observation window. We extract the stocks’ long-

term representations via matrix factorization of the co-occurrence matrix. To learn the

evolving relation, we build a stock graph that reflects the dynamic neighboring relations,

where Equity2Vec propagates the embedding of a stock to its neighbors to capture the

cross-sectional information of the stocks effectively.

To leverage the heterogeneous data sources (i.e., second limitation of prior works),

we propose a framework that integrates the learned stock embeddings, news signals, and

technical factors into a neural network model to make the final prediction. We perform

extensive experiments on real-world data that contains more than 3,600 stocks in the

1Through the statistic analysis of real-world online media, a piece of news refers to 3.0 stocks on average.
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Figure 4.2: The illustration of our end-to-end framework. It contains the Equity2Vec
component (Section 4.3) and heterogeneous data source component (Section 4.4).

Chinese stock market from 2009 to 2018. The experimental results demonstrate the

effectiveness of stock representations extracted by Equity2Vec outperforms existing

state-of-the-art works. The market trading simulation illustrates that Equity2Vec along

with the proposed framework increases profit significantly.

In summary, this paper makes the following contributions:

• We propose Equity2Vec that incorporates news into stock embeddings. To the best

of our knowledge, Equity2Vec is the first work that mines the stock representation

from the news co-mention. Moreover, Equity2Vec captures both long-term (static)

and evolving (dynamic) relations between stocks.

• We forecast stock prices using multiple categories of signals (i.e., heterogeneous data

sets), including cross-sectional embeddings, technical signals, and financial news

signals.

• Extensive experiments on real-world data sets confirm the efficacy of our approach,

comparing favorably to state-of-the-art methods.

4.2 Preliminaries and Framework overview

Problem setting. Given a universe of n stocks s1, s2, ..., sn, the stock price trend is log

return for a given stock i on day t

rit = log

(
pit
pit−1

)
(4.1)

where pit denotes the open price of stock i on day t. We formulate the task of predicting

the future price trend as a regression problem. The response is the future return rit+1, and

131



xi
t denotes the vector of features associated with stock i on day t. The historical features

up to time t are defined as xi
≤t. We aim to learn the function

rit+1 = f(xi
≤t). (4.2)

Framework Overview. Figure 4.2 shows our overall framework, which includes the

Equity2Vec component and the heterogeneous data source component. The Equity2Vec

component first learns the stocks’ long-term relations from the global stock co-occurrence

matrix, and then extracts the static stock embedding as ei ( 1 ). Then, at time t, we

build the temporal graph Gt dynamically based on the local stock co-occurrence matrix to

capture the evolving relations ( 2 ). Within graph Gt, each solid circle represents a stock.

Stocks close to one another are likely to be associated with a similar moving trend. Finally,

our approach obtains the final stock representation cit by propagating its neighbors’ basic

embedding via an attention mechanism ( 3 ).

In the heterogeneous data source component, we integrate the stock embedding (cit)

with dynamic input (git) (generated from technical factors and online textual data), and

denote the heterogeneous output as hit. Finally, the RNN model forecasts future return

rit+1 based on the input hit.

4.3 Equity2Vec from news

We propose Equity2Vec, which mines the stock embeddings from the news, since such

data comprises a valuable knowledge repository with rich relation information between

stocks from the crowd of financial experts/journalists. Our approach is inspired by the

observation (as depicted in Figure 4.1) that stocks frequently co-mentioned by the same

news are likely to share similar properties and exhibit co-movements in their price trends.

We formulate the stock co-occurrence matrix, and use matrix factorization to extract the

static stock representation in Section 4.3.1. To explicitly leverage the cross-sectional signals

and circumvent the challenge that the relations between stocks are evolving, we build

a temporal stock graph and fine-tune the stock representations by dynamically infusing

neighbors latent representations (Section 4.3.2).
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4.3.1 Capturing long-term stock relations

We now focus on learning the long-term relation, and discuss how to address the dynamic

relations in the next subsection.

Stock co-occurrence matrix

𝑋"#
𝑒!"

𝑒!
Number 
of stocks

Number of stocks

1 2

(a)

�

t

t-1

t-w Gt

(b)
Figure 4.3: (a) Our approach to build the stock co-occurrence matrix and calculate the static
embedding for stocks. (b) The construction of temporal graph.

Co-occurrence Matrix. We build a stock co-occurrence matrix by counting the stock

co-occurrence within each news. We prefer the stock co-occurrence matrix instead of the

entire news and stock matrix for the following two reasons: (1) The size of the stock

co-occurrence matrix only depends on the number of stocks, and is much smaller than

the news and stock matrix. (2) We only care about the stock representation, which thus

renders news representations as not necessary. We use the global co-occurrence matrix to

obtain static representations that reflect the essential relations between stocks in the long

term.

Formally, suppose we have n stocks and X ∈ Rn×n denotes the stock co-occurrence

matrix. Figure 4.3(a) ( 1 ) shows Xi,j , counting the number of articles that mention both

si and sj before testing phase. We associate a vector ei ∈ Rd to represent the stock i’s

static representation, where d is the dimension of the stock representation. In this way,

the similarity between stock i and stock j can be formulated as the inner product of ei

and ej , given by eTi ej .

Matrix Factorization. Figure 4.3(a) ( 2 ) shows that we adopt matrix factorization [85]

to learn the embedding of the stocks. Here, matrix factorization works as a collaborative

filtering method. The idea behind matrix factorization is to learn the latent representation
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where stocks near each other will likely obtain similar embeddings. Given the co-occurrence

matrix reflects the similarity between stocks, we obtain the latent representation of stocks

through fitting the training data by optimizing the objective function

Js =
n∑

i,j=1

(eTi ej −Xij)
2. (4.3)

In reality, there could exist prior bias of stocks as the prior preference of financial

journalists/experts. Hence, we use bi and bj as the bias of stock i and stock j and introduce

them to the objective function,

Js =
n∑

i,j=1

(eTi ej + bi + bj −Xij)
2 + β(||θ||2) (4.4)

where ||θ|| = (||ei||2+ ||ej ||2)+ b2i + b2j and β(||θ||2) is the regularization term that prevents

overfitting.

4.3.2 Capturing evolving stock relations

The latent representation learned from the above global occurrence matrix reflects the

static stock relations. Motivated by the fact that the stock relations are changing over time

and cross-asset signals are beneficial towards stock price prediction, we further fine-tune

the stock representation by building a temporal stock graph and infusing the neighbors’

embedding dynamically.

Temporal stock graph. As shown in Figure 4.3(b), the construction of Gt consists

of two steps. (1) Construct the stock graph using the co-occurrence matrix. Assume

G̃t = {V, Et} is the stock graph at time t, where V = {s1, . . . , sn} is the set of stocks.

(si, sj) ∈ Et if and only if si and sj are co-mentioned by the news collected at time t. The

edge eight over si and sj is the number of co-occurrences across all news on date t. (2) Due

to insufficient number of news about specific stocks in time t, we maintain a sliding window

w (w is a hyper-parameter) to collect a sequence of stock graphs and then construct Gt by

taking an exponential moving average of G̃t−w, ..., G̃t, G̃t, where we assign a nearby graph

a larger weight.

Propagation of neighbors’ embedding via a stock attention mechanism. Given
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the temporal graph (Gt) identifies the dynamic stock structure, it is crucial to appropriately

update the stock representation by infusing the current neighbors’ embedding. Motivated

by the fact that not all the neighbors contribute to the current stock trend, we filter out

the stocks that are too far away from the current stock (See Section 4.6 for more details).

Specifically, for stock si, we focus on the k nearest neighbors when sorting by the edge

weight (which reflects the magnitude of the co-occurrence), where k is a hyper-parameter.

Formally, let St(i) denote the set of k nearest neighbors of si in Gt at time t.

We introduce an attention mechanism [152] to infuse the neighbors embedding weighted

by an assigned attention value. In this way, we reward the stocks offering more forecasting

power by assigning them larger attention values.

cit =
∑

j∈St(i)

αijej , (4.5)

∑
j∈St(i)

αij = 1 for j ∈ St(i), (4.6)

where cit denotes the fine-tuned stock representation for stock i at time t, and αi,j ∈ R

is the attention weight on the embedding ej , which is given by

αij =
exp(f(ei, ej))∑

l∈S(i) exp(f(ei, el))
. (4.7)

The weights define which neighboring stocks are more significant. f(ei, ej) measures the

compatibility between embeddings ei and ej , and is parameterized by a feed-forward

network with a single hidden layer, which is jointly trained with other parts of the model.

We let f(·, ·) have the following functional form

f(ei, ej) = vT
a tanh(Wa[ei; ej ] + ba), (4.8)

where va and Wa are weight matrices, and ba is the bias vector [152], obtained during

model training via backpropagation.
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4.4 Leverage heterogeneous data sources

In this section, we show how to integrate heterogeneous data sources for making forecasts,

and how we gather different sources of signals.

4.4.1 Sequential modeling

Finally, we integrate the stock embedding from Equity2Vec with stock dynamic features

into the neural net model to predict the future return. The stock dynamic input is given

by git, which stems from technical factors and news data. We overlay the stock vector cit

with git as an input. Specifically, let hit be the hidden state at time t for stock i

hit = [cit, g
i
t], (4.9)

where [·, ·] denotes a direct concatenation.

Keeping in mind that stock trends are highly influenced by a variety of time-series

market signals, it is intuitive to take the historical features of a stock as the most influential

input to predict its future trend. Therefore, we use Recurrent Neural Networks [110, 137]

as the neural net model. LSTM is a variant of the recurrent net, which is capable of

learning long-term dependencies. The final output is given by

vit−T , ..., v
i
t−1, v

i
t = LSTM(hi1, h

i
2...h

i
T ; θl), (4.10)

where θl denotes the parameters from LSTM.

Temporal attention layer. Since a stock’s historical data contributes to its price trend

unequally, we adopt the attention mechanism at the temporal level. We consider

rit+1 =
∑

p βpv
i
p,

βp =
exp(f(vip,v

i
q))∑

q exp(f(v
i
p,v

i
q))
,

(4.11)

where βp is the attention weight for prior date p indicating the importance of the date. We

then compute the weighted sum to incorporate the sequential data and temporal attention.

Assume we have m trading days and n stocks. We use the mean squared error as the

loss function for gradient descent, given by
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J =
1

mn

n∑
i=1

m∑
t=1

(rit+1 − r̂it+1)
2. (4.12)

4.4.2 Gathering difference sources of alphas

Financial studies have attributed stock movements to three types of market information,

i.e., cross-sectional signals, numerical technical indicators, and news features. To the best

of our knowledge, the proposed framework is the first one that fuses technical factors,

financial news and stock embedding together for stock predictions.

Stock graph: leveraging cross-sectional signals. Trading on cross-sectional signals

(i.e., when Google goes up, Facebook is more likely to go up) is remarkably difficult

because we need to examine all possible relations. We leverage news articles that mention

multiple stocks to detect correlations between stock prices. Detecting co-movements by

news appears to be much more effective than existing methods. Our Equity2Vec learns

both long-term and evolving relations.

Technical factors: hand-built features are more effective. We note that features

extracted by deep learning [40, 95] are often less effective than features (technical factors)

crafted by financial professionals [34]. Thus, we overlay an LSTM over technical factors, so

that we can simultaneously leverage expertise from financial professionals, and also extract

serial correlations from deep learning models.

Financail news Advancing development of Natural Language Processing techniques

has inspired increasing efforts on stock trend prediction by automatically analyzing stock-

related articles [72, 31, 5]. We pre-trained Word2vec [108, 109] on the news corpus from

the training data set to produce word embeddings. We average all the word vectors in a

piece of news to represent the news vector. For a given date t and stock i, we compute the

daily news vector by extracting the news related to stock i and averaging the news vectors

within date t.
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Figure 4.4: Performance comparison in terms of correlation (a) and t-statistic (b) among our
Equity2Vec, ARRR, HAN, AlphaStock, VR, and SFM. For both correlation and t-statistic,
higher scores are better.

4.5 Evaluation Methodology

We now evaluate the methodology proposed. We focus on the Chinese market, whose value

is the second largest in the world.

4.5.1 Data Collection

Chinese Equity Market. Our data set consists of daily prices and trading volumes of

approximately 3,600 stocks between 2009 and 2018. We consider the universe with all the

stocks except for the very illiquid ones. We use open prices (at 9:30 am) to compute the

daily returns, and we focus on predicting the next 5-day returns. The last three years of

the period are out-of-sample.

Technical Factors. We manually build 337 technical factors based on the previous

studies [63, 34, 78, 6, 125]. “Technical factor” is a broad term encompassing indicators

constructed directly from data related to trading activities. Specifically, all these factors

are derived from price and dollar volume by mathematical calculation. Table 4.1 shows a

set of popular technical factors.

News Dataset. We crawled all the financial news between 2009/01/01 and 2018/08/30

from a major Chinese news website Sina2. It has a total number of 2.6 million articles.

Each article can refer to one or multiple stocks. On average, a piece of news refers to 2.94

stocks. We link each of the collected news articles to a specific stock if the news mentions

the stock in the title or content. The timestamps of news published online are usually

unreliable (the dates are reliable, but the hour or minute information is usually inaccurate).

2https://finance.sina.com.cn
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Table 4.1: A set of popular technical indicators and the corresponding description.

Factors Description

EMA Exponential moving average over price or dollar volume. [34]

RSI The magnitude of one equity’s recent price changes. [34]

ROC Price variation from one period to the next. [57]

Volume Std Standard deviation of volume. [54]

VCR Volume cumulative return [34]

We use news signals on the next trading day or later to avoid look-ahead issues.

4.5.2 Experimental settings

Training and Testing Data. We use three years of data for training, one year of data

for validation, and one year for testing. The model is re-trained every testing year. For

example, the training set starts from Jan 1, 2012 to Dec 31, 2014. The corresponding

validation period is from Jan 15, 2015, to Dec 16, 2015. We use the validation set to tune

the hyperparameters and build the model. Then we use the trained model to forecast

returns of equity in the same universe from Jan 1, 2016 to Dec 31, 2016, where we set

10 trading days as the “gap”. We set a “gap” between training and validation periods,

and validation periods and testing periods to avoid look-ahead issues. The model is then

re-trained by using data in the second training period (2013 to 2015) to make forecast on

the second testing year 2017.

Parameter Setting. We use the standard grid search to select the hyper-parameters

in our experiments. We build the global co-occurrence matrix in Section 4.3.1 by using all

the news before the first day of the testing year. To learn the stocks’ embedding, we tune

the dimension of stocks’ representation within {32, 64, 128, 256}. We explore the number

of LSTM cell within {2, 5, 10, 20}. We greedily search the number of neighbors for the

stock graph from no neighbors to all the neighbors. The sliding window for temporal graph

w is tuned within {2, 5, 10, 20, 60}. In addition, we tune the learning rate within {0.001,

0.01} with the Adam optimizer [82], and set the batch size within {128, 256}.
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Evaluation Metrics. We evaluate our performance in terms of correlation, t-statistic,

and PnL.

Correlation. Unlike the other regression tasks, correlation [17] is a preferable metric in

stock price prediction compared to MSE since the direction instead of magnitude is more

crucial for forecasting return.

Significance test (t-statistics). The use of t-statistics estimators [119] can account for the

serial and cross-sectional correlations. Recall that rt ∈ Rn is a vector of responses and

r̂t ∈ Rn is the forecast of a model to be evaluated. We examine whether the signals are

correlated with the responses, i.e., for each t we run the regression model rt = βtr̂t+ ε, and

test whether we can reject the null hypothesis that the series βt = 0 for all t. Note that the

noises in the regression model are serially correlated, and thus we use the Newey-West [119]

estimator to adjust for serial correlation issues.

PnL. Profit & Loss (PnL) is a standard performance measure used in trading. PnL

captures the total profit or loss of a portfolio over a specified period. The PnL of all

forecasts made on day t is given by

PnL =
1

n

n∑
i

sign(r̂it) ∗ rit, t = 1, . . . ,m, (4.13)

4.5.3 Baselines for comparison

To test our proposed deep learning framework, we compare our model against state-of-art

baselines, as described below. For all the baselines, we use the validation data set to

configure the hyper-parameters.

SFM [167]. SFM is designed for stock prediction. It decomposes the hidden states of an

LSTM [132] network into multiple frequencies by using Discrete Fourier Transform (DFT)

in order for the model to capture signals at different horizons.

HAN [72]. This work introduces a so-called hybrid attention technique that translates

news into signals. HAN uses Word2Vec to transfer news into vectors, and uses RNN as
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the sequential modeling method.

AlphaStock [155]. AlphaStock integrates deep attention networks reinforcement learning

with the optimization of the Sharpe Ratio. For each stock, AlphaStock uses LSTM [135]

with attention on hidden states to extract the stock representation. Next, it relies on

CAAN, a self-attention layer, to capture the inter-relations among stocks. We implement

LSTM with basic CAAN, and change the forecast into returns, instead of winning scores.

Vector Autoregression. We include a standard linear vector autoregression

(VAR) [118]. VAR is a typical stock forecast baseline. Formally, it assumes rt+1 = f(xt)+ξt,

where xt denotes the features of all stocks, and rt+1 , (rt+1,1, . . . , rt+1,n) denotes the future

return of all stocks in the universe.

ARRR [161]. ARRR is a new regularization technique designed to address the overfit-

ting issue in vector autoregression under the high-dimensional setting. Stock prediction

is one of its applications. Specifically, ARRR involves two SVD steps; the first SVD is

for estimating the precision matrix of the features, and the second SVD is for solving the

matrix denoising problem.

4.6 Performance and Discussion

In this section, we discuss our overall performance, analyze the effectiveness of k-nearest

neighbors, the learned stock embedding, and market trading simulation results.

Overall Performance on Correlation and t-statistic. Figure 4.4(a) and Fig-

ure 4.4(b) report the comprehensive analysis on all compared methods, for each testing

year in terms of both correlation and t-statistic. The results confirm that our Equity2Vec

method consistently outperforms all other baselines, for each testing year and across all

metrics.

Impact of Different Number of Neighbors. We investigate the number of neighbors

k against the correlation metric. Figure 4.5(a) shows that with the increase of k, the

out-of-sample correlation first increases and then decreases. This indicates the performance
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Figure 4.5: The effects of using different number of neighbors and effects of learned stock
representation.

gains from our choices on k-nearest neighbors graph in Section 4.3.2.

Effect of Learned Stock Representation. To demonstrate the effects of learned

stock representations for stock prediction, we investigate the performance of Equity2Vec

by replacing the learned stock representations with the following representations:

• NoEmd: Remove the Equity2Vec module.

• PoorMan: Remove the influence from neighbors.

• SectEmd: Replace the embedding with the aggregated embedding from the same

sector.

• OneEmd: Replace the embedding with the embedding from all the neighbors.

• RadiusEmd: Instead of using k-nearest neighbors, we also used the radius to select

neighbors and the radius is a hyper-parameter.

As shown in Figure. 4.5(b), Equity2Vec achieves better performance than the above

five baselines. We have the following observations: (1) Comparing with NoEmd proves the

effectiveness of the information aggregated through stock embedding. (2) Comparing with

PoorMan and OneEmd enables us to confirm the efficacy of learning evolving relations

from k-nearest neighbors. (3) Comparing with SectEmd shows that Equity2Vec not

just capture merely the sector information. (4) The RadiusEmbd is our variation and also

achieved competitive results.

Market Trading Simulation. To further evaluate our method’s effectiveness, we

conduct a back-testing by simulating the stock trading for three out-of-sample years.
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Figure 4.6: The cumulative PnL (Profit and Loss) curves of the top quintile portfolio. For
example, on any given day, we consider a portfolio with only the top 20% strongest predictions
in magnitude, against future market excess returns. We simulate the investment on both (a)
Long-short portfolio and (b) Long-index portfolio.

We simulate investments on our signals in two ways:(i) Long-short portfolio. (ii) Long-

index portfolio: Long-only minus the market index. We conduct the trading in the daily

granularity and select the stocks from the top 20% strongest forecast signals. The position of

each stock is proportional to the signal (i.e., the dollar position of i-th stock is proportional

to our forecast r̂ti). The holding period is 5 days. 3By allowing short-selling, we can

execute on negative forecasts to understand the overall forecasting quality. Figure. 4.6

shows the cumulative PnL for our approach and baselines. We can see that our signals

are consistently better than other baselines in both Long-short and Long-index portfolios,

suggesting that our method generates stronger and more robust signals for trading.

4.7 Interpretation Analysis

In this section, we assess the interpretability for stock relationships, temporal weights in

LSTM, and news as follows.

Visualizing Learned Stock Embedding. As depicted in Figure 4.7, we use t-SNE [105]

on our final stock representation to assess the interpretation of the universe of stocks. Each

dot represents a stock, and the color denotes the largest sector from Barra [42] associated

with the given stock, while the text annotations represent the detailed stock categories. It

shows that our Equity2Vec learns the interpretable stock representations that are well

aligned with the Barra sectors.

3Short is implementable in the Chinese market only under particular circumstances, e.g., through brokers
in Hong Kong under special arrangements.
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Figure 4.7: t-SNE of final stock representations (colors code industry sectors).

News Interpretation. To understand the news predictive ability, we track back

the news from two groups in the test dataset. We focus the samples within the smallest

5% and the samples within the largest 5% errors based on Equation 4.12. We extract

the corresponding news and show the detailed results in Figure 4.8. We focus on the

demonstrative news from these two groups of samples. One can see that the news in the

high accuracy group contains significant events with predictive ability, while the news in

the low accuracy group mainly has no apparent influence on the stock forecast.

ᔒփড়: 2017ଙଶᩒԾፄڥᶼၥ (Annual Earning projection/ forecast)
(Increase company holding)�ޞلᙎղݪلး: ी೮ێݳ

ᵝᛘᙎղ: ٳතفӨڥٳႎीᳩړຉ (Profit express and analysis)
ॠḘᙎղ:᯿य़Ԫᶱ؊ፏ (Important event and trade suspension)

ӳොกቐ:៰Ԫܨਖ਼ࢧᨻ᮱ړᙎ๦ (Buyback equity /share repurchase)
[High accurate: important events]

[Low accurate: not predictive news ]

ᕪၧ෭ಸ: 18ଙ౯ࢵᕪၧᕮ຅೮ᖅս۸ (Good domestic economic structure)
ӾಭᎸᑪ: 2018قቖਡᥡڹวெԍ፡ (Global Economic Analysis)

ᛯݎᑀದ: ݪلԈᤈᬨෛଙ܋෪ըୗ (New Year flag-raising ceremony )

Figure 4.8: The demonstrative news from high accuracy and low accuracy performance.

Temporal Attention Explanation. Next, we show the overall attention weights

from the testing data set in Table 4.2 when we use the past 5 days’ historical data. The

hyperparameter 5 is set by the performance in the validation dataset. The recent days

have larger weights indicating the recent days play more significant roles in the prediction.

-5day -4day -3day -2day -1day

Weights 0.0055 0.0265 0.1662 0.3064 0.4954

Table 4.2: The temporal overall attention weights.
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4.8 Related work

Predicting equity returns (i.e., empirical asset pricing) is an extensively studied academic

disciplinary that can date back to the beginning of the 20th century [22, 60], so it is

impossible to provide a comprehensive review here. Instead, we focus on recent work on

using machine learning to forecast asset prices.

Linear Model. Empirical asset pricing (e.g., estimating the “true price” or forecasting

the future price) is an important area in Finance [12]. Linear regression has been a dominat-

ing methodology to forecast equity returns, especially for intraday tradings [69, 21, 86, 46].

Because these linear models usually use a large number of features, regularizations are

usually needed [73, 81, 118, 161]. For example, recently researchers examined regularization

for “ultra-high dimensional” setting, in which the number of features could be significantly

larger than the number of observations [161].

Deep Learning. There are two major approaches to forecast equity returns. Approach 1.

ANN as a blackbox for standard “factors.” First, “factors” that are known to be correlated

with returns are constructed. These factors can be viewed as features constructed by

financial experts. Second, the factors are fed into standard ANN black boxes so that

non-linear models are learned (see e.g., [70, 62] and references therein). Little effort is

made to optimize ANN’s architecture or algorithm. Approach 2. Forecasting the price

time-series. This approach views the price, trading volume, and other statistics representing

trading activities as time series and designs specialized deep learning models to extract

signals from the time series. Little feature engineering is done for these models. See

e.g., [51, 132, 40, 95, 138, 93]. Approach 1 represents the line of thought that feature

engineering is critical in building machine learning models, whereas Approach 2 represents

the mindset that deep learning can automatically extract features so effort on feature

engineering should be avoided. The co-movement effect is often ignored by the previous

studies. Only a few works on stock predictions have explored this effect [26, 155, 49].

However, [26] relies on non-public dataset and learns the relations in a static way. [49]
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consider only consider the relation to a particular type (sector and supply chain) and

ignore the other relations, such as stocks affected by the same event. [155] has unsatisfying

performance (even in their own reports on experiments) and only consider the co-movements

of historical prices.

News. NLP-based techniques are developed to correlate news with the movement of

stock prices. Earlier works use matrix factorization approaches (see e.g., [111, 145])

whereas more recent approaches use deep learning methods [39, 72, 31, 5]. These methods

exclusively use the news to predict equity returns, and they do not consider any other

“factors” that can impact the stock prices.

Factor Model (Cross-sectional Returns). The movement of two or more stocks

usually can be explained by a small subset of factors. For example, Facebook and Google

often co-move because their return can be explained by the technical factors. The so-called

“factor model” (e.g., [44, 142, 167, 161]) can effectively capture the co-movement of prices

but these methods usually rely on PCA/SVD techniques and are not computationally

scalable.

Comparison. 1. Comparing to existing linear models. Our method is more effective at

extract non-linear signals. 2. Comparing to existing DL models. We find that we need

both careful feature engineering and optimizing DL techniques to use technical factors in

the most effective manner, moreover, we do not restrict the stock relation into a particular

type and learn the evolving relations. 3. Comparing with News/NLP-based techniques. We

do not exclusively rely on the news. Instead, we explicitly model the interaction between

news and other factors so that our model avoids low quality signals (e.g., news-based

signals could be essentially trading momentum), and 4. Comparing with factor models.

A key innovation of our model is the introduction of Equity2Vec component. This

component models the interaction between stocks and circumvents SVD computation on

large matrices.
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4.9 Conclusion and future work

This paper presents a novel approach to answer two research questions. (i) How can

we interpret the relationship between stocks? (ii) How can we leverage heterogeneous

data sources to extract high-quality forecasting power? Through extensive evaluation

against the state-of-art baselines, we confirm that our method achieves superior performance.

Meanwhile, the results from different trading simulators demonstrate that we can effectively

monetize the signals. In addition, we interpret the stock relationships highlighting they

align well with the sectors defined by commercial risk models, extract important technical

factors, and explain what kind of news has more predictive power.

We identify several potential future directions. First, it is worth exploring more effective

features from social media such as financial discussion forums. As individual investors

often engage in insightful discussions on finance topics and stock movements, the large

volume of such discussions could indicate potential upcoming major events. Second, the

proposed Equity2Vec can generalized to other problems, such as mining the relations

between futures.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

Predicting the assets prices or return is of fundamental importance to the financial

technology community as the successful prediction of assets’ future price could yield

significant profit [71, 157, 103]. This thesis investigates using machine learning techniques

to simultaneously forecast the future return for a large number of stocks traded in a region.

For example, in the US market, we generally build models to predict the next 5-day returns

for the S&P 500 or the Russell 3000.

We aim to tackle three key challenges that are not properly addressed in prior works [155,

72, 167, 92, 20, 25, 84, 118, 73]:

C1. High-dimensional interactions between assets. The current state of one asset

could potentially impact the future state of another. For example, Amazon’s disclosure

of its revenue change in cloud services could indicate that revenues also could change

in other cloud providers. The number of possible interactions is excessively large and

can be even significantly larger than the number of observations. For example, in a

portfolio of 3,000 stocks, the total number of potential links between pairs of stocks is

3, 000× 3, 000 ≈ 107, whereas we typically have 10 years of daily data with only 2,500 data

points [124, 62, 81, 28]. This setting is also referred to as the high dimensional setting and

is prone to have severe overfitting issues. It requires careful analysis of a models theoretical
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properties before fitting the data.

C2. Non-linearity of the hypothesis class. Linear models are usually insufficient

to characterize the relationship between the response/label and the available information

(features), so techniques beyond simple linear regressions are heavily needed.

C3. Data scarcity for training individual asset model. While we usually have a

large volume of data, the size of the data associated with an individual asset could be

small and is insufficient for properly train the model for the individual asset. For example,

a typical daily forecasting model based on technical factors uses 10 years (approx. 2500

trading days) of data. We collect one data point for each day so only 2500 observations

are available for each asset. We develop the following works to address these challenges.

1. Adaptive reduced rank regression (addressing C1) Adaptive-RRR studies the

high-dimensional regression problem y =Mx+ ε with a low signal-to-noise ratio which

is known to suffer from severe overfitting. First, we analyze reduced rank regression and

its overfitting problem. Second, we propose adaptive reduced rank regression with better

generalization guarantees. Our method leverages the spectral properties of x and can adapt

the model to signal quality. Third, we prove the optimality of our algorithm. Additionally,

our approach either outperforms or is competitive with existing baselines in the synthetic

experiments and achieves the best performance in real datasets (forecasting equity returns

and predicting users’ popularity).

2. On embedding stocks (addressing C1 & C2) To address the overffiting issues

and design algorithms effective in extracting non-linear signals, we proposed on embedding

stocks, and we highlight the three main contributions of our work. First, we propose the

additive influence model for equity returns that enables us to orchestrate mathematically

rigorous high-dim techniques with practically effective machine learning algorithms. Our

model assumes that each stock i is associated with a vector representation zi in a (latent)

Euclidean space, and characterizes the interactions between stocks in the form of yt,i =∑
j∈[d] κ(zi, zj)g(xj,t) + ξt,i. Our proposed model allows for feature interactions through
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g(·), and addresses the overfitting problem arising from stock interactions. Second, to learn

the zi’s, we design a simple algorithm that uses low-rank approximation of yt’s covariance

matrix to find the closeness of the stocks, and develop a novel theoretical analysis based

on recent techniques from high-dim and kernel learning [15, 147, 161].

Third, to learn g(·), we generalize major machine learning techniques, including neural

nets, non-parametric, and boosting methods, to the additive influence model when estimates

of zi’s are known. We specifically develop a moment-based algorithm for non-parametric

learning of g(·), and a computationally efficient boosting algorithm based on linear learners

by using the domain knowledge of equity data sets.

Equity2Vec (addressing C2 & C3). We develop a specialized neural net model for

each asset (e.g., train gi(·) for asset i) but there is insufficient data to properly train gi

with data only from i (because of C3). Our idea is to shrink gi(·)’s toward one or more

centroids to reduce model (sample) complexities. Specifically, we train a neural net model

g(xi,W,Wi), where W is shared across all entities, Wi is entity-specific and is learned

through embedding, and gi(xi) = g(xi,W,Wi). When entities i and j are close, then Wi

and Wj are close. Consequently, gi and gj will be similar when entity i and entity j are

similar.

Based on our observation, we propose an end-to-end deep learning framework to price

the assets. Our framework possesses two main properties: 1) We propose Equity2Vec, a

graph-based component that effectively captures both long-term and evolving cross-sectional

interactions. 2) The framework simultaneously leverages all the available heterogeneous

alpha sources including technical indicators, financial news signals, and cross-sectional

signals.

5.2 Future Research Direction

Our future work targets to relax the theoretical guarantee requirement. We aim to find a

set of principles under which the deep architectures do not suffer from overfitting problems.

Our research plan is motivated by the following investigations:
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Principles of using deep learning for high-dim problems. Although previous

efforts [167, 72, 92, 155] to build deep learning-based cross-asset models were unsuccessful,

deep learning techniques were effective in solving high-dim problems in both recommender

system [154, 30, 168] and graph-learning [61, 156, 164]. In our future work, we aim to

answer the research question: how can we use and generalize deep learning techniques for

recommender systems and graphs to produce stock embedding?

151



Bibliography

[1] Hasan Abasi, Nader H Bshouty, and Hanna Mazzawi. On exact learning

monotone dnf from membership queries. In International Conference on Algorithmic

Learning Theory, 2014.

[2] Ittai Abraham, Shiri Chechik, David Kempe, and Aleksandrs Slivkins.

Low-distortion inference of latent similarities from a multiplex social network. SIAM

Journal on Computing, 44(3):617–668, 2015.

[3] Anish Agarwal, Devavrat Shah, Dennis Shen, and Dogyoon Song. On

robustness of principal component regression. In NeurIPS, 2019.

[4] Gernot Akemann, Jonit Fischmann, and Pierpaolo Vivo. Universal corre-

lations and power-law tails in financial covariance matrices. Physica A: Statistical

Mechanics and its Applications, 2010.

[5] Ryo Akita, Akira Yoshihara, Takashi Matsubara, and Kuniaki Uehara.

Deep learning for stock prediction using numerical and textual information. In ICIS,

2016.

[6] Yakov Amihud. Illiquidity and stock returns: cross-section and time-series effects.

Journal of financial markets, 2002.

152 152



[7] Theodore Wilbur Anderson et al. Estimating linear restrictions on regression

coefficients for multivariate normal distributions. The Annals of Mathematical

Statistics, 22(3):327–351, 1951.

[8] Andrew Ang. Asset management: A systematic approach to factor investing. 2014.

[9] Sanjeev Arora, Aditya Bhaskara, et al. More algorithms for provable

dictionary learning. arXiv preprint, 2014.

[10] Douglas Azevedo and Valdir A Menegatto. Eigenvalues of dot-product

kernels on the sphere. Proceeding Series of the Brazilian Society of Computational

and Applied Mathematics, 2015.

[11] Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional

random matrices, volume 20. 2010.

[12] Turan G Bali, Robert F Engle, and Scott Murray. Empirical asset pricing:

The cross section of stock returns. John Wiley & Sons, 2016.

[13] David Bamman, Jacob Eisenstein, and Tyler Schnoebelen. Gender identity

and lexical variation in social media. Journal of Sociolinguistics, 2014.

[14] Carolina Batis, Michelle A Mendez, Penny Gordon-Larsen, Daniela

Sotres-Alvarez, Linda Adair, and Barry Popkin. Using both principal

component analysis and reduced rank regression to study dietary patterns and

diabetes in chinese adults. Public health nutrition, 2016.

[15] Mikhail Belkin. Approximation beats concentration? An approximation view on

inference with smooth radial kernels. In COLT, 2018.

[16] Jennifer Bender, Remy Briand, Dimitris Melas, and Raman Aylur Sub-

ramanian. Foundations of factor investing. Available at SSRN 2543990, 2013.

153



[17] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson

correlation coefficient. In Noise reduction in speech processing, pages 1–4. Springer,

2009.

[18] Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Drop-

ping convexity for faster semi-definite optimization. In COLT, 2016.

[19] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal

of econometrics, 31(3):307–327, 1986.

[20] Florentina Bunea, Yiyuan She, and Marten H Wegkamp. Optimal selection

of reduced rank estimators of high-dimensional matrices. ANN STAT, 2011.

[21] Nusret Cakici, Kalok Chan, and Kudret Topyan. Cross-sectional stock

return predictability in china. The European Journal of Finance, 2017.

[22] John Y Campbell, John J Champbell, John W Campbell, Andrew W

Lo, Andrew W Lo, and A Craig MacKinlay. The econometrics of financial

markets. princeton University press, 1997.

[23] Emmanuel J Candes et al. The restricted isometry property and its implications

for compressed sensing. Comptes rendus mathematique, 2008.

[24] LJ Cao, Kok Seng Chua, WK Chong, HP Lee, and QM Gu. A compari-

son of pca, kpca and ica for dimensionality reduction in support vector machine.

Neurocomputing, 2003.

[25] Gavin C Cawley and Nicola LC Talbot. Reduced rank kernel ridge regression.

Neural Processing Letters, 2002.

[26] Chi Chen, Li Zhao, Jiang Bian, Chunxiao Xing, and Tie-Yan Liu. Investment

behaviors can tell what inside: Exploring stock intrinsic properties for stock trend

prediction. In KDD, 2019.

154



[27] Kun Chen, Hongbo Dong, and Kung-Sik Chan. Reduced rank regression via

adaptive nuclear norm penalization. Biometrika, 2013.

[28] Luyang Chen, Markus Pelger, and Jason Zhu. Deep learning in asset pricing.

Available at SSRN 3350138, 2019.

[29] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In KDD, 2016.

[30] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar

Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,

and Mustafa Ispir. Wide & deep learning for recommender systems. In Proceedings

of the 1st workshop on deep learning for recommender systems, pages 7–10, 2016.

[31] Raymond Chiong, Zongwen Fan, Zhongyi Hu, Marc TP Adam, Bernhard

Lutz, and Dirk Neumann. A sentiment analysis-based machine learning approach

for financial market prediction via news disclosures. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, pages 278–279, 2018.

[32] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequali-

ties: a survey. Internet Mathematics, 3(1):79–127, 2006.

[33] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law

distributions in empirical data. SIAM review, 2009.

[34] Robert W Colby and Thomas A Meyers. The encyclopedia of technical market

indicators. Dow Jones-Irwin Homewood, IL, 1988.

[35] Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and

Yuchen Zhou. Low rank approximation of binary matrices: Column subset selection

and generalizations. arXiv preprint arXiv:1511.01699, 2015.

[36] Somnath Das, Carolyn B Levine, and Konduru Sivaramakrishnan. Earnings

predictability and bias in analysts’ earnings forecasts. Accounting Review, 1998.

155



[37] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by

a perturbation. iii. SIAM Journal on Numerical Analysis, 1970.

[38] Marcos Lopez De Prado. Advances in financial machine learning. John Wiley &

Sons, 2018.

[39] Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. Deep learning for

event-driven stock prediction. In IJCAI, 2015.

[40] Jonathan Doering, Michael Fairbank, and Sheri Markose. Convolutional

neural networks applied to high-frequency market microstructure forecasting. In

CEEC.

[41] David Donoho, Matan Gavish, et al. Minimax risk of matrix denoising by

singular value thresholding. ANN STAT, 2014.

[42] Frank J Fabozzi and Harry M Markowitz. The theory and practice of

investment management: Asset Allocation, Valuation, Portfolio Construction, and

Strategies, volume 198. John Wiley & Sons, 2011.

[43] Eugene F Fama et al. Multifactor explanations of asset pricing anomalies.

J.Finance, 1996.

[44] Eugene F Fama and Kenneth R French. The Cross-Section of Expected Stock

Returns. Journal of Finance, 1992.

[45] Eugene F Fama and Kenneth R French. Common risk factors in the returns

on stocks and bonds. JFE, 1993.

[46] Eugene F Fama and Kenneth R French. Dissecting anomalies with a five-factor

model. The Review of Financial Studies, 29(1):69–103, 2016.

156



[47] Fan Fan, Yong Ma, Chang Li, Xiaoguang Mei, Jun Huang, and Jiayi

Ma. Hyperspectral image denoising with superpixel segmentation and low-rank

representation. Information Sciences, 2017.

[48] Jianqing Fan, Yuan Liao, and Han Liu. An overview of the estimation of large

covariance and precision matrices. The Econometrics Journal, 2016.

[49] Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, and Tat-

Seng Chua. Temporal relational ranking for stock prediction. TOIS, 2019.

[50] Guanhao Feng, Stefano Giglio, and Dacheng Xiu. Taming the factor zoo: A

test of new factors. The Journal of Finance, 2020.

[51] Guanhao Feng, Nicholas G Polson, and Jianeng Xu. Deep learning in asset

pricing. arXiv preprint, 2018.

[52] Laura Frank, Franziska Jannasch, Janine Kröger, George Bedu-Addo,
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