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Abstract. Real-time testing of coal ash plays a vital role in the chemical, power generation, metallurgical, and coal 
separation sectors. The rapid online testing of coal ash using radiation measurement as the mainstream technology has 
problems such as strict coal sample requirements, poor radiation safety, low accuracy, and complicated equipment 
replacement. In this study, an intelligent detection technique based on feed-forward neural networks and improved 
particle swarm optimization (IPSO-FNN) is proposed to predict coal quality ash content in a fast, accurate, safe，and 
convenient manner. The data set was obtained by testing the elemental content of 198 coal samples with X-ray fluores-
cence (XRF). The types of input elements for machine learning (Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P) were determined 
by combining the X-ray photoelectron spectroscopy (XPS) data with the change in the physical phase of each element 
in the coal samples during combustion. The mean squared error and coefficient of determination were chosen as the 
performance measures for the model. The results show that the IPSO algorithm is useful in adjusting the optimal num-
ber of nodes in the hidden layer. The IPSO-FNN model has strong prediction ability and good accuracy in coal ash 
prediction. The effect of the input element content of the IPSO-FNN model on the ash content was investigated, and it 
was found that the potassium content was the most significant factor affecting the ash content. This study is essential 
for real-time online, accurate, and fast prediction of coal ash. 
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Introduction. Coal energy is widely used in the chemical industry, power generation, and met-
allurgy and still plays an irreplaceable role even in the new situation of energy diversification [1, 2]. 
China is the world's largest producer and consumer of coal, produced 4.13 billion tons of raw coal in 
2021, up 5.7 percent from 2020 [3]. Energy consumption totaled 5.24 billion tons of standard coal, 
an increase of 5.2 percent over 2020, and coal consumption increased by 4.6 percent [3]. Coal con-
sumption accounts for 56.0 percent of total energy consumption. The coal-based energy structure has 
supported China's rapid economic development.  

Coal is made up of combustible organic matter and non-combustible minerals [4]. Coal ash refers 
to the solid waste produced by the decomposition and chemistry of the minerals in coal after it has 
been entirely burned under certain conditionsс [5]. High ash content in coal increases the resistance 
to heat and mass transfer during combustion and reduces combustion efficiency [6], especially in the 
middle and late coal combustion stages [7, 8]. In addition to this, possible corrosion, fouling and 
slagging problems in the combustion and gasification of coal can be predicted based on the ash 
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content. The ash content of the coal is also an auxiliary indicator for the valuation of power coal by 
calorific value. 

To date, the standard method for determining the ash content of coal is still the scorch weighing 
method. The traditional method of burning and testing coal ash is complicated. The measurement 
process takes about 90 min [9], giving long lag time results, which can no longer meet modern coal 
processing and utilization enterprises' needs to produce coal for rapid ash measurement and online 
testing efficiently. 

Currently, the mainstream techniques for rapid online detection of coal ash include natural radi-
oactivity methods [10], weighing, photoelectric ash measurement [11], image processing ash meas-
urement, and radiometric methods. Of these, the low-energy γ-ray backscatter method requires strict 
coal and geometric conditions to be measured, making it difficult to achieve online measurements. 
The high-energy gamma rays have a strong penetrating ability, rugged shielding, and poor radiation 
safety. Natural gamma radioactivity measurements of coal ash are susceptible to environmental back-
ground radiation and are more challenging to measure accurately. The dual-energy γ-ray transmission 
method is sensitive to the elemental composition and content of the coal. It can be affected by fluc-
tuations in the content of high atomic number elements in the coal. Due to its short half-life, frequent 
replacement of radioactive sources is costly and complicated. 

Artificial neural networks (ANN) have the potential to rely on faster, more accurate, and more 
practical characteristics as an alternative method for predicting coal burning behavior. Unfortunately, 
there are few studies on the effect of ANN on ash content. D.Ali [12] uses ANN in the flotation 
process to predict the ash content of coal based on polymer dosage, pH value, polymer conditioning 
time, sodium metasilicate dosage (commercial dispersant) and impeller velocity. P.Ilamathi [13] stu-
died the influence of excess air, coal quality, boiler load, air distribution scheme and nozzle tilt on 
boiler bottom ash through ANN-GA. Based on the element content of coal, this study combined im-
proved particle swarm optimization and feedforward neural network (IPSO-FNN) to predict ash 
quickly and accurately. The prediction of ash content not only determines the value of coal, but also 
has a deeper influence on the cleaning process. 

With the development of statistics, machine learning algorithms, and spectral analysis instru-
ments, research on the application of spectral analysis techniques in coal quality analysis is gradually 
gaining attention. The X-ray fluorescence (XRF) technique [14-16] and spectroscopy methods [17-
19] are often used separately to determine ash composition, they are also relatively convenient method 
[20]. F.J.Wallis et al. [21] and J.M.Andrés et al. [22] used spectral detection techniques to analyze 
and predict the significant elements in coal and coal ash, respectively, with high prediction accuracy 
and correlation. M.Kaihara et al. [23] used spectral analysis techniques to predict the main properties 
of coal with high accuracy of the final prediction results.  

Spectral analysis techniques with their unique advantages have been better studied and integrated 
into coal and chemical applications, showing their potential for predictive applications and good ro-
bustness. Feed-forward neural networks [24] have been used in many fields [25-27] as mathematical 
models with simple principles and high computational accuracy in machine learning [28].  

W.Dai et al. [29] used a machine learning model to develop an acceptable coal ash model based 
on a variable block width incremental random configuration network and proposed an online adaptive 
semi-supervised learning based proper coal ash model [30]. Machine learning tools have been shown 
to have the ability to provide data-driven mechanical understanding and models [31], with good pre-
dictive potential [32] and robustness [33]. W.Liang et al. [28] and M.Srishti et al. [34] developed a 
model for predicting the ash content of the characteristic melt temperature and ignition characteristics 
three-layer neural network model. They found that their predictions were more accurate. 

D.Durgun [35] studied the influence of coal properties on the yield of solid residue during com-
bustion, investigated the correlation between bottom ash yield, ash content, moisture and calorific 
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value of coal combustion, and drew the conclusion that calorific value was the most critical factor 
affecting low ash yield. On the basis of previous work, Tugce [36] uses a three-layer feedforward 
network architecture and backpropagation learning to predict the amount of bottom ash generated in 
the process of coal burning in power plants based on the water content, ash content and low calorific 
value of coal. When the model is a single hidden layer network containing 29 neurons, the best per-
formance is obtained. 

I.Siregar [37] estimated ash content based on fuzzy curve and integrated neural network accord-
ing to the composition of six major oxides, which effectively reduced the variance and bias of pre-
diction and obtained better prediction results. In addition to coal quality evaluation, artificial neural 
network technology has also been applied in gas-solid fluidized bed medium small bubble diameter 
prediction [38], circulating fluidized bed riser flow prediction [32], estimation of cleaned coal ash in 
flotation process [39]. At the same time, Xu [40] added Pearson correlation coefficient (PCA) and 
other statistical methods to the nonlinear regression process, which reduced the number of variables 
in the analysis process, improved the prediction accuracy of the model, and prevented the risk of 
over-fitting and the waste of data sets. 

In this context, to better utilize coal resources efficiently and cleanly, this paper proposes a new 
technology for real-time online rapid detection of coal ash based on the combination of machine 
learning and X-ray fluorescence. 

Аn intelligent detection technique based on feed-forward neural networks and improved particle 
swarm optimization is proposed to predict coal samples' ash content quickly, accurately, safely, and 
conveniently. Feedforward neural network algorithm is used to model the nonlinear relationship be-
tween input and output, and improved particle swarm optimization algorithm is used to optimize the 
optimal solution number combination of hidden layer, so as to obtain better generalization ability and 
convergence ability of the model. Through XRF and XPS tests, the composition of various elements 
of coal samples and the phase changes of each element when coal samples are fully burned are stud-
ied, and the occurrence state and relative content of each element in coal samples are analyzed, so as 
to determine the element input of FNN-IPSO model.  

Principal component analysis (PCA) and Pearson correlation coefficient analysis (PCC) were 
used to study and analyze the importance and correlation of each input variable, and the influence 
order of each element on ash content was obtained. 

The main purpose of this paper is to study the influence of various elements content in coal on 
coal ash in order to realize the online detection task of coal ash. The results show that the IPSO-FNN 
model has high accuracy and can be used in the online detection of coal quality in coal preparation 
industry. This study is a pioneering work on applying improved particle swarm optimization and feed-
forward neural network (IPSO-FNN) jointly in coal ash prediction, which is vital for real-time online, 
accurate, and fast prediction coal ash. 

Methods. Experimental tests. A series of experimental tests were conducted to provide a dataset 
for machine learning. The coal samples used in this experiment were taken from coal seams 7, 9, 11 
and 12 of Heishan opencast coal mine in Xinjiang, China. The total thickness of the coal-bearing 
strata in the opencast mine is 506-1200 m. The coal seam is mainly quartzite, slime, sandstone, mud-
stone and shale. Xinjiang Heishan opencast mine is located in Tokxun County, Turpan region, Xin-
jiang Province. Its raw coal clean grade is two, which can be used as high quality steam coal. In each 
seam, clean coal, medium coal and gangue of different particle sizes are collected sequentially as 
analytical coal samples. In order to ensure that the coal sample is representative, different parts of 
each coal seam are sampled and mixed evenly by using the quartile method. The coal samples were 
crushed, sieved, reduced, mixed and air dried according to the test standards GB 475-2008, 
GB T 477-2008 and GB T 478-2008 to produce the base coal samples for this test.  
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To further analyze the coal quality characteristics and elemental composition of the coal samples, 
the elemental composition and content of 198 sets of coal samples were obtained by XRF testing. 
Next, based on the X-ray photoelectron spectroscopy (XPS) data and combined with each element's 
physical phase changes in the coal sample during combustion, each element's form and relative con-
tent of the coal sample are analyzed. Then the input element types for machine learning are deter-
mined. In general, quantitative analysis and element morphology analysis in coal samples are 
achieved by XRF and XPS tests. In this study, S8-Tiger fluorescence spectrometer was used to ana-
lyze the elemental composition of coal samples, and the current reached 170 mA to achieve good 
excitation. An ESCALAB 250Xi X-ray photoelectron spectrometer was used to analyze the occur-
rence forms of elements in coal samples. The detection energy range was 0-5000 eV, and the resolu-
tion of photoelectron images was up to 3 µm.  

As the coal samples provided in the data set come from different coal seams with different grain 
sizes and density levels, the experimental data are unstable and fluctuate greatly. Random shuffle and 
segmentation of the data set can reduce the error caused by human. In this experiment, the data set is 
divided into training set (85 %) and test set (15 %). The training set is used to train the model, and 
the test set is used to test the model performance. 

Feed-forward neural networks. Feed-forward Neural Network (FNN) is the first simple artifi-
cial neural network to be invented. In the FNN, each neuron belongs to a different layer. The neurons 
in each layer can receive signals from the previous layer's neurons and produce output signals to the 
next layer. The zeroth layer is called the input layer, the last layer is called the output layer, and the 
other intermediate layers are called the hidden layers. Feed-forward neural networks propagate infor-
mation by continuously iterating the following equation: 

( ) ( ) ( 1) ( );l l l lZ W a b   (1) 

( ) ( )( ),l l
la f z  (2) 

where l is the number of layers of the neural network; Z(l) is the input of the neuron at layer l; W(l) is 
the weight matrix from layer l − 1 to layer l; fl(z(l)) is the activation function of the neuron at layer l; 
a(l) is the output of the neuron at layer l; b(l) is the bias from layer l − 1 to layer l. 

Due to its strong fitting capability, FNN can be used to approximate standard continuous non-
linear functions. Kolmogorov's [41] theorem states that any ongoing process can be implemented 
precisely with a three-layer FNN. However, based on experience and continuous experimentation, 
for non-linear functions of moderate complexity, a four-layer neural network requires far fewer neu-
rons to simulate and converges much faster than a three-layer neural network. Therefore, the FNN 
model with two hidden layers is chosen to predict coal samples' ash content in this paper. The software 
used in this experiment to establish the neural network model is Python 3.9. Compared with C lan-
guage, Python is more in line with the logic of human thinking and the code is simpler. Scikit-learn 
is a machine learning library for Python 3.9 programming language, which contains modules for data 
preprocessing, dataset partitioning, model optimization and other works. This will greatly reduce the 
workload of the experiment. 

Improved particle swarm optimization. To develop an integrated model with superior perfor-
mance, it is essential to determine the optimal number of node combinations in the hidden layer after 
determining the network structure layers. Optimization technology is a mathematical-based applica-
tion technique for solving various engineering problems optimally. Particle swarm optimization 
(PSO) is an algorithm for population intelligence optimization that requires fewer parameters to be 
adjusted, which has a simple structure and is easy to implement in engineering. The particle position 
update formula used in this paper is as follows: 
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1
1 1 2 2( ) ( );k k k k k k

id id id id gd idV V c r P X c r P X        (3) 

1 1,k k k
id id idX X v    (4) 

where V k+1 
id , V k 

id  denote the velocity of the particle at iteration k + 1 and k; X k+1 
id , X k 

id  denote the position 
of the particle at iteration k + 1 and k; P k 

id , P k 
gd denote the best position of the particle and the best 

position of the swarm, which will be updated at each iteration using the target MSE; ω denotes the 
inertia factor; k denotes the number of current iterations; c1, c2 are non-negative constants denoting 
the learning factor; r1, r2 are random numbers between 0, 1; d = 1,2 ... D; i = 1,2 ... n. 

Improving the particle swarm optimization is to set the parameters of certain factors appropri-
ately in the solution process. The parameters in the classical PSO algorithm are determined empiri-
cally. However, in this paper, the inertia factor is adjusted by an adaptive method: 

max
max min min

max

( ) ,k k
k


     (5) 

where ωmin, ωmax denote the minimum and maximum value of the inertia factor ω respectively; 
kmax denotes the full value of the number of iterations.  

This equation can satisfy the requirement of a large inertia factor required in the search's early 
stages. Subsequently, the inertia factor can be reduced appropriately to satisfy local search capability 
requirement as far as possible. The value of ω can be decreased during the search process. 

During the iterative search process, the learning factor can be made to vary appropriately with 
the inertia factor, which helps to improve the learning performance of the algorithm, resulting in the 
following expression: 

1 1max 1max 1min( )cos( );c c c c     (6) 

2 2max 2max 2min( )cos( ),c c c c     (7) 

where c1min, c1max denote the optimal value of learning factor c1, respectively; c2min, c2max denote the 
optimal value of learning factor c2, respectively. 

With the use of the learning factor algorithm for analysis, its ability to self-learn can be improved, 
while facilitating improved search accuracy. 

IPSO-FNN modelling. To train an FNN using the improved particle swarm optimization, a suit-
able objective function is required. As the mean squared error (MSE) is often used as a loss function 
in FNN, it can be used as an adaptation function in the IPSO-FNN integrated model. The mean square 
error is defined as: 

2
1

1MSE ( ) ,N
i i iy y

N


    (8) 

where N is the number of sample data; y* 
i , yi are the predicted and tested values of the sample, respec-

tively. 
The IPSO-FNN integrated model in this paper combines the advantages of improved particle 

swarm optimization and feed-forward neural networks. IPSO is used to find the optimal number of 
node combinations for the two hidden layers, and FNN is used to predict the best result for the ash 
content of the coal samples. The entire dataset is divided into two parts: the training set (85 %) and 
the test set (15 %). Based on adjustment experience, the number of nodes in the two hidden layers is 
adjusted in the range of 10-40. From the literature [42], the population size and the maximum number 
of iterations were 20 and 300, respectively. In the paper, the inertia factor is adjusted by (5), and then 
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the learning factor is adjusted appropriately by (6) and (7) according to the change in the inertia factor. 
The flow chart of the IPSO optimized hidden layer network node algorithm is shown in Fig.1. 

Results discussion. Results of tests. From Fig.2, a, it can be seen that the range of variation and 
dispersion of the distribution of ash values of different components of coal samples are extensive, 
and the ash content of coal samples is high, which belongs to high ash~extra high ash coal. Fig.2, b 
shows the variation of ash data in the range of 1.44 to 94.1, where there are 50 groups with ash values 
from 1.44 to 20, 80 groups with ash values from 20 to 60, and 60 groups with ash values from 60 to 
94.1. It can be seen that the coal samples have high extreme differences in ash values, which is chal-
lenging for the robustness of the prediction model. 

XRF tests were performed on 198 coal samples, respectively, and one group (89 groups) of the 
test results are shown in Table 1. The content of each element in the coal sample varies greatly, and 
the significant elements are Si, Al, Fe, S, K, Ca, Mg, Ti, Cl, Zn, Na, P, Ba, V, Cu, Sr, Mn, Cr, Zr, Ru, 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. IPSO optimized hidden layer network node flow chart 
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а b 

                    
 
 

Fig.2. Ash test results of coal samples: a – actual input values; b – statistical distribution 
 

Ni, Rb, as in descending order. From the content of each element in Table 1, it can be seen that the 
main elements in the coal samples are Si and Al, followed by Fe, S, K, etc. Among them, the content 
of Si and Al elements exceeds 50 %, the content of Fe, S, K, Ca, Mg, Ti, Ch, Zn, Na, P, and Ba are 
more significant than 0.05 %, and the content of all other elements varies within the range of less than 
0.05 %. This results in negligible elemental content of V, Cu, Sr, Mn, Cr, Zr, Ru, Ni, Rb, and As. 

 
Table 1 

XRF test results of group 89 coal samples 

Molecular formula Atomic mass of an element Content, % 

SiO2 14 34.63 
Al2O3 13 15.47 
Fe2O3 26 2.92 
SO3 16 2.44 
K2O 19 1.13 
CaO 20 0.984 
MgO 12 0.923 
TiO2 22 0.644 

Cl 17 0.5 
ZnO 30 0.4252 
Na2O 11 0.308 
P2O5 15 0.065 
BaO 56 0.054 
V2O5 23 0.021 
CuO 29 0.0152 
SrO 38 0.0145 

MnO 25 0.012 
Cr2O3 24 0.008 
ZrO3 40 0.0063 
Ru 44 0.006 

NiO 28 0.005 
Rb2O 37 0.003 
As2O3 33 0.003 

 
Each element's fugitive state in the coal sample is changed after the ash burn test is performed. 

Since the XRF test can only yield each central element's content in the coal sample, it cannot determine 
the form of each element present in the coal sample before ash burning. Therefore, XPS tests are 
needed to determine the condition and relative content of each element present in the coal sample and 
combine  each element's physical phase changes in the coal sample during combustion to determine 
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the types of input elements for the machine learning finally. Fig.3 shows the fitted XPS spectra of the 
coal samples with each element's more significant than 0.05 % content. The peaks of each element's 
binding energy (content greater than 0.05 %) attributed to the group (a form of presence), relative 
content, and physical phase change are shown in Table 2. 

 
Table 2 

Changes in the physical phase of elements with content greater than 0.05 % 

Element type Forms of presence Relative content Change of physical phase Decisions 

Ca 
Ca(OH)2 82.14 Ca(OH)2  CaO + H2O Reserved 

CaO 17.86 No change 

Si Si2O 100 Si2O + FeO  FeO·Si2O Reserved 

S Sorg 59.07 S + O2  SO2 Removal Sinorg 40.93 CaSO4·2H2O  CaSO4 + 2H2O 

Fig.3. Fitting atlas of XPS with element content greater than 
0.05 % in coal sample 
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End of Table 2 

Element type Forms of presence Relative content Change of physical phase Element type 

Fe FeO 45.02 FeO + SiO2  FeO·SiO2 Reserved 
Fe2O3 33.76 No change 

Al Al(OH)3 64.13 2Al(OH)3  Al2O3 + 3H2O Reserved 
Al2O3 35.87 Al2O3 + 3SiO2  Al2O3·3SiO2 

Mg 
MgO 77.93 No change 

Reserved MgCl2·6H2O 11.69 MgCl2·6H2O  MgO + 2HCl + 5H2O 
Mg(OH)2 10.38 Mg(OH)2  MgO + H2O 

Cl 
Cl− 62.10 No change 

Removal 
Cl− 

3  37.90 2Cl− 
3  2Cl− + 3O2 

Zn Zn(OH)2 77.77 Zn(OH)2  ZnO + H2O Reserved 
ZnO 22.23 No change 

Na NaCl 78.04 No change Reserved 
Na2CO3 21.96 Na2CO3  Na2O·CO2 

K KCl 70.80 No change Reserved 
K2CO3 29.20 K2CO3  K2O + CO2 

P HPO3 100 P2O3 + 3H2O  2H3PO4 Reserved 
H3PO4  HPO3 + H2O 

Ti TiO2 73.25 No change  Reserved 
Ti2O3 26.75 No change 

Ba 
Ba(OH)2 63.97 Ba(OH)2  BaO + H2O 

Removal 
BaO 36.03 No change 

 
As can be seen from Table 2, organic sulfur and inorganic sulfur are the primary forms of ele-

mental sulfur in coal samples, with relative contents of 59.07 and 40.93 %, respectively. During the 
thermal evolution of slow ashing of coal samples, organic sulfur is volatilized as gas, and inorganic 
sulfur is present in the ash of coal samples as sulfate. The coal samples' elemental chlorine existed 
mainly in chlorate and hypochlorite forms, with relative contents of 62.1 and 37.90 %, respectively. 
Hypochlorite is converted to chlorate as the slow ashing progresses, while chlorate is released in gas 
or soot. The magnesium in the coal samples was mainly in magnesium oxide, chlorite, and magne-
sium hydroxide. Chlorite is converted to magnesium hydroxide, converted to magnesium oxide pre-
sent in the coal sample's ash. The potassium and sodium elements in the coal samples are present in 
the fugitive forms of chloride and carbonate. During the thermal evolution of slow ashing, the po-
tassium and sodium elements' carbonate phases are transformed into potassium oxide and sodium 
oxide, respectively, in the coal samples' ash. Ca, Si, Fe, Al, Zn, P, Ti, and Ba are present in the 
fugitive forms of oxides and hydroxides in the coal samples. During the thermal evolution of slow 
ashing, most of the hydroxides are converted to oxides and are all present as oxides in the coal 
sample's ash. 

Analysis of the form and relative content of the elements present in the above coal samples by 
XPS shows that most of the sulfur and chlorine elements in the coal samples are released in the form 
of gas or soot during the thermal evolution of the burnt ash and are not present in the ash of the coal 
samples [43]. In contrast, the elements Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, P, and Ba are retained in 
the ash of the coal sample in the form of oxides during the thermal evolution of the burnt ash [28]. 
This shows that a coal sample's ash content is closely related to the content of elements such as Si, 
Al, Fe, K, Ca, Mg, Ti, Zn, Na, P, and Ba. Also, according to XRF results, barium was not detected in 
28 groups of 198 coal samples. Therefore, the elemental content of IPSO-FNN was entered in the 
order of Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, and P. The statistical distribution of the above ten elements 
is shown in Table 3 and the corresponding ash data are shown in Fig.2, a. 
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Results of architecture-tuning. Figure 4 
shows the FNN minimum loss function (popu-
lation best position) versus iteration for the 
first fifteen iterations using a combination of 
different numbers of nodes in the two hidden 
layers, with no further reduction in the mini-
mum loss function after the fifteenth iteration. 
After the first iteration, the FNN minimum loss 
function dropped significantly, indicating that 
IPSO was useful in finding the optimal number 
of node combinations in the two hidden layers. 
The minimum loss function (0.095) was ob-
tained at the fifteenth iteration (30 neurons in 
the first hidden layer and 30 neurons in the sec-
ond hidden layer). The optimal FNN structure 
used to predict further the ash content of the 
coal sample is shown in Fig.5. 

Based on IPSO to obtain the optimal 
combination of the number of nodes in the 
two hidden layers, the FNN is trained with the 
training set to get the appropriate weights and 
biases. Then, the optimal FNN is constructed. 
The FNN model's performance was evaluated 
on the training and test sets using mean 
squared error and determination coefficient. The coefficient of determination, also known as the 
goodness of fit, is used to evaluate fit's goodness. The coefficient of determination is defined as 

* 2
2

** 2

( )
1 ,

( )
i i

i i

y y
R

y y


 





 (9) 

where y** 
i  – is the mean of the tested values. 

A higher coefficient of determination means that it can be explained to a greater extent and the 
regression model is more effective. 

Results of the optimum FNN model. A comparison of the experimental and predicted values of 
the IPSO-FNN model on the test set is shown in Fig.6, a. It can be seen that the IPSO-FNN model 
with the optimum number of node combinations in the two hidden layers successfully simulates the 
non-linear relationship between the elemental content of Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, and P and 
the ash content in the coal samples. Fig.6, b shows that the optimal IPSO-FNN model obtained a 
minimum loss function of 0.019 and a coefficient of determination of 0.091 on the test sets. It can be 
seen that the optimal IPSO-FNN model can be generalized to the test set with high accuracy, indicat-
ing that the optimal IPSO-FNNN model is more accurate in predicting the ash content of coal samples. 

Principal component analysis of elemental content. To better understand the influence of the 
input elemental content of the optimal IPSO-FNN model on the ash content and to explore the rela-
tive importance of the input elemental content and the correlation between the input variables, prin-
cipal component analysis (PCA) and Pearson correlation coefficient analysis were performed on the 
input elemental content of the optimal IPSO-FNN model. The elemental content of coal can overlap 
information to a certain extent, making it difficult to grasp the main parts of its system while affecting 
the complexity of problem-solving. In addition to this, in practice, an excessive amount of data takes 

 

 
 
 

Fig.4. Mean squared loss function versus 
the number of iterations 

 

 
 

 
 
 

Fig.5. Schematic representation of the optimal FNN structure 
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а b 

                       
 
 

Fig.6. Performance of the optimal IPSO-FNN model on test sets: a – comparison of experimental 
and predicted values in test set; b – regression analyisis of test set 

 
up a lot of storage space and increases the time taken to process the information. PCA is a feature 
extraction method based on the minimum mean square error under statistical significance [44]. The 
new features it extracts maintain most essential information in the original pattern class, achieving 
noise reduction and improving the data's representation. The effect of the input element content of 
the optimal IPSO-FNN model on the ash content was investigated by principal component analysis 
and matrix heat map of Pearson correlation coefficients. 

The principal component analysis of the input element content of the optimal IPSO-FNN model 
is shown in Fig.7, a. The first principal component explains 59.6 % of the overall data variance, and 
the first five principal components explain 95.4 % of the conflict. The correlation between the first 
five principal components and elemental content is shown in Fig.7, b. The correlations of K, Si, Al, 
Ti, and Mg with the first principal component are 0.95, 0.94, 0.93, 0.92, and 0.8, respectively. The 
potassium content contributed most to the first principal component, and the content of calcium con-
tributed least to the first principal component.  

The statistical distribution of the content of ten elements of the optimal IPSO-FNN model was 
obtained Table 3, as can be seen from Table 3, Si and Al are the main components of the relative 
elemental coal content. the dispersion degree of ash is the largest, and its standard deviation reaches 
26.26, followed by Si and Al, which are 16.59 and 6.95, respectively. The rest of the elements have 
less dispersion degree and more stable. Combining Fig.7, b and Table. 3 shows that elements with a 
relatively high content (Si, Al, Fe, Ca, Na) do not significantly affect ash than parts with relatively 
low content (K, Ti, Mg, Zn). However, the content of phosphorus is positively correlated with the 
pattern of effect on ash.  

 
Table 3 

Statistical analysis of input and output element content of optimal IPSO-FNN model 

Variables Maximum Minimum Average Standard deviation 

Si 56.33  0.94  27.13  16.59  
Al 23.99  0.66 12.26 6.95 
Fe 8.86 0.85 3.43 1.35 
Ca 17.94 0.22 2.96 2.76 
K 3.05  0.03 1.33 0.90 

Mg 2.22  0.18 1.00 0.50 
Ti 0.88  0.02 0.45 0.25 
Zn 6.22  0.03 0.91 1.14 
Na 2.76  0.08  0.44 0.35 
P 0.72 0.01 0.10 0.09 

Ash 94.10  1.44 46.88 26.26 
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A Pearson correlation coefficient analy-
sis was performed for each elemental content 
to analyze further the interrelationships be-
tween the input elemental contents of the op-
timal IPSO-FNN model, as shown in Fig.8. 
The larger the absolute value of the correla-
tion coefficient, the more significant the cor-
relation between the features. As can be seen 
from Fig.8, the content of potassium is posi-
tively correlated with the content of Si, Al, 
and Fe, with correlation coefficients of 0.98, 
0.98, and 0.62, respectively. In contrast, it is 
negatively correlated with calcium content, 
with a correlation coefficient of −0.34. This 
phenomenon correlates with the low correla-
tion (0.11) between the elemental calcium 
content and the first principal component in 
Fig.7, a. Simultaneously, the potassium con-
tent showed a positive correlation with the Ti, 
Mg, Na, and P content, with correlation coef-
ficients of 0.96, 0.87, 0.6, 0.27, and 0.4, re-
spectively. It can also be seen from Fig.8 that 
the content of calcium is negatively corre-
lated with the content of all other elements. 
This phenomenon may be related to the form 
and transformation of calcium present in the 
ash burning process, and further research is 
needed to understand this point. 

In summary, PCA and Pearson correla-
tion coefficient matrix heat maps reveal sig-
nificant findings and point to potentialre-
search implications for the prediction of ash 
by elemental content. 

Conclusions. In this study, an online fast 
prediction model for coal ash is proposed 
based on feed-forward neural networks and 
improved particle swarm optimization algo-
rithms. Si, Al, Fe, K, Ca, Mg, Ti, Zn, Na, and 
P were identified as the FNN input elements, 
and the output was the ash. The performance 
of the IPSO-FNN model was verified through 
mean square error and coefficient of determi-
nation. The results show that the IPSO-FNN 
model has strong predictive power and good 
accuracy in coal ash prediction. The IPSO al-
gorithm was useful in tuning the optimal num-
ber of node combinations in the hidden layer 
of the FNN model. The obtained optimal 

a 
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c 

 
Fig.7. Principal component analysis of the input element content 

of the optimal IPSO-FNN model (a), heat maps of the correlation matrix 
between the input element content and the top five principal components 

(b) and correlation coefficient matrix for the input element content (c) 
of the optimal IPSO-FNN model 
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IPSO-FNN model performed well on the test set, getting a minimum loss function of 0.019 and a coeffi-
cient of determination of 0.991 on the test set. 

The correlation of the input element content of the optimal IPSO-FNN model was investigated. 
It was found that the first principal component could explain 59.6 % of the variation in the whole 
dataset. The most considerable contribution to the first principal component was the potassium con-
tent, with a correlation coefficient of 0.95. The matrix heat map of the Pearson correlation coefficient 
shows that the content of potassium is the most significant factor affecting the ash content. Si, Al, Ti, 
and Mg's content are the main factors affecting the ash content. This study serves as a pioneering 
work in the online prediction of coal ash, and the proposed IPSO-FNN model can be effectively 
applied in future industrial applications.  

One thing to note, The coal samples were collected from coal seams 7, 9, 11 and 12 of Heishan 
open-pit mine in Xinjiang with different grain grades and density grades, therefore, the scope of this 
article is coal from these four coal seams. The correlation between the element content and ash content 
of coal in different geographical locations may be different, which will affect the prediction accuracy 
of the model. Collecting coal samples from other coal seams or regions to improve the model is the 
focus of the next work. 
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