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Abstract. Issues related to the influence of reservoir properties uncertainty on oil field development modelling are 
considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate 
matching, the influence of reservoir properties uncertainty on the design technological parameters of development was 
estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were 
determined, and multivariate forecasts were made. The described approach of history matching and calculation of the 
forecast of technological development indicators allows to obtain a more reliable and a less subjective history match 
as well as to increase the reliability of long-term and short-term forecasts. 
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Introduction. The need to streamline the development of oil and gas fields has increased. To 
improve the efficiency of design solutions and minimize the risks emerging in the development pro-
cess, it is necessary to apply mathematical tools. One of the relevant tools for monitoring the state of 
the fields and designing the development is the geological-hydrodynamic mathematical reservoir 
model (HDM) [1, 2]. The HDM integrates all source data on the reservoir under study. The ability of 
the model to reproduce physicochemical, filtration and geomechanical processes depends on the 
amount and quality of the considered information [3]. Often, the reservoirs developed at the initial 
stage are not adequately explored, which leads to major uncertainties that can affect the technological 
and economic efficiency of the entire asset. Uncertainty is a state of complete or partial absence of 
information about the reservoir modelled which is necessary to understand a certain event, its conse-
quences, and their probability. 

E.A.Gladkov analysed the process of history matching to actual indicators [4]. It is noted that  
a high degree of the source data uncertainty when constructing a reservoir model makes history 
matching according to observation data a necessary step in modelling. At this stage, by solving the 
inverse problem, the reservoir porosity and permeability incorporated into the model are identified. 
This process is called history matching. Usually, the parameters that have the greatest uncertainty and 
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a stronger influence on the decision are corrected; most often these are absolute and phase permeabilities, 
volume of edge water zone, pore compressibility factors, productivity and injectivity of wells. 
E.A.Gladkov also noted the importance of the stage of multivariate modelling with estimation of 
uncertainties of the geological model and the risks of well location. This stage is virtually standard 
abroad but is rarely used in Russia. 

In [5], a quantitative assessment of uncertainties of oil reservoirs parameters is considered in 
detail. Primary task of the analysis of uncertainties and risks in estimation of reserves is quantification 
of the variation of parameters that affect the calculation of reserves. The main way to quantify the 
uncertainties is based on calculation of random errors, the calculation methods of which differ  
depending on the parameter investigated. Random errors, in contrast to systematic ones, inevitably 
occur when determining the volumetrics from geophysical data (seismic surveying, well logging) and 
the results of laboratory studies. In this paper, the assessment of random errors in reservoir parameters 
is considered as an uncertainty assessment for statistical Monte Carlo modelling or construction of  
a multivariate geological model. 

In [6], an algorithm for estimating the uncertainty is considered, which includes the following 
steps: choosing the uncertainty of parameters that are critical for the problem solved; compiling  
a representative sample of experiments, on the basis of which the response surfaces will be constructed; 
constructing a response surface using neural networks; prediction of results taking into account the 
probabilistic distribution of uncertain parameters; analysis of results. 

C.C.B.Cavalcante presented a data-based continuous learning algorithm for solving the tasks of 
the HDM history matching [7]. The algorithm consists of a two-stage optimization strategy in which 
different types of reservoir uncertainty are processed at each stage. The proposed approach constantly 
estimates the data of all model implementations and makes a strategic choice of input data that can 
be used for HDM. 

Direction of a multivariate HDM is relevant. The main advantage of multivariate history 
matching is a possibility to implement many versions of the reservoir model and assess the risks 
probabilistically [8]. 

The purpose of the work is to increase the reliability of forecasting technological development 
indicators for reservoirs developed at an early stage. The following tasks have been set: 

• Definition of the study object; assessment of exploration degree of reservoir properties. 
• Construction of a single-medium HDM with indirect consideration of fractures. Determination 

of uncertainty parameters and the most sensitive HDM parameters for the target function by means 
of multivariate history matching. 

• Assessment of exploration degree of fracturing parameters of reservoir. 
• Construction of a dual-medium HDM. Determination of fracturing uncertainty parameters and 

sensitivity of fracturing uncertainty parameters to the target function by means of multivariate history 
matching. 

• Determining the relationship between the fracturing uncertainty parameters and the calculated 
technological parameters of reservoir development. 

Scientific novelty consists in development of a scientifically grounded systemic approach to 
forecasting the technological indicators of development under the conditions of source data uncer-
tainty, which ensures an increase in reliability of long-term and short-term forecasts. 

Methods. The study object was selected according to the following criteria: a significant level 
of recoverable and residual oil reserves; development of reservoir at the initial stage; a high degree 
of source date uncertainty. Based on these criteria, the Tournaisian-Famennian (T-Fm) reservoir of 
Sukharev oil field was considered. 

The T-Fm reservoir is at the initial stage of development. According to a brief geological and 
physical characteristic (Table 1), it is clear that the T-Fm sheet is reservoir, massive, characterized by 
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low reservoir properties. Oil is characterized as light, low-viscosity, sulphurous, paraffinic, resinous. 
The average productivity factor for the reservoir is high; at the same time, the reservoir is low-per-
meable. It can be assumed that the system of fractures through which fluid is filtered to production 
wells is well developed. 

Table 2 presents the exploration degree of reservoir properties and physicochemical properties 
of reservoir fluids according to well logging data, well flow test (WFT), core studies, deep and well-
head oil samples. According to core studies, rocks of both effective and dense parts of reservoir are 
unevenly fractured. Layering fractures are differently oriented, intersecting, closed, healed with cal-
cite, to 0.45 mm wide, openness < 0.01-0.12 mm. 

 
Table 1 

 
Geological-physical characteristics of the T-Fm reservoir 

Parameters T-Fm 

Deposit type Sheet massive 
Reservoir type Carbonate 
Average effective net pay, m 11.0 
Porosity coefficient, unit fraction 0.08 
Reservoir saturation coefficient, unit fraction 0.91 
Permeability, µm2 0.002 
Initial reservoir pressure, MPa 21.46 
Viscosity of oil in reservoir conditions, mPa∙s 2.46 
Density of oil in surface conditions, g/cm3 0.837 
Sulphur content in oil, % 1.47 
Paraffin content in oil, % 5.37 
Productivity coefficient, m3/day∙MPa 24.9 

 
Table 2 

Exploration degree of reservoir properties and physicochemical properties of formation fluids 

Parameter Method Number  
of definitions 

Number  
of investigated wells 

Porosity Core 148 4 
Logging 53 5 

Permeability Core 141 4 
Logging 53 5 

Well flow test 16 6 
Oil saturation Core 49 3 

Logging 43 5 
Physicochemical properties of oil Deep samples 5 4 

Wellhead samples 6 4 

 
A small number of wells were studied. All wells are in the same area; thus, it is impossible to 

characterize the reservoir as a whole. It can be concluded that the T-Fm reservoir shows a high degree 
of source data uncertainty. 

A single-medium HDM of three-phase filtration was constructed (Fig.1); current geological 
model of the reservoir under study was taken as a basis. Dependences of PVT properties of reservoir 
fluids are taken according to the research based on the latest project documentation. For distribution 
of filtration properties within the model volume, petrophysical dependence permeability – porosity 
constructed on the basis of core studies was applied. For this reservoir, the functions of relative phase 
permeabilities (RPP) in oil-water system were determined by the analytical method from capillary 
pressure curves using (the Bourdain method) due to the lack of direct research.  
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Based on the analysis of geological field description of the reservoir, it is assumed that rocks are 
fractured, while the average permeability of the reservoir taken from the results of core studies is 
characterized by a low value and does not reflect the production capabilities of wells [9, 10]. There-
fore, to indirectly take into account the natural fracturing, it was decided to increase the values of 
absolute permeability of the reservoir in the area of production wells by applying a multiplier [11]. 

To find the optimal permeability value, the multiplier is set as an uncertainty. The choice of 
maximum and minimum permeability values was carried out taking into account actual measurements 
from core studies, well logging, well flow test as well as using these comparable reservoirs [12, 13] 
(Table 3).  

 
Table 3 

 
Range of uncertainty parameters  

 

Uncertainty parameters 
Value of parameter 

Minimum Average Maximum 

Aquifer permeability k 2 111 221 
Aquifer porosity m 0.06 0.08 0.11 
Average effective aquifer thickness h 3.2 11 19.8 
Absolute permeability multiplier (presence of fracture systems) 1.5 8.2 15 
Uncertainty of RPP – – – 
Skin factor –5 0 5 
Well-reservoir connectivity 0.5 5 10 

 
Further, as an uncertainty parameter, RPP functions of oil-water system are set to select the op-

timal dependence that closely characterizes the displacement process in fractured reservoirs. 
Influence of the edge water zone has a high degree of uncertainty, which is adjusted in the HDM 

proceeding from actual dynamics of reservoir pressure [14, 15]. It is possible to adapt the influence 
of water edge zone by average permeability, porosity, and effective thickness beyond the oil pool 
outline; therefore, these parameters were chosen as uncertainty. Variation range of these parameters 
was selected based on dynamics of actual reservoir pressure measurements and with involvement of 
comparable reservoirs. Such parameters as skin factor and well-reservoir connectivity characterizing 
well productivity were also chosen as uncertainty [16]. These parameters are dynamic in the de-
velopment process, so they have a high degree of uncertainty. 

The process of HDM adjustment to data on the production and injection wells operation is 
defined as history matching [17]. Quality of history matching is checked in accordance with current 

Fig.1. General view of single-medium reservoir model: cube of initial oil saturation (а) and permeability (b) 

Oil saturation  
(top) 

0.80 

0.60 

0.40 

0.20 

0.00 

Permeability along X  
mD (top) 

 
17.50 

4.81 

1.32 

0.36 

0.0 

a b 



 

 

Journal of Mining Institute. 2022. Vol. 258. P. 1026-1037 
© Aleksandr A. Kochnev, Nikita D. Kozyrev, Sergei N. Krivoshchekov, 2022 

DOI: 10.31897/PMI.2022.102 

1030
This is an open access article under the CC BY 4.0 license  

temporary regulations for assessing the quality and injectivity of three-dimensional digital geological- 
hydrodynamic models. The regulations imply that the deviation of the estimated cumulative  
production of liquid and oil should not exceed 5 %, and the deviation of the estimated annual pro-
duction of liquid and oil – 10 %.  

At this stage of work, a multivariate history matching was carried out taking into account the 
selected range of uncertainty parameters in the Enable (Roxar) software. Next, the quality of all cal-
culations was assessed in accordance with current regulatory document, and the sensitivity was ana-
lysed which showed the degree of influence of each uncertainty parameter on levels of cumulative 
oil production [18]. A total of 95 calculations were made, of which 32 are within the scope of the 
regulation, i.e., history matching has 32 equiprobable solutions. Black lines show the boundary cal-
culations, and the calculations distributed above or below the boundary ones are not included in the 
current regulation (Fig.2, a). It can be seen from the tornado diagram that the most influencing un-
certainty parameters is an absolute permeability multiplier, which indirectly considers the presence 
of fracturing, and the RPP dependence (Fig.2, b). In view of the fact that core studies revealed frac-
turing and the accepted average permeability for the reservoir identified by well logging is charac-
terized by low values and amounts to 2 mD, and the WFT recorded an average value for the reservoir 
equal to 123 mD, it can be concluded that filtration mostly occurs via a well-developed system of 
fractures [19, 20]. To approximate the HDM to the characteristics of a real reservoir, it is necessary 
to construct a dual-medium HDM, which considers filtration via the matrix and fractured components 
of reservoir [21]. 
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For a comprehensive study of fracturing of the T-Fm reservoir, well logging, well flow test, 
studies of directed core and 3D seismic were considered [22]. Since fracture parameters are dynamic 
depending on reservoir pressure, it was decided to take well logging data, core studies and 3D seismic 
data as initial fracturing conditions and use well flow test to consider the effect of reservoir pressure. 
Special logging (VAK-D and EMS) carried out in three wells 4, 113, 215, and studies of directed core 
in wells 2, 3 made it possible to determine the intervals and direction of fracturing [23].  

Hydrodynamic studies were performed in all operating wells using pressure recovery curve 
(PRC) method. PRC during processing (in accordance with the Warren – Root model) confirmed the 
occurrence of fracturing [24]. Processing of PRC according to the Warren – Root method makes it 
possible to determine several fracture parameters and record their change in accordance with reservoir 
pressure dynamics [25]. Fracture indices were calculated in accordance with the Warren – Root model 
using the example of wells 3, 118, 121 of the T-Fm reservoir (Table 4). 

 
Table 4  

 
Results of PRC treatment in accordance with Warren – Root model 

 

Well number Year  qin.fl.rate, m3/day Рin.r.pr, MPa Win.fr.op, µm qс.f rate, m3/day Рc.r.pr, MPa Wc.fr.op, µm 

3 2017 83.7 
21.46 40.2 

53.5 13.39 68.6 
118 2018 62.5 8.5 8.66 30.3 
121 2018 67.7 67.3 15.49 196.7 

  

Notes: qin.fl.rate – initial fluid rate; Рin.r.pr – initial reservoir pressure; Win.fr.op – initial fracture openness; qс. fl.rate – 
current fluid rate; Рc.r.pr – current reservoir pressure; Wc.fr.op – current fracture openness. 

 
One of notable features of the development of fractured reservoirs are the pronounced defor-

mation processes occurring at a decreasing reservoir pressure. As a result, filtration characteristics 
can change significantly during exploitation of the field [26]. An example of the T-Fm reservoir of 
Sukharev field is the area of well 118. This area is characterized by geological isolation; therefore, 
there is a strong decrease in reservoir pressure below the saturation pressure. Figure 3 shows the 
dynamics of changes in total permeability and reservoir pressure. 

To consider the deformation processes, a dependence of changes in fracture permeability on 
reservoir pressure was obtained based on methodological provisions [27]. The main theoretical de-
pendencies are: 

Ktot = Kmе3βfr(Рres  – Рlat); (1) 

Kfr  = Km е3βfr(Рres – Рlat) – 1 , (2) 

where Ktot is total permeability; Km – matrix permeability; fr – fracture compressibility factor;  
Kfr – fracture permeability. 

These dependencies imply that for keeping vertical fractures open, reservoir pressure should 
exceed lateral rock pressure, which is determined from the formula: 

Рlat = РrockKlat; (3) 

Klat = ν/(1 – ν); (4) 

ν = 0.2 – 0.006mabs, (5) 

where Klat is the coefficient of lateral expansion; ν – Poisson's ratio; mabs – total porosity of the rock, %. 
According to the statistical data on comparable fields, for the T-Fm reservoirs vertical rock pres-

sure at average rock density of 2,450 kg/m3 is 48.2 MPa. At average mabs = 11 %, ν = 0.134, and Klat = 
= 0.155 values lateral rock pressure is 7.45 MPa, which is consistent with the results presented in [28]. 
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Based on the above dependencies, an averaged theoretical curve of changes in fracture permea-
bility values depending on reservoir pressure was obtained (Fig.4). 

To create a dual-medium model, FracaFlow software (Beicip-Franlab) was used, which allows 
analysing a set of source data on fracturing, creating a discrete fracture model (DFN-model), and 
distributing fracturing within the reservoir volume [29]. At the first stage, as a result of analysing 
special logging data and core, four groups of fractures were identified according to the Schmidt dia-
gram. Fracture density of the four families is determined, and on the basis of seismofacies analysis, 
a relationship is established between fracture zones and facies. Next, a DFN-model is constructed 
applying the stochastic method in a reduced part of the reservoir (near-wellbore zone), which is used 
to calibrate the statistical parameters of the fracture system (average orientation, length, etc.) and the 
parameters used in calculating the equivalent properties (porosity, permeability tensors, etc.). 

For the distribution of fracturing within the reservoir volume a discrete parameter was used 
which characterizes the probability distribution of fractures in each block of the grid. The parameter 
was obtained at the stage of geological modelling by superimposing the results of seismofacies 
analysis on a three-dimensional grid and the studies on distinguishing low-porosity carbonate 
reservoirs with secondary porosity based on well logging results. The obtained parameter was 
loaded into FracaFlow as a three-dimensional cube and used as a corrective property for the proba-
bility of fractures. 

At the first stage of constructing the dual-medium HDM, it is necessary to determine the type of 
model. For this, the Nelson classification of carbonate fractured reservoirs was used [30]. It was as-
certained that the filtration of reservoir fluid mainly occurs via fractures. The main reserves calculated 
by the volumetric method are concentrated in the pore component of the reservoir. Based on a com-
parison of the classification and filtration processes occurring in the T-Fm reservoir, it was decided 
to perform calculations on the dual-porosity HDM. 

In the process of constructing the dual-porosity HDM the grid is duplicated in order to assign 
properties for the matrix and fracture components. At the next stage, deformation processes are modelled. 
To consider deformation, a certain dependence of fracture permeability on current reservoir pressure 
was taken as a basis and converted into a dependence of the ratio of current fracture permeability to 
the initial one on the value of current reservoir pressure. In the hydrodynamic model, this dependence 
was assigned as a KVSP table [31]. Since reservoir pressure has different dynamics in each zone of 
production wells, it was decided to set the dependence of fracture deformation for each region of 
production and injection wells [32]. The most important characteristic of multiphase filtration is RPP 
for fluids saturating the void space [33]. The functions obtained as a result of laboratory core studies 
were taken as basic dependences of RPP for the pore component of carbonate reservoir. Lack of data 
on the RPP in the fracture component complicates construction of the dual-porosity model. Shape of 
the RPP curves for fractures is taken as a cross [34]. 

When creating a dual-porosity model, it becomes necessary to set the Sigma parameter, which 
characterizes a hydrodynamic association between the matrix and the fracture. This parameter was  

Fig.3. Reservoir pressure change dynamics 
and total reservoir permeability in area of well 118 
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selected empirically using the data obtained during the PRC processing in accordance with Warren – Root 
model focusing on reproduction of actual well performance on dual-porosity hydrodynamic model. 

For fractures, as a rule, the saturation value is judgement-based [35]. Considering multiple 
opinions on determining the value of the initial saturation coefficient Kin, the value of Kin in frac-
tures is taken as 0.9. Such high oil saturation value does not have a decisive influence on overall 
reserves of the reservoir, since average fracture porosity is 0.01 unit fraction. Thus, a HDM with 
dual-porosity system was constructed (Table 5). General view of the dual-medium HDM cubes is 
shown in Fig.5. 

 
Table 5 

 
Comparison of HDM characteristics 

 

Parameters HDM within design tech-
nical documentation 

Dual-porosity 
HDM 

Matrix porosity, unit fractions 0.08 0.08 
Fracture porosity, unit fractions 0.01 
Oil saturation of matrix, unit fractions 0.91 0.745 
Oil saturation of fractures, unit fractions 0.9 
Geological oil reserves in pore part of reservoir, % 100 86.2 
Geological oil reserves in fractured part of reservoir, % 13.8 

 
For a more detailed study of the influence of fractures on oil production levels, fracture parameters 

are considered as uncertainty. Based on the analysis of source data necessary to construct a dual-
medium model it was found that the parameter characterizing the deformation process has a high 

Fig.5. General view of dual-medium reservoir model: а – permeability cube of pore and fracture component;  
b – porosity cube of pore and fracture component 
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degree of uncertainty, since it was obtained from 
theoretical dependencies and averaged estimate pa-
rameters. It is necessary to consider the range of 
values of estimate parameters and the fact that in 
the area of each production well different permea-
bility values of the matrix component of carbonate 
reservoir are recorded. Thus, there is a possibility 
of multiple dependences of a change in fracture 
permeability from reservoir pressure. Figure 6 
shows the dependences characterized by the maxi-
mum, minimum and average values of fracture per-
meability and highlights the area within which the 
dependences can be distributed. 

Sigma coefficient which characterizes the re-
lationship between the matrix and fractures was se-
lected empirically using the data obtained during 

PRC processing (in accordance with Warren – Root model; it can be concluded that this fracture 
parameter is highly uncertain [36]. As an uncertainty, the fracture compressibility coefficient was set, 
since this parameter was obtained from PRC interpretations in accordance with Warren – Root model. 
The range of changes of these parameters was chosen based on PRC processing with involvement of 
comparable reservoirs. 

Range of uncertainty parameters values (minimum/average/maximum): matrix-to-fracture con-
nectivity (Sigma) – 1/5/10; fracture compressibility coefficient βfr – 0.078/0.114/0.15 MPa–1. 

To analyse the sensitivity and identify the parameter that has the greatest impact, a multivariate 
history matching was accomplished under conditions of fracturing parameters uncertainty. 95 calcu-
lations were performed, 42 of them comply with the regulations. According to results of sensitivity 
analysis of uncertainty parameters to oil production levels, it was found that deformation of the frac-
tured component had the greatest effect on oil production levels. 

Other parameters had a minor impact on cumulative oil production levels; therefore, to identify 
the dependence of deformation processes on cumulative oil production, the parameters were excluded 
from uncertainties for prediction calculations [37]. 

Dependence of deformation impact on oil production levels was determined by multivariate fore-
casts under conditions of deformation uncertainty. To avoid a possible error in assessing the effect of 
fracture deformation on oil production levels, a multivariate forecast was made for the current develop-
ment system, i.e., only for the studied part of the reservoir. During multivariate modelling, it was 
ascertained that with a dependence characterizing the maximum values of fracture permeability, no 
maximum oil production is recorded, which indicates premature flooding. By comparing oil produc-
tion and fracture permeability at fixed current reservoir pressure, an estimated empirical dependence 
of cumulative oil production on current fracture permeability was obtained. The dependence shows 
the range of fracture permeability (27.3-48.2 mD), at which the maximum oil production is recorded. 
Areas of the most intense fracture closure and premature flooding were identified [38]. Coming back 
to the dependence of fracture deformation, it is possible to determine the range of reservoir pressure 
(14.8-17.1 MPa), at which the maximum oil production is predicted (Fig.7). 

A multivariate forecast under conditions of uncertainty of the dependence of a change in perme-
ability of the fracture component of reservoir on reservoir pressure values made it possible to deter-
mine the rational reservoir pressure, at which an intense closure of fractures and premature flooding 
are not recorded. 

 

Fig.6. A set of dependences of changes in fracture  
permeability on reservoir pressure 
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Discussion of results. The study object was chosen according to criteria that provide a lot of 
uncertainties which can significantly affect the technological and economic efficiency of the asset. 
Primary parameters of uncertainty and their ranges are established according to actual studies with 
involvement of comparable reservoirs. A multivariate history matching was accomplished; using its 
results 32 solutions were found. To determine the most significant uncertainty parameters, the sensi-
tivity analysis to oil production levels was performed. It was ascertained that the values of absolute 

Fig.7. Results of multivariate forecast for HDM: a – dependences of change in fracture permeability 
from reservoir pressure values; b – cumulative oil production for different values of fracture permeability; 

c – dependence of cumulative oil production on fracture permeability; d – dependence of changes in fracture permeability  
on reservoir pressure values with a mark of the zone characteristic of maximum cumulative oil production 

1-3 – Kper of fractures, mD: 1 – min, 2 – max, 3 – average; 4 – Prat.res zone 
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reservoir permeability affect oil production levels and oil recovery factor. Accordingly, this parameter 
requires a more detailed study using reservoir fracturing data. With the help of a comprehensive analysis 
of the results of hydrodynamic, core, geophysical and seismic studies, a significant effect of fracturing 
on reservoir permeability values was established. Thus, it was decided to construct the dual-medium 
model that describes the filtration processes in the matrix and fractured components of the reservoir.  
As a result of collection and analysis of source data, uncertainty parameters of fractures were determined. 
In the course of multivariate history matching and sensitivity analysis, it was revealed that the dependence 
of a change in permeability on reservoir pressure values has a decisive influence on oil production levels. 
It was decided only to evaluate the effect of fracture permeability dependence on reservoir pressure values 
on oil production levels. According to the results of a multivariate forecast for 20 years, the optimal  
reservoir pressure has been determined, at which the maximum oil production levels will be recorded. 
Maintaining reservoir pressure in the identified range will ensure a rational development of this reservoir 
and the maximum oil recovery factor.  

Conclusion. Consideration of uncertainty parameters in the HDM allows setting model pa-
rameters that have a significant impact on oil production levels, which serves as the basis for its 
further detailed and comprehensive study. The use of multivariate modelling technology under con-
ditions of model parameters uncertainty makes it possible to obtain a set of equally probable imple-
mentations of hydrodynamic reservoir models and evaluate the technological efficiency of the reser-
voir considering the risks of further non-confirmation of reservoir properties. Multivariate modelling 
made it possible not only to reduce the degree of uncertainty by means of history matching, but also 
to identify the range of rational reservoir pressure, which will ensure the maximum oil production 
level for the reservoir under consideration. 
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