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Abstract. It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking 
up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of 
passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality 
factor of the contours in the point areas of formation development channels in interwell zones. It is established that 
determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only 
for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological 
support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method 
of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of reso-
nance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied 
formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential 
flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties 
of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of 
new segment formation in the FDC trajectories, which contributes to a more complete development of productive 
hydrocarbon deposits and increases the reliability of prediction for development indicators. 
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Introduction. One of the most efficient formation stimulation methods is waterflooding of pro-
ductive horizons [1-3]. However, the efficiency of this method is not high enough and in some cases 
it can be negative [4, 5], which reflects a wide variety of deposits by geological structure [6, 8]. In this 
regard, investigations have been conducted, which refer to the field of fluid mechanics of oil recovery 
with increased indices of productive formation recovery by contours of its operating objects volume, 
developed with artificial waterflooding [9-11]. At the same time, the oil recovery factor (ORF) of a 
formation is largely determined by reliability and accuracy of predicting its parameters [12-14]. The 
Fetkovich palette method [15] and its variants: Blassingeme, Agarwal – Gardner, NPI and others are 
the most acceptable for predicting [16-18]. They are based on geological and geophysical data on the 
results of investigations of flow rate and pressure in injection (IW) and production (PW) wells 
[19-21]. However, their inherent low metrological capabilities of current formation parameters predic-
tion should be taken into account. All these methods by their measurement capabilities refer to the 
class of indicator methods, as their reduced errors exceed permissible values ( > 10 %) both in steady-
state and non-steady-state hydrocarbon recovery modes [22-24]. 

For this case, the problem of predicting formation permeability and porosity properties (PPP) 
under steady-state conditions is determinable. At the same time, the ORF for profitably operating 

JOURNAL OF MINING INSTITUTE 
Zapiski  Gornogo inst i tuta  

 
Journal homepage: pmi.spmi.ru 

 

ISSN 2411-3336; е-ISSN 2541-9404 
 



 

 

Journal of Mining Institute. 2022. Vol. 257. P. 755-763 
© Sergei А. Batalov, Vadim Е. Andreev, Vyacheslav V. Mukhametshin, 
Valerii М. Lobankov, Lyubov S. Kuleshova, 2022 

DOI: 10.31897/PMI.2022.85 

 

756 
This is an open access article under the CC BY 4.0 license 
 

fields is 0.35 [25-27]. In general, the essence of investigating the predictable parameters is to deter-
mine the parameters of wave resonances. Their most demonstrative results were obtained in electrical, 
acoustic and other types of systems with concentrated parameters of control objects. However, the 
technological processes of, for example, adjacent petrochemical industries, are difficult to implement. 

For the first time, Russian scientists (A.G.Butkovsky, E.Ya.Rapoport and others) substantiated 
directions for research of systems with distributed parameters. However, their modelling results refer 
only to available measurements of parameters of zonal sections (segments) of control objects. Con-
ditions for modelling of formation operation with spatially distributed coordinates on the basis of 
electromechanical and hydraulic analogies are significantly violated in non-stationary mode of oil 
extraction [28-30]. 

The problems aggravate when modelling the formation performance based on more advanced 
hyperbolic equations instead of the previously used parabolic equations [31-33]. This is particularly 
noticeable in the implementation of meta-technology of hard-to-recover hydrocarbons production 
(HRH), when the operation object is subjected to extreme regulation [4, 16, 34]. Thus, adequate re-
sults are obtained in dimensionless formation values when modelling and solving Cauchy problem 
due to implementation of HRH meta-technology. In this case, stability and quality conditions of fluid 
mechanics of oil recovery can be obtained in computational form based on the mathematical appa-
ratus of wave resonance [35-37]. 

Based on mentioned conditions, the aim of the work is to increase reliability and accuracy of 
predicting the parameters of remote interwell formation zones with extreme regulation of the wave 
resonance function in the process of increasing the oil recovery factor. 

Methodology. Achievement of the generalized aim for the most complete formation develop-
ment is ensured by numerical modelling and solution of two types of problems. The first one implies 
the use of a hyperbolic type hydromechanics model of oil displacement [34] in modelling the chain 
structure based on the parameters of hydroresistivity Rh of the flow tube, piezoinductivity in piezo-
conductance (Lh  F()) and piezocapacity (Сh  F(oil.res)) in oil saturation of the formation section, 
with the addition of average results for petrophysics in metrological support of previous and interme-
diate stages of oil and gas deposits development (ODD). 

The solution of the second problem is connected with determining the parameters of remote inter-
well zones by applying the principle of autonomy, which was first realized by using a new meta-tech-
nology of HRH production [38-40]. The essence of its implementation consists in combining oil dis-
placement, investigation and isolating modes of areas in the formation development channel (FDC) 
with fulfillment of conditions: Р od.min < Р od.r < Рod.max< Рinv < Рis < Рhydr. These values are shown in 
Fig.1 as formation pressure maintenance: Рinv  investigation; maximum Рod.max, rated Рod.r and mini-
mum Рod.min values during oil displacement; Рhydr  the value of hydraulic fracturing pressure. 

In epures E1 and E2 (Fig.1), isolation pressure Рis is not used conditionally, since it is applied 
only in operations of isolation of worn-out FDC sections with a value less than hydraulic fracturing 
pressure. The investigation pressure Рinv is selected for the hard mode of formation operation, the 
elastic mode of which is used as the oil displacement mode.  

The upper epure E1 shows conditionally the operation of estimated delivery time r
invi  for portion 

of tracer markers under formation pressure Рinv to the estimated point i ( 1, )i n in controlled area of 
interwell zone. After that, a transition to oil displacement mode under pressure Р od.r is made at cal-
culated time r

odi . 
Epure E2 shows the practical results of point i investigation in the FDC over time pr

invi  and delay 
del during transient formation. At the completion of tracer markers delivery to a FDC given point 
from booster pumping equipment in surface conditions the formation pressure maintenance is reduced 
from Рinv to Рod.r. 
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Series of points 1, 2, 3 and 4 are 
formed at the tops of the transient 
processes under formation conditions 
(from the IW near-bottomhole zone 
side). This reflects the dynamics of the 
practical result for evolutionary 
development of the single i fluctuation 

prFi  at pressures with maximum five-
point and minimum six-point values of 
amplitude. After formation of the 
transient process in the hard formation 
mode (between Рinv and Рop.max), the 
fluctuation prFi  is firstly produced with 
its further transition to the elastic mode, 
as depicted in the example of 
attenuation of the amplitudes to the 
minimum defined point 6. 

Each fluctuation prFi  is character-
ized by different lengths (or slope) of 
forward (ascending branch) and back (descending branch) fronts of transient processes during current 
prediction of residual oil saturation oil.res and piezoconductance  linear values [15, 29, 41]. In terms 
of hydraulic shock theory, such localization of fronts of each fluctuation is characterized as amplitude 
of pulsations smoothing (“slumping”) in the disturbed interwell FDC area at continuous changes. All 
this causes determination of variable parameters of the FDC trajectories in the form of linear hydraulic 
resistance Rh, piezoinductivity Lh and piezocapacity Сh. 

If the current parameters of steady-state investigation r
invi  and oil displacement r

odi  processes 
can be predicted in the solutions of hyperbolic equations according to the chain FDC scheme, then in 
non-steady-state transient processes of the formation additional parameters can be predicted according 
to the localized autonomous oscillator scheme. 

From the point of view of electrohydromechanical analogies, the method of complex amplitudes 
is the most appropriate for this research problem. The equation of motion for the oscillator can be 
expressed as: 

h h 0
h

1 ,j tPL R P P t q e
t C


   

     (1) 

where P – pressure in the tube of current lines at the developed formation; q  – the difference in 
potential fluid flow rates between the injection and production wells;  – frequency of the excitable 
oscillations. 

When solving equation (1) by the method of complex amplitudes (for pressure in FDC current 
tube Р = Ре jt), we obtain Р = 0q /Z, Zh = Rh + j(Lh  1/Ch), which is complex resistance of oscil-
lator on line FDC section. For formation pressure modulus in formation current tube will be: 

0 0
0 2 2

h h

.
( 1 / )

q qP P
Z R L C

  
   

   

To find the maximum formation pressure in the current tube of the formation, the condition 
Р0max = 0q /R must be met when Lh= 1/Ch (at  = 0). 

Based on the conditions obtained, normalized resonance curves for formation pressure can be 
found in the form of a functional: 
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Fig.1. Time diagrams of transient processes in FDC 
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0
0 2 2 2 2 2 2

0max h h 0

1F ( ) ,
( 1/ ) 1 (1 1/ )

P
P Rv

P R L C
  

        
  (2) 

where P0max – maximum formation pressure; θ0 = 0L/R – quality factor of the resonant circuit;  = /0 – 
coefficient of resonant frequencies in the ratio of the forced circular frequency  to the natural 0 fre-
quency of the resonant circuit (oscillator) of the investigated area in the remote FDC zone. 

Figure 2 shows series of normalized resonance curves for the formation pressure in the linear 
current tube of the FDC when their quality factors θ0 = 1; 2; 10 are depicted. 

Resonance of the flow rate drops as tension on the piezocapacity 0 0q  is obtained at a lower 
natural frequency 0 with respect to the circular frequency . This is achieved under (2) at 

22
01 1/ 2    . In contrast, the flow rate drops as tension on the piezocapacity 0 0q  are obtained at a 

higher natural frequency 0 with respect to the circular frequency  at 22
01 1/ 2    . 

Presented resonance curves correspond to the results of investigations on deteriorated areas in 
the remote zone of the formation. Therefore, they are obtained with unambiguous symmetry of reso-
nances for an oscillator with the following parameters: Lh = const; Ch = const; Rh = const; and only 
the values of the frequencies of excited oscillations are variable ( = var). 

It is of practical interest to determine resonance dependencies when one of the energy-consuming 
linear parameters of piezocapacity or piezoinductivity in the investigated FDC segment changes: 
Lh = var (or Ch = var) at P = const. For example, determining the parameters at the critical point of 
the investigated FDC area by calculating the values of piezoconductance. In this case, normalized 

resonance curves in the form of current 
functional for formation pressure when changing 
natural frequency of the circuit can be found in 
analogy (2): 

0 0
0 0 2 2 2

0max 0

( ) 1F ( ) ,
1 (1/ 1)

P
P
P


  
  

   (3) 

where θ0 = Lh/Rh – quality factor of a resonant cir-
cuit at a constant forced oscillation frequency . 

Figure 3 shows the family of resonance 
curves at changing of natural frequency of autono-
mous FDC oscillators for quality factors 
θ0 = 1; 3; 10. Thus, changing of one of reactive 
resistances (Lh) leads to changing of natural fre-
quency of oscillator 0. 

This problem is considered in terms of the 
sensitivity threshold for optimal oil recovery. The 
solution to this problem is to a large extent reduced 
to the study of parametric resonance of remote 
areas in the interwell zones. At the same time, 
theory of oscillations considers the modulation 
depth of piezocapacity Ch or piezoinductivity Lh as 
the basic calculation values for this case. 

By analogy with electrical oscillation sys-
tems, the depth of modulation for the piezocapa- 
city as a function of residual oil saturation can be 
defined as: 

0 = 1 
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Fig.3. Family of resonance curves at changing 
of natural frequency of autonomous FDC oscillators 

for quality factors 1; 3; 10 

Fig.2. Interpretation of normalized resonance curves for 
different quality factors of autonomous FDC oscillators 
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h.max h.min h

h.min h.min 0h
,С

С С Cm
С С C

 
 


  (4) 

and the depth of modulation for the piezoinductivity as a function of the piezoconductance of the 
controlled remote area of the formation can be expressed as: 

h.max h.min h

h.max h.min 0h
,L

L L Lm
L L L

 
 


  (5) 

where the increment of piezocapacity Ch (or piezoinductivity Lh) is many times less than its no-
minal value Ch << C0h (or Lh << L0h). 

If the energy input exceeds the losses, then there is an increase in the system oscillation: 

0
thr

1 1 ,
2 2

Cm m R d
L

      (6) 

where d – logarithmic decrement of oscillation attenuation in the circuit. 
In general, the description of parametric resonance for all systems is done using a differential 

equation in variable states, a particular form of which is the Mathieu equation: 
2
0(1 cos( )) 0,y m t y     (7) 

where y – changes (in the second derivative) of the system state to characterize it in the phase plane; 
2
0  – squared values of the resonance frequency of the system; m – the depth of modulation for the 

resulting parametric resonance. In this case, the solution of the Mathieu equation (7) is reduced to 
determining not only the modulation depth m, but also the value regions of the frequency ratio 20/. 

Russian scientists A.A.Andronov and M.A.Leontovich calculated these ranges of values for sys-
tems without attenuation (necessary for determining the petrophysical properties of the rock sample) 
and with attenuation (providing for determination of FDC linear PPP) based on the following 
equations: 

2
0 (1 cos( )) 0;x m t x     (8) 

2
02 (1 cos( )) 0.y y m t y        (9) 

The results of the calculations can be explained in the form of graphs (Fig.4), which show that 
the tops of the parametric instability regions rise in the presence of losses in the system. In the case 
  

 
 

 
Fig.4. Areas of parametric excitation of autonomous FDC oscillators for the system 
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of a conservative system, there is a non-attenuated complex process outside these regions, and in the 
case of a dissipative system there is a attenuated oscillation process. At the boundary of these regions 
a balance of energy is observed. 

In the same regions the width of the instability region is smaller for dissipative than for con-
servative oscillatory system. As the number of the instability region increases, due to a rarer energy 
input into the system ( = 2/n at n = 1, 2, 3…) to obtain the same width of the excitation region one 
must increase the modulation depth of the reactive parameter m. 

Thus, the obtained values of parametric excitation without attenuation (Fig.4, a) can serve as a 
basis for petrophysical determination of wave properties for rock samples parameters at metrological 
support of investigations, and with attenuation for determining parameters of the studied FDC seg-
ments. Combined use of force and parametric resonance methods provides reliable prediction of pa-
rameters for separate regions of interwell distant zones. 

Discussion of the results. In the late stages of ODD, formation ORF values are conditioned by 
a small increase [42, 43]. Therefore, for oscillators at different points I in FDC between IW and PW, 
linear parameters Rh ≃ const and Ch ≃ const. The depleted regions of the interwell zones are charac-
terized by variable values of piezoconductance, i.e. the linear piezoinductivity Lh ≃ var. 

Figure 5 shows E1 and E2 epures of the results for interwell investigations in spatial formation 
geometry (E1) and the determination of piezoconductance values (E2). 

The basis of instrumentation for the considered investigations is a complex well equipment in-
stalled in the intervals of IW and PW perforation. It consists of well pressure, temperature, flow rate 
and watercut transducers together with passive noise-metering and gamma equipment for tracer mar-
kers control. 

As a result of the FDC parameters investigation using quality factor diagrams (see Fig.2, 3), the 
deteriorated areas of the interwell zones are determined based on the force resonance techniques with 
identification of areas A, B and C. 

When the formation is investigated in the later stages of deposit development, spatial and 
temporal coordinates are determined in parametric resonance to determine the isolation points of the 
FDC segments by determining their piezoconductance. As a result, regions of different 
piezoconductance are identified on the E2 epure to determine further isolation operations of the 
segments in the functioning trajectories of the l FDC. 

 

– .. – ..  1   ──  2   - - - -  3   │  4    →  5 

Fig.5. Epures of results for the investigations of interwell zones (Q – residual oil saturation)  
1 – production object contour; 2 – carbonate inclusions; 3 – working agent (water) phase; 4 – sandstone rock; 5 – fluid flow direction 
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Conclusion. The use of force resonance leads to the effect of “shaking” the formation, followed 
by breaking up the film oil and involving it in the further filtration process. This necessitates control 
of quality factor in the point area of the remote FDC zone when excited, as well as additional imple-
mentation of parametric resonance conditions. 

For the first time in oilfield geophysics, the concept of passive noise-metering method is justified 
for monitoring ODD by measuring the quality factor of the contours in the point areas of interwell 
zones. Application of measurements for slowly changing amplitude-frequency spectrum during the 
“slumping” of the resonance region in the study area is also justified for the first time. 

Parametric excitation of oscillations in the controlled FDC region is possible only by changing 
one of the energy-intensive linear parameters of piezocapacity Ch as a function of oil saturation or 
piezoinductivity Lh as a function of piezoconductance with terrigenous, clay and carbonate rocks of 
productive formations. 

Determining the depth of modulation for the reactive substitution parameter of the linear FDC 
chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but 
also without attenuation in the metrological support for the analysis of petrophysical properties of 
rock samples. 

Based on the method of complex amplitudes (for formation pressure current, differential flow 
rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for 
differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes 
of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear 
piezoinductivity of the FDC section). 
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