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The purpose of the article is to develop a detailed and accessible technology for the application of wavelets in 

the processing of geo-information, the subject of research is wavelet-based filtering and compression of geo-
information. The research methodology is based on the modern theory of wavelets in the light of linear algebra. Re-
search methods involve study and generalization, abstraction, formalization, mathematical modeling using computer 
programs compiled by the authors. 

After the introduction and formulation of the problem, the basic positions of linear algebra are presented, on 
which the content of the article is based when constructing orthonormal bases in one- and two-dimensional cases. 
First, the application of the general theory to the decomposition of the vector of initial data in the Haar and Shan-
non bases is given. Further, on the basis of the Haar basis, orthonormal bases of wavelet transforms and filtering 
information are constructed. The procedure for creating wavelet filters by a sequence of convolutions, the use of 
MSA analysis for constructing an orthonormal basis of the wavelet transform is considered. Implemented the prac-
tical possibility of wavelet filtering based on specific programs for modeling geo-information data fields and im-
ages, data compression and filtering. The result of the work is the methods of constructing orthonormal bases by 
various methods of wavelet transform, based on which algorithms and corresponding computer programs for 
geoinformation compression are compiled using the example of terrain and photographic images. The efficiency 
of geoinformation compression and noise filtering using wavelets was investigated. A method has been developed 
for determining the value of a filter depending on the accuracy of the initial geo-information, illustrated by the ex-
ample of calculating the filter value for compressing information about the heights of the terrain. The same tech-
nique is recommended for image filtering. 

Key words: wavelet transform basis; convolution; MSA analysis; filtration; compression; accuracy; program; 
picture; data field 
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Introduction and formulation of the problem. Compressing and filtering of geo-

information are a topical issue of the theory of mathematical processing of geodetic information 
(measurements) and images. At the same time, it is necessary to maximize the use of the obtained 
information and to get the results with satisfactory accuracy and minimal storage cost, which is 
associated with the compression of information. This is important when working with geo-
information in geodesy, land management, environmental engineering, land monitoring, and in 
conducting precise agriculture [20, p.200]. In this case, the algorithms should be simple and accu-
rate to calculate. 

At present, Fourier transformations are widely used to simulate objects of compression and 
filtering of information [6, 9-11, 16-19, 23]. However, even in its fastest version (fast Fourier 
transformation – FFT), it is associated with many calculations. In turn, it was noted in [11, 18] 
that, in contrast to Fourier processing, transformations with other bases are possible, restoring 
discrete and continuous functions, but significantly reducing computations. One of such bases is 
wavelet. Currently, it is gradually finding practical application [7-15]. It should be noted here that 
the works [5-7, 21, 22] are of informative purposes only, they do not present the thorough use of 
wavelets [21], but mostly describe the noise suppression filters that can be used in modeling proc-
esses on wavelet basis. In the works [3, 17] the main theoretical principles on the theory of wave-
lets, based on foreign studies, are presented. To create technologies for processing geo-
information based on these papers, additional research is needed. In [1, 11], significant studies 
were carried out on the description of the gravitational field of the Earth by wavelets. It is shown, 
without a detailed description of the technology, that the use of information compression is not 
always effective when working with wavelets, although when using all the information, the field 
is quickly and completely restored. In [24, 25], the theory of only the first stage of the wavelet 
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transform is described in detail, and it is not brought to a universal algorithm. In [14, 15] the 
original idea of combining the Fourier basis and wavelet basis for modeling the gravitational field 
of the Earth (GFE) is put forward, existing wavelets are presented, only a general scheme of 
wavelet analysis synthesis is presented. In [4] in the wavelet transformation, foreign packets are 
used with an unknown algorithm. 

The listed works are of practical and theoretical importance in geo-information processing, 
but the theory of wavelets is not brought to the engineering level of their application. The fol-
lowing tasks are set and solved on the basis of the abovementioned papers in order to develop a 
detailed and accessible technology for applying wavelets in geoinformation processing: 1) con-
structing orthonormal wavelet transformation bases and filtering; 2) the creation of wavelet fil-
ters; 3) construction of filters by a sequence of convolutions; 4) application of MSA-analysis 
for constructing an orthonormal wavelet transformation basis; 5) wavelet filtering and data 
compression based on specific programs for modeling geoinformation data fields. 

Basic provisions. In accordance with [18], we give the following definitions. The cyclic shift 
operator of the sequence Z [18, p. 125] to the k-positions to the right is the operator Rk, creating a 
new sequence RkZ according to the formula 

)())(( knZnZRk  ,                                                              (1) 

where n – element number in the generated sequence.  
Let there be a series (vector of values) 

TZ )1,0,0,1(                                                                    (2) 

when N = 4. Then with k = 1 (R1Z)(0) = Z(0 – 1) = Z(–1) = Z(N – 1) = Z(4 – 1) = Z(3) = 1; (R1Z)(1) = 
= Z(1 – 1) = Z(0) = 1; (R1Z)(2) = Z(2 – 1) = Z(1) = 0; (R1Z)(3) = Z(3 – 1) = Z(2) = 0.  

Thus we get a new vector sequence 

R1Z = (1, 1, 0, 0)Т.                                                                 (3) 

With k = 4 we get the original vector again 

R1Z = (1,1,0,0)Т.                                                                 (4) 

According to definition 3.7 and theorem 3.8 [18, p.176] for some given vectors U and V, be-
longing to the same space of elements as the vector Z , for example (2), it is possible to construct 
an orthonormal basis of the form  

},...,,,,,...,,,{}{}{ 242242
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where U, according to [18], could be called the father wavelet, and V – mother wavelet; the symbol 
 – logical union of sets, М = N/2. 

In this article, the components of the basis, constructed by the vector U, will be called the pa-
ternal one and by the vector V – maternal. 

Orthonormality (5) is possible then only [13, p.250-258, Lemma 7.1; 18, Theorem 3.8], when 
the matrix system 
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for n = 0, 1, 2, …, M–1 is unitary. 
By unitary is meant such a matrix [18, p. 100], for which 

А–1 = А*,                                                                        (7) 

where А–1 – is the inverse of А matrix, and А* is the matrix conjugate to А, obtained by the complex con-
jugate value from all elements of the АТ, transposed to А. The complex conjugate to the number 
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z = x + iy is the number z̅ = x + iy. For matrices of real numbers, А* = АТ, Û(n), V̂ (n) are the Fourier 
transforms of given vectors U and V respectively. It is believed that the pair U and V gives rise to an or-
thonormal basis. In [18] the N-dimensional space of elements of the vector Z is designated as l2(ZN) 
space of values, including complex ones, on which the l2-norm is defined [18, p.112]: 

2
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The set of ZN sequence indices is denoted as ZN = {0,1, …, N–1} [18, p.111]. The generalization 

of the two-dimensional case is N1,N2-dimensinal space l 2(ZN1∙ZN2). If we assume that {B0, В1, …, ВN1–1} 
is the orthonormal basis [18, p.134] l2(ZN1) and {С0, С1, …, СN2–1} is the orthonormal basis l2(ZN2), 
then the orthonormal basis of the space l 2(ZN1∙ZN2) will be Dm1,m2(n1, n2) = Вm1(n1)Cm2(n2), where 
0  m1  N1 – 1; 0  n1  N1 – 1; 0 m2  N2 – 1, 0  n2  N1 – 1. 

For example, when  
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The scalar product of (complex) vectors z and w is an expression [18, p.91] 
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where w̅j is a number complex conjugated to wj. The convolution z*w is a vector with the following 
components  
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To use the convolution in [18, p.172] they introduce the conjugate reflection ~ of the vector :  

)()(~ knnk  , 
then 
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The construction of orthonormal wavelet transformation bases and filtering. As an example 
of constructing an orthonormal basis, we take the Haar vectors [13, p.270; 18, p. 190]: 

T

U 

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
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 0...,,0,
2

1,
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1 ;                                                           (8) 

T
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
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
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2

1,
2

1 .                                                           (9) 

Since it was established in [18] that the matrices A(n) (6) for vectors U and V are unitary, then 
using the rule (5), we construct the orthonormal basis for wavelet transformation of the vector Z, for 
example (2). Here N = 4 and M = N/2 = 2. 



 

 

DOI: 10.31897/PMI.2018.6.612 
 

Aleksandr S. Yarmolenko, Olga V. Skobenko 
Application of the Theory of Wavelets… 

615 
Journal of Mining Institute. 2018. Vol. 234. P. 612-623  ● Mining 

Then, in accordance with (1), (5), based on (8), (9), it is possible to make an orthonormal 
wavelet basis: 
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Then the wavelet transformation at this stage will be 

ZBZ *ˆ  .                                                                        (11) 

In the example it is  
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and the inverse transformation, following (11), has the form 

ZBZBZBZ T ˆˆˆ *1   .                                                           (13) 
In the example it is 
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Now let's filter the signal, i.e. its decomposition into paternal and maternal components of the 
wavelet basis. According to [13, c.26; 18, p.99] in space with a complex scalar product ‹,› and an or-
thonormal basis R={u1, u2, …, un} for any v of this space  

j

n

j
j uuvv 




1

, .                                                                  (14) 

Where v corresponds to the data vector Z and basis vectors uj for all columns of the matrix 
(10). After substituting them into (14) we get 
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It is clear from the example that Q(Z) and P(Z) are the components of the high and low fre-
quencies, respectively. Following [18, p.180], the high frequency component of the signal is rep-
resented as the formula 
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and the low-frequency component as 
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Examples of filters based on Shannon bases with real and complex numbers. If we use the 
components of the vectors Û and V̂  (Fourier transforms) in [18, p.179, 181], then for N = 4 sing the in-
verse Fourier transform, by analogy with (14)-(17), we can determine the high and low frequency com-
ponents for these examples and in these bases (Table 1). 

 
Table 1 

Decomposition of the Z vector in paternal and maternal wavelets in various bases 
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Original vector Z  

Haar Shannon 1 Shannon 2 
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From the comparison of the bases given in Table 1, as well as the Meyer, Barttle-Lemarier, 

Daubechies bases [13, p.207], the Haar basis must be given priority for the following reasons: 
• Haar basis is simple to calculate; 
• the signal filtering is clear on its basis; so, the low-frequency part at the first stage is equal to 

the zero Fourier transform coefficient, the high-frequency part corresponds to the deviations of the 
signal from its middle; 

• in bases other than Haar, additional requirements are imposed on the number N. For example, in 
the Shannon bases it must be a multiple of 4, and in the Haar basis of multiplicity of 2р with р = log2N; 
the number N determines the Daubechies basis as well [18]. 
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Constructing filters by a sequence of convolutions. In the wavelet expansions (16), (17), it is 
noted that the coefficients of R2kV, R2kU are corresponding scalar products, which in the form of 
convolutions can be written as [13, 18, 19]: 

)2(~, *
2 kVZVRZ k  ,   )2(~, *

2 kUZURZ k  . 

These expressions are the theoretical basis for the fast wavelet transform. Then a filter based on 
such a convolution is constructed as follows [13, p.279; 18, p. 187]: 1) forms the vectors Ũ, Ṽ (de-
scribed at the end of the basic provisions); 2) constructs convolutions Z*Ũ, Z*Ṽ; 3) introduces the 
decimation operator for removal of components with odd numbers D(ZŨ), D(ZṼ); 4) implements 
the sparse sample operator for doubling the size of the vector by inserting a zero between two adja-
cent values U(D(Z*Ũ)), U(D(Z*Ṽ)); 5) performs filtering – the vector of the low-frequency compo-
nent is constructed in the form of a convolution P(Z) = U*U(D(Z*Ũ)) and high-frequency 
Q(Z) = V*U(D(Z*Ṽ)); 6) restores the signal Z = P(Z) + Q(Z). 

This ends the first stage of the decomposition of the signal into high- and low-frequency compo-
nents. The number of all stages is determined by the formula р = log2N. Each subsequent stage consists 
of an analysis phase and a synthesis phase. In the analysis phase, at stage n the following is performed: 
1) input of the vector 11

~
  n

T
n UZ  and its decimation )~( 11   n

T
nn UZDZ ; 2) 2) input of vectors Un, Vn of 

the normalized basis of dimension N1 = N/2n–1; 3) decimation and thinning of convolutions n
T
n UZ ~ , 

n
T
n VZ ~ ; )~( n

T
nn UZUDUDU  , nUDV )~( n

T
n VZUD ; 4) the high-frequency and low-frequency compo-

nents of the Zn vector are calculated: Q(Zn) = Vn*U(D(Zn*Ṽn)); P(Zn) = U*U(D(Zn*Ũn)). 
In the synthesis phase, the following is performed: 1) thinning the vectors Q(Zn), P(Zn) (the 

thinning is performed n – 1 times until the original signal is reached): U(Q(Zn)), U(Р(Zn)); 2) the 
convolution operations receive the high and low frequency components of the signal at stage n: 
Qn(Z) = U(Q(Zn))*U1; Pn(Z) = U(P(Zn))*U1.  

The end result of the synthesis analysis is: 
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This algorithm is implemented in a specially designed software Sub Wavelet Analysis Synthe-
sis () created by the authors. 

Z signal can be represented as decomposition 

111100 ...  NN bcbcbсZ ,                                                      (18) 

basis B, which is a set of orthonormal bases [18, p.176, p.185-186]   1
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case )( T
ii Zbc  . The task is to determine the orthonormal vectors in decomposition (18). In the theory of 

wavelets [18, p.209-225, definition 3.28] instead of (18), the following representation is accepted: 
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If we take р = log2N, then (19) will be  

Z = c1,0–p,0 + c2,0–p,0 + c2,0–p,1 + … + 
+ cN/2,0–1,0 + cN/2,1–1,1+ … + cN/2,N/2–1–1,N/2–1.                                         (20) 

Here, all the vectors of the basis В –j,k are written from left to right according to the degree of de-
tail of the vector Z. In [18], they are written from right to left. The construction of basis vectors –j,k is 
performed in the following order [18, p.225]: 1) the sequence of wavelet filters U1, V1; U2, V2; …; Uр, 
Vр is used; here )(, 1/22  lNll ZlVU , for example, on the basis of (8), (9) with l = 2 we have 
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0
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U

; 2) each of the bases –j,k is constructed by formula [18, p.225] 
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jkkj fR j2,  , 

where fl = gl–1Ul–1(Vl), and gl = gl–1Ul–1(Ul) with initial values equal to f1 = V1, g1 = U1. In the above 
expressions, the operator Ul–1(Vl) means l–1-times thinning of vector Vl or Ul. The convolution ele-
ments fl (n), gl (n) для n = 0, 1, …, N-1 are calculated by the formulas  


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MSA-analysis for constructing an orthonormal basis of the wavelet transform. In funda-
mental works [13, 18, 19], the wavelet decomposition assumes the presence of scaling and shifting 
functions. In [18, definition 5.30], the scaling function is also called the paternal wavelet. In [13, 
p.103; 19, p.44] the term «paternal wavelet» in the definition of the scaling function does not apply. 
In the same works [18, p.198; 19, p.39-42, ch.5] the shifting function (mother wavelet) is simply 
called wavelet. 

In the Haar system, in accordance with [18, (5.49)], the father wavelet is written as 



 


otherwise.,0

;10,1
)(

х
х                                                          (21) 

Maternal wavelet according to the formula [18, p.380] 

)2()12()( ххх  ,                                                         (22) 

and that is easy to show has the form 






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
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otherwise.,0
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2
1,1

;
2
10,1

)( x

х

х                                                            (23) 

Paternal and maternal wavelets allow us to construct an orthonormal basis of the wavelet trans-
form to represent discrete geoinformation for processing. For this, the so-called multiple-scale 
analysis (MSA) has been developed in wavelet theory. On its basis, an easy-to-use algorithm for 
constructing an orthonormal wavelet transform basis is created. MSA analysis based on functions 

)2(2 2
, kxj

j

kj  
;                                                          (24) 

)2(2 2
, kxj

j

kj  
.                                                         (25) 

These formulas are given in [5, p.113, p.128; 13, p. 241; 18, p. 19, p. 193]. Moreover, in the works 
cited, the exponent in (24), (25) is attributed to both positive and negative signs, as in our case. In the 
case of a negative degree, the graph of the function is stretched along the x axis, and if it is positive, it is 
compressed. In our work, we are interested in stretching along the x axis, therefore, we have taken the 
notation of the degree with a negative sign. With such a record, the values of the functions are refined 
depending on the number of orthonormal vectors of the basis of the wavelet decomposition, i.e. there is 
an increase in the details of the analyzed information or an increase in the resolution. Therefore, in for-
eign literature [5, p.113], the MSA is rightly called multiresolution analysis. The construction of wavelet 
bases in the Haar system will be based on (21) – (25) in the following order: 

1) construction of the basis vector of the zero approximation ; 
2) construction of the subsequent specifying basic vectors. 
1. Construction of the basis vector of the zero approximation. The basis for the construction of 

all basis vectors is the wavelet basis of the form [18, (3.67), (3.84)], which we use in the expansion 
(20). Although in the theory of wavelets [3, 5, 13, 17-19], the possibility of constructing several ba-
sis vectors of the zeroth approximation is allowed, in this paper we confine ourselves to only one 
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in accordance with this decomposition. In this case, such a decomposition is most often applicable 
in various rows, including the decomposition in a Fourier series. In accordance with decomposi-
tion (20), adopted here as the basis, the basis vector –р, k is unique, since k «moves» through val-
ues from 0 to ((N/2p) – 1) [18, (3.67)]. (In MSA the notations –р, k, –р, k of decomposition (20) 
correspond to –р, k, –р, k.) Since N = 2p, then k = 0. Hence, in (24) j = p, k = 0. According to (21) 
0  2–рх – k < 1, or k  х < (1 + k)/2–p. With k = 0 there will be 0  х < 1/2–p and the components 
of this vector will be determined by the formula 



 




otherwise.,0
;20,12)( 2

pp хх                                                     (26) 

Thus, based on (26) we obtain the vector 

)1...,,1,1(2 2
0,

p

p


                                                             (27) 
with the number of identical members 2p. 

2. Construction of the subsequent specifying basic vectors. Subsequent specifying basis vec-
tors are calculated by (25) with (23) taken into account. The order of the set of non-intersecting 
basis vectors [18, (3.67)]    12

0,



jN

kkjU  is determined by the value of j. His value changes from p – 1 

to 0 with a step of – 1. Then the number of basis refinement vectors of order j will be a value of 
jN/2 . The value of k will change from 0 to 1/2 jN . For example, for j = p we have the following 

specifying vector (unique): –р, 0. For j = l the specifying vectors of order l will be: –l, 0; –l, 1; 
  12, 

 lNl . Thus for N = 8 p = 3 the specifying vectors of order l = 1 with the upper limit k, equal 
to N/2j – 1 = 2p/2–1= 3, will be: –1.0; –1.1; –1.2; –1.3. Each of these vectors with a certain k is 
also determined by (25) with regard to the maternal wavelet (23). Then you can write 



















 





otherwise,0

;12
2
1,1

;
2
120,1

2 2
1

, kх

kх

l

l

kl     or    





















 







 




otherwise.,0

;2)1(2
2
1,1

;2
2
12,1

2 2
1

,
ll

ll

kl kхk

kхk

         (28) 

As an example, take p = 3, l = 1, k = 2. 
Then 


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
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otherwise.,0
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2
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Table 2 gives an example of wavelet decomposition using both the convolution method and the 
MSA method. 

Table 2 
Decomposition of vector Z by components  and  

Components Original 
vector с1,0∙–3,0 с1,0∙–3,0 с1,0∙–3,0 с3,1∙–2,1 с4,0∙–1,0 с4,1∙–1,1 с4,2∙–1,2 с4,3∙–1,3 

4 7.25 –3.25 –1 0 1 0 0 0 
2 7.25 –3.25 –1 0 –1 0 0 0 
3 7.25 –3.25 1 0 0 –2 0 0 
7 7.25 –3.25 1 0 0 2 0 0 
10 7.25 3.25 0 –1.5 0 0 1 0 
8 7.25 3.25 0 –1.5 0 0 –1 0 
10 7.25 3.25 0 1.5 0 0 0 –2 
14 7.25 3.25 0 1.5 0 0 0 2 
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Each component was calculated by the formula: 
for the low frequency 








jpN

i
ji

jp
ji PP

/2

1
1,, /21  

and high frequency  
Qi,j = Pi,j–1 – Pi,j. 

Here j – number of the stage; i – number of the signal component in the group (the group consists 
of 2, 4, ... 2p elements, depending on the sequence number of the stage, respectively): p is the number of 

stages. The end result: 





1

0
1

p

i
ipQPZ , where P1 is zero frequency component (vector –3,0 in Table 1); 

Qp–i are specifying components. In the above transformations at each stage with non-integer p the re-
mainder of elements is possible, the number of which is less than the number 2ip with ip = 1, 2, …, 2p. 
This balance also contains the average TZ value, which is written in the highest pip line in place of this 
remainder elements. The last line immediately following the line with the number of the integer part of 
p, denoted by pf, is the average of all elements of the previous line Ppf. This average is the same for the 
Ppf + 1. The subline qpf + 1 is calculated in the general order: 

qpf+1 = Ppf – Ppf + 1. 

Investigation of the efficiency of geoinformation compression and noise filtering using wave-
lets. The research is based on specially compiled by the authors of the program in the languages 
VISUAL BASIC Excel (VBE) and IDL systems ENVI for compression and filtering geo-information. 
As the first object of research, the model of relief, given in [23], was adopted. In VBE-program Sub 
MacrosWAVELsYstOsh() the true heights of the points are represented by the сс1() array, nd the 
heights weighed down by random errors are represented by cm() array. As in [23], the connection of real 
arrays is defined by the formula сm(i) = сс1(i) + delta, where i changes from 0 to N – 1, and 
delta = Randbetwen (–t, +t)Std is the function of  VBE for generating a random number in the range of 
quantile values from –t to +t; Std is a standard for random error (noise). The heights of the cm() array 
are subject to wavelet decomposition by frequencies. With wavelet compression and, accordingly filter-
ing, the expansion terms remained the largest in amplitude at all frequencies. The filtration vector is rep-
resented by the array Filt = Array(1; 0.8; 0.6; 0.5; 0.25; 0.15; 0.1; 0). For example, if the Fil-
ter = Filt(1) = 0.8 value at all decomposition frequencies, the values of more than 0.8 remained, the rest 
values were reset. At the output a filtered array of heights Tw() was formed. The standard deviation 
(SD) of the filtered heights was determined by the formula  

N

icciTw
N

i




 1

2))()((
CKO . 

Table 3 
Standard deviations (SD) for each filter (in meters) depending on the standards (Std) 

of the distribution of random height errors 

Std values 
Filter Residual information, % 

0.05 0.1 0.3 0.4 0.5 

1 25 0.66 0.88 0.71 0.93 0.94 
0.8 33 0.55 0.35 0.63 0.86 0.88 
0.6 40 0.23 0.26 0.63 0.86 0.94 
0.5 48 0.23 0.26 0.64 0.86 0.94 

0.25 51 0.19 0.24 0.63 0.86 0.99 
0.15 66 0.15 0.20 0.64 0.86 0.99 
0.1 70 0.11 0.17 0.63 0.86 0.99 
0 100 0.09 0.18 0.63 0.86 0.99 
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Table 3 shows the SD values depending on the filter value – Filter and the accuracy of the modeled 
heights – Std values. The remaining information (in percent) is calculated as the percentage ratio of the 
number of the largest remaining coefficients to their total number before compression, equal to 15. 

The effect of the systematic part of the wavelet compression on the accuracy of the final result 
after zeroing the details is given below. 

SD for each filter at heights not burdened with random errors: 
 

Filter 0.55 0.34 0.25 0.23 0.15 0.10 0.06 0 
SD 1 0.8 0.6 0.5 0.25 0.15 0.1 0 

 
From the experimental studies it follows that: 
• in order to maintain the highest possible accuracy of the initial heights when wavelet decomposi-

tion is performed, data compression is unacceptable; even in the absence of compression (Filter = 0) and 
the presence of random errors, the standard deviation of the resulting heights is greater than their 
standard deviation at the input; 

• data compression can be allowed, but the threshold for reducing the accuracy of the relief image 
should be taken into account; for example, with a threefold compression (Filter = 0.8) and Std = 0.1, the 
standard deviation of the heights at the output of the standard deviation = 0.35 is greater than Std by 
3.5 times, in other cases it is 2 times greater. Figure 1 shows a relief built from true heights, and 
Figure 2 shows a relief obtained with triple wavelet compression (Filter = 0.8) and an error height 
standard of 0.3 m (Std = 0.3 m);  

• regularities of the effect of wavelet compression on the accuracy of the information obtained 
at the output are the same as when filtering information in Fourier series [23], but here the amount 
of calculations is negligible compared to Fourier transforms. 

The method for calculating the filter value for compressing elevation information can be 
adopted as follows: 

1. According to the known method, the evaluation of the standard of the elevation of the relief 
(Std) is determined in the form of the standard error of the relief survey. 

2. For this object, the standard 
deviations for each filter are deter-
mined. 

3. If the value of the average error 
of the relief, obtained as 0.8Std [2], is 
less than one-third of the height of the 
cross-section of the relief, then the 
threshold obtained (experimentally) 
for reducing the accuracy of com-
pressed information about the relief 
for a certain filter value (Filter). If the 
average error of the relief is more than 
a third of the height of the cross sec-
tion of the relief and approaches the 
magnitude of the standard deviation, 
obtained at 25-30 % compression of 
information (i.e. three- and four-times 
compression), then the threshold value 
(standard deviation)) reducing the ac-
curacy of the compressed information 
about the relief is not important. 

At the same time, the authors 
compiled a program pro oroi_data_ 
corr24bitWAVE in the algorithmic 

 

Fig. 1. Relief in horizontals, built on 
the heights adopted 

as initial [23] 
(cross-section of the relief 0.25 m) 

Fig.2. Filtered terrain 
in case of triple 

wavelet information compression 
(Filter = 0.8, Std = 0.3 m) 



 

 

Aleksandr S. Yarmolenko, Olga V. Skobenko 
Application of the Theory of Wavelets… 

DOI: 10.31897/PMI.2018.6.612 
 

622 
Journal of Mining Institute. 2018. Vol. 234. P. 612-623  ● Mining 

 

language IDL of the ENVI system of wavelet filtering (compression) of images. Figure 3 shows the im-
ages — the original (and reconstructed over all wavelet elements) and compressed 2.5 times with 
filtered values (less than 4 units) constituting the wavelet expansion modulo. 

Circles mark discrepancies with the original image. With a greater compression of various mis-
matches, the circles are larger and are already noises at which the image is unsuitable for use. Thus, 
when compressing an image, it is also recommended to first select a filter in accordance with steps 
1-3 in the case of a relief, or in which there are no visible discrepancies and implement wavelet 
compression.  

 
 

Conclusions 
 

1. Wavelet filtering and compression lead to the loss of some information. However, such fil-
tering and compression are very effective at a known acceptable threshold (the value of the standard 
deviation) of reducing the accuracy of the compressed information. At the same time, the amount of 
computation is negligible compared to the filtering and compression in the Fourier series and the 
cosine-sine transforms of the JPEG compression. 

2. When filtering and compressing images, it is recommended first to select a filter in accor-
dance with steps 1-3 in the case of relief. It is necessary to set the SD of the pixel, at which com-
pression is acceptable and there are no visible discrepancies. 
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