
Fractional creep model and
experimental study of
unsaturated silty clay in Fuyang

Daguo Wu1,2, Guangyao Chen3*, Zhenzhao Xia4, Jianhe Peng2

and Jingyin Mao4

1School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China, 2Anhui and
Huaihe River Institute of Hydraulic Research, Hefei, China, 3School of Civil Engineering, Southeast
University, Nanjing, China, 4School of Civil Engineering, Xi’an University of Architecture and
Technology, Xi’an, China

Due to the long-term overdraft of groundwater in Fuyang, silty clay in this area

has been in an unsaturated state for a long time, which caused ground

subsidence and threatened the safety of engineering construction. Creep is

an important part of ground subsidence, but it is easily ignored in ground

subsidence caused by groundwater overdraft. Therefore, in order to explore the

creep behavior in this environment, a series of triaxial creep tests of unsaturated

soil were conducted to research the effects of deviator stress, matrix suction

and net confining pressure on creep. Then, based on analysis results of the

geometric characteristics of the test creep curves, an improved fractional order

Nishihara model of unsaturated soil under triaxial stress conditions was

constructed by using fractional calculus theory. Finally, the effectiveness of

improved fractional order Nishihara model was verified based on cooperation

search algorithm and minimum mean square error principle. The simulation

results show that the fitting curves of improved fractional order Nishiharamodel

are in good agreement with the test curves, and it is feasible and effective to

describe the creep characteristics of unsaturated silty clay in Fuyang.
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1 Introduction

Fuyang is located at the southern end of the Huang-Huai-Hai Plain in China as shown

in Figure 1, and its territory is widely covered with silty clay. Since the 1980s, water for

domestic use in Fuyang has gradually dependent on middle and deep groundwater due to

the contamination of surface water flowing through the city (Bai, 2018). According to the

investigation report (Chen, 2021), the groundwater mining amount of Fuyang in 1981,

1999 and 2019 was 24.41 million m3, 46.58 million m3 and 74.19 million m3, respectively,

which overdraft 2–3 times the extractable amount in the same period, and the

groundwater has been seriously overdraft in some years. Excessive groundwater

mining has caused the groundwater level in Fuyang to drop continuously and formed

a ground-water cone of depression (Yixiang and Guanhua, 2004), resulting in the silty clay
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in Fuyang being unsaturated for a long time. Besides, the decrease

of groundwater level will also lead to the decrease of pore water

pressure and the increase of effective stress, resulting in the soil

consolidation and ground subsidence. Ground subsidence is a

progressive geological hazard. Its damages, directly or indirectly,

will increase with the development of the subsidence. As

groundwater mining is concentrated in the urban area, the

damages caused by ground subsidence are more severe.

However, volume loss by the creep of “soft sediments” (clay,

silt, peat) is also a well-known and crucial factor of the ground

subsidence (Kooi and Erkens, 2020), but it is confusion that this

important factor is usually ignored in ground subsidence caused

by groundwater overdraft. What’s more, the existed case (Wen

et al., 2019) shows that special properties of soil or rock mass will

affect engineering situation furtherly. Therefore, to optimize

engineering designs and prevent geologic hazard, it is

necessary to conduct intensive studies on the creep

characteristics of unsaturated silty clay in this region.

At present, there are several methods used to describe the creep

properties of soils, among which the component model is widely

used with the advantages of visualization, fewer parameters, and

clear physical meaning, etc. For example,Ma et al. (2014) introduced

the Burgers creep model to fit the properties of soil with deep-sea

sediment; Cao et al. (2016) used non-linear damage creep

constitutive model to research the creep properties of research

objects in Jinchuan No.2 Mine in the northwest of China, the

model consists of several classic basic elements, which is similar to

Burgers models; Chang et al. (2020) studied the creep properties of

loess in Malan by using the modified Burgers model; Yao et al.

(2021) studied the characteristics of frozen silt in Nantong metro

freezing construction process by optimized Burgers model; Besides

Burges model series, Xu and Cui (2020) proposed a fractional

component model to describe the creep behavior of Shanghai

marine clay; Yang et al. (2015) analyzed the creep properties of

Wangjiang silty clay by using the generalized Kevin model; Deng

et al. (2020) proposed a modified Merchant model based on the

FIGURE 1
Location map of Fuyang (Xiaoguozhuang, Yuanji Town, Yingzhou District, Fuyang City, Anhui Province).
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fractional derivative theory to describe the creep properties of coastal

soft clay. All the component models proposed in the above studies

can fit the creep tests curves well and have made useful progress, but

the above creep tests and models were established to focus on

saturated soils and cannot describe the accelerating creep stage of

soils. To describe accelerating creep of soil, Song (Song et al., 2021)

proposed an improved Nishihara model to simulate the accelerating

creep of frozen mixed soils, Liu (Liu et al., 2022) proposed a new

model based on kinetic energy theorem to simulate the accelerating

creep of tunnel surrounding rock, Wu (Wu et al., 2022) proposed a

novel creep model based on fractional calculus and acoustic

emission theory to describe accelerating creep of salt rock. Since

the silty clay in China has regional differences, it is necessary to carry

out targeted unsaturated creep tests and model studies on silty clay

in Fuyang.

In this paper, we take the remodeled silt clay in Fuyang as the

research object, firstly, we carried out the triaxial creep test of

unsaturated soil to obtain the creep curves and isochronous

stress-strain curves under different stress conditions. Then, by

analyzing the curve variation characteristics, the creep law of

Fuyang silty clay was summarized. Besides, an improved

fractional order Nishihara model (IFNM) was proposed based

on the geometric features of test curves, and the creep

constitutive equations of IFNM for unsaturated soil under

triaxial stress state was derived by considering the influence of

matrix suction. Finally, based on the minimum mean square

error (MSE) principle, we used cooperation search algorithm

(CSA) to identify the parameters of IFNM and fit the test curves,

and compared the fitting results with Burgers model to verify the

feasibility and effectiveness of IFNM.

2 Triaxial creep tests of unsaturated
soil

2.1 Apparatus and physical properties of
soil

The test apparatus is FSR-20 duplex unsaturated triaxial

creep test apparatus, which is illustrated in Figure 2. The test

soil is the foundation soil at 12–14 m undergrounds of a project

site in southern Fuyang, which is grayish yellow. The basic

physical properties can be obtained through a series of

laboratory tests as showed in Table 1. According to the Code

for the Design of Building Foundations (China, 2012) (GB

50007-2011), test soil can be classified as silt clay in plastic state.

2.2 Test scheme

The duplex unsaturated soil triaxial creep apparatus can only

test two groups of samples simultaneously, and because of the

FIGURE 2
Unsaturated soil triaxial creep test apparatus.
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large number of test groups, long creep test duration, and the lack

of customized in-situ soil extractor, the collected in-situ soil

samples are disturbed and difficult to store for a long time.

Therefore, after considering the above factors, this paper finally

adopts the reshaped soil samples with water content w=20% and

wet density ρ=1.9g/cm3 to conduct the consolidation and

drainage triaxial creep test.

Due to the existence of pore air pressure, the stress state of

unsaturated soil is much more complex than that of saturated

soil. To describe the stress state of unsaturated soil more

reasonably, Fredlund D.G (Fredlund and Rahardjo, 1993)

suggested using net normal stress (σ-ua) and matrix suction

(s=ua-uw) as the stress state variables of unsaturated soil.

Therefore, in order to explore the influence of net normal

stress and matric suction on the creep properties of

unsaturated silty clay in Fuyang, we have developed a step

loading test scheme as shown in Table 2.

2.3 Analysis of test results

2.3.1 The strain-time curve under different stress
conditions

The measured creep curve of the step loading creep test is

shown in Figure 3.

At present, the method of converting step loading creep

curves into creep curve clusters is mainly based on the Boltzmann

superposition principle, but the traditional Boltzmann

superposition principle (Shukla and Joshi, 2017) requires that

the next step of loading can be applied only after the former step

of loading enters the steady state creep, otherwise large

redundant deformation would be calculated by this method.

In order to overcome the defects of the above method, this

paper applies the “correction technique based on Boltzmann

superposition principle” proposed by Wang (Wang, 2008) to

transform the step loading creep curves in Figure 3 into a creep

curve cluster as shown in Figure 4.

From Figure 4, the effect of deviator stress on creep

properties of unsaturated silty clay in Fuyang can be obtained

as follows:

• A certain amount of transient deformation will occur at the

moment of loading, and the deformation will gradually

increase with time and eventually stabilize. When the

deviator stress is too large, the sample will gradually

yield and enter the accelerating creep stage. From the

creep curve of sample 3 at deviator stress q=300 kPa, it

can be seen that the creep curve in the accelerating creep

stage will increase rapidly with time, and the strain rate will

increase with time, and it can also be seen from Figure 5

that sample 3 appeared bulging deformation phenomenon.

• When the samples did not yield, the geometric features of

the creep curves at different matrix suction or different net

confining pressure were similar, and they all showed a non-

linear characteristic of strain rate decreasing gradually

with time.

TABLE 1 Basic physical properties of the test soil.

Water content
(%)

Density Liquid limit
(%)

Plastic limit
(%)

Void ratio Cohesion (kPa) Friction angle

26.124 2.045 g/cm3 33.970 20.901 0.672 58.2 11.1°

TABLE 2 Triaxial creep test scheme for unsaturated silty clay.

Sample Net confining pressure
(σ3-ua)/kPa

Matrix suction (s=ua-uw)/kPa Deviator stress q/kPa

1 50 50 50→75→100→150→200

2 100 75→100→125→175→225

3 200 100→150→200→300

4 100 50 50→100→200→300

5 100 100→175→225→300

6 200 100→150→200→300

7 200 50 50→100→200→300

8 100 100→175→225→300

9 200 100→150→200→300→400

At present, because China‘s Standard Specification for Unsaturated Soil Tests has not been formally compiled and published, so this paper mainly refers to the test operation process of Dr.

Zou (Zou et al., 2013) and Dr. Lai (Lai et al., 2012) for the triaxial creep test of Fuyang unsaturated silty clay.
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FIGURE 3
Measured creep curves under step loading.

FIGURE 4
Creep curve cluster under different stress conditions.
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2.3.2 Effect of net confining pressure and matrix
suction on creep

In order to investigate the effects of net confining pressure

and matrix suction on creep properties of unsaturated silt clay in

Fuyang, the axial strain variation curves when matrix suction or

net confining pressure is the only stress state variable are

illustrated in Figure 6.

From Figure 6A, it can be seen that the axial strain decreases

with the increase of matrix suction when the net confining

pressure and deviator stress are certain. Meanwhile, the curves

all show the trend of gradually decreasing with the increase of

matrix suction, and the curves gradually tend to be horizontal,

which shows that the matrix suction has a certain hardening

effect on the soil, but this hardening effect gradually tends to be

stable with the increase of matrix suction. As seen in Figures

6B–D, when the deviator stress and matrix suction are constant,

the curve gradually decreases with the increase of net confining

pressure, which indicates that the axial strain and the net

confining pressure are negatively correlated, and the lower the

net confining pressure is, the larger axial strain when creep is

stable.

2.3.3 lsochronous stress-strain curves
To further research the creep characteristics of the soil,

seven-time nodes of 5min, 30min, 60min, 120min, 360min,

1440min and 2880min were selected in this paper, and the

isochronous stress-strain curves (ISSCs) of the above-

mentioned different time nodes are shown in Figure 7

through the isochronous sampling process of the creep test data.

From the ISSCs in Figure 7, it can be obtained that:

1) The ISSCs under different stress states have good similarity,

so the simulated stress-strain-time relationships under

different stress states can be expressed using the same

component model.

2) All the ISSCs have a tendency to gradually approach to the strain

axis with time, which indicates that the creep effect causes the soil

to gradually soften and the stress required for further

deformation gradually decreases compared with that before.

3) The ISSCs show an obvious downward convex shape. When

the deviator stress is low, the ISSCs is approximately a straight

line, which indicates that the soil creep shows approximately

linear characteristics when the deviator stress is low. When

the deviator stress is high, all ISSCs show obvious inflection

points, and the slope of the ISSCs before and after the

inflection point has obvious changes, which shows obvious

non-linear characteristics.

4) As seen in Figure 7, except for Figures 7C,D, the ISSCs at

5 min and other time node under the remaining seven stress

conditions show different degrees of separation, which may

be due to the fact that the instantaneous rate of loading in the

creep test is much larger than the creep rate, resulting in the

mechanical properties of the soil showing much larger

instantaneous strength and modulus of elasticity than the

long-term strength and modulus of elasticity. Therefore, the

deformation at the early stage of loading is small, but under

the constant deviator stress, the mechanical properties of the

soil gradually return to the long-term strength and modulus

of elasticity with time, and its deformation increases rapidly,

so the stress-strain curves at the early stage of loading and

after a period of loading are separated.

FIGURE 5
Soil bulging deformation of sample 3 after loading deviator stress q=300 kPa.
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In order to investigate the effect of matrix suction on creep,

the ISSCs under different matrix suction conditions at 100 min

and 2,500 min, are given in Figure 8. The curves show that when

the matrix suction is constant, the axial strain increases with the

increase of the deviator stress, and the stress-strain relationship is

non-linear; when the deviator stress is constant, the axial strain

increases with the decrease of the matrix suction, and this

phenomenon is more obvious when the deviator stress is larger.

3 Unsaturated soil fractional order
creep model

3.1 Improved fractional order Nishihara
creep model

Comprehensive analysis of the creep test curves obtained

above shows that creep can be divided into three stages, as shown

in Figure 9. Most of the common component models such as

Maxwell model and Kevin model can only describe stage I and II,

while the integral order Nishihara model (Yu et al., 2020) as

shown in Figure 10 can describe the creep properties of the

accelerating creep (stage III) due to the introduction of

Newtonian dashpot as frictional element. When the creep

enters stage II and III, the test curve is nearly linear, but in

fact, it still has slight non-linear characteristics, and this slight

non-linearity is difficult to be described in the traditional integer

order Nishihara model.

Unlike the integer order Nishihara model, IFNM introduces

non-linear Hooke body (Lin et al., 2022) and Abel dashpot (Guo

et al., 2014) instead of traditional Hooke body and Newtonian

dashpot, respectively, where the constitutive equations of the

Abel dashpot element are:

σ t( ) � ξdβε t( )
dβt

, 0≤ β≤ 1( ) (1)

where ξ denotes the viscosity coefficient and β denotes the

fractional order. As seen in Eq. 1, when β = 1, the element is a

conventional dashpot element, representing the Newtonian

fluid; when β = 0, the element is a conventional Hooke body,

FIGURE 6
Final creep value comparison under different stress conditions. (A) The effect of matric suction on axial strain; (B–D) The effect of net confining
pressure on axial strain.
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representing the ideal elastomer. When the axial stress is a

constant value (i.e., σ(t) = σ0) in the above equation, the

element state is expressed as the creep state of corresponding

material. For both sides of Eq. 1 simultaneously fractional

order integration, according to the R-L fractional order

calculus method described in previous section, the

FIGURE 7
Isochronous stress-strain curves. (A) σ3-ua=50kPa, s=50kPa; (B) σ3-ua=50kPa, s=100kPa; (C) σ3-ua=50kPa, s=200kPa; (D) σ3-ua=100kPa,
s=50kPa; (E) σ3-ua=100kPa, s=100kPa; (F) σ3-ua=100kPa, s=200kPa; (G) σ3-ua=200kPa, s=50kPa; (H) σ3-ua=200kPa, s=100kPa; (I) σ3-
ua=200kPa, s=200 kPa.

FIGURE 8
The isochronous stress-strain curves under different matric suctions. (A) σ3-ua=50kPa; (B) σ3-ua=100kPa; (C) σ3-ua=200 kPa.
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expression of strain ε(t) under constant stress σ(t) = σ0 can be

denoted as:

ε t( ) � σ0

ξ

tβ

Γ 1 + β( ), 0≤ β≤ 1( ) (2)

If we assume σ0 =200 kPa and ξ=200 kPa min, respectively,

by controlling the magnitude of the element order β, a series of

strain curves based on Eq. 2 can be obtained as shown in

Figure 10A.

As can be seen from Figure 11A, the Abel dashpot under

constant stress, the strain can increase slowly with time like the

material in between ideal fluid and ideal solid, neither increasing

linearly like the Newtonian fluid nor remaining constant like the

linear elastomer, indicating that the fractional order Abel

dashpot can reflect the non-linear process for creep; The

creep behavior of the material between the elastomer and the

Newtonian body can be well described only by changing the

order β. Therefore, it can be considered that the Abel dashpot is a

joint element combining the elastic and damping elements.

Compared with the classical integer order damping element,

the Abel dashpot can control both the deformation rate and

strain, while the traditional integer order Newtonian dashpot

element can only control the deformation rate through the

viscosity coefficient.

Although the Abel dashpot can better describe the non-linear

properties of creep, it can only well describe the non-linear

properties of the transient creep to steady state creep

(i.e., stage I-II) in Figure 9, while the “convexity upward”

characteristic of the accelerating creep (stage III) is not

reflected at all in Figure 11A. Therefore, the Abel dashpot

based on Eq. 2 cannot describe the accelerating creep stage.

By observing the change of the curve with the fractional

order β in Figure 11A, we can see that the creep curve of the

Abel dashpot is gradually approaching from the time axis to

the strain axis when β increase from 0 to 1, but the slope of the

curve is gradually decreasing with time, while the slope of the

curve in the accelerating creep stage is gradually increasing

with time. Here we still assume σ0 =200 kPa and

ξ=200 kPa min, respectively, by controlling the order β, the

creep curve variation law of β from 1 to 2 can be obtained as

shown in Figure 11B.

As seen in Figure 11B, when fractional order β >1, the creep
curve of the Abel dashpot will be like the accelerating creep stage

(stage III) curve in Figure 9, with rapid “up”, “lower convex” and

gradually increasing slope characteristics. The above geometrical

characteristics of the Abel dashpot creep curve at β >1 provide a
feasible way to describe the accelerating creep stage. Therefore,

this paper adopts the Abel dashpot with order β >1 as the sliding
frictional element to describe the plastic properties of the soil,

and the strain expression under constant stress σ0 can be

obtained according to Eq. 2 as follows:

ε t( ) �
0, σ0 ≤ σs( )
σ0

η

tγ

Γ 1 + γ( ), σ0 > σs( )
⎧⎪⎪⎨⎪⎪⎩ (3)

where σs is the flow limit; η and γ (1 ≤ γ ≤ 2) a re the coefficient of

viscosity and fractional order of the frictional element,

respectively.

Considering that hardening or softening effects occur during

soil loading, a non-linear Hooke body constructed based on

Harris distribution function (Xie et al., 2020) is introduced in

IFNM instead of the conventional Hooke body. Unlike the

conventional Hooker body, the long-term elastic modulus of

the non-linear Hooker body based on the Harris distribution

function increases or decays with time, and the long-term elastic

modulus EL is calculated as follows:

FIGURE 9
Three stages of creep curve.

FIGURE 10
Integral order Nishihara model and IFNM.
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EL t( ) � E0
1

1 + atb
(4)

where E0 is the initial elastic modulus; a and b are the

construction parameters of Harris function, when ab ≤ 0, EL

is an increasing function about time t, which can describe the soil

hardening phenomenon; when ab > 0, EL is a decreasing function

about time t, which can describe the soil softening phenomenon.

3.2 INFM creep constitutive model for
unsaturated soils

3.2.1 The derivation process of IFNM creep
constitutive equation
1) When σ0 ≤σs

Under this condition, IFNM is a three-element fractional

order creep model, which consists of two components connected

in series, one part is the Harris non-linear Hooke body (E0) and

the other part is a parallel structure (E1|N1) composed of the

conventional Hooke body (E1) and the Abel dashpot (N1).

According to the law of connection of components, it obtains

that:

σ t( ) � σ1 t( ) � σ2 t( ) � σ0

ε t( ) � ε1 t( ) + ε2 t( ){ (5)

where, ε1(t) and ε2(t) are the strains of E0 and E1|N1,

respectively; σ1(t) and σ2(t) are the stresses of E0 and E1|N1,

respectively.

Introducing the R-L fractional order calculus operator

(Ortigueira, 2011), we can get,

σ1 t( ) � E0 1 + atb( )−1ε1 t( ) (6)
σ2 t( ) � E1ε2 t( ) + ξRL0 Dβ

t ε2 t( ), 0≤ β≤ 1 (7)

Among the above two equations, ε1(t) in Eq. 6 is easy to

solve, while Eq. 7 is a binomial fractional order differential

equation, and it is difficult to solve. Laplace transformation of

the output signal of Eq. 7 can be shown as follows:

Y s( ) � 1
ξsβ + E1

L σ2 t( ); s{ } (8)

An essential inverse Laplace transformation (Ortigueira,

2011) is introduced here for all equations similar to Eq. 8:

L−1 sαγ−β

sα + a( )γ; s{ } � tβ−1Eγ
α,β −atα( ) (9)

Based on (8) and 9, ε2(t) can be solved as follows:

ε2 t( ) � σ0ξ
−1tβE1

β,β+1 −E1ξ
−1tβ( ) (10)

In summary, the ε(t) can be written as:

ε t( ) � σ0
1 + atb

E0
+ ξ−1tβE1

β,β+1 −E1ξ
−1tβ( )( ) (11)

2) When σ0 >σs.
Under this condition, the IFNM is fractional order Burgers

model, which consists of three parts: the non-linear Harris Hooke

body (E0), the parallel structure (E1|N1), and the fractional order

FIGURE 11
Creep curves of fractional Abel dashpot with different orders: (A) when order 0<β<1, (B) when order 1≤β≤2.
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frictional element (N2). According to the law of connection of

components, we can get,

σ t( ) � σ1 t( ) � σ2 t( ) � σ3 t( ) � σ0

ε t( ) � ε1 t( ) + ε2 t( ) + ε3 t( ){ (12)

σ1 t( ) � E0 1 + atb( )−1ε1 t( ) (13)
σ2 t( ) � E1ε2 t( ) + ξRL0 Dβ

t ε2 t( ), 0≤ β≤ 1 (14)
σ3 t( ) � ηRL0 Dγ

t ε3 t( ), 1≤ γ≤ 2 (15)
where, σ1(t), ε1(t) are the stress and strain of the E0; σ2(t), ε2(t)
are the stress and strain of the (E1|N1); σ3(t), ε3(t) are the stress
and strain of the N2. The ε(t) can be written as follows:

ε t( ) � σ0
1 + atb

E0
+ ξ−1tβE1

β,β+1 −E1ξ
−1tβ( ) + η−1

tγ

Γ 1 + γ( )( )
(16)

3.2.2 Extended IFNM for unsaturated soils
In engineering practice, the soil is in complex three-dimensional

stress state, and the creep tests of unsaturated soil described in this

paper is also conducted in the triaxial stress state, so it is necessary to

deduce the three-dimensional constitutive equation of IFNM.

According to the theory of elasticity mechanics (Zou et al., 2013),

the stress state of one point can be expressed in terms of the stress

tensor. In the three-dimensional stress state, the stress tensor σij and
the strain tensor εij of the soil can be denoted as follows:

σ ij � Sij + δijσm (17)
εij � eij + δijεm (18)

where σm, εm and δij are spherical stress, spherical strain and

Kronecker symbol respectively. σkk is the principal stress, and

can also be simply denoted as σk. Sij is the deviator stress tensor.
In the elastic state, the above variables satisfy:

σm � 1
3

σ1 + σ2 + σ3( ) (19)

εm � 1
3

ε1 + ε2 + ε3( ) (20)
εm � σm/3K (21)

Thus, the constitutive equation of IFNM in three-

dimensional stress state is obtained as follows:

eij � Sij
1 + atb

G0
+ ξ−1tβE1

β,β+1 −G1ξ
−1tβ( )( ) (22)

1) When Sij ≤ σs.
Further, by substituting Eqs 21, 22 into Eq. 18, we can get the

strain-time relationship as follows:

ε1 t( ) � σ1 − σm( ) 1 + atb

G0
+ ξ−1tβE1

β,β+1 −G1ξ
−1tβ( )( ) + σm

3K

(23)
Since the test soil is unsaturated soil, so the influence of pore

air pressure ua should be considered in the above equation.

Fredlund D.G. (Fredlund et al., 2012). believed that the net

confining pressure (σ3-ua) and matric suction (ua -uw)

should be used as the stress state variables in unsaturated soil,

so we can replace the confining pressure σk with the net

confining pressure, the creep constitutive equation of

unsaturated soil considering pore air pressure can be obtained

as follows:

ε1 t( ) � σ1 − σm( ) 1 + atb

G0
+ ξ−1tβE1

β,β+1 −G1ξ
−1tβ( )( ) + σm − ua

3K

(24)
2) When Sij > σs

eij � Sij
1 + atb

G0
+ ξ−1tβE1

β,β+1 −G1ξ
−1tβ( ) + η−1γ

Γ 1 + γ( )( ) (25)

After substituting Eq. 25 into Eq. 18, we get,

ε1 t( ) � σ1 − σm( ) 1 + atb

G0
+ ξ−1tβE1

β,β+1 −G1ξ
−1tβ( ) + η−1γ

Γ 1 + γ( )( )
+ σm − ua

3K
(26)

4 Model verification and discussion

4.1 Parameter setting and optimization
algorithm selection

To verify the effectiveness of the IFNMproposed in this paper, a

total of 12 creep test curves of sample 1, sample 3 and sample 7 are

selected as three case studies for parameter identification and curve

fitting. Parameter identification is an important link in themodeling

and control of fractional order systems, which will directly

determine whether the fractional order system can be involved in

practical applications. At present, the parameter identification of

fractional order system is mainly by applying swam intelligence

optimization algorithm (Yang et al., 2017; Peng et al., 2019; Li et al.,

2020; You et al., 2021). Due to the existence of Mittag–Leffler

function and other hypergeometric functions with infinite series

summation, the parameter identification of fractional order system

has the characteristics of strong non-linearity and complex

calculation, which also causes the difficulty of parameter

identification. Therefore, it is necessary to select a swam

intelligent algorithm with high accuracy, good stability and

strong serviceability. In this paper, we selects seven current

mainstream swarm intelligence optimization algorithms as shown

in Table 3: Harris HawksOptimization (HHO) (Heidari et al., 2019),

Whale Optimization Algorithm (WOA) (Mirjalili and Lewis, 2016),

Sparrow Search Algorithm (SSA) (Xue and Shen, 2020),

Cooperation Search Algorithm (CSA) (Feng et al., 2021),

Improved Grey Wolf Optimization (IGWO) (Nadimi-Shahraki

et al., 2021), Coot Optimization Algorithm (COOT) (Naruei and
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Keynia, 2021) and Fruit fly Optimization Algorithm based on Cloud

Model (CMFOA) (Wu et al., 2015), to identify the parameters of

IFNM, and compares their performances in solving the parameter

identification problem of fractional order system.

The parameter identification problem is essentially a non-

linear fitting optimization problem. In this paper, the fitness

function is defined as the minimum mean square error (MSE) of

the sample strain test data and the model calculation data, which

is transformed into the optimization problem with constraints.

The principal expression is: If there are m observations and n

parameters to be identified, the optimization problem is:

MSE � min f itness P( )( ) � 1
m
∑m
i�1

ε̂i − εi( )2

LBj ≤P≤UBj j � 1, 2, . . . , n( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (27)

where P is the parameters set, LBj and UBj represent the search

lower limit and upper boundary of the jth parameter. ε̂i is the

calculated value of the model, and εi is the measured value of the

creep test.

It can be seen from Eqs 24, 26 that the IFNM has seven

parameters when Sij ≤ σs, and nine parameters when Sij > σs. The
search upper and lower boundaries of the above parameters are

determined according to the trial calculation and experience, as

shown in Table 4.

In order to show the feasibility and effectiveness of the IFNM

more clearly, this section introduces the Nishihara model and

Burgers model as a comparison, their construction are shown in

Figure 12.

According to the derivation process of the constitutive equation

of the Nishihara model (Yan et al., 2010) and Burgers model in

(Zheng et al., 2019) and (Chen et al., 2003), the corresponding three-

dimensional axial strain-time expression is as follows:

• Nishihara model three-dimensional axial strain-time

expression:

ε1 t( ) �
σ0

3
1
G0

+ 1
G1

1 − e−G1 t/ξ1( )( ) + σm

3K
, Sij ≤ σs

σ0

3
1
G0

+ 1
G1

1 − e−G1 t/ξ1( )( ) + σ0

3
− σs

2
( ) t

ξ2
+ σm

3K
, Sij > σs

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

• Burgers model three-dimensional axial strain-time

expression:

ε1 t( ) � σ0

3
1
G0

+ 1
G1

1 − e−G1t/ξ1( ) + t
ξ2

( ) + σm

3K
(29)

where σ0 is deviator stress, σ0 = σ1-σ3; σm is the average stress,

σm= (σ1+2σ3)/3. It can be seen from Eq. 29 that there are five

parameters to be identified in the Nishihara model and Burgers

model, which are G0, G1, ξ1, ξ2 and K. The upper and lower

boundaries of their parameters search are shown in Table 5 and

Table 6.

Considering the stringency of comparison, complex

calculation and time-consuming of parameter identification in

fractional order system, the maximum iteration times T and the

population size pop of all algorithms were set to the same for

parameter identification of IFNM and Burgers model, namely

T=200 and pop=100. The unique computational parameters (α, β

and M) of CSA are set as 0.1, 0.15 and 3. The order of normal

cloud model α=10 in CMFOA. In the SSA, the number of the

producers (PD) and the sparrows who perceive the danger (SD)

accounts for 20% and 10%, respectively, and the security

threshold ST=0.6. In summary, the flow chart of parameter

identification for IFNM based on the swarm intelligence

optimization algorithm is shown in Figure 13, and based on

this process, the MSE convergence curves of seven different

swarm intelligence algorithms in three case studies were

obtained as shown in Figure 14.

It can be seen from Figures 14A–D that the parameter

identification of sample 1, the MSE calculated by CSA under

four different stress conditions is better than the other six

algorithms. As seen from Figures 14E–H that the parameter

identification of sample 3, when q = 150 kPa,

MSE=1.2705×10–4 calculated by CSA is slightly worse than

that calculated by COOT (MSE=1.1193×10–4), and under the

other stress conditions, the MSE obtained by CSA is better than

that of the other six algorithms. For sample 7, from Figures 14I–L

we can see that when q = 300kPa, MSE = 3.7472×10–3 calculated

by CSA is slightly better than MSE = 3.7632×10–3 calculated by

IGWO, and under the other stress condition, MSE obtained by

CSA is significantly better than the other six algorithms.

TABLE 3 Characteristics of seven mentioned swarm intelligence optimization algorithms.

Name Year Advantage(s) Disadvantage(s)

HHO 2019 Few parameters, excellent global search capability Slow convergence, low accuracy, easy to fall into local optimum

WOA 2016 Low requirements for objective functions Slow convergence, easy to fall into local optimum

SSA 2020 Fast convergence Bad performance on CEC2017 benchmarks

CSA 2021 High search capability and fast convergence Poor performance in multi-peak functions

IGWO 2021 Better balance of global and local search Lower capacity to handle functions with large variables

COOT 2021 Good performance on CEC2017 benchmarks Complex mechanism

CMFOA 2015 High performance in certain cases Complex mechanism on mathematical theory
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Therefore, CSA has better convergence accuracy than the other

six algorithms in solving the fractional order parameter

identification problem, which can get satisfactory results in

the face of different stress conditions, and shows excellent

optimization performance, anti-interference and wide

applicability, so this paper decided to use CSA to identify the

parameters of IFNM and Burgers model.

4.2 Case study

In this section, the test creep curves of sample 1, sample 3 and

sample 7, as shown in Figure 4, are used as three case studies to

test the effectiveness of IFNM. Sample 1 and 7 are mainly used to

verify the fitting performance of the IFNM on the two non-linear

stages of transient creep and steady state creep, and sample 3 was

used to verify the fitting performance of the accelerating creep

stage. Finally, based on CSA, the parameter identification results

of three case studies under IFNM, Nishihara model and Burgers

model are shown in Table 7, Table 8 and Table 9, respectively.

The comparison results of fitting curve and test curve are shown

in Figure 15.

It can be seen from Table 7, Table 8 and Table 9 that the

fitting accuracy of IFNM on the samples is better than Nishihara

model and Burgers model. The fitting accuracy of IFNM on

sample 1 is basically closed to the Burgers model, but IFNM on

sample 3 and sample 7 is 1–2 orders of magnitude better than

that of the Burgers model, indicating that IFNM has better fitting

performance for the whole creep process of unsaturated soil.

Compared with the IFNM and the Burgers model, the MSE

TABLE 4 Upper and lower limits of parameter search for the IFNM.

Parameter a b G0/kPa ξ/kPa·min β G1/kPa K/kPa η/kPa·min γ

LB -10 -2 1×103 1×102 0 1×102 1×103 1×102 1

UB 10 2 1×106 1×107 1 1×108 1×107 1×107 2

FIGURE 12
The schematic diagram of Nishihara model and Burgers model construction.

TABLE 5 Upper and lower limits of parameter search for Nishihara model.

Parameter K/kPa G0/kPa ξ1/kPa·min G1/kPa ξ2/kPa·min

LB 1×103 1×103 1×105 1×103 1×103

UB 1×109 1×109 1×108 1×108 1×108

TABLE 6 Upper and lower limits of parameter search for Burgers model.

Parameter K/kPa G0/kPa ξ1/kPa·min G1/kPa ξ2/kPa·min

LB 1×103 1×103 1×105 1×103 1×100

UB 1×109 1×107 1×109 1×106 1×107
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performance of the Nishihara model is the worst, and under

some stress conditions of sample 1, sample 3 and sample 7, the

MSE performance of the Burgers model is about one order of

magnitude better than the Nishihara model, while the IFNM is

about one or two orders of magnitude better than that of the

Nishihara model.

It can be seen from Figures 15A–C that the Nishihara model,

Burgers model and IFNM all can well describe the approximate

linear characteristics of the transient creep stage on sample 1, but

the fitting performance of the IFNM is significantly better than

Nishihara model and Burgers model in the time domain from the

end of the transient creep to the steady creep (100 min–500 min).

In this time domain, Burgers model curve and the test curve

appear ‘intersect’ and ‘separation’ phenomena, and this

phenomenon is more obvious when the deviator stress is

larger, such as when q=150 kPa, it is obvious that the Burgers

model curve and the test curve are separated. When the creep

enters the steady state creep (500 min–2880 min), the Burgers

model curve is a slope almost unchanged oblique line, which also

leads to the better fitting effect of the Burgers model for the case

of small deviator stress, while the fitting performance for the case

of large deviator stress is poor, and the non-linear characteristics

of the steady creep cannot be simulated. This phenomenon is

particularly obvious in the test curve at q =150 kPa in Figure 15B,

when t =2500min, the Burgers model curve is significantly

deviated from the test curve, and this deviation trend would

continue to increase with the increase of time, resulting in greater

error in the prediction of creep axial strain after 2,500 min by the

Burgers model. The above similar phenomena also appear in

sample 3 and 7.

Compared with the Burgers model, the ‘intersect’ and

‘separation’ phenomenon of between Nishihara model curves

and test curves is more obvious than Burgers model in the time

interval of 100 min–500 min. As shown in Figures 15A,G, there is

a big error between the model curve and the test curve. In the

500 min–3,000 min stage, the strain of the test curve is still

increasing in a weak non-linear trend, while the Nishihara model

curve has approached with a slope of approximately zero, which

obviously has a large error with the test curves, and contrary to

common sense.

When the deviator stress q of sample 3 is 300 kPa, the IFNM

can also well depict the accelerating creep characteristics of soil,

especially in the yield germination stage of 0–10 min, the model

curve and the test curve are highly coincident, which is difficult

to be achieved by the traditional integer order model. It can be

seen from Figure 15F that the IFNM fitting curve is basically

consistent with the accelerating creep test curve, which shows

the non-linear characteristics of the strain rate gradually

increasing with time, but the Nishihara model and Burgers

model in Figures 15D,E cannot show this feature, and only an

FIGURE 13
Flow chart of parameter identification principle based on swarm intelligence algorithm.
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approximate oblique line can be used to simulate the

accelerating creep stage, which does not reflect non-linear

characteristics and has a large error. Therefore, IFNM is far

superior to the Nishihara model and Burgers model in

describing the accelerating creep characteristics of

unsaturated soil.

Through the above analysis of the model fitting curves, it can

be seen that IFNM is superior to the Nishihara model and

FIGURE 14
Comparison plots of MSE convergence curves under different algorithms: (A) Sample1, q=50kPa; (B) Sample1, q=75kPa; (C) Sample1,
q=100kPa; (D) Sample1, q=150kPa; (E) Sample3, q=100kPa; (F) Sample3, q=150kPa; (G) Sample3, q=200kPa; (H) Sample3, q=300kPa; (I) Sample7,
q=50kPa (J) Sample7, q=100kPa (K) Sample7, q=200kPa (L) Sample7, q=300 kPa.
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TABLE 7 The parameter identification results of the IFNM.

Sample Q/kPa a b G0/kPa ξ/kPa·min β G1/kPa K/kPa η/kPa·min γ MSE

Sample1 50 9.998 0.258 3.040E+05 2.430E+06 0.067 2.605E+06 1.932E+03 N/A N/A 2.893E-04

75 10.000 0.251 3.823E+05 6.211E+06 0.069 6.898E+06 2.147E+03 N/A N/A 2.907E-04

100 6.357 0.102 7.947E+04 3.194E+06 0.000 5.851E+06 2.754E+03 N/A N/A 3.608E-04

150 4.876 0.143 8.667E+04 9.982E+06 0.411 7.196E+05 4.906E+03 N/A N/A 1.224E-03

Sample3 100 3.083 0.012 1.293E+04 6.459E+06 0.000 1.346E+07 3.920E+06 N/A N/A 7.134E-05

150 10.000 0.024 6.840E+04 1.627E+06 0.236 2.858E+05 9.998E+06 N/A N/A 1.271E-04

200 9.999 0.035 8.910E+04 7.554E+05 0.440 2.946E+04 9.997E+06 N/A N/A 2.128E-04

300 2.012 0.265 3.554E+05 1.239E+04 0.065 1.012E+02 9.621E+06 1.542E+07 2.000 5.240E-03

Sample7 50 7.655 0.074 3.426E+04 2.337E+06 0.094 1.902E+06 3.471E+04 N/A N/A 7.012E-04

100 8.971 0.093 8.383E+04 3.513E+06 0.075 3.277E+06 3.081E+04 N/A N/A 5.678E-04

200 8.584 0.113 1.245E+05 8.581E+06 0.220 2.524E+06 5.603E+04 N/A N/A 9.413E-04

300 9.367 0.178 1.721E+05 6.635E+06 0.085 6.373E+06 3.740E+05 N/A N/A 3.747E-03

TABLE 8 The parameter identification results of the Nishihara model.

Sample Q/kPa K/kPa G0/kPa ξ1/kPa·min G1/kPa ξ2/kPa·min MSE

Sample1 50 3.032E+03 8.426E+08 3.510E+05 5.072E+03 N/A 7.034E-04

75 3.144E+03 3.298E+08 5.006E+05 6.121E+03 N/A 1.176E-03

100 3.284E+03 2.260E+08 5.919E+05 6.282E+03 N/A 1.863E-03

150 3.513E+03 4.963E+08 5.585E+05 5.414E+03 N/A 3.825E-03

Sample3 50 1.251E+07 4.406E+07 8.061E+05 2.005E+03 N/A 2.260E-03

100 6.229E+03 2.390E+06 9.405E+05 1.779E+04 N/A 1.582E-02

200 9.355E+05 3.965E+03 9.887E+05 1.105E+04 N/A 1.857E-02

300 4.844E+05 7.214E+03 1.435E+05 9.423E-07 1.612E+07 1.782E-01

Sample7 50 8.754E+03 1.052E+08 9.658E+04 4.358E+03 N/A 2.754E-03

100 9.003E+03 5.130E+08 2.623E+05 6.852E+03 N/A 4.120E-03

200 8.446E+03 5.907E+08 5.166E+05 6.809E+03 N/A 1.004E-02

300 8.492E+03 8.569E+08 3.860E+05 5.072E+03 N/A 1.968E-02

TABLE 9 The parameter identification results of the Burgers model.

Sample Q/kPa K/kPa G0/kPa ξ1/kPa·min G1/kPa ξ2/kPa·min MSE

Sample1 50 5.285E+06 1.310E+03 3.869E+07 6.126E+03 2.694E+05 3.759E-04

75 3.299E+06 1.907E+03 4.039E+07 7.707E+03 3.678E+05 5.439E-04

100 3.354E+03 3.144E+05 4.043E+07 8.015E+03 4.279E+05 8.371E-04

150 7.401E+06 3.574E+03 3.988E+07 6.722E+03 4.341E+05 1.556E-03

Sample3 50 7.706E+08 7.336E+06 7.791E+07 2.028E+03 7.580E+01 1.143E-03

100 5.789E+04 1.876E+06 4.873E+07 3.238E+03 1.469E+02 3.582E-03

200 8.107E+07 4.021E+03 6.129E+07 1.452E+04 5.914E+05 1.700E-02

300 1.693E+05 9.026E+05 1.443E+05 7.410E+03 1.598E+01 1.677E-01

Sample7 50 9.013E+03 9.204E+05 4.583E+07 4.579E+03 6.402E+04 2.361E-03

100 9.514E+03 6.446E+05 4.182E+07 7.886E+03 1.300E+05 2.683E-03

200 8.802E+03 9.781E+05 4.558E+07 8.454E+03 3.490E+05 6.842E-03

300 2.872E+06 7.586E+03 4.435E+07 5.993E+03 3.048E+05 1.175E-02
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Burgers model in describing the creep of unsaturated silty clay in

Fuyang, but what causes this phenomenon? Through the analysis

of Eqs 28 and 29, we can get the creep geometrical characteristics

curve of the Nishihara model and Burgers model as shown in

Figure 16.

It can be seen from Eqs 28 and 29 that the non-linearity of

Nishihara model and Burgers model all controlled by

(1 − e−G1t/ξ1 ), but as time t increases, (1 − e−G1t/ξ1 ) gradually

approaches to constant 1, which lead to the gradual decrease

of the ability of Nishihara model and Burgers model to describe

the non-linear characteristics of creep. Meanwhile, it can be seen

from Figure 16 that when t increases to a certain extent, the strain

curves of the Nishihara model and the Burgers model show

strong linear characteristics, and develop along their asymptotic

line ε1(l), which also leads to the fact that both the Nishihara

model and the Burgess model can only simulate the accelerating

creep stage with an approximate oblique line, which produces a

large error with the test curve. When Sij > σs, the Nishihara

model has only one more linear term σst/2ξ2 than Burgers model,

but this linear term is very limited to adjust the non-linear

characteristics of the strain curve, so the Nishihara model and

the Burgers model are basically equivalent in this stress

conditions. When Sij ≤ σs, Nishihara model degenerates into

a three-element model, but the Burgess model is a four-element

model and has one more Newton body than Nishihara model, so

its fitting effect on the test curve is better than Nishihara model. It

can be seen from Eqs 24, 26 that the non-linear control term in

IFNM are more diverse and freer than Nishihara model and

Burgers model due to the introduction of the Harris non-linear

Hooker body and fractional Abel dashpot. The increase in

freedom enables IFNM to simulate more diverse non-linear

curve forms more accurately, which is also the reason why

IFNM has higher fitting accuracy than Nishihara model and

Burgers model. However, the increase in freedom also makes the

FIGURE 15
Comparison of fitting curves and test curves of IFNM, Nishihara model and Burgers models under different cases: (A–C) Sample 1 (D–F) Sample
3 (G–I) Sample 7.

Frontiers in Earth Science frontiersin.org17

Wu et al. 10.3389/feart.2022.1029420

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1029420


parameters and calculation of IFNM increase sharply, and the

physical meaning of the parameters is not as rigorous as the

Nishihara model and Burgers model, which is also the biggest

defect of IFNM.

5 Conclusion

Through the triaxial creep test of unsaturated soil, we

obtained the creep curves of Fuyang unsaturated silty clay

under different stress conditions, and established the

improved fractional order Nishihara model (IFNM)

containing non-linear Hooke body and Abel dashpot. Finally,

three case studies based on cooperation search algorithm (CSA)

verify the effectiveness of IFNM, through detailed analysis, some

conclusions can be drawn as follows:

1) Fuyang unsaturated silty clay has strong creep behavior.

When the deviator stress is low, creep presents

approximate linear viscoelasticity. When the deviator stress

is high, creep presents obvious non-linear viscoelasticity.

When the deviator stress is large, the creep shows obvious

non-linear viscoelasticity, and the test soil is softened. The

increase of matric suction would inhibit axial strain

development, which shows that matric suction has

hardening effect on test soil, but this hardening effect

would gradually stabilize with the increase of matric

suction. There is a negative correlation between net

confining pressure and axial strain, the larger net confining

pressure is, the lower the axial strain is.

2) From the MSE convergence curves of IFNM of different

swarm intelligence algorithms, it can be seen that CSA has

the advantages of high convergence accuracy and strong anti-

interference ability for parameter identification of fractional

order system.

3) By comparing the fitting results of IFNM, Nishihara model

and Burgers model, the fitting accuracy of IFNM is better than

Nishihara model and Burgers model, which can not only

overcome the defect of poor fitting of integer-order model at

the inflection point of creep curve, but also simulate the non-

linear characteristics of creep and accelerating creep

stage well.

In addition, in engineering construction, the strong creep

property of Fuyang unsaturated silty clay should be concerned.

When constructing general buildings, drainage consolidation,

rolling, cushion, vibration, compaction and other engineering

treatment measures can be used to improve the foundation and

foundation bearing capacity. Meanwhile, the corresponding

construction quality monitoring should be strengthened to

minimize the ground subsidence after project completion.

Finally, it is suggested that the relevant departments establish

a ground subsidence monitoring network, and timely feedback

the monitoring results every year to the relevant government

departments to provide a geological basis for urban construction

and development planning.

Although IFNM can better describe the creep characteristics

of unsaturated silty clay in Fuyang than the integer-order element

model, IFNM has more than six parameters, which increases the

difficulty of parameters identification and makes it difficult to

FIGURE 16
The creep geometrical characteristics curve of the Nishihara model and Burgers model.
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apply in practical engineering. Therefore, how to achieve a

balance between simulation precision and computational

complexity and streamlining the number of parameters is one

of our next research directions. In addition, this paper only uses

the test curve fitting method to verify the feasibility and

effectiveness of IFNM, which is still a long way from practical

engineering applications. Therefore, the secondary development

of IFNM in Flac3D is our another research direction. The non-

linear Hooke body and Abel dashpot in IFNM is a series system,

but for describing the creep phenomenon, a parallel system is a

better choice. However, the abstract fractional order delay

evolution equation generated by the parallel system composed

of non-linear Hooke body and Abel dashpot is extremely

complex and difficult to solve, so if we can obtain a simple

numerical solution technique for abstract fractional order delay

evolution equation, it will promote the generation of many new

fractional element models.
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