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The stimulation effect of oil wells is seriously affected by the complexity of hydraulic

fractures, and the analysis of the factors that control the fracture complexity index

has become the key to fracturing design in sandy conglomerate reservoirs. Based

on the intrinsic relationship between geological engineering parameters and the

fractures complexity index, a Genetic Expression Programming (GEP) method,

which has broad advantages in solvingmulti-factor nonlinear fitting and black-box

prediction problems, is proposed to analyze the hydraulic fracture complexity

index. Combinedwith the geoengineering factors that affect the hydraulic fractures

propagation, a comprehensive index calculation method is established to analyze

the relative importance of these features and 18 reconstructed features were

obtained by collecting the geoengineering parameter data of 118 fracturing

sections in 8 fracturing wells in Jinlong oilfield. The principal component

analysis was performed to eliminate the interaction between the features, and

then a GEP-based fractures complexity index calculation model was developed.

The partial dependence plot is used to analyze the influence of the main control

feature (variable) on the hydraulic fracture complexity index. It showed that GEP

model can achieve satisfactory performance (Training set: R = 0.861; Test set: R =

0.817) by statistical parameters. The results showed that the model can calculate

the hydraulic fracture complexity index quickly and precisely. The influence of

geological engineering control factors can be obtained. It proved that the GEP

method can effectively analyze and evaluate the complexity in sandy conglomerate

reservoirs.
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1 Introduction

In recent years, hydraulic fracturing technology has been the

key reservoir stimulation technology (Zhao et al., 2018; Zhao

et al., 2022). Fracture network fracturing has proven to be an

effective technology for the development of tight shale reservoirs

(Ren et al., 2017; Ren et al., 2018; Ren et al., 2022). Predicting the

production performance of multistage fractured horizontal wells

is essential for developing unconventional resources such as shale

gas and oil. It is essential to accurately characterize the fracture

morphology on the reservoir scale (Wang et al., 2020;Wang et al.,

2021). The sandy conglomerate reservoirs that are widely

distributed in China have poor permeability and strong

heterogeneity (Xv et al., 2019). In the Junggar Basin, there

have been made important breakthroughs in exploration and

development of sandy conglomerate reservoirs, which have

proved that the region is rich in oil and gas resources. In

order to develop the glutenite reservoirs in Jinlong Oilfield

efficiently, it is necessary to conduct in-depth research on

glutenite reservoir fracturing and analyze the geological

engineering factors that control the formation of complex

fractures after fracturing. It is of great value to optimize the

fracturing well section of the glutenite reservoir and design the

mining scheme for the glutenite reservoir.

The distribution of gravel particles in a glutenite reservoir is

often heterogeneous, which the fracturing effect is seriously

affected. So the fracture propagation law of conglomerate was

studied. It found that the fracture propagation speed is relatively

low under low pumping rate. Most of the fractures propagate

along the cementation surface around the gravel (Xv et al., 2019).

Hydraulic fracture propagation shows different propagation

modes when encountering conglomerate, including: directly

crossing the conglomerate, turning along the conglomerate,

and expanding around the conglomerate (Xv et al., 2020), and

the degree of fracture extension is closely related to the number of

gravels. Besides, the breakdown pressure of the conglomerate

formations was improved due to the existence of conglomerate

particles (Shentu et al., 2015). The pressure would lose a lot with

the increase in proppant concentration, pump rate, and the

volumetric fraction of conglomerates (Wen et al., 2015). As

opposed to shale, the unique rock fabric and strong

heterogeneities of tight conglomerate formation are favorable

factors for forming complex fractures. A small space well pattern

can proactively control and make use of interwell interference to

increase the complexity of the fracture network, and the

“optimum-size and distribution” hydraulic fracturing can be

achieved through synergetic optimization (Li et al., 2020). The

slickwater and guanidine gum gelout were used to study the

mechanisms of formation damage. It found that the gaps in the

edges were closed because of slick water. In contrast, the particles

exited in the pores due to the flocculent deposits during the

damage of guanidine gum gelout (Cheng et al., 2022). In the

conglomerate reservoir, it is difficult for proppants to transport in

complex fractures networks due to hydraulic fractures tending to

bypass the gravels. So the width is changed frequently. Due to the

more conglomerate and low hardness, the proppant is seriously

embedded in the fracture surface, so quartz sand is more broken

up (Zou et al., 2021). At present, in order to develop glutenite

reservoirs, fracturing operation parameters are optimized by

many scholars through numerical simulation, which can

increase the control range of reservoir transformation and

form complex hydraulic fracture networks, greatly improving

the seepage capacity of reservoirs (Guo, 2019).

The current study of glutenite fracturing confirmed that the

fracture has a high complexity index, but the complexity of

fracture morphology in engineering research is mainly achieved

by microseismic monitoring technology, which can timely guide

the fracturing parameters adjustment and optimization design

(Fu et al., 2021). However, this technology cannot describe the

correlation between fracture complexity and geological-

engineering parameters, and it is difficult to clarify the

influence law of geological-engineering parameters, which

brings great challenges to fracturing optimization. The GEP

method (Ferreira, 2001) is a genetic algorithm that can easily

implement symbolic regression. Compared with the black box

model of neural networks and other methods, the GEP method

can clearly give the model equation, so it can be easily applied to

engineering (Weatheritt et al., 2017; Akolekar et al., 2019).

Through field practice, it is found that the fracture complexity

index is affected by many factors, and there is no formula to

directly calculate the fracture complexity index after fracturing.

Therefore, based on the actual acquisition of microseismic data in

the field and combined with GEP technology, a mathematical

model for calculating the fracture complexity index is established

in the paper, the control factors affecting complexity index of

glutenite is studied, and quantitatively analyzes how the control

factors affect the complexity index is analyzed according to

permutation importance and partial dependence plot. The

research results are of great significance for understanding the

complexity of glutenite fracturing.

2 Mathematical model

The Jinlong 2 block of Jinlong Oilfield is about 41 km southeast

of KaramayCity. The northern part of the Jinlong 2 block is adjacent

to the proven Permian Upper Wuerhe Formation in the Ke 79 well

area. It is located in the triangular fault block formed by the Ke-Wu

fault zone in the western uplift of the Junggar Basin and the northern

fault of Baijiantan. In the Jinlong 2 block, a 100 m small well spacing

three-dimensional development test area was opened up, and

8 horizontal wells were deployed. The three-dimensional well

spacing of the two oil layers was 50 m, the horizontal section

was 1,300 ~ 1,600 m, and the production was 76,200 tons. In

order to study the fracture rupture and propagation in the

process of hydraulic fracturing in the small well spacing three-

Frontiers in Earth Science frontiersin.org02

Zhang et al. 10.3389/feart.2022.1051184

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1051184


dimensional development demonstration area, and provide

guidance for the analysis of fracturing effect and scheme

optimization of this platform, 8 horizontal wells were monitored

by microseismic in the area. The spatial distribution characteristics

of fracture network orientation, height, and length formed by

fracturing were determined, and the fracture propagation

morphology was monitored in real time, shown in Figure 1.

Based on the fracture length and width obtained by on-site

microseismic monitoring, the fracture complexity index can be

preliminarily calculated (Cipolla et al., 2008), and the calculation

result is used as the target value in the machine learning. The

accuracy of the GEP calculation model is determined by the

sample size and the selection of the geological engineering

parameters that affect the fracture complexity index. By

collecting the data of a total of 118 fracturing sections of

8 fracturing wells on site, a total of 14 possible influencing

factors are considered in each section as the data samples for

modeling and calculation analysis in this paper, including

fracturing engineering parameters such as displacement and

operation pressure and reservoir geological parameters.

2.1 Data collection

A total of 118 fracture stages from 8 wells were obtained as a

data set to calculate the complex index of the conglomerate. Each

stage is used as a data sample. The input includes 14 variables

(engineering parameters and geological parameters), and the output

variable is the fracture complexity index value, so there are a total of

14 input variables and one output variable. The distribution of the

dataset is described in Table 1. It can be seen that there are obvious

differences in the data distribution (such as data range) of each

variable.

With different unit dimensions and data distribution,

efficient machine learning models are sensitive to the

distribution of features, so data preprocessing is important for

machine learning. The data is moved by the minimum value unit,

and will be converged to between [0,1], and it is called data

normalization. The normalization formula (Qi et al., 2019) is:

x* � x −min x( )
max x( ) −min x( ) (1)

where min(x) is the minimum value of data x; max(x) is the

maximum value of data x; x* is the normalized value of data x.

2.2 Calculation and evaluation of basic
data

2.2.1 Judgment of divergence
For the designed features, the coefficient of variation (CV) is

used to judge the degree of dispersion, which is defined as the

ratio between the standard deviation of the feature and the mean

value, and the expression is as follows:

CV � σX
μX

(2)

After calculation, the results and ranking of the 14 feature

dispersion coefficients designed are shown in Table 2. Generally

speaking, the larger the dispersion coefficient CV, the more

dispersed the data are, and the more effective for prediction.

It can be seen from Table 2 that the dispersion coefficient CV of

the five characteristics of mud content, amount of crosslinking

agent, total amount of net liquid, average sand ratio, and total

proppant are relatively large, and the values of the data are

relatively scattered and strongly divergent.

FIGURE 1
Microseismic monitoring map of well JL1.
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2.2.2 Judgment of correlation
Pearson’s correlation coefficient (PCC) was used to judge

the correlation between 14 features and fracture complexity

index. PCC is a classical statistic used to reflect the degree of

linear correlation between two variables. The correlation

coefficient is represented by ρX,Y, which is the covariance

cov(X,Y) of two variables X,Y divided by their standard

deviations σX and σY. The result is between -1 and 1, and

the larger the absolute value of ρ, the stronger the

correlation.

TABLE 1 Descriptive statistical table of characteristic parameters.

Variable Feature
code

Mean Standard
deviation

Partial
degrees

Coefficient of
variation

Minimum
value

Maximum value

Staged length X1 66.021 10.003 2.783 0.152 47.000 122.000

Average pumping rate X2 7.341 1.375 −0.246 0.187 4.200 9.700

Average operation
pressure

X3 58.924 6.112 0.230 0.104 45.500 79.500

Amount of crosslinking
agent

X4 7.251 2.948 1.500 0.407 3.000 20.000

Total proppant X5 61.915 11.987 −1.873 0.194 6.400 90.000

30–50 mesh ceramsite
proportion

X6 0.943 0.047 −6.881 0.050 0.531 0.983

Average sand ratio X7 13.911 3.374 −0.255 0.243 3.147 22.222

Total amount of net liquid X8 946.086 312.383 2.098 0.330 571.300 2,412.000

Guar gum/jelly
proportion

X9 0.697 0.119 −0.386 0.171 0.386 0.918

Breakdown pressure X10 73.822 8.001 −0.337 0.108 52.000 89.000

Pump-stopped pressure X11 29.941 4.246 2.046 0.142 21.800 55.000

Mud content X12 3.031 2.701 1.780 0.891 0.230 17.430

Porosity X13 10.123 1.736 −0.005 0.171 6.420 14.810

Oil saturation X14 49.966 7.652 −0.206 0.153 30.560 72.150

Fracture network
complexity index

Y 0.454 0.113 1.029 0.248 0.179 0.958

TABLE 2 Characteristic parameter calculation results.

Feature code Parameter Dispersion
coefficient

Correlation
coefficient

Importance Comprehensive scores Rank

X1 Staged length 0.149 0.047 10.173 4.649 3

X2 Average pumping rate 0.194 −0.122 3.743 1.784 10

X3 Average operation pressure 0.107 0.194 4.810 2.232 9

X4 Amount of crosslinking agent 0.401 0.083 12.780 5.940 2

X5 Total proppant 0.205 −0.246 3.651 1.760 11

X6 30–50 mesh ceramsite proportion 0.092 −0.608 2.900 1.407 13

X7 Average sand ratio 0.253 −0.363 5.845 2.781 8

X8 Total amount of net liquid 0.326 0.079 6.385 3.028 6

X9 Guar gum/jelly proportion 0.170 0.185 3.440 1.643 12

X10 Breakdown pressure 0.107 −0.026 2.030 0.964 14

X11 Pump-stopped pressure 0.160 0.227 7.681 3.551 5

X12 Mud content 0.882 −0.069 9.200 4.544 4

X13 Porosity 0.166 −0.010 21.104 9.572 1

X14 Oil saturation 0.156 0.039 6.252 2.887 7

Y Fracture network complexity
index

— — — — —
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ρX,Y � cov X,Y( )
σX · σY �

∑n
i�1

Xi − �X( ) Yi − �Y( )����������∑n
i�1

Xi − �X( )2√ ����������∑n
i�1

Yi − �Y( )2√ (3)

where X is feature; Y is predictor variable; σx is the standard

deviation of X; σY is the standard deviation of Y.

The pearson correlation coefficient between the

characteristics and the calculated value of fracture complexity

index is shown in Table 2.

2.2.3 Feature importance judgment
Random forest is a classic ensemble model based on bagging

to improve the performance of basic decision tree models.

CatBoost is a parallel computing model based on boosting to

gradually iterate decision tree models to improve the fitting effect

(BuKhamseen et al., 2017). The CatBoost model is selected for

importance judgment in this paper. After the training of the

CatBoost model, the relative importance score of each feature is

directly output by the model. The importance of the fracture

complex index is shown in Table 2.

2.2.4 Feature synthesis calculation
Regarding the correlation between the feature and the

complexity index, a weighted evaluation of the three

evaluation indexes (the sum of the weights is 1) is defined. A

comprehensive fracture complexity index correlation is given to

the feature score by integrating the results of different evaluation

methods. The CV score reflects the divergence of the feature, that

is, the amount of information. A weight of 0.1 is assigned to the

CV score (w3), the remaining weights are equally distributed to

PCC and CatBoost. The comprehensive scores are shown in

Table 2.

Score � w1 · SPCC + w2 · SCatBoost + w2 · SCV (4)

2.2.5 Independent judgment
There is not only a correlation between the feature and the

fracture complex index, but also a correlation within the

feature, that is, between the input variables. The correlation

between the 14 input variables is judged by the PCC. As

shown in Figure 2A, some of the correlation coefficients are

greater than 0.5, indicating that there is a strong correlation

between the input variables (Koo et al., 2016). Strong

correlation will make GEP biased in variable selection

during training and prediction, resulting in poor model

correlation. Therefore, it is necessary to combine the

importance and independence of features to re-divide the

features, and the poor independence features are classified

into one category. The selection can not only reflect the

important factors, but also ensure the independence

between features and improve the accuracy of the model.

Based on the comprehensive score of features, the important

factors are first selected and then classified according to their

independence. The classification results are shown in Table 3

and the reconstructed features are F1~F10. The importance

distribution histogram are shown in Figure 2B.

2.2.6 Principal component analysis
Some strongly correlated variables can be excluded and

features that carry important information can be selected by

judging the importance and independence of the features

above. All the information that affects the complex index is

carried in the remaining reconstructed features (F1~F10), but

it is inevitable that there will be poor independence between

the reconstructed features, which will cause some

FIGURE 2
Independence among 14 variables (A) and 10 reconstructed variables (B).
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information to be ignored or covered. And then the accuracy

and generalization ability of the GEP calculation model will

seriously be affected. Therefore, the principal component

analysis method (Sircar et al., 2021) is used to eliminate

the weak independence between the reconstructed

variables. The input reconstruction features are

recombined into a new set of mutually unrelated variables,

while retaining the information carried by the original

variables. After the dealing with PCA, the correlation

between the variables is shown in Figure 3. It can be seen

that the variables are independent of each other, and the GEP

model can be trained after the PCA processing.

2.3 Gene expression programming

2.3.1 GEP principle
The evolutionary algorithm is a method to search for the

maximum or minimum value of a function by simulating

Darwin’s evolutionary theory of the survival of the fittest in

natural organisms. It is suitable for solving complex problems

and is used in various fields. The model has strong robustness

and is especially suitable for establishing complex functional

relationships between variables. Compared with other machine

learning algorithms (such as random forests, neural networks,

etc.), evolutionary algorithms are interpretable. The advantages

of GA and GP are inheritted by GEP, expressing structures of

different sizes and shapes using simple, linear, fixed-length

individuals. The main genetic operators used in GEP include

mutation, inversion, transposition, crossover/recombination,

and gene crossover (Ferreira, 2001).

2.3.2 Assessment of the results
To evaluate the performance of the trained GEP model, a

statistical index is introduced, which is the mean squared

error(RMSE) (Emamgolizadeh et al., 2015). It is used to

describe the difference between the model calculated value

and the field actual value, which is shown in Eq. 5. The

smaller the RMSE, the better the performance of the model.

RMSE �
�����������
1
n
∑n
i�1

yi − Yi( )2√
(5)

where Yi is fracture complex index value obtained in field,

dimensionless; yi is predicted fracture complexity index value,

dimensionless; Y is fracture complex index mean value obtained

in field, dimensionless; y is predicted fracture complexity index

mean value, dimensionless; n is the number of data samples,

dimensionless.

TABLE 3 Reconstruction feature parameter correspondence table.

Feature code Parameter Feature code Strongly correlated features Reconstructed features

X13 Porosity — — F1

X4 Amount of crosslinking agent X7 Average sand ratio F2

X8 Total amount of net liquid

X1 Staged length — — F3

X12 Mud content — — F4

X11 Pump-stopped pressure — — F5

X14 Oil saturation — — F6

X3 Average operation pressure X10 Breakdown pressure F7

X2 Average pumping rate — — F8

X5 Total proppant X6 30–50 mesh ceramsite proportion F9

X9 Guar gum/jelly proportion — — F10

FIGURE 3
Independence among 10 variables after PCA processing.
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2.3.3 Fitness function
If the chosen error is the absolute error, the fitness fi of a

single program i is calculated by Eq. 6. If the selected error is a

relative error, then the Eq. 7 is used to calculate this value.

fi � ∑j�1
Ci

M − C i,j( ) − T j( )
∣∣∣∣∣ ∣∣∣∣∣( ) (6)

fi � ∑j�1
Ci

M − C i,j( ) − T j( )
T i( )

· 100
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣( ) (7)

where M is the selection range, C(i,j) is the value returned by

individual chromosome i for fitness case j (outside of Ct fitness

case), and Tj is the target value for fitness case j. Note that for full

adaptation, C(i,j) = Tj, fi = fmax = Ct·M。

2.3.4 GEP algorithm flow
Combined with the principle of the GEP algorithm, the GEP

evolution process is shown in Figure 4.

3 Applications and analysis

At present, there are many studies on the selection of

training set and test set size in machine learning. Generally,

70% is selected as the train set size (Qi et al., 2018). Therefore,

the data of 83 fracturing stages is selected as training set

samples, and the remaining 35 stages are used as test set

samples for GEP fitting.

3.1 Fitting of equations

The accuracy and validity of the GEPmodel depend onmany

factors. Whether the input variables are independent of each

other plays an important role in the selection of important

variables during equation fitting. Therefore, the reconstruction

variables (F1, F2, F3...F10) are used as the input variables of the

GEP model to calculate the fracture complex index of the sandy

conglomerate reservoir based on the previous analysis. In this

study, basic operators such as +、-、p、/、exp、Inv、Min、

Max are used to implement the GEPmodel. The fitted equation is

shown in Eq. 8, in which y1~y10 are shown in Eq. 9, and the

equation coefficients are shown in Table 4.

y � y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 (8)
y1 � (x10*(max(a4 , gep(max(a3 , a2))) − e(x1 *a1+max(x4 ,x1 ))/2)

+(gep((a4 − x3)*(x8 − x10)*x8*x6)*x2))/2
y2 � x2

9/((((x8*b1*gep(b1))2 + b1*x1)/2)
−(((b22 + b2 + x3)/2) − x2)*x2

10)
y3 � (((1/(((((1 − (((c1 − x6)*x2*x6 + (x7 + c2)/2)/2)) + (x10 + x1/2)))

+(x6 + x7)/2))))*x7) + (1 − x3))/2
y4 � x9 − (x9 −min(x10 , (((1 − ((((((x4 + x10) + (d2 + x4)/2/2) + (d1*x1)/2) −min((x6 + d1), (x3 + x5)/2)))2

+x9)/2))))
y5 � 2*x9*e((((x4−x6 )*e2+(x1+e1 )/2)/2+(1-x9 )/2))

2
* min(x4 , (1 − gep(1 − (x10 − x1))))

y6 � x1*gep(((((f 1*x10 − f 3)*(f 2 + x7)/2)
+x10/x8)/2*max(x3 , (x1*x2)2)) − x9)*x3),

y7 � min((x3 − 2*x2
6*(1/((((g1 + x6) + x6)

+g2 + x5) + (x2
3 + x7/x6)))), g3)

y8 � x8

y9 � (((1 − x3)*x10*(gep(h1*x3)peh2 /((1 − h3) − 1/x10) − x10)*ex6 ) + x10)/2
y10 � min(((((1 − x3) + 2*x9) + 1/(1 − x7))

−(2*x10 + x2
2)) + (k2 + x2)/2*x5*k3/gep((k1 + x9)/2), x9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

FIGURE 4
Flow chart of GEP evolution.

TABLE 4 Equation coefficient table.

a1 3.651 f1 5.007

a2 −10.007 f2 −8.074

a3 −6.091 f3 −0.634

a4 −5.078 g1 3.572

b1 −7.118 g2 −0.893

b2 2.729 g3 1.497

c1 5.652 h1 3.042

c2 8.654 h2 1.619

d1 6.924 h3 0.216

d2 8.807 k1 1.996

e1 4.666 k2 −3.348

e2 2.346 k3 3.054
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gep(x) � −(−x) 1
3 , x< 0

x
1
3 , x> 0

⎧⎨⎩ (10)

3.2 Result analysis

According to the obtainedGEPmodel, the training and test set of

fracture complex index are analyzed. In order to get a clearer

understanding of the accuracy and reliability of the model, a

comparison chart of the fracture complexity index and data point

sequence of the actual field results and themodel calculation results is

also drawn, as shown in Figure 5. It demonstrates the accuracy of the

developed model and the GEP model correctly calculate the trend of

the field data by comparing the target value and the calculated value

in the training and test set.

The fracture complexity index values from actual field data and

the calculated results is compared in the Figure 6. It can be seen that

the GEP model successfully learns the relationship between the

nonlinear fracture complexity index and its influencing variables.

The data points are mainly distributed around the diagonal,

implying that there is a proper coordination between the

calculated data and the target data. Computational performance

is evaluated using R and RMSE, and in the case of the training set,

the statistical parameters obtained by GEP are: R=0.861,

RMSE=0.058. According to statistical suggestions, when R>0.8, it
means that the calculation result is better (Roy et al., 2008).

Therefore, the computational performance of GEP is satisfactory

in the training set. Likewise, the statistical parameters of the test set

are: R=0.817 and RMSE=0.066, indicating that the model trained by

GEP can be used to calculate the fracture complexity index.

In order to analyze the influencing factors of the fracture

complex index, the Permutation Importance (PI) method was

used to determine the importance of the factors. It provides a

model-independent method for calculating feature importance

by selecting a feature and using the test set to calculate a score

FIGURE 5
Simultaneous plot of outcomes of the GEP model and target data against index of data: (A) training set and (B) test set.

FIGURE 6
Comparison of target value of fracture complexity index and calculated value of GEP model: (A) training set and (B) test set.

Frontiers in Earth Science frontiersin.org08

Zhang et al. 10.3389/feart.2022.1051184

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1051184


(standard deviation). Randomly shuffle the values of the feature

column of the test set, and calculate the score (standard

deviation) of the feature. The effect of the feature on the

calculation can be obtained by taking the difference of the

score, and then the effect of each feature on the calculation

can be obtained. If there is little difference between the old and

new results, it means that the feature is of low importance. If the

difference between them is significant, then the effect on the

model is also significant. Finally, the scores of all features are

ranked to get the importance.

The relative importance of the feature variables to the

fracture complexity index calculated using the feature

importance evaluation method PI is shown in Table 5.

Among them, the more important engineering control factors

are the ratio of guar gum/jelly, the amount of crosslinking agent

and the pump stop pressure, etc. And the more important

geological control factor is the mud content.

4 Discussion

Two important issues are discussed in this section. The first is to

analyze how the controlling factors, such as geological parameters

and engineering parameters, affect the fracture complexity index by

using themodel. The second is whether themodel trained using GEP

can be used to calculate the fracture complex index.

The Partial Dependency Plot (PDP) shows the marginal

effect of a feature on the results of a previously fitted model

calculation, reflecting how this feature affects the calculation. To

obtain a partial correlogram (Friedman, 2001), several values of

the input variable are first selected, and then, for all cases of the

other input variables, each of these values is used to calculate the

output. Finally, the average output is calculated and then

compared with the corresponding input value. And the partial

dependence relationship between some important engineering

and geological parameters in the reconstruction variables and the

fracture complex index is drawn as shown in the figures.

It can be seen from Figure 7 that the engineering parameters

have different degrees of influence on the fracture complexity

index. According to the PI calculation results, the proportion of

guar gum/jelly is an important controlling factor. With the

increase of the proportion, the fracture complex index shows

an upward trend, but when the proportion of guar gum/jelly is

about 70%, the fracture complexity index begins to decrease. The

increasing of the proportion can effectively promote the net

pressure in the fracture, which is beneficial to form complex

fractures. In addition, with the increase of the crosslinking agent,

the fracture complexity index first increases and then decreases,

and there is an optimal value.

It can be seen from Figure 8 that the fracture complexity

index increases with the increase of the pump-stop pressure,

and the higher the pump-stop pressure, the higher the net

pressure in the fracture, which can significantly promote the

fracture complexity. At the same time, it can be seen that the

fracture complexity index increases first and then decreases

with the variety of the fracturing stage length, indicating that

when the fracturing stage is short, although the length of the

stage is fully stimulated, the stimulated area has a low degree

of fracture complexity. When the fracturing stage is long, it

may not be completely stimulated, the fracture width of

microseismic monitoring is smaller than the fracturing

stage length, and the fracture complexity is still small. The

optimal fracture complexity can be obtained while the

fracture length is extended, the lateral stimulated degree is

maximized, and the fracture width monitored is

approximately equal to the stage length after fracturing by

optimizing a reasonable stage length.

Whether the hydraulic fracture can be effectively supported

depends to a large extent on the proppant. The selection of proppant

specifications is mainly based on the comprehensive consideration

of formation sand feeding capacity, proppant conductivity, and

proppant breakage rate under the closing stress condition of the

target layer. The 30/50 mesh ceramsite and 40/70 mesh quartz sand

is used, and it can be seen from the Figure 9 that the amount of

TABLE 5 The ranking of main control factors.

Feature name Feature code Standard deviation Ranking

Porosity F1 −0.135 6

Amount of crosslinking agent F2 −0.369 2

Staged length F3 −0.103 8

Mud content F4 −0.278 4

Pump stop pressure F5 −0.284 3

Oil saturation F6 −0.108 7

Average operation pressure F7 −0.036 10

Average pumping rate F8 −0.227 5

Total proppant F9 −0.101 9

Guar gum/jelly proportion F10 −0.916 1
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proppant within a certain range can promote the formation of

complex fractures, and the proppant with small particle size can play

the role of temporary blocking and turning.

The practice of hydraulic fracturing shows that the larger the

pumping rate, the greater the net pressure, which is Figure 9

conducive to the propagation of hydraulic fractures. However,

the sandy conglomerate reservoir is different from the shale and

other natural fracture-developed reservoirs, so the effect of

increasing the pumping rate on the fracture complexity index

is relatively slow.

FIGURE 7
Partial dependency plot of engineering parameters(A) of GEP model.

FIGURE 8
Partial dependency plot of engineering parameters(B) of GEP model.

FIGURE 9
Partial dependency plot of engineering parameters(C) of GEP model.

Frontiers in Earth Science frontiersin.org10

Zhang et al. 10.3389/feart.2022.1051184

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1051184


The operation pressure is predicted under different pumping

rate, considering the need for full stimulation of a single cluster. There

are 2 clusters in a single stage, each cluster is 1 m/16 holes, a total of

32 holes, when the pumping rate is 8~10 m3/min, the predicted

operation pressure is 56~59MPa. The average pumping rate is

4.2~9.7 m3/min in this paper. Therefore, the pumping rate within

this rangewill not lead to excessive operation pressure. Different from

the pump stop pressure, the operation pressure shows the opposite

trend. Before fracturing, the operation pressure limit at different sand

concentration can be calculated to ensure the safe operation. When

the operation pressure varies greatly, it is difficult for the hydraulic

fracture to propagate, resulting in a low fracture complexity index.

As shown in Figure 10, for low-porosity sandy conglomerate

reservoirs, the fracture complexity index shows an upward trend,

which is related to the high elastic characteristics of low-porosity

rocks. For high-porosity sandy conglomerate reservoirs, the

effect of porosity on the fracture complexity index can be

ignored. In the range of mud content in the target block, the

effect on the complexity is low. Under low oil saturation, the

fracture complex index can be improved due to the small content

of pore-liquid phase and strong rock elastic characteristics. When

the oil saturation is too high, the complex index is suppressed.

In general, the above discussion shows that the trained calculation

model can be used for the calculation and characterization of fracture

complex index in this area to achieve better results.

5 Conclusion

(1) Based on the internal relationship between reservoir

geoengineering parameters and fracture complexity index,

the data of 118 fracturing stages in Jinlong Oilfield were

collected. The Genetic Expression Programming (GEP)

method, which has extensive advantages in solving multi-

factor nonlinear fitting was introduced. And then a hydraulic

fracture complex index calculation model was developed. It

showed that the model can be extended to calculate the

fracture complex index in sandy conglomerate reservoirs.

(2) The controlling factors affecting the fracture complex index were

obtained, and the influence on the fracture complex index was

analyzed by the partial dependence plot (PDP). It is found that

engineering parameters have a greater impact on the fluctuation

of the fracture complex index, followed by geological parameters.

The influence law of the factors on fracture complex index was

obtained in the sandy conglomerate.

(3) The intelligent method is a useful tool for solving complex

mechanism problems, especially in the process of hydraulic

fracturing. The fracture complex index calculation model

established in this paper can be used to analyze the

influencing factors of the sandy conglomerate reservoir in

Jinlong Oilfield.
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