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The combined usage of phasor measurement units and machine learning

algorithms provides the opportunity for developing response-based wide-

area system integrity protection scheme against transient instability in power

systems. However, only the transient stability status is usually predicted in the

literature, which is not enough for real-time decision-making for response-

based emergency control. In this paper, an integrated approach is proposed.

The GRU-based predictor is firstly proposed for post-disturbance transient

stability prediction. On this basis, a multi-task learning framework is proposed

for the identification of unstablemachines and also the estimation of generation

shedding. Case study on the IEEE 39-bus system demonstrates that, apart from

the basic task of transient stability prediction, the proposed GRU-based multi-

task predictor can predict the grouping of unstable machines correctly.

Moreover, based on the estimated amount of generation shedding, the

generated remedial control actions can retain the synchronism of the power

system.
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1 Introduction

Transient stability refers to the ability of power systems to maintain synchronism

when subjected to large disturbances (Hatziargyriou et al., 2021). When a power system is

at risk of losing the transient stability, if no proper actions are taken, it may cause

cascading outages, uncontrolled network splitting, and eventually wide-spread disruption

of electricity supply (Andersson et al., 2005). Therefore, maintaining the secure operation

of power systems is of great concern to transmission system operators (TSOs). To protect

power systems against transient instability, a considerate amount of research efforts has

been spent on developing advanced approaches in the field of power engineering.

Online transient stability assessment (TSA) is the first and foremost step for instability

prevention as it provides the TSOs with the ability of situation awareness. The
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conventional method for TSA is the time-domain simulation

(TDS) (Kundur et al., 1994). However, TDS is not capable for

real-time stability assessment as solving the high-dimensional

differential algebraic equations (DAEs) of an interconnected

transmission system is computationally burdensome. Also,

TDS cannot provide the information on the stability margin

and the countermeasures against the unstable scenarios. To

address these two drawbacks of the TDS method, transient

energy function (TEF) methods (Pai, 1989), also known as

direct methods, have been studied since 1980s. By comparing

the kinetic energy at the fault clearing time with the critical

energy, the stability status and the energy margin can be assessed

without the need of simulating the post-fault trajectories by the

TDS. While the critical energy is related with the controlling

unstable equivalent point (CUEP) (Chiang, 2011), the CUEP of

an ongoing fault contingency is usually hard to identify in real-

time manner.

Both the TDS and the TEF are model-driven methods for

TSA. With the development of phasor measurement units

(PMUs), data-driven methods are considered as the

prospective alternative to the model-driven methods.

Emergency single machine equivalent (E-SIME) approach

(Pavella et al., 2000) attempts to compute the energy margin

based on the synchronized PMU measurements. But still, the

critical unstable mode should be predicted correctly so as to

ensure the accuracy of this approach. The maximal Lyapunov

exponent (MLE) is proposed in (Dasgupta et al., 2015) to detect

the divergence or convergence of the generator rotor angle

trajectories. But the MLE may oscillate from positive and

negative values before the disturbed power system settles

down, which thus requires a sufficiently long monitoring

window to avoid the misclassification of stability status. In

recent years, encouraged by the success of artificial

intelligence (AI) in the fields such as computer vision and

nature language processing, AI-based approaches are gaining

more attentions.

Machine learning (ML) algorithms including the decision

trees (DTs) (Yang et al., 2017; Cremer et al., 2019), support vector

machines (SVMs) (Wang et al., 2016; Hu et al., 2019), neural

networks (NNs) (AL-Masri et al., 2013; Zheng et al., 2017), and

ensemble predictors (Kamwa et al., 2010; Qiu et al., 2019) have

been proposed for power system security assessment. The

existing literature on this topic can be sorted into two

categories, which are Pre-disturbance Stability Assessment and

Post-disturbance Stability Assessment, depending on whether the

post-disturbance measurement is used as the input features. In

this paper, post-disturbance stability assessment is studied. At the

early stage of the researches on post-disturbance stability

assessment, swallow predictors, such as SVMs and single-layer

NNs, are used. Considering that the natural characteristics of

power system transient stability is highly nonlinear, feature

extraction should be performed before developing the

predictor for stability assessment. While some literature

adopts the wide-area severity indexes as the input features

based on the expects’ experience (Kamwa et al., 2010; Wang

et al., 2016), voltage templates-based (Rajapakse et al., 2010) and

Shapelet learning-based (Zhu et al., 2016; Zhu and Hill, 2022)

feature extraction schemes are proposed to improve the

performance of the stability predictors. The emerging deep

learning algorithms can be used for representation learning

without the need of feature engineering. In (Yu et al., 2018),

the long short-term memory (LSTM)-based recurrent learning

algorithm is proposed to develop a time-adaptive transient

stability framework. In (Zhu et al., 2020), a convolution

neural network (CNN)-based hierarchical learning machine is

proposed to learn transient temporal correlations for online TSA.

When the impending instability status is detected, remedial

actions, also termed as system integrity protection scheme (SIPS),

should be implemented to retore the synchronism of the power

system. In (Bhui and Senroy, 2017), a look-up table of modes of

disturbance is proposed to assist the online computation of the

CUEP and the critical energy for TEF methods. Following the

E-SIME framework, the pair-wise relative energy function is

proposed in (Gou et al., 2017) to identify the critical unstable

mode and to design the emergency generation shedding scheme

for transient instability prevention. Although AI-based pre-

disturbance stability predictors have been widely studied and

employed to develop the integrated preventive control schemes,

such as (Xu et al., 2012; Liu et al., 2014; Liu et al., 2020), AI-based

approaches for emergency control against post-disturbance

transient instability are rarely reported to the best of the

authors knowledge. The decision trees are used to trigger the

controlled islanding (Senroy, 2006) and the power regulation of

HVDC intertie (Gao and Rovnyak, 2011). But these control

actions are determined by offline analysis. In (Paul et al.,

2020), the LSTM network is also used as the instability

detector and then the remedial actions are determined by the

continual monitoring of the out-of-step generators based on the

individual machine transient energy function.

With the ever-increasing penetration of renewable energies,

TSOs are facing with greater challenges in protecting power

system. On one hand, it is more difficult to implement preventive

control due to the inadequate resources for operating condition

regulation. On the other hand, the intermittency of renewable

energies will inevitably increase the variation of the real-time

operating condition, which also make it more difficult to design

the fixed system integrity protection scheme, that is, effective for

different scenarios. Therefore, response-based SIPS should be

developed to address the above-mentioned challenges. This

paper attempts to fill the gap between PMU-based post-

disturbance transient stability prediction and AI-driven real-

time decision making of emergency generation shedding in

order to develop an integrated wide-area protection and

control scheme. The gated recurrent unit (GRU)-based RNN

is proposed as the base predictor. As is discussed, the decision-

making for post-disturbance transient stability includes the

Frontiers in Energy Research frontiersin.org02

Liu et al. 10.3389/fenrg.2022.1084295

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1084295


prediction of the stability status, the unstable mode and the

needed amount of generation shedding. Considering that these

three predictive targets are basically correlated tasks, a multi-task

learning (MTL) framework is proposed. Case studies on the IEEE

39-bus system is presented to demonstrate the effectiveness of the

proposed approach.

The rest of this paper is organized as follows. Problem

description is provided in Section 2. The gated recurrent

units-based recurrent neural network is introduced in Section

3. The multi-task learning scheme for integrated real-time

decision-making of transient stability protection is proposed

in Section 4. Case studies on the IEEE 39-bus system is

presented to illustrate the effectiveness of the proposed

scheme in Section 5. Finally, conclusions are drawn in Section 6.

2 Problem description

As is discussed, transient stability relates to whether the

power system can maintain synchronism when subjected to a

large disturbance. The disturbance, such as a short-circuit fault,

will lead to the imbalance of the mechanical torque and the

electrical torque of each of the generators. Then some of the

generators will increase their rotor speed with respect to the

others, which forms the accelerating group and the decelerating

group of generators. The generator rotor angle trajectories under

a fault contingency in the IEEE 39-bus system is shown in

Figure 1. As can be seen from Figure 1, the generators {G33,

G34, G35, G36} together form the accelerating group, while the

rest of generators form the decelerating group.

Based on the idea of center of inertia (COI), the accelerating

group and the decelerating group of generators can be reduced to

two equivalent machines by Eq. 1:

δS � ∑i∈S Miδi( )
MS,MS

� ∑
i∈S

Mi

δA � ∑j∈A Mjδj( )
MA,MA

� ∑
j∈A

Mj.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

After the grouping of the generators, the SIngle Machine

Equivalent (SIME) can be further determined by Eq. 2:

δ � δS − δA

M � MSMA

MS +MA( )
d2δ

dt2
� M−1 Pm − Pe( ),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2)

where

Pm � MS +MA( )−1 MA ∑i∈S
Pmi −MS ∑j∈A

Pmj( ), (3)

Pe � MS +MA( )−1 MA ∑i∈S
Pei −MS ∑j∈A

Pej( ). (4)

After computing the SIME of the multi-machine power

system, the conventional equal-area criterion (EAC) can be

used to compute the energy margin-based transient stability

index (TSI) and to estimate the necessary amount of

FIGURE 1
The generator rotor angle trajectories under the fault contingency.
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generation shedding for instability prevention when the system is

about to lose synchronism. Figure 2 depicts the EAC criterion

(Kundur et al., 1994; Gou et al., 2017). If the decelerating area

Adec is smaller than the accelerating area Aacc, the system will lose

synchronism when the operating point travels through the

unstable equivalent point (UEP), which refers to the operating

point with the equivalent rotor angle to be δu.

In Figure 2, δ0 denotes the rotor angle of the SIME at pre-

fault condition, δs is the rotor angle relating with the stable

equilibrium point of the post-fault condition, while δu is the one

relating with the unstable equilibrium point of the post-fault

condition without generation shedding. δc is the rotor angle of

the SIME at fault clearing time and δd is the rotor angle of the

SIME when generation shedding is implemented. Accordingly,

δ′u is the rotor angle relating with the unstable equilibrium point

after generation shedding. Respectively, PPre−fault
e , PFault−on

e , and

PPost−fault
e denote the mechanical power output of the SIME for

pre-fault condition, fault-on condition and post-fault condition.

△Pshed denotes the amount of generation shedding and Aadd is

the increased decelerating area caused by generation shedding.

For unstable cases, generation shedding should be

implemented to make the SIME decelerates before travelling

through the unstable equivalent point. Based on the EAC, the

necessary amount of generation shedding Pshed can be computed

by Eq. 5 (Pavella et al., 2000; Gou et al., 2017):

Pshed � Aacc − Adec

δ′u − δd
≈
EKE δu( )
δu − δd

� 1/2( )M ω tu( )[ ]2
δu − δd

, (5)

where EKE(δu) denotes the kinetic energy of the SIME at the

UEP. ω is the rotor speed of the SMIE and ω(tu) denotes the
value at the UEP.

The earlier the control decision is made; the less generation

shedding is needed. However, for E-SIME method and its

derivatives, it is usually difficult to identify the critical

unstable mode and the relative UEP. To tackle this problem,

this paper tries to make the best of deep learning algorithms,

which have the attractive capability of nonlinear representation

and real-time decision-making. By learning from the offline

generated knowledge base, the deep learning-based predictor

not only predict the stability status, but further address the

problems including the grouping of unstable generators and

the estimation of the amount of generation shedding.

3 GRU-based RNN for post-fault
transient stability prediction

3.1 Brief introduction of gated recurrent
unit

As the PMU measurements have the form as temporal

sequential data, recurrent neural networks (RNNs) can be

used as the predictor for post-fault transient stability

assessment. The gated recurrent units (GRU)-based RNN is

used in this paper as the base predictor. The structure of the

GRU is shown in Figure 3.

GRU consists of the reset gate, the update gate and the state

unit. The reset gate rt decides whether the previous hidden state

ht−1 is ignored and is computed by Eq. 6:

rt � σ W r( )xt + U r( )ht−1( ). (6)

The update gate zt selects whether the hidden state is to be

updated and is computed by Eq. 7:

zt � σ W z( )xt + U z( )ht−1( ). (7)

The actual activation of the state unit ht is then computed by

Eq. 8:

FIGURE 2
Demonstration of generation shedding control based on the
EAC criterion. FIGURE 3

The structure of the GRU.
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ht � zt ⊙ ht−1 + 1 − zt( ) ⊙ h′
t, (8)

where

h′
t � tanh W o( )xt + rt ⊙ U o( )ht−1( ). (9)

In Eqs 6–9, xt is the input at current stage. ⊙ denotes the

element-wise product. σ(·) and tanh(·) respectively denote the

sigmoid activation function and the tanh activation function.

3.2 GRU-based post-fault transient
stability prediction

The proposed GRU-based transient stability predictor is

demonstrated in Figure 4. Assuming that PMUs are equipped

at all the generator buses, the rotor angle and the rotor speed of

all the generators can be measured by PMUs and then are used as

the sequential input for the predictor. Considering the

complexity and the nonlinearity of transient stability problem,

multi-layer GRU block is used as the predictor. Also, the one-hot

encoding is used as the label for post-disturbance transient

stability status classification. ys � [1, 0] indicates that the

sample is stable, otherwise, ys � [0, 1] is referred to as

unstable. In this case, the output of the GRU-based predictor

is set to be two-dimensional and is preprocessed by softmax

activation function. With the output of the GRU-based predictor

to be ps � [ps(0), ps(1)], following the idea of time-adaptive

prediction as in (Yu et al., 2018), decision of transient stability

classification is made by Eq. 10:

prediction �
Stable, ps 0( ) − ps 1( )≥ 0.9
Unstable, ps 1( ) − ps 0( )≥ 0.9,
Nodecision, otherwise

⎧⎪⎨⎪⎩ (10)

4 Multi-task learning-based
framework for transient stability
prediction and control

In Section 3, the GRU-based predictor is proposed for post-

disturbance transient stability classification. In this section, the

predictor is extended for the integrated prediction and control

against transient instability by multi-task learning (MTL).

There are a handful of examples of multi-task learning, such

as natural language processing (Collobert and Jason, 2008) and

computer vision (Girshick, 2015). Although one can handle these

tasks in the separated way, i.e., a specific neural network is

developed for each task, multi-task learning aims to improve

the generalization by leveraging domain-specific information

contain in the training signals of related tasks (Ruder, 2017).

In practical power systems, there are some transmission

interfaces that are correlated in terms of the dominated

stability mode. In (Huang et al., 2019), multi-task learning is

proposed to train a compact model to evaluate the total transfer

capacity (TTC) of these correlated interfaces in the united

manner.

The prediction of post-fault stability status, the identification of

critical unstable machines, and the estimation of generation

shedding are related tasks. Therefore, multi-task learning is used

to fulfill the above-mentioned tasks in order to develop the adaptive

PMU-based system integrity protection scheme against transient

instability. The structure of the multi-task deep neural network is

demonstrated in Figure 5. The GRU-based RNN is used to extract

the latent features following the basic MTL structure of hard

parameter sharing. After extracting the latent features, task-

oriented multi-layer perception model are developed to fulfill

different tasks. To train the parameters of the multi-task deep

neural network, the loss function is defined as is in (11):

FIGURE 4
The proposed GRU-based transient stability predictor.

FIGURE 5
The hard parameter sharing structure for transient stability
prediction and control.
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L � LTSA +∑NG

i�1LGi + LGS, (11)
where

LTSA � 1
NS

∑
s
− yTSA

s logpTSA
s + 1 − yTSA

s( )logpTSA
s[ ], (12)

LGi � 1
NS

∑
s
− yGi

s logpGi
s + 1 − yGi

s( )logpGi
s[ ], (13)

LGS � 1
NS

∑
s
yGS
s − pGS

s[ ]2. (14)

The subscript s denotes the serial number of a training

sample and NS is the total number of training samples. LTSA

denotes the cross-entropy loss function for transient stability

classification. yTSA
s is the label of stability status for the sth

sample, while pTSA
s is the related prediction. LGi denotes the

cross-entropy loss function for the ith generator. yGi
s is the label

that indicates whether the ith generator belongs to the

accelerating group for the sth sample, while pGi
s is the related

prediction. LGS denotes the mean square error (MSE) for

generation shedding estimation. yGS
s denotes the amount of

generation shedding and is computed by offline SMIE

analysis, while pGS
s is the related prediction.

The pseudo-code of the training procedure is demonstrated

in Algorithm I.

5 Implementation of the proposed
method

The proposed scheme includes two stages, namely the offline

model training stage and the online decision-making stage.

5.1 Offline data generation and model
training

During the offline stage, data generation is firstly

performed. Historical operating conditions (OCs) and

stochastic OCs that are simulated by Monte-Carlo sampling

of supply and demand are collected to form the database of

OCs. For each OC, contingency screening is performed to

generate the knowledge base of transient stability. Credible

contingencies, including but not limited to N-1 and N-2 fault

contingencies, are considered during the generation of

knowledge base. The simulated post-disturbance generator

rotor angle trajectories are used to simulate the PMU

measurements. The stability status is labeled according to

whether the maximum separation of rotor angle exceeds

360°. For those unstable instances, the SIME method is

used to determine the grouping of unstable generators and

the amount of generation shedding. With the generated

knowledge base, the multi-task deep neural network is

trained and stored for online application.

5.2 Online instability prediction and
emergency control

During the online stage, when a fault signal is received, the PMU

measurements are collected and are used as the input of the well-

trained predictor. The output of transient stability status is checked

firstly. If the prediction of stability status is stable, wait for the input

of next time step. If the monitoring duration exceed the maximum

monitoring window, the protection scheme will disarm and wait for

next fault signal. If the prediction of stability status is unstable, the

outputs of generator-wise stability status are collected to determine

the grouping of accelerating generators. If the unstable mode is

multi-machine unstable mode, these unstable generators are ranked

according to the output pGi
s . Then according to the output of

generation shedding, the unstable generators are added to the

control actions one-by-one until the necessary amount of

generation shedding is met by this control action. If the

necessary amount of generation shedding is higher than a pre-set

threshold, emergency generation shedding may not be the proper

countermeasure for transient stability protection. In this case, other

measures, such as controlled islanding and load shedding, should be

used instead. Otherwise, the generation shedding actions are

implemented to retain the synchronism of the disturbed power

system.

6 Case studies

The proposed scheme is illustrated by case study on the IEEE

10-machine 39-bus system (Pai, 1989). The network structure of

FIGURE 6
The network structure of the testing system.
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the testing system is shown in Figure 6. Power flow and time-

domain simulation are implemented by using PSD-BPA, which is

the power system analysis package developed by the China

Electric Power Research Institute (CEPRI). It is assumed that

all the generator buses are equipped with PMUs so as to enable

post-fault transient stability prediction and real-time decision-

making for emergency generation shedding control. Also, all the

power plants are assumed to be formed by five identical units that

operate in parallel. The maximum number of units that allow to

be shed is four so that at least one unit should be connected to the

power grid.

6.1 Data generation

Operating conditions of different loading scenarios, which

varies from 80% to 120% of base condition with the increment of

5%, are firstly generated. On this basis, the N-1 operating

scenarios are simulated by randomly selecting one of the

transmission lines to be out of service. These normal OCs and

N-1 OCs are combined to form the database of OCs. Three-phase

short-circuit faults, which are isolated by opening the relative

transmission line, are considered as credible contingencies. Fault

location is randomly chosen at 0%, 50% and 100% of the length of

the transmission line, while the fault clearing time is randomly set

between 6 cycles and 9 cycles. 5000 samples are generated. For

performance evaluation, the samples are separated by 60:20:20,

which are then used as the training set, the validation set, and the

testing set of samples.

6.2 Development of GRU-based predictor

After knowledge base generation, the GRU-based predictor is

trained based on the MTL-based framework proposed in Section

4. As is proposed, the post-disturbance PMU measurements of

generator rotor angles and rotor speeds are used as the input

features. The hyperparameters of the predictor is determined by

trial and error. In this case study, the GRU block consists of two

layers and the number of hidden states is set to be 1024. TheMLP

blocks for all the predicting tasks consists of two hidden layers

and the number of hidden states is also set to be 1024. The

training epoch is set to be 200, while early stopping is enabled by

using the validation data.

6.3 Performance on post-disturbance
transient stability assessment

The performance of the well-trained predictor on post-

disturbance transient stability assessment is evaluated by

using the testing data. The maximum monitoring window

is set as six cycles after fault clearing. Two cases, which are

fixed-time prediction and time-adaptive prediction, are

studied.

1) Fixed-time prediction

In the first case, the post-disturbance PMU measurements

from the fault clearing time to the end of the maximum

monitoring window are collected and used as the input of the

predictor. Numerical results of the confusion matrix in transient

stability classification are shown in Table 1. The overall

classification accuracy is 99.4%.

2) Time-adaptive prediction

In the second case, the performance of the time-adaptive

prediction scheme proposed in Section 3.2 is validated. The

testing results of time-adaptive prediction is shown in

Table 2. The overall classification accuracy is 99.6%, which

is comparable to fixed-time prediction. However, 29.8% of

unstable instances can be assessed in three cycles after fault

clearing, which helps to enable faster response for remedial

control against the impending instability of the power

system.

3) Comparison with the task-separated predictor

To demonstrate the effectiveness of the proposed MTL

framework, the comparison between the MTL-based predictor

and the task-separated predictor is studied. The numerical results

are shown in Table 3. False alarm (FA) refers to the ratio of stable

cases that are misclassified as unstable, while false dismissal (FD)

refers to the ratio of unstable cases that are misclassified as stable.

As can be seen from Table 3, the proposed MTL-based predictor

achieves higher accuracy in transient stability classification

comparing with the separated predictor, that is, trained

without the consideration of related tasks. As transient

instability will lead to catastrophic blackout, lower value of

false dismissal is preferred. In this regard, the proposed MTL-

based predictor also performs better that the task-separated

predictor.

Apart from post-disturbance transient stability

classification, the MTL-based predictor is used for real-time

decision-making for mitigation of the impending transient

instability. A thorough test on the performance on instability

mitigation is investigated. Numerical results are shown in

Table 4. There are 357 unstable testing instances. All these

unstable instances are correctly classified as unstable. Based

on the decision-making scheme proposed in Section 5.2,

337 instances are stabilized by implementing the generated
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remedial actions. So, the overall percentage of success

decision-making is 94.40%.

The procedure of decision-making against transient

instability is demonstrated by an unstable testing instance.

The rotor angle trajectories without any control actions are

shown previously in Figure 1. In this case, the unstable status

is predicted at three cycles. After stability prediction, unstable

machine identification is enabled by the outputs pGi
s of the

MTL-based predictor. Numerical results are shown in Figure 7

and accordingly the generators (G33, G34, G35, G36) are

identified as unstable machines. Then the estimated amount of

generation shedding is 558.96 MW. To meet this requirement

of generation shedding, 4 units at Bus-36 and 1 unit at Bus-35

are disconnected from the power grid. The power angle

trajectories after the control actions are shown in Figure 8.

As can be seen from Figure 8, after disconnecting the above-

mentioned units, the rest of generators can restore

synchronism and the impending instability is mitigated.

TABLE 1 The confusion matrix in transient stability classification for fixed-time (6 cycles) prediction.

Prediction of the testing data

Classified as Stable Classified as Unstable

Stability Status of the Testing data Stable 638/643 (99.22%) 5/643 (0.78%)

Unstable 1/357 (0.28%) 356/357 (99.72%)

TABLE 2 The testing results of time-adaptive prediction in transient stability classification.

Decision-making time (cycles) Instances to be classified Instances with classification decision Correct Incorrect

3 1000 298 298 0

4 702 22 22 0

5 680 11 11 0

6 669 669 665 4

TABLE 3 Comparison between the MTL-based predictor and the task-separated predictor.

Metrics MTL-based predictor (%) Task-separated predictor (%)

Accuracy 99.6 98.8

False Alarm 0.62 0.16

False Dismissal 0.00 3.18

Performance on Real-time Decision-making for Instability Mitigation.

TABLE 4 Numerical results on real-time decision-making for instability mitigation.

Number of unstable testing instances Instances that are correctly predicted Instances that are stabilized

357 357(100.0%) 337 (94.4%)

FIGURE 7
Indicator of critical unstable machine based on the output of
the MTL predictor.

Frontiers in Energy Research frontiersin.org08

Liu et al. 10.3389/fenrg.2022.1084295

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1084295


7 Conclusion

To protect power systems from transient instability and the

subsequent catastrophic blackouts, an integrated scheme is

proposed by using post-disturbance PMU measurements and

multi-task deep learning. The GRU-based predictor is firstly

proposed for post-disturbance transient stability prediction.

On this basis, considering that the prediction of the

impending instability, the identification of the unstable mode,

and the estimation of generation shedding are essentially related

tasks, a multi-task learning framework is proposed to develop the

PMU-based system integrity protection scheme for transient

stability. Case study on the IEEE 39-bus system demonstrates

that, apart from the basic task of transient stability prediction, the

proposed multi-task predictor can predict the grouping of

generators correctly. Moreover, based on the estimated

amount of generation shedding, the generated remedial

control actions can retain the synchronism of the power system.

Future research involves two aspects:

1) The proposed scheme is an open-loop SIPS and the overall

percentage of success decision-making is 94.40% in the case

study on the IEEE 39-bus system. In this regard, future

research focuses on developing the close-loop SIPS

following this paper so as to further enhance the

percentage of success decision-making.

2) In this paper, generation shedding of synchronous generators

is used as remedial actions. With the increasing penetration of

renewables, how to coordinate the conventional generation

shedding with the fast regulation of inverter-based renewables

is another topic for future work.
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