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Introduction: Various approaches have been used to explore different aspects of the

regulation of brain activity by acute exercise, but few studies have been conducted

on the effects of acute exercise fatigue on large-scale brain functional networks.

Therefore, the present study aimed to explore the effects of acute exercise fatigue on

resting-state electroencephalogram (EEG) microstates and large-scale brain network

rhythm energy.

Methods: The Bruce protocol was used as the experimental exercise model with

a self-controlled experimental design. Thirty males performed incremental load

exercise tests on treadmill until exhaustion. EEG signal acquisition was completed

before and after exercise. EEG microstates and resting-state cortical rhythm

techniques were used to analyze the EEG signal.

Results: The microstate results showed that the duration, occurrence, and

contribution of Microstate C were significantly higher after exhaustive exercise

(p’s < 0.01). There was a significantly lower contribution of Microstate D (p < 0.05), a

significant increase in transition probabilities between Microstate A and C (p < 0.05),

and a significant decrease in transition probabilities between Microstate B and D

(p < 0.05). The results of EEG rhythm energy on the large-scale brain network

showed that the energy in the high-frequency β band was significantly higher in the

visual network (p < 0.05).

Discussion: Our results suggest that frequently Microstate C associated with the

convexity network are important for the organism to respond to internal and external

information stimuli and thus regulate motor behavior in time to protect organism

integrity. The decreases in Microstate D parameters, associated with the attentional

network, are an important neural mechanism explaining the decrease in attention-

related cognitive or behavioral performance due to acute exercise fatigue. The high

energy in the high-frequency β band on the visual network can be explained in

the sense of the neural efficiency hypothesis, which indicates a decrease in neural

efficiency.
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1. Introduction

Fatigue causes a decrease in cognitive ability and physical
performance (Casanova et al., 2013; Alder et al., 2019, 2021; Coco
et al., 2020). Fatigue during prolonged strenuous exercise is affected
by a variety of central nervous systems (Proschinger and Freese,
2019). The collaborative working of multiple brain regions forms
a distinct network structure, reflecting the relationship between
cognitive ability and the brain (van den Heuvel and Hulshoff Pol,
2010). Insights into the features of the large-scale brain networks
underlying fatigue provides new perspectives to unravel the neural
basis of central fatigue.

Regarding the effect of acute exercise fatigue on a resting-state
EEG, power changes in alpha and beta waves in frontal and parietal
regions have been widely reported (Moraes et al., 2007; Schneider
et al., 2009; Brummer et al., 2011; Enders et al., 2016). However,
the current study is insufficient to determine the modulation of
EEG rhythms on specific brain regions by acute exercise fatigue,
as this varies with exercise intensity, pattern, and subject exercise
preference (Schneider et al., 2009; Brummer et al., 2011). Therefore,
it is questionable to explain the effects of acute motor fatigue on
related cognitive functions by power changes in EEG rhythms on
specific brain regions. However, it is worth noting that different
EEG rhythms can exist within the same neural network or interact
within different neural networks, and that different brain activities
can cause competition between different EEG rhythms within the
same neural network (Steriade, 2001; Varela et al., 2001; Mantini
et al., 2007), but there are no studies on the effect of exercise on
the energy of EEG rhythms within neural networks. Therefore, to
more accurately explain the neural mechanisms underlying the effects
of acute motor fatigue on specific cognitive functions, we applied a
new method, REsting-state COrtex Rhythms (RECOR), which allows
for the detailed localization of large-scale network cortical sources of
resting-state EEG rhythms. The RECOR toolkit not only reconstructs
the cortical current density of EEG rhythms, but also calculates
the energy of each rhythm over eight large-scale brain networks,
including visual, sensorimotor, dorsal attention, ventral attention,
limbic system, frontoparietal, default mode, and deep structural
networks.

However, maintaining cognitive activity requires not only the
intensity of activation of brain networks, but also the duration of
activation. EEG microstates are a reliable method for analyzing
brain network dynamics, which allows for studying the dynamic
pattern changes of individuals in large-scale brain networks under
different conditions on millisecond time scales. EEG microstates
are of great relevance to examining various diseases and behavioral
state changes in humans, but there are few studies on the effect of
exercise on microstates. However, it is interesting to note that the
four typical microstates (Microstate A, B, C, and D) obtained from
previous studies correspond to the speech processing network, visual
network, convexity network, and attention network, respectively
(Lehmann et al., 1998; Damoiseaux et al., 2006; Seeley et al., 2007;
Britz et al., 2010). Among them, the projection network, which
mainly includes the anterior insula and anterior cingulate cortex,
has the function of detecting, receiving, and integrating internal
and external information stimuli, and subsequently switching to
the relevant processing systems (Seeley et al., 2007; Menon, 2011;
Chiong et al., 2013; Uddin, 2015). Moreover, previous studies have
shown that acute exercise fatigue leads to enhanced activation of

the insula cortex (Hilty et al., 2011a). Therefore, we hypothesized
that the drastic physiological changes or alterations in muscle
properties induced by fatiguing exercise tasks would be afferent to
insula regions, which in turn would cause changes in Microstate
C, associated with the convexity network. Our study is also
focused on Microstate B, associated with the visual network, and
Microstate D, associated with the attention network, since these two
networks are involved in various cognitive activities (e.g., attention,
anticipation, and decision making) of athletes during the competition
(Wright et al., 2010, 2013). Thus, the activity of Microstate B and D
may be an important neural mechanism for understanding changes
in various cognitive activities in athletes after acute exercise fatigue.

Both activation and switching of brain networks affect relevant
cognitive performance, yet previous studies have not explored the
neural basis of fatigue in these two dimensions. To address the
shortcomings of previous studies, this study collected EEG signals
from 30 male college students majoring in physical education before
and after exercise by setting up a Bruce exercise protocol through
atreadmill, and used EEG microstate and cortical rhythm techniques
to explore the effects of acute exercise fatigue on the temporal
dynamics and rhythmic energy of large-scale brain networks, which
in turn revealed their effects on the athletes’ general cognitive
performance or specific cognitive performance. In the present study,
we hypothesized that acute motor fatigue would alter the functional
state of certain resting-state large-scale brain networks, as reflected
mainly by microstate indicators and changes in EEG rhythm energy
on large-scale brain networks.

2. Participants and methods

2.1. Participants

Thirty male college students majoring in physical education
volunteered to participate in this experiment. All participants had
normal or corrected visual acuity and were right-handed; had no
musculoskeletal, cardiovascular, psychiatric, or neurological diseases
or medical history. In the 24 h prior to the test, they did no strenuous
exercise, took no medication, did not smoke, consumed no alcohol
or coffee, or experienced no mood swings. The procedure of the
experiment was clarified to all participants, and the participants
read and signed the written informed consent form before testing.
The experiment was approved by the Academic Ethics Committee
of Shaanxi Normal University and was in accordance with the

TABLE 1 Subject demographic characteristics.

Test index Results

Age (years) 21.97± 2.14

Height (cm) 178± 5.33

Weight (kg) 70.21± 8.37

BMI (kg/m2) 22.02± 2.14

Skeletal muscle (%) 39.48± 3.72

Body fat (%) 13.92± 4.63

Basal metabolism/d (Kcal) 1, 883± 187.2

Training time (years) 3.52± 0.45
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TABLE 2 Bruce program levels of exercise load.

Parameters Level
1

Level
2

Level
3

Level
4

Level
5

Level
6

Level
7

Speed (km/h) 2.7 4.0 5.4 6.7 8.0 8.8 9.6

Slope (%) 10 12 14 16 18 20 22

Duration (min) 3 3 3 3 3 3 3

Declaration of Helsinki. Demographic information is shown in
Table 1.

2.2. Exercise protocol

Using the Bruce exercise protocol, participants wore a Polar
and portable blood pressure monitor on a treadmill (h/p/cosmos
cos10253 Germany). The treadmill started from the first level of
2.7 km/h and 10% slope, and the speed and slope increased every
3 min. The detailed parameters of each level are shown in Table 2.
During the experiment, a recorder was present at all times to
monitor participant’s ambulatory heart rate and blood pressure
during exercise. The Rating of Perceived Exertion (RPE) was used to
evaluate the subjective feeling of the participants at the end of each
exercise level.

The exercise was terminated when the participants experienced
any three of the following four conditions: (1) participants exhibited
respiratory distress; (2) participants had a systolic blood pressure
greater than 150 mm Hg and a diastolic blood pressure greater than
75 mm Hg; (3) the participant’s heart rate approached or reached his
or her maximum heart rate (HRmax = 208-0.7∗age) (Tanaka et al.,
2001); (4) participants had RPE values of 18–19 and were unable to
continue exercise even after encouragement.

2.3. EEG acquisition and pre-processing

The EEG data of the participants were recorded for 5 min
immediately after the termination of exercise. The first 3 min of EEG
data were selected for analysis (Carroll et al., 2017). A high-resolution
EEG acquisition system (Neuroscan, USA) with 32 conductive
polar caps extended by the International 10–10 system was used
to record the EEG signals. Online EEG data were recorded using
0.05–100 Hz band-pass filtering with a sampling frequency of
1,000 Hz/conductor, using bilateral mastoids as reference electrodes
and forehead grounding. Vertical electrooculography (EOG) activity
was recorded with electrodes placed above and below the left eye, and
horizontal EOG activity was recorded with electrodes placed laterally
at both eyes. The impedance between all electrodes and the scalp was
less than 10 k�.

Raw EEG data was pre-processed using EEGLAB (Version
R2013b, San Diego, CA, USA), an open-source toolbox running
on MATLAB environment (Version R201 3b, MathWorks,
United States). A 0.5–45 Hz bandpass filter, as well as a 50 Hz
notch filter, were applied to the EEG data using a finite impulse
response filter. Thereafter, the EEG waveforms were epoched into
segments of 2-s duration and remontaged to an average reference.
An independent component analysis (ICA) procedure was used to
identify and extract artifact components, and remove the segment of

the sources containing eye blink artifacts, eye movement, and EMG
artifacts (High-frequency signals).

2.4. Cortex rhythms (RECOR)

REsting-state COrtex Rhythms 1was used to estimate the
EEG rhythms’ power in the eight large-scale brain networks
(Lei et al., 2011; Lei, 2012). The EEG forward model was restricted to
a high-density canonical cortical mesh extracted from a structural
MRI of a neurotypical male in Fieldtrip software.2 The mesh
had 8,196 vertices uniformly distributed on the gray-white matter
interface. Each vertex node was assumed to have one dipole oriented
perpendicularly to the surface. The 32 electrodes were registered
to the scalp surface, and the lead-field matrix (32 × 8,196) was
calculated within a three-shell spherical head model, including the
scalp, skull, and brain.

REsting-state COrtex Rhythms included two steps calculating
the power of EEG rhythms in each brain network. Firstly, network-
based source imaging (NESOI) was employed to estimate the cortical
sources of EEG rhythms (Lei et al., 2011). Eight large-scale brain
networks were used as the covariance priors of the EEG source
reconstruction using parametric empirical Bayesian. Seven large-
scale networks were identified based on 1,000 resting-state functional
connectivity: visual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal, and default networks (Yeo et al., 2011).
Considering the importance of the deep brain structure (thalamus
and striatum), we used the anatomical mask of the WFU pick atlas
to construct the eighth large-scale networks (Maldjian et al., 2003).
The 8,196 vertices were separated into eight subsets based on their
nearest neighbor voxel in the large-scale brain network templates.
The covariance prior Vi is from the ith brain network and is an
8,196 × 8,196 covariance basis matrix, the columns and rows of
which were assigned with the Green function of the mesh adjacency
matrix if their corresponding vertices were involved in the network,
and the other terms were zero (Lei et al., 2011). The intensity of
the neuroelectric sources of EEG rhythms was iteratively estimated
by the restricted maximum likelihood (ReML) algorithm. It has
been shown that NESOI is quite efficient when compared to other
inverse methods, such as the weighted minimum norm solution, low-
resolution brain electromagnetic tomography (LORETA), and the
multiple sparse prior model (MSP) (Lei et al., 2011).

The second step of RECOR is averaging the solutions of NESOI
across all vertices of a given large-scale brain network. Rather
than estimating the punctual EEG source patterns of each rhythm,
RECOR focused on the large-scale distribution of the EEG source
and calculated an averaged current density at each network. This
is in line with the low spatial resolution of the adopted technique.
As the number of electrodes (32) is much lower than that of the
unknown current density at each vertex (8,196), solutions to the
EEG inverse problem are under-determined and ill- conditioned.
This averaging step may minimize the effects of poor NESOI
estimates in the deep brain structure at which the estimation of
EEG sources could be imprecise, especially using an EEG spatial
sampling from 32 electrodes (10–10 system). In summary, the

1 http://www.leixulab.net/software.asp

2 http://fieldtrip.fcdonders.nl/download.php
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RECOR software reported the current density for all of the vertices
and the eight brain networks.

2.5. Resting EEG microstates

We used Cartool 3.70 software 3to perform separate microstate
analyses of EEG before and after exercise (Brunet et al., 2011).
The steps are as follows: First, band-pass filtering of 2–20 Hz
was performed, and the bilateral mastoid (M1, M2) reference
was converted to a whole-brain average reference (Michel and
Koenig, 2018). Second, the instantaneous topography at the local
peak of GFP was selected for k-means clustering, and a meta-
criterion containing seven independent criteria was applied to
determine the number of optimal clusters for each subject (Brechet
et al., 2019). The polarity of topographic maps was ignored for
both clustering processes. Finally, the “original map”, that is
the topographic map at the peak of GFP of each subject was
assigned to the population microstate map with the greatest spatial
correlation, thus obtaining the microstate sequence of each subject,
and the polarity of the topographic map was again ignored in this
process.

For each subject, the following microstate parameters were
calculated: (1) global explained variance, the percentage of total
variance explained by a given microstate; (2) duration, the average
duration for which a microstate category remains in a relatively
stable state; (3) the frequency of occurrence, the average number of
occurrences per second of a microstate category; (4) contribution, the
total duration of a microstate category as a percentage of the total
resting-state EEG time; and (5) transition probability, the ratio of
the number of switches from one microstate to another to the total
number of switches between all microstates.

2.6. Statistical analysis

Statistical analysis was performed using IBM SPSS 26.0, and the
Shapiro–Wilk test showed that all groups of data obeyed a normal
distribution. A 2 (time: before and after exhaustive exercise) × 8
(large-scale brain networks: visual network, sensorimotor network,
dorsal attention network, ventral attention network, limbic system
network, frontoparietal network, default mode network, and deep
brain structure network) two-factor repeated measures ANOVA was
used to compare the differences in EEG rhythm energy on eight large-
scale brain networks before and after exhaustive exercise. A 2 (time:
before and after exhaustive exercise)× 4 (microstate categories: A, B,
C, D) two-factor repeated-measures ANOVA was used to compare
the changes in the temporal parameters of each microstate (mean
duration, frequency of occurrence, and time coverage) before and
after force exhaustion exercise. A 2 (time: before and after exhaustive
exercise) × 12 (pairs: A→B, B→A, A→C, C→A, A→D, D→A,
B→C, C→B, B→D, D→B, C→D, D→C) two-factor repeated
measures ANOVA was used to compare the differences in transition
probabilities between each microstate before and after force
exhaustion exercise. All repeated measures ANOVAs were analyzed
using Mauchly’s spherical hypothesis test to determine whether the
spherical hypothesis was met, and those that did not meet the
spherical hypothesis were corrected using the Greenhouse–Geisser

3 https://sites.google.com/site/cartoolcommunity/

method. Post hoc pairwise comparisons were corrected using the
Bonferroni method.

3. Results

3.1. Behavioral and physiological
parameters

The behavioral and physiological parameters of the participants
at the end of the exercise are shown in Table 3. According to
the exhaustion criteria, all participants felt dyspnea at the end
of exercise; their heart rates were at or near their maximum
heart rates; their mean systolic and diastolic blood pressures
were greater than 150 and 75 mm Hg; their RPE levels were
greater than 18, indicating that all participants were in a state of
exhaustion.

3.2. EEG microstate analysis

For microstate duration, the ANOVA found that the main effect
of time was not significant, F(1,19) = 0.229, p > 0.05, ηp

2 = 0.012, the
main effect of microstate class was not significant, F(3,57) = 0.712,
p > 0.05, η

p
2 = 0.036, and the interaction effect was significant,

F(3,57) = 3.264, p < 0.05, η
p
2 = 0.147. Post-hoc tests found that

the durations of Microstate C increased significantly after exhaustive
exercise (p < 0.01) (Figure 1A).

The ANOVA on the microstate occurrence yielded a significant
interaction effect, F(3,57) = 3.390, p < 0.05, η

p
2 = 0.151. Post-hoc

tests revealed that Microstate C was significantly more frequent after
exhaustive exercise (p < 0.05) (Figure 1B). There were no significant
main effects.

For microstate time coverage, the main effect of time was
not significant, F(1,19) = 0.388, p > 0.05, η

p
2 = 0.020, the main

effect of the microstate class was not significant, F(3,57) = 1.356,
p > 0.05, η

p
2 = 0.067, and the interaction between these two

factors was significant, F(3,57) = 3.963, p < 0.05, η
p
2 = 0.173.

Post-hoc tests demonstrated that the time coverage of Microstate C
increased significantly (p < 0.01) and that of Microstate D decreased
significantly (p < 0.05) after exhaustive exercise (Figure 1C).

Concerning the transition probability, the 2 (time) × 12 (pairs)
ANOVA showed a significant interaction [F(3.287,62.462) = 2.929,
p < 0.05, η

p
2 = 0.134] with the observed transition percentage.

Follow-up t-tests indicated that the transition probability
between Microstate A and C increased significantly after
exhaustive exercise (p < 0.05), while the transition probability
between Microstate B and D decreased significantly (p < 0.05)
(Figure 1D).

TABLE 3 Behavior and physiological parameters of participants at the
end of exercise.

Variable Mean ± SD

HRmax (bpm) 189.47± 12.35

Systolic blood pressure (mm Hg) 156.47± 18.56

Diastolic blood pressure (mm Hg) 77.56± 14.12

Rating of Perceived Exertion 19.24± 1.15

Duration of exercise (min) 19.20± 3.07
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FIGURE 1

Comparison of microstate parameters before and after exhaustive
exercise (A) duration (B) occurrence (C) time coverage (D) transition
probability (∗: p < 0.05; ∗∗: p < 0.01; blue arrow: increase; red arrow:
decrease).

3.3. Large-scale brain network energy
analysis

The results for rhythmic energy on large-scale brain networks
(Tables 4, 5) showed that none of the main effects of time was

significant (p > 0.05), that all of the main effects for brain networks
were significant (p < 0.001), and none of the interactions between
time and brain networks was significant (p > 0.05). Further paired-
samples t-test analysis showed that the energy of the high-frequency
β band was significantly higher on the visual network after exhaustive
exercise.

4. Discussion

This is the first study to explore the effects of acute motor fatigue
on resting-state EEG microstates and large-scale brain network
energy. We used the Bruce protocol as an experimental model for
exercise. All participants were in a state of exhaustion at the end of
exercise (Dyspnea, RPE values greater than 18, heart rate at or near
my maximum heart rate, and systolic and diastolic blood pressures
greater than 150 and 75 mm Hg), identified as acute exercise fatigue
production. Consistent with our hypothesis, participants experienced
significant changes in certain microstate category parameters and
large-scale brain network energy after exhaustive exercise, which
provides new ideas for investigating the neural mechanisms by which
locomotor fatigue affects cognitive or behavioral performances.

4.1. EEG microstate analysis

The study found a significant increase in the duration,
occurrences, and contribution of microstate C after motion,
consistent with previous studies (Spring et al., 2017, 2018). Microstate
C is associated with the convex network, including the anterior
cingulate cortex bilaterally in the inferior frontal gyrus, and the
right anterior insula. The anterior insula is sensitive to changes
in physiological signals such as blood pressure, heart rate, and
respiration, constituting an important structure for processing
sensory stimuli and transmitting physiological signals (Seeley et al.,
2007; Britz et al., 2010). The changes in blood pressure and heart rate
induced by exhaustive exercise may be transmitted to the anterior
insula region, which may cause changes in microstate C parameters.
Hilty et al. (2011a) revealed enhanced activity of the anterior insula
exercise cessation in a muscle fatigue experiment using a grip strength
device on participants with right-hand finger flexion and extension.
Subsequently, Hilty et al. (2011b) found enhanced communication
between the middle and anterior insula and sensorimotor cortex
immediately after exercise in an exertional cycling task. Therefore,
we hypothesize that the elevation of Microstate C after exhaustive
exercise may cause enhanced connectivity between the convexity
network and the sensorimotor network, which is crucial for the brain
to respond to changes in physiological signals and thus regulate
motor behavior in time to protect organismal integrity.

Second, we found that contribution of Microstate D was
significantly lower after exhaustive exercise. Microstate D correlates
with activity in the right dorsal and ventral regions of the frontal
and parietal lobes, corresponding to the attentional network (Britz
et al., 2010). Studies have found reduced brain activation in the
frontal cortex (Mekari et al., 2015; Bao et al., 2019) and the reduced
efficiency of attention-related networks (Schmitt et al., 2019; Buchel
et al., 2021) due to acute high-intensity exercise support the present
study on the modulation of Microstate D contribution. In addition,
the relationship between exercise intensity and cognitive or exercise
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TABLE 4 Rhythmic energy values on large-scale brain networks before and after exhaustive exercise.

δ θ α 1 α 2 β 1 β 2 γ

Visual network PRE 3.9926± 1.8808 3.8724± 1.2666 4.6480± 2.1547 4.3175± 1.8391 3.6491± 1.7762 2.5673± 1.3426 3.0190± 1.8495

POST 4.0735± 1.8311 4.2048± 1.6988 4.4887± 1.9956 5.1135± 2.1277 4.2687± 1.9004 3.5223± 1.7223 3.3356± 1.7346

Sensorimotor
network

PRE 4.1339± 1.5138 3.9540± 1.0485 4.1195± 1.1696 3.4633± 1.3029 3.0056± 1.1886 2.5429± 1.3329 2.9563± 2.2665

POST 3.7570± 1.0218 4.3616± 1.5614 4.3766± 2.2192 4.4110± 2.7453 3.8013± 2.0699 3.2510± 1.8643 2.9791± 1.1853

Dorsal attention
network

PRE 4.4508± 2.1188 4.0971± 1.1795 4.3956± 1.5643 4.1536± 1.6631 3.6307± 1.7569 2.8068± 1.6085 3.1444± 2.3217

POST 3.8934± 1.1765 4.4984± 1.8278 4.3788± 2.2300 5.1060± 3.0781 4.2811± 2.3044 3.6482± 2.0030 3.1201± 1.2000

Ventral attention
network

PRE 4.6401± 2.0858 4.1946± 1.0745 4.1012± 1.1394 3.6887± 1.6351 3.2724± 1.3343 2.7660± 1.6565 3.3486± 2.3782

POST 4.1438± 1.7393 4.4548± 2.2902 4.4543± 2.8569 4.2706± 3.2190 3.8570± 2.3931 3.3628± 2.1847 3.3627± 1.3899

Limbic system
network

PRE 4.7820± 2.0429 4.3605± 1.3014 4.5111± 1.4596 4.0595± 1.9937 3.4912± 1.4765 2.7753± 1.5001 3.5014± 2.1262

POST 4.7946± 2.0180 4.8930± 2.2044 5.0671± 3.0424 4.8921± 3.2895 4.3722± 2.4622 3.6607± 2.3393 3.7531± 1.4082

Frontoparietal
network

PRE 6.2691± 3.5351 5.2077± 1.7237 4.8272± 2.1404 4.2226± 1.9815 3.8803± 1.8939 3.4227± 1.8283 4.3003± 2.7464

POST 5.4529± 2.8468 5.3942± 2.9467 5.0528± 3.1207 5.0867± 3.3187 4.2954± 2.1974 4.5139± 3.2215 4.4193± 1.9868

Default mode
network

PRE 5.7403± 3.2470 5.0313± 1.6216 4.9157± 1.9813 4.6786± 2.1210 4.0315± 1.8628 3.2949± 1.9590 4.2091± 2.7649

POST 5.1832± 2.4752 5.1542± 2.7158 5.2515± 3.3028 5.5050± 3.6218 4.6596± 2.5975 4.3760± 2.7973 4.4279± 1.9020

Deep structural
network

PRE 2.4830± 0.9499 2.4049± 0.6311 2.3194± 0.7552 2.1301± 1.2288 1.8999± 0.6572 1.5824± 0.8557 1.7362± 1.0036

POST 2.1992± 0.9630 2.3511± 1.0912 2.1790± 1.1936 2.2055± 1.4048 2.1128± 1.2171 1.6751± 0.9562 1.6206± 0.7175

Bold values indicate statistical significance (p < 0.05).

TABLE 5 Results of two-factor ANOVA for brain network energy values.

Frequency bands The master effect of time The main effect of
brain networks

The interaction of conditions
with brain networks

δ F(1,19) = 0.366 F(2.202,41.836) = 31.458*** F(2.168,41.197) = 0.866

θ F(1,19) = 0.306 F(2.383,45.270) = 25.079*** F(2.753,52.306) = 0.507

α1 F(1,19) = 0.078 F(2.494,47.386) = 24.887*** F(2.962,56.273) = 0.787

α2 F(1,19) = 1.265 F(2.812,53.432) = 27.779*** F(2.818,53.537) = 1.048

β1 F(1,19) = 1.315 F(3.572,67.860) = 26.050*** F(3.022,57.421) = 0.884

β2 F(1,19) = 2.156 F(2.673,50.791) = 23.058*** F(2.097,39.835) = 1.556

γ F(1,18) = 0.036 F(2.903,52.258) = 26.446*** F(2.819,50.734) = 0.245

***p < 0.001.

performance appears to be an inverted “U” shape; beneficial effects
occur at low and moderate-intensity exercise but deteriorate at high-
intensity exercise (McMorris et al., 2011, 2015; Alves et al., 2014).

In the field of sports competition, the ability to multi-target
tracking is critical for athletic performance in team sports (basketball,
football, and hockey), because players need to pay attention not
only to ball transitions but also to changes in the positions of
opponents and teammates during the game, and even they need
to judge the intentions of teammates and opponents based on
their body movements, eyes, and expressions (Memmert and Perl,
2009). However, the multi-target tracking process mainly involves the
enhanced activation of the dorsal attention network (Culham et al.,
1998; Alnaes et al., 2015; Dorum et al., 2016), which is involved in
the functions of attentional transformation and reorientation, spatial
attention, spatial working memory, and visual motion (Corbetta

and Shulman, 2002; Ptak, 2012). Thus, a decrease in Microstate
D parameters after exhaustive exercise may reduce the ability
of the dorsal attention network to interact with information by
decreasing the efficiency of this network, which in turn may lead to a
decrease in athlete-related cognition or motor performance and affect
competitive performance.

Finally, there was a significant increase in transition probability
between microstate A associated with the language processing
network and microstate C, associated with the salience network,
after exhaustion motion (Seeley et al., 2007; Britz et al., 2010).
There were also significantly lower transition probabilities between
Microstate B, associated with the visual network and Microstate D,
associated with the attention network (Britz et al., 2010). Spring
et al. (2018) found a significantly higher transition from Microstate
A to Microstate C after exhaustive cycling, which is consistent with
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the study. However, they did not find a change in the transition
probability from Microstate C to Microstate A and Microstate B
to D, which may be due to differences in exercise patterns or
intensities. It has been shown that transitions between microstates
may represent the transitions or sequential activation of different
neural networks (Khanna et al., 2015). In the study of neurological
disorders, changes in microstates are often considered activity
or connectivity anomalies corresponding to functional networks,
explaining associated cognitive or behavioral deficits (Bochet et al.,
2021; Wang et al., 2021). Thus, acute motor fatigue may lead to
increased transitions between the speech processing network and the
convexity network and decreased transitions between the visual and
attention networks.

4.2. Large-scale brain network energy
analysis

In this study, we found that the energy of high-frequency
alpha and low-frequency beta bands showed an increasing trend
on all eight large-scale brain networks after exhaustive exercise, but
no significant differences were found. This may be because, after
exhaustive exercise, high-frequency alpha and low-frequency beta
wave energy is increased over the whole brain rather than specific
regions (Crabbe and Dishman, 2004; Bailey et al., 2008). Notably,
the energy of the high-frequency beta band over the visual network
was significantly higher after exhaustive exercise. The visual network
belongs to the primary perceptual network, a posterior neural
network that includes the occipital cortex and temporo-occipital
regions of the retina and is dedicated to the information processing
of visually relevant stimuli (Mantini et al., 2007). Beta waves are
the common high-frequency rhythm that people experience while
awake. In healthy adults, beta rhythms are mainly located in the
frontal, parietal, temporal and occipital regions (Mantini et al.,
2007). they appear when adults are in states of alertness, are
involved in decision-making, are making judgments, and are solving
problems. Cognitive activities such as attention, anticipation, and
decision-making are inseparable from the participation of visual
networks, and efficient visual search behaviors are crucial to athletes’
perceptual-cognitive abilities during the competition (Mann et al.,
2007).

Studies have shown that athletes’ cognitive or behavioral
performance decreases with fatigue during prolonged, high-intensity
competition. Alder et al. (2019) found that high physiological
load decreases visual search efficiency and prediction accuracy in
badminton players. Casanova et al. (2013) found that prolonged
intermittent exercise causes a decrease in the efficiency of specialized
visual search in soccer players. Smith et al. (2016) found that
mental fatigue led to a decrease in soccer players’ specific visual
anticipation, and Alder et al. (2021) also found that either exercise
or mental fatigue alone led to a decrease in soccer players’ specific
visual anticipation, which was further worsened when the two were
combined. Bullock and Giesbrecht (2014) found that strenuous
exercise similarly decreased general visual search efficiency in non-
athletes. Thus, high energy in the high-frequency beta band on
the visual network after exhaustive exercise may not represent an
increase in cognitive or behavioral performance associated with
visual information processing but is more likely a decrease. The
study found that superior athletes had lower neural activity in

specific brain regions but better task performance when completing
relevant cognitive or motor tasks than novices (Del Percio et al.,
2009; Babiloni et al., 2010; Guo et al., 2017). Researchers have
used the “neural efficiency” hypothesis to explain this phenomenon,
suggesting that good athletes, after long training, can perform
tasks well in an automated, less neurologically intensive processing
mode, such that specific brain activity levels are lower but are
a sign of high neural efficiency (Callan and Naito, 2014). This
may also imply that when people perform the same cognitive task
in poor physical condition, a higher level of brain activity is a
sign of reduced neural efficiency, as more cognitive resources are
used to maintain task performance. Therefore, the high energy
in the high-frequency beta band on the visual network after
exhaustive exercise might be caused by participants maintaining
visually relevant cognitive performance in a controlled, more effortful
processing mode that requires control, suggesting a decrease in neural
efficiency that may explain previous claims of decreased visually
relevant cognitive performance due to high-intensity or exhaustive
exercise.

Therefore, it is feasible to monitor the effects of acute exercise
fatigue on the neural activity of the body using EEG microstates
and resting-state cortical rhythm techniques. The effect of exercise
modality, intensity, duration or frequency on the energy of EEG
rhythms on micro-state or large-scale brain networks could be
further explored in future studies, as this could be informative
for the development of training programs for athletes and exercise
prescriptions for people who want to improve relevant cognitive or
behavioral performance through exercise.

5. Limitations

First, our study did not measure the relevant cognitive
or behavioral performance of the participants before and after
exhaustive exercise. Therefore, the above conclusion that changes in
microstate parameters and EEG rhythm energy in large-scale brain
networks affect certain cognitive or behavioral performances should
be further explored in future studies. Second, the reliability of the
comparison of results between similar studies remains to be explored
due to differences in exercise patterns (Brummer et al., 2011), the
participants’ exercise preferences (Schneider et al., 2009) and physical
activity levels, EEG models, and analysis methods. Third, our study
measured EEG only in the immediate post-exertional period of the
participants and therefore could not assess the characteristics of their
brain activity during recovery (Gutmann et al., 2018; Spring et al.,
2018), which is nevertheless informative for the development of
training programs for athletes. Fourth, compared to 64, 128, or 256
electrodes, the accuracy of assigning the cortical source space network
by 32 electrodes is lower in this study and should be further improved
in future studies.

6. Conclusion

In this study, the effects of acute motor fatigue on large-scale
brain functional networks were investigated for the first time by EEG
micro-state and resting-state cortical rhythm techniques. The present
study showed that exhaustive exercise could influence the activity of
higher cognitive processing networks (Microstate C and D). At the
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same time, it had less effect on the activity of primary perceptual
networks (Microstate A and B). In addition, the high energy in the
high-frequency beta band on the participants’ visual network after
exhaustive exercise might indicate decreased neural efficiency.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by the Academic Ethics Committee of Shaanxi Normal
University. The patients/participants provided their written informed
consent to participate in this study.

Author contributions

SZ and HL: writing—original draft preparation. YG and AC:
supervision. AC: funding acquisition. All authors have read and
agreed to the published version of the manuscript.

Funding

This study was supported by Signature Achievement
Project of Sports School in Shaanxi Normal University
(No. 2022AA002).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Alder, D. B., Broadbent, D. P., Stead, J., and Poolton, J. (2019). The impact of
physiological load on anticipation skills in badminton: From testing to training. J. Sports
Sci. 37, 1816–1823. doi: 10.1080/02640414.2019.1596051

Alder, D., Broadbent, D. P., and Poolton, J. (2021). The combination of physical and
mental load exacerbates the negative effect of each on the capability of skilled soccer
players to anticipate action. J. Sports Sci. 39, 1030–1038. doi: 10.1080/02640414.2020.
1855747

Alnaes, D., Sneve, M. H., Richard, G., Skatun, K. C., Kaufmann, T., Nordvik, J. E., et al.
(2015). Functional connectivity indicates differential roles for the intraparietal sulcus
and the superior parietal lobule in multiple object tracking. Neuroimage 123, 129–137.
doi: 10.1016/j.neuroimage.2015.08.029

Alves, C. R. R., Tessaro, V. H., Teixeira, L. A. C., Murakava, K., Roschel, H., Gualano,
B., et al. (2014). Influence of acute high-intensity aerobic interval exercise bout on
selective attention and short-term memory tasks. Percept. Motor Skills 118, 63–72. doi:
10.2466/22.06.PMS.118k10w4

Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., Aschieri, P., et al.
(2010). “Neural efficiency” of experts’ brain during judgment of actions: A high-
resolution EEG study in elite and amateur karate athletes. Behav. Brain Res. 207, 466–475.
doi: 10.1016/j.bbr.2009.10.034

Bailey, S. P., Hall, E. E., Folger, S. E., and Miller, P. C. (2008). Changes in EEG during
graded exercise on a recumbent cycle ergometer. J. Sports Sci. Med. 7, 505–511.

Bao, D. P., Zhou, J. H., Hao, Y., Yang, X. D., Jiao, W., Hu, Y., et al. (2019). The effects
of fatiguing aerobic exercise on the cerebral blood flow and oxygen extraction in the
brain: A piloting neuroimaging study. Front. Neurol. 10:654. doi: 10.3389/fneur.2019.0
0654

Bochet, A., Sperdin, H. F., Rihs, T. A., Kojovic, N., Franchini, M., Jan, R. K., et al.
(2021). Early alterations of large-scale brain networks temporal dynamics in young
children with autism. Commun. Biol. 4:968. doi: 10.1038/s42003-021-02494-3

Brechet, L., Brunet, D., Birot, G., Gruetter, R., Michel, C. M., and Jorge,
J. (2019). Capturing the spatiotemporal dynamics of self-generated, task-initiated
thoughts with EEG and fMRI. Neuroimage 194, 82–92. doi: 10.1016/j.neuroimage.2019
.03.029

Britz, J., Van De Ville, D., and Michel, C. M. (2010). BOLD correlates of EEG
topography reveal rapid resting-state network dynamics. Neuroimage 52, 1162–1170.
doi: 10.1016/j.neuroimage.2010.02.052

Brummer, V., Schneider, S., Abel, T., Vogt, T., and Struder, H. K. (2011). Brain
cortical activity is influenced by exercise mode and intensity. Med. Sci. Sports Exerc. 43,
1863–1872. doi: 10.1249/MSS.0b013e3182172a6f

Brunet, D., Murray, M. M., and Michel, C. M. (2011). Spatiotemporal analysis of
multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011:813870. doi: 10.1155/
2011/813870

Buchel, D., Sandbakk, O., and Baumeister, J. (2021). Exploring intensity-dependent
modulations in EEG resting-state network efficiency induced by exercise. Eur. J. Appl.
Physiol. 121, 2423–2435. doi: 10.1007/s00421-021-04712-6

Bullock, T., and Giesbrecht, B. (2014). Acute exercise and aerobic fitness influence
selective attention during visual search. Front. Psychol. 5:1290. doi: 10.3389/fpsyg.2014.
01290

Callan, D. E., and Naito, E. (2014). Neural processes distinguishing elite from
expert and novice athletes. Cogn. Behav. Neurol. 27, 183–188. doi: 10.1097/wnn.
0000000000000043

Carroll, T. J., Taylor, J. L., and Gandevia, S. C. (2017). Recovery of central and
peripheral neuromuscular fatigue after exercise. J. Appl. Physiol. (1985) 122, 1068–1076.
doi: 10.1152/japplphysiol.00775.2016

Casanova, F., Garganta, J., Silva, G., Alves, A., Oliveira, J., and Williams, A. M. (2013).
Effects of prolonged intermittent exercise on perceptual-cognitive processes. Med. Sci.
Sports Exerc. 45, 1610–1617. doi: 10.1249/MSS.0b013e31828b2ce9

Chiong, W., Wilson, S. M., D’Esposito, M., Kayser, A. S., Grossman, S. N., Poorzand,
P., et al. (2013). The salience network causally influences default mode network activity
during moral reasoning. Brain 136, 1929–1941. doi: 10.1093/brain/awt066

Coco, M., Buscemi, A., Guerrera, C. S., Di Corrado, D., Cavallari, P., Zappala, A., et al.
(2020). Effects of a bout of intense exercise on some executive functions. Int. J. Environ.
Res. Public Health 17:898. doi: 10.3390/ijerph17030898

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-driven
attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/nrn755

Crabbe, J. B., and Dishman, R. K. (2004). Brain electrocortical activity during and after
exercise: A quantitative synthesis. Psychophysiology 41, 563–574. doi: 10.1111/j.1469-
8986.2004.00176.x

Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., and Tootell,
R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets.
J. Neurophysiol. 80, 2657–2670. doi: 10.1152/jn.1998.80.5.2657

Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M.,
et al. (2006). Consistent resting-state networks across healthy participants. Proc. Natl.
Acad. Sci. U.S.A. 103, 13848–13853. doi: 10.1073/pnas.0601417103

Del Percio, C., Babiloni, C., Marzano, N., Iacoboni, M., Infarinato, F., Vecchio, F., et al.
(2009). “Neural efficiency” of athletes’ brain for upright standing: A high-resolution EEG
study. Brain Res. Bull. 79, 193–200. doi: 10.1016/j.brainresbull.2009.02.001

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.986368
https://doi.org/10.1080/02640414.2019.1596051
https://doi.org/10.1080/02640414.2020.1855747
https://doi.org/10.1080/02640414.2020.1855747
https://doi.org/10.1016/j.neuroimage.2015.08.029
https://doi.org/10.2466/22.06.PMS.118k10w4
https://doi.org/10.2466/22.06.PMS.118k10w4
https://doi.org/10.1016/j.bbr.2009.10.034
https://doi.org/10.3389/fneur.2019.00654
https://doi.org/10.3389/fneur.2019.00654
https://doi.org/10.1038/s42003-021-02494-3
https://doi.org/10.1016/j.neuroimage.2019.03.029
https://doi.org/10.1016/j.neuroimage.2019.03.029
https://doi.org/10.1016/j.neuroimage.2010.02.052
https://doi.org/10.1249/MSS.0b013e3182172a6f
https://doi.org/10.1155/2011/813870
https://doi.org/10.1155/2011/813870
https://doi.org/10.1007/s00421-021-04712-6
https://doi.org/10.3389/fpsyg.2014.01290
https://doi.org/10.3389/fpsyg.2014.01290
https://doi.org/10.1097/wnn.0000000000000043
https://doi.org/10.1097/wnn.0000000000000043
https://doi.org/10.1152/japplphysiol.00775.2016
https://doi.org/10.1249/MSS.0b013e31828b2ce9
https://doi.org/10.1093/brain/awt066
https://doi.org/10.3390/ijerph17030898
https://doi.org/10.1038/nrn755
https://doi.org/10.1111/j.1469-8986.2004.00176.x
https://doi.org/10.1111/j.1469-8986.2004.00176.x
https://doi.org/10.1152/jn.1998.80.5.2657
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1016/j.brainresbull.2009.02.001
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-986368 January 16, 2023 Time: 14:24 # 9

Zhao et al. 10.3389/fnins.2023.986368

Dorum, E. S., Alnas, D., Kaufmann, T., Richard, G., Lund, M. J., Tonnesen, S., et al.
(2016). Age-related differences in brain network activation and co-activation during
multiple object tracking. Brain Behav. 6:e00533. doi: 10.1002/brb3.533

Enders, H., Cortese, F., Maurer, C., Baltich, J., Protzner, A. B., and Nigg, B. M. (2016).
Changes in cortical activity measured with EEG during a high-intensity cycling exercise.
J. Neurophysiol. 115, 379–388. doi: 10.1152/jn.00497.2015

Guo, Z. P., Li, A. M., and Yu, L. (2017). “Neural efficiency” of athletes’ brain during
VISUO-spatial task: An fMRI study on table tennis players. Front. Behav. Neurosci. 11:72.
doi: 10.3389/fnbeh.2017.00072

Gutmann, B., Zimmer, P., Hülsdünker, T., Lefebvre, J., Binnebößel, S., Oberste, M.,
et al. (2018). The effects of exercise intensity and post-exercise recovery time on cortical
activation as revealed by EEG alpha peak frequency. Neurosci. Lett. 668, 159–163. doi:
10.1016/j.neulet.2018.01.007

Hilty, L., Jancke, L., Luechinger, R., Boutellier, U., and Lutz, K. (2011a). Limitation of
physical performance in a muscle fatiguing handgrip exercise is mediated by Thalamo-
insular activity. Hum. Brain Mapp. 32, 2151–2160. doi: 10.1002/hbm.21177

Hilty, L., Langer, N., Pascual-Marqui, R., Boutellier, U., and Lutz, K. (2011b). Fatigue-
induced increase in intracortical communication between mid/anterior insular and
motor cortex during cycling exercise. Eur. J. Neurosci. 34, 2035–2042. doi: 10.1111/j.
1460-9568.2011.07909.x

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in
resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 49,
105–113. doi: 10.1016/j.neubiorev.2014.12.010

Lehmann, D., Strik, W. K., Henggeler, B., Koenig, T., and Koukkou, M. (1998).
Brain electric microstates and momentary conscious mind states as building blocks of
spontaneous thinking: I. Visual imagery and abstract thoughts. Int. J. Psychophysiol. 29,
1–11. doi: 10.1016/s0167-8760(97)00098-6

Lei, X. (2012). “Electromagnetic brain imaging based on standardized resting-state
networks,” in Paper presented at the 5th international conference on biomedical engineering
& informatics, Chongqing.

Lei, X., Xu, P., Luo, C., Zhao, J. P., Zhou, D., and Yao, D. Z. (2011). fMRI functional
networks for EEG source imaging. Hum. Brain Mapp. 32, 1141–1160. doi: 10.1002/hbm.
21098

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., and Burdette, J. H. (2003). An automated
method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data
sets. Neuroimage 19, 1233–1239. doi: 10.1016/s1053-8119(03)00169-1

Mann, D. T. Y., Williams, A. M., Ward, P., and Janelle, C. M. (2007). Perceptual-
cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 29, 457–478. doi:
10.1123/jsep.29.4.457

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., and Corbetta, M. (2007).
Electrophysiological signatures of resting state networks in the human brain. Proc. Natl.
Acad. Sci. U.S.A. 104, 13170–13175. doi: 10.1073/pnas.0700668104

Memmert, D., and Perl, J. (2009). Game creativity analysis using neural networks. J.
Sports Sci., 27, 139–149. doi: 10.1080/02640410802442007

McMorris, T., Hale, B. J., Corbett, J., Robertson, K., and Hodgson, C. I. (2015). Does
acute exercise affect the performance of whole-body, psychomotor skills in an inverted-
U fashion? A meta-analytic investigation. Physiol. Behav. 141, 180–189. doi: 10.1016/j.
physbeh.2015.01.010

McMorris, T., Sproule, J., Turner, A., and Hale, B. J. (2011). Acute, intermediate
intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical
comparison of effects. Physiol. Behav. 102, 421–428. doi: 10.1016/j.physbeh.2010.
12.007

Mekari, S., Fraser, S., Bosquet, L., Bonnery, C., Labelle, V., Pouliot, P., et al. (2015). The
relationship between exercise intensity, cerebral oxygenation and cognitive performance
in young adults. Eur. J. Appl. Physiol. 115, 2189–2197. doi: 10.1007/s00421-015-
3199-4

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple
network model. Trends Cogn. Sci. 15, 483–506. doi: 10.1016/j.tics.2011.08.003

Michel, C. M., and Koenig, T. (2018). EEG microstates as a tool for studying the
temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 180,
577–593. doi: 10.1016/j.neuroimage.2017.11.062

Moraes, H., Ferreira, C., Deslandes, A., Cagy, M., Pompeu, F., Ribeiro, P., et al.
(2007). beta and alpha electroencephalographic activity changes after acute exercise. Arq.
Neuropsiquiatr. 65, 637–641. doi: 10.1590/s0004-282x2007000400018

Proschinger, S., and Freese, J. (2019). Neuroimmunological and neuroenergetic aspects
in exercise-induced fatigue. Exerc. Immunol. Rev. 25, 8–19.

Ptak, R. (2012). The frontoparietal attention network of the human brain: Action,
saliency, and a priority map of the environment. Neuroscientist 18, 502–515. doi: 10.1177/
1073858411409051

Schmitt, A., Upadhyay, N., Martin, J. A., Rojas, S., Struder, H. K., and Boecker, H.
(2019). Modulation of distinct intrinsic resting state brain networks by acute exercise
bouts of differing intensity. Brain Plast. 5, 39–55. doi: 10.3233/bpl-190081

Schneider, S., Brummer, V., Abel, T., Askew, C. D., and Struder, H. K. (2009). Changes
in brain cortical activity measured by EEG are related to individual exercise preferences.
Physiol. Behav. 98, 447–452. doi: 10.1016/j.physbeh.2009.07.010

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al.
(2007). Dissociable intrinsic connectivity networks for salience processing and executive
control. J. Neurosci. 27, 2349–2356. doi: 10.1523/jneurosci.5587-06.2007

Smith, M. R., Zeuwts, L., Lenoir, M., Hens, N., De Jong, L. M. S., and Coutts, A. J.
(2016). Mental fatigue impairs soccer-specific decision-making skill. J. Sports Sci. 34,
1297–1304. doi: 10.1080/02640414.2016.1156241

Spring, J. N., Bourdillon, N., and Barral, J. (2018). Resting EEG microstates and
autonomic heart rate variability do not return to baseline one hour after a submaximal
exercise. Front. Neurosci. 12:460. doi: 10.3389/fnins.2018.00460

Spring, J. N., Tomescu, M. I., and Barral, J. (2017). A single-bout of endurance exercise
modulates EEG microstates temporal features. Brain Topogr. 30, 461–472. doi: 10.1007/
s10548-017-0570-2

Steriade, M. (2001). Impact of network activities on neuronal properties in
corticothalamic systems. J. Neurophysiol. 86, 1–39. doi: 10.1152/jn.2001.86.1.1

Tanaka, H., Monahan, K. D., and Seals, D. R. (2001). Age-predicted maximal heart rate
revisited. J. Am. Coll. Cardiol. 37, 153–156. doi: 10.1016/s0735-1097(00)01054-8

Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction.
Nat. Rev. Neurosci. 16, 55–61. doi: 10.1038/nrn3857

van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the brain network:
A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20,
519–534. doi: 10.1016/j.euroneuro.2010.03.008

Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb:
Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239. doi:
10.1038/35067550

Wang, F. L., Hujjaree, K., and Wang, X. P. (2021). Electroencephalographic microstates
in schizophrenia and bipolar disorder. Front. Psychiatry 12:638722. doi: 10.3389/fpsyt.
2021.638722

Wright, M. J., Bishop, D. T., Jackson, R. C., and Abernethy, B. (2010). Functional
MRI reveals expert-novice differences during sport-related anticipation. Neuroreport 21,
94–98. doi: 10.1097/WNR.0b013e328333dff2

Wright, M. J., Bishop, D. T., Jackson, R. C., and Abernethy, B. (2013). Brain regions
concerned with the identification of deceptive soccer moves by higher-skilled and
lower-skilled players. Front. Hum. Neurosci. 7:851. doi: 10.3389/fnhum.2013.00851

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,
M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/jn.00338.2011

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.986368
https://doi.org/10.1002/brb3.533
https://doi.org/10.1152/jn.00497.2015
https://doi.org/10.3389/fnbeh.2017.00072
https://doi.org/10.1016/j.neulet.2018.01.007
https://doi.org/10.1016/j.neulet.2018.01.007
https://doi.org/10.1002/hbm.21177
https://doi.org/10.1111/j.1460-9568.2011.07909.x
https://doi.org/10.1111/j.1460-9568.2011.07909.x
https://doi.org/10.1016/j.neubiorev.2014.12.010
https://doi.org/10.1016/s0167-8760(97)00098-6
https://doi.org/10.1002/hbm.21098
https://doi.org/10.1002/hbm.21098
https://doi.org/10.1016/s1053-8119(03)00169-1
https://doi.org/10.1123/jsep.29.4.457
https://doi.org/10.1123/jsep.29.4.457
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1080/02640410802442007
https://doi.org/10.1016/j.physbeh.2015.01.010
https://doi.org/10.1016/j.physbeh.2015.01.010
https://doi.org/10.1016/j.physbeh.2010.12.007
https://doi.org/10.1016/j.physbeh.2010.12.007
https://doi.org/10.1007/s00421-015-3199-4
https://doi.org/10.1007/s00421-015-3199-4
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.neuroimage.2017.11.062
https://doi.org/10.1590/s0004-282x2007000400018
https://doi.org/10.1177/1073858411409051
https://doi.org/10.1177/1073858411409051
https://doi.org/10.3233/bpl-190081
https://doi.org/10.1016/j.physbeh.2009.07.010
https://doi.org/10.1523/jneurosci.5587-06.2007
https://doi.org/10.1080/02640414.2016.1156241
https://doi.org/10.3389/fnins.2018.00460
https://doi.org/10.1007/s10548-017-0570-2
https://doi.org/10.1007/s10548-017-0570-2
https://doi.org/10.1152/jn.2001.86.1.1
https://doi.org/10.1016/s0735-1097(00)01054-8
https://doi.org/10.1038/nrn3857
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1038/35067550
https://doi.org/10.1038/35067550
https://doi.org/10.3389/fpsyt.2021.638722
https://doi.org/10.3389/fpsyt.2021.638722
https://doi.org/10.1097/WNR.0b013e328333dff2
https://doi.org/10.3389/fnhum.2013.00851
https://doi.org/10.1152/jn.00338.2011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Effects of acute exercise fatigue on the spatiotemporal dynamics of resting-state large-scale brain networks
	1. Introduction
	2. Participants and methods
	2.1. Participants
	2.2. Exercise protocol
	2.3. EEG acquisition and pre-processing
	2.4. Cortex rhythms (RECOR)
	2.5. Resting EEG microstates
	2.6. Statistical analysis

	3. Results
	3.1. Behavioral and physiological parameters
	3.2. EEG microstate analysis
	3.3. Large-scale brain network energy analysis

	4. Discussion
	4.1. EEG microstate analysis
	4.2. Large-scale brain network energy analysis

	5. Limitations
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


