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The development of supervised deep learning technology in seismology and related
fields has been restricted due to the lack of training sets. A large amount of unlabeled
data is recorded in seismic exploration, and their application to network training is
difficult, e.g., fault identification. To solve this problem, herein, we propose an end-
to-end training data set generative adversarial network Fault2SeisGAN. This network
can expand limited labeled datasets to improve the performance of other neural
networks. In the proposed method, the Seis-Loss is used to constrain horizon and
amplitude information, Fault-Loss is used to constrain fault location information, and
the Wasserstein distance is added to stabilize the network training to generate
seismic amplitude data with fault location labels. A new fault identification
network model was trained with a combination of expansion and original data,
and the model was tested using actual seismic data. The results show that the use of
the expanded dataset generated in this study improves the performance of the deep
neural network with respect to seismic data prediction. Our method solves the
shortage of training data set problem caused by the application of deep learning
technology in seismology to a certain extent, improves the performance of neural
networks, and promotes the development of deep learning technology in
seismology.
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1 Introduction

In recent years, deep learning technology has been developed rapidly and applied in various
fields. In contrast to traditional model-driven methods, deep learning is data-driven and has
been well applied by geophysicists in various branches including end-to-end seismic data
denoising (Herrmann and Hennenfent, 2008; Zhang et al., 2017; Yu et al., 2019; Zhu et al.,
2019), missing data recovery and reconstruction (Mandelli et al., 2018; Wang et al., 2019; Wang
et al., 2020), first arrival picking (Wu et al., 2019a; Hu et al., 2019; Yuan et al., 2020), deep-
learning velocity inversion (Araya-Polo et al., 2018; 2020; Adler et al., 2019; Cai et al., 2022),
deep-learning seismology inversion (Wang et al., 2022) and fault interpretation (Wu et al.,
2019c; Wu et al., 2019d; Cunha et al., 2020; Yang et al., 2022).

While the application of deep learning algorithms in seismology yielded good results, it
also introduced new opportunities and challenges (Yu and Ma, 2021). Deep learning
methods require a large amount of data. If the training data set is incomplete or the
distribution significantly deviates from that of real data, the deep neural network model will
not perform well in practical applications. Although a large amount of data is produced in
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seismic exploration, most of these data are not public and are
unlabeled, and thus, it is difficult to apply them to the training of
neural networks. Therefore, many researchers have put forward
their own solutions. For example, in deep learning denoising, the
datasets processed by traditional methods are used as noiseless
data, and datasets with added white noise are then utilized as noise
data for training (Wu et al., 2019b). Although this method can be
used to effectively train the white noise removal model, its
generalization ability across work areas is weak, and the
constraints of traditional methods cannot be overcome, which
defeats its original purpose. During first-arrival picking, several
researchers labeled the actual data and then separated the trace data
with labels and randomly combined them to form different records
for training (Hu et al., 2019). Based on this method, many available
sample datasets can be obtained based on the labeling of a small
amount of real data, but the continuity between traces is poor, and
it is difficult to generalize this method for other characteristics.
Several researchers have attempted to use convolution records as
basis to obtain shot records similar to real data through the
deformation and modification of records (Wu et al., 2019a).
Datasets obtained based on this procedure simulate real seismic
data well when the number of traces is small. However, when the
number of traces is large and the recording time is long, the in-
phase axis of the generated reflected waves significantly differs
from the actual one and the training effect is poor. For seismic
deep-learning inversion, forward simulation is often used to obtain
training data sets, but the forward modeling method is
computationally expensive and only provides relatively complete
datasets on simple models. For fault interpretation, labeled actual
datasets are generally used for training, and a certain rotation
scaling is then applied to expand the number of samples. However,
the generalization ability of this method is poor, and it is difficult to
obtain good results for different measuring lines. Wu et al. (2020)
developed a training data set construction method based on image
transformation. Based on this method, data with labels are
generated according to specified parameters, and the data are as

good as the real datasets. This method solves to some extent the
problem of training data set generation for fault recognition;
however, there are limitations. First, although amplitude data
are generated by the wavelet, a gap remains between the
stratigraphic structure and actual data. Second, this image
transformation algorithm is only suitable for the study of fault
recognition neural networks. For other problems in seismology,
such as picking up the first arrival wave, it is necessary to redesign
the training data set construction method.

To simplify the training data set construction for deep learning
methods, an end-to-end training data set expansion generative
adversarial network (GAN), that is, Fault2SeisGAN, is proposed in
this study, which generates amplitude data with fault location labels
that are false and true and expands existing datasets. Fault2SeisGAN is
based on generative adversarial networks (Goodfellow et al., 2014).
Seis Loss is used to constrain the layer and amplitude information, and
the Richer Convolutional Features for Edge Detection (RCE) module
and Fault Loss are added to constrain the fault location information.
The network inputs are labeled amplitude data. The network was
trained with an adversarial game. The Wasserstein distance was used
to stabilize the GAN training, leading to a more stable sample
generation and an increase in the diversity of the outputs. Finally,
Fault2SeisGANwas used to expand seismic amplitude data with faults,
and the labeled fault dataset was obtained. The new fault identification
network model was trained by mixing expansion with original data
and then tested using actual data. Our method solves the shortage of
training data set problem caused by the application of deep learning
technology in seismology to a certain extent, improves the
performance of neural networks, and promotes the development of
deep learning technology in seismology.

2 Methods

The amplitude data structure is simple. The number of
characteristic channels is one. The data contain characteristic

FIGURE 1
Fault2SeisGAN roadmap. Fault2SeisGAN transforms the fault labels by learning themapping relationship between the seismic amplitude data distribution
pseis(X|θ) and location of the fault labels.
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information such as the geologic structure and seismic wavelet. The
fault can be regarded as label, and the structure segmented by the fault
can be regarded as structural block. By using GANs to fuse data
features, labeled seismic amplitude data can be generated. Labeled
seismic amplitude datasets can be expanded to improve the
performance of fault identification networks.

Supervised learning networks require labeled data. By assigning
fault location constraints to GANs, seismic amplitude data with faults
can be generated. In this study, we used a GAN to create an end-to-end
seismic amplitude data generation network. The input of the network
is the fault label, and the output is seismic amplitude data, that is,
pairwise seismic amplitude datasets.

In contrast to the conventional GAN, the Fault2SeisGAN input
is not a one-dimensional random variable satisfying a normal
distribution but a fault location matrix. In this matrix, the point
at which the fault section is located is marked 1, and the other
points are marked 0, representing the prior information to
constrain the network. The generator determines the boundary
of the fault block according to the constraint information and
generates seismic amplitude data according to the learned data
distribution. Real and generated data are then inputted to the
discriminator. The discriminator maps the data to the
probability space through convolutional layer and full connect
layer to determine whether the data are real data and to output
the probability. The loss value is calculated according to the
probability of the discriminator, and the two subnetworks are

modified. The two subnetworks play a zero-sum game with each
other and fight each other to make the final output of the
discriminator approach to 1/2 and finally complete the training.

Fault2SeisGAN transforms the fault labels by learning the
mapping relationship between the seismic amplitude data
distribution pSeis(X | θ) and location of the fault labels. The entire
Fault2SeisGAN roadmap is shown in Figure 1

3 Network architecture

3.1 Fault2SeisGAN architecture

The network consists of two subnetworks, that is, generator and
discriminator, and an Richer Convolutional Features for Edge Detection
(RCF) module. The discriminator inputs are two two-dimensional (2D)
vectors with a dimension of 256 × 256 × 1, representing amplitude data
and their corresponding labels, respectively. The two vectors are
concatenated in the feature dimension using a concatenate layer to
obtain a 256 × 256 × 2 2D vector. A structure unit composed of
convolution layers, normalization layers, and LeakyReLU activation
function, called downsampling unit, can extract the features of the
data and reduce the data size. Three downsampling units were
combined to form an inverted pyramidal feature extraction structure,
with number of features ranging from 2 to 64, 128, 256, and 512. The
features are further extracted by two convolutional layers, and feature data

FIGURE 2
Architecture of Fault2SeisGAN. We input the fault location labels and corresponding generated data into the RCF detector R. By using the edge detector
R, we obtained different levels of pixel-level edge detection effects.
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with a size of (30, 30, 1) are obtained. To achieve stable network training,
avoid local extrema, and appropriately reduce the discriminator
performance, a dropout layer was added to the discriminator. Because
this network uses the Wasserstein distance as the index to evaluate the
network, the activation function was not used after the last drop.

The main architecture of the generator is a U-shaped network,
which is divided into two parts: up- and downsampling. A connection
layer is used to link the two parts such that the structural information
can be transmitted, gradient dispersion caused by the deep network
can be avoided, and the training difficulty can be reduced. We used
transpose convolution, normalization, and ReLU activation functions
to build an upsampling unit, which was combined with the previous
downsampling unit to form the generator. In contrast to
discriminators and other neural networks, GANs generally use the
linear part of the convolutional layer without bias. In the
downsampling part, eight downsampling units were used to sample
the data to feature vectors with a size of (1, 1, 512). The upsampling
part consists of seven upsampling units, each of which relates to the
output result of the corresponding downsampling unit. The connected
feature data are input to the next upsampling unit, and the output of

the last downsampling unit is directly used as the input of the
upsampling unit. After the U-shaped network, a transposed
convolution layer is used to transform the feature data into the
data domain, the number of feature layers becomes 1, and tanh is
used to activate the feature data.

The RCF module adopts the conventional VGG16 structure to
extract edge information features at multiple scales, compare the edge
features of the generated data with those of the fault data, and calculate
losses.

3.2 Objective function of the seismic
constraint

Seismic amplitude data containing the fault consist of two parts.
One is the “block” containing position and amplitude information,
which constitutes the upper and lower wall of the fault. The other part
is the location of the fault, that is, the “labels” that constrain these
“blocks.’’Note that we redesigned the GAN to separately constrain the
two datasets.

FIGURE 3
Comparison of the results using the test set. Fault2SeisGAN was used to generate amplitude data with labels (A, E, I, M). Compared with the test dataset
(B, F, J, N), the Fault2SeisGAN’s results (C, G, K, O) has a similar structure, and fold features can also be learned by the network. Wgan’s results (D, H, L, P) as a
comparison. The fault location is highly consistent with the labels.
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3.2.1 Constraining horizon and amplitude
information

To obtain data with horizon and amplitude characteristics like real
seismic data, we did not use the random vector z as the seed of the
generated data but adopted the more constrained fault location as the
input. Based on this procedure, the network can still learn themapping
relationship between the fault label and seismic amplitude data
distribution pg(z | θ) by training. Because fault location and
seismic amplitude data have similar structures, the convolutional
neural network (CNN) will constantly extract data features during
forward propagation. When the network is relatively deep, the neural
network can lose information and gradient. Tomaintain the 2D spatial
structure of the data, we used a U-shaped CNN, utilized convolution
to extract high-dimensional information of the data, and stepwise
restored the data. Convolution and deconvolution constitute the
decoder and encoder parts of the network. Shortcuts were added
between the two parts of the network such that the output with
original data structure information in the encoding process can be
used to constrain the generation of the decoder. The network gradient

can also be directly transferred to the following neural network
through the direct connection layer, which improves the
convergence speed of the network and reduces the training
difficulty. The fault label is not only a marker of the fault location
but also provides information about the boundaries between blocks,
which is beneficial to the generation of amplitude data. The objective
function of the network can be defined as follows:

LSeis � LGAN D, G( ) + LL1 G( )
The objective function can be divided into two parts. The first part

is the objective function of the original GAN. It allows for the
generator and discriminator to compete each other The second
part is the L1 loss, which represents the similarity between the
network input and output and can be defined as follows:

LL1 G( ) � Ex,y,z y − G x, z( )���� ����1[ ]
where represents the fault label data of the input generator and
G(x, z). represents the corresponding amplitude data generated by

FIGURE 4
Random generation of fault locations (A, C, E, G, I, K, M, O) and the amplitude data generated by our model according to them. Although the generator
can also produce some fold structures (B, F, J, N), the dip angle of the formation is gentler than before (D, H, L, P). Most fault locations correspond well to the
amplitude data; only a few complex areas produce ambiguity.
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the generator. To reduce the calculation costs, the L1 norm is used
to measure the difference between the two data. The difference
between the input and generated amplitude is continuously
determined to ensure the constraint of the label on the
generated amplitude data.

3.2.2 Constraining fault location information
To generate amplitude data that are consistent with the location of

the input fault, both types of data must be constrained. The location of
a fault can be regarded as edge information of two disks. Both the fault
location label and amplitude data contain such information, which can
be extracted layer by layer, compared, and constrained. To extract the
edge information, we introduced the RCF edge detection module,
which is based on the deep neural network VGG16. The edge detection
results were output for each level, and the results were accumulated
according to a certain weight.

We input the fault location labels and corresponding generated
data into the RCF detector R. By using the edge detector R, we
obtained different levels of pixel-level edge detection effects. These
edges correspond to fault information of different orders. Each point
varies between 0 and 1, indicating the probability that the point is a
fault. By using R, we compared R(x) and R[G(x)] of the fault edge
information between fault labels and generated data:

LFault G, X( ) � Ex pdata X( ) − 1
N

∑N
i�1
μR x( )i logR(G(x))i + (1 − μ)(1 − R(x)i)log (1 − R(G(x))i)⎡⎣ ⎤⎦

In summary, the complete Loss function of the Fault2SeisGAN
can be expressed as follows:

LD,G � αLSeis D, G( ) + βLFault G( )
Where α and β are the hyperparameters used to control the size of the
constraint contribution of each part, which β was set to 10, αwas set to
1. Our objective function can be obtained as follows:

G p � argmax
G

max
D

L G,D( )

3.3 Stable network training

The GAN training is very unstable, especially with respect to the
initial distribution and target distribution differences. The JS
(Jensen–Shannon) divergence is a constant when the distribution
between generated data and the real data is large, which cannot
depict the distribution difference between the real data and
generated data. These will case the vanishing gradient problem
which could lead to generated data loss its diversity even become
abnormal. To solve this problem, the Wasserstein distance (Cai et al.,
2022) was used in this study instead of the JS divergence to improve
the stability of the GAN and reduce the training difficulty. The
Wasserstein distance is defined as:

W pr, pg( ) � inf
γ∈∏ pr,pg( )

E x,y( )~γ x − y
���� ����[ ]

where W is the degree of difference between the two distributions, and
γ ∈∏ (pr, pg) is the set of all possible joint distributions of the
(pr, pg) distributions combined. For every possible joint distribution,
γ can sample (x, y) ~ γ to obtain a sample x and y and calculate the
distance between the pair of samples γ. Therefore, we can calculate the
expected value of the sample with respect to the distance ‖x − y‖ under
the joint distribution E(x,y)~γ[‖x − y‖]. The network structure used in
this study is shown in Figure 2.

4 Experiment

In this study, the TensorFlow2 framework was used to construct
the neural network. Adam was used as the optimizer for the generator
and discriminator. The learning rate was set to 2E-4 and 2E-5, and
BETA1 was 0.5. The size of the dataset was (128, 128), and simple
transformation, such as rotation, was performed to increase the
number of datasets. A compute node with 12 cores and a 128 GB
memory with a Tesla P100GPU computing card was used for the
training. In total, 256000 samples were used as the dataset for this
training, and the data were divided into training and test sets with a
ratio of 7:3 and were run for a total of 200 epochs with a running time
of 24 h. The samples in the test set were selected as input, and the
proposed method was compared with the original GAN method with
the added Wasserstein distance as well as the actual data. The results
are shown in Figure 3.

If the Wasserstein distance is not added, the original GAN will fall
into mode collapse and cannot generate data. In this study, the original
GAN with theWasserstein distance was used for comparison. Due to the
addition of WGAN-GP (Wasserstein Generative Adversarial Network
with Gradient Punishment), the samples generated with the original GAN
are generally stable, and structural information, which is highly diverse,
can be clearly obtained. However, due to the lack of constraints for fault
labels, some of the generated data are not reasonable with respect to the
structure, and some data even produce anomalies. These data can be
screened, manually labeled, and then used as a training data set for the
training of the segmentation network. In this study, the Fault2SeisGAN
was used to generate amplitude data with labels. Compared with the test
dataset, the Fault2SeisGAN has a similar structure, and fold features can
also be learned by the network. The fault location is highly consistent with
the labels. To sum up, amplitude data generated by the proposed method
are consistent with the label information and share characteristics with

FIGURE 5
U-Net architecture used in this study. The U-Net have
4 downsample blocks and 5 upsample blocks. These corresponding
blocks are connected by shortcut.
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actual data. Such data can be directly used for the training of other
networks without manual annotation, which reduces labor costs.

GANs are flexible, but style transformation networks must have
the same output and input data. The test and training set data have a
certain similarity, which can be used to detect the generation ability of
the network but cannot well describe it. Therefore, we used geometric
transformation to randomly generate three-dimensional (3D) fault
labels and then shuffled these labels and input them into the generator
part for the prediction. Label data examples and their corresponding
results are shown in Figure 3.

Compared with that of the data in test set, the quality of the
amplitude data generated by our model according to the new fault
label decreased, the continuity of the seismic event on both sides of
the section weakened, and the seismic event became blurred.
Although the generator can also produce some fold structures,
the dip angle of the formation is gentler than before. Most fault
locations correspond well to the amplitude data; only a few
complex areas produce ambiguity. Thus, the characteristics of
the generated amplitude data are more similar to the
characteristics of the actual data. Figure 4 shows groups 1, 2,
and 3, which are the predictions of two labels that are similar
but not identical. The fault location is similar, but the generated

amplitude data differ, indicating that the generator learns the data
as well as their distribution.

4 Discussion

4.1 Effect of the expanded training data set on
the performance of the fault identification
network

To prove the effectiveness of the proposed method, we used the
existing fault datasets and those generated by the proposed method to
train the network model and predict the fault structure of real seismic
data. In this study, 10,000 original datasets as well as a combination of
the original data and 5,000 generated datasets were used for training.
The results of the two datasets were compared and analyzed. All
hyperparameters are shown in Table 1.

U-Net is a network commonly used in CNNs to solve the
segmentation problem. In recent years, it was mostly used to solve
the fault identification problem in seismic exploration. In this study,
the effectiveness of the sample generation by constructing a U-Net was
verified. The U-Net structure used in this study is shown in Figure 5.

FIGURE 6
Fault (A) identification results for different datasets. there still miss a lot of faults and occurs discontinuity identification in the middle and the left side (B).
In contrast, (C) do batter in the middle of the seismic data profile where the seismic event is not clearly and continuity.
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To prove the effectiveness of the proposedmethod, the original U-Net
was used as the fault identification network. The network consists of five
coding and four decoding modules with Concat links and a separate
convolution module before the network output. Therefore, the input and
output of the network have the same size and output a specific number of
channels. Each codingmodule consists of two convolution layers with 3 ×
3 convolution kernels and a normalization layer. ReLu is used as the
activation function. The decoding module uses a convolutional layer and
an upsampling layer, which were normalized using batch normalization
and activated using ReLu.

In this study, a data random scaling mechanism was added after
the data input, which increases the range of the network and improves
the recognition accuracy of the actual data.

We used 10000 fault datasets and 5,000 datasets generated by the
proposed method as training datasets for the comparison and divided
the experiment into two groups: 1) 10000 original fault datasets and 2)
a mixture of both datasets.

We tested the performance of the two trained neural networks
using a set of real data, and the results are shown in Figure 6. In
Figure 6A we can see that there are lots of faults and most of them
are recognized in Figure 6B. However, there still miss some faults
and occurs discontinuity identification in the middle and the left
side. All 4 faults in the middle were identified very precisely. In the
left part, although some of the faults are also identified, the
continuity of faults is very poor. In the left most part, multiple
faults are intersected and only the most obvious fault patterns are
identified in network 1). In contrast, Figure 6C do better in the
middle of the seismic data profile where the seismic event is not
clearly and continuity. The results show that the training of the
dataset with the proposed method is effective and improves the
performance of the deep neural network with respect to the fault
recognition.

5 Conclusion

In this study, we propose an end-to-end training data set
expansion network, that is, Fault2SeisGAN. The network is
based on GAN technology, which extends limited labeled
datasets to improve the performance of other neural networks.
In this method, the Seis Loss is used to constrain the horizon and
amplitude information, RCF and Fault Loss are combined to
constrain the fault location information, and the Wasserstein
distance is added to stabilize the network training. Based on the
use of the Fault2SeisGAN, existing data can be extended, new fault
datasets can be obtained, and the performance of the fault
identification network can be improved. Based on the use of the

original U-Net for training in the last part of this study, we obtained
better results compared with those obtained with the utilization of
the network that was only trained with the original dataset, which
proves the effectiveness and practicability of the proposed method.
Our method solves the shortage of training data set problem caused
by the application of deep learning technology in seismology to a
certain extent, improves the performance of neural networks, and
promotes the development of deep learning technology in
seismology.

Our method also has some limitations. Compared to traditional
deep learning methods, although our method requires fewer real data
with labels to build the training dataset, however, it is also very difficult
to collect real data with labels. The signal-to-noise ratio of the data
used in this article is relatively high, and the impact of low signal-to-
noise ratios and other more complex cases on the results needs to be
further studied and discussed.

The focus of this study was placed on generating paired 2D
datasets with fault amplitudes. In future research, the generation of
3D and multi-attribute data as well as data feature control should be
considered.
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TABLE 1 Hyper-parameter.

Key Value

Learning rate 2E-4 to 2E-5

BETA1 0.5

Input size [128, 128]

Batch size 4

Epochs 200
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