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Researchers have been increasingly taking advantage of the stochastic actor-oriented

modeling framework as a method to analyze the evolution of network ties. Although

the framework has proven to be a useful method to model longitudinal network

data, it is designed to analyze a sample of one bounded network. For group and

team researchers, this can be a significant limitation because such researchers often

collect data onmore than one team. This paper presents a nontechnical and hands-on

introduction for a meta-level technique for stochastic actor-oriented models in

RSIENA where researchers can simultaneously analyze network drivers from multiple

samples of teams and groups. Moreover, we follow up with a multilevel Bayesian

version of the model when it is appropriate. We also provide a framework for

researchers to understand what types of research questions and theories could be

examined and tested.
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Introduction

A network is simply a “set of entities connected by one or more relations” (Contractor

and Forbush, 2017; p. 1, emphasis our own). The study of social networks is quite boundary-

spanning, significantly evident in social scientific fields like sociology, communication,

organizational behavior to more hard scientific fields like computer science and neuroscience.

One key aspect network researchers are interested in understanding is why network relations

are patterned/structured the way they are. In other words, what influences a network relation to

exist in the first place? Theoretically, Borgatti and Halgin (2011) refer to this type of theorizing

as theories of networks because they seek to explain why a node will create a network relation

with another node (e.g., Monge and Contractor, 2003). For instance, convergence theories like

homophily would predict that nodes that share some sort of similarity with one another will be

more likely to have a relation in the future than nodes that lack such similarity (e.g., nodes of the

similar age).

Essentially, theories of networks seek to find out different network mechanisms responsible

for why the network looks the way it does. Stadfeld and Amati (2021) define network

mechanisms as the “structural processes that are regularly found in social networks and that

can be linked to one or multiple causal social mechanisms of network tie formation” (p. 41,

emphasis in original). Generally, there are four domains of network mechanisms: (1) the

individual domain, (2) the endogenous domain, (3) the relational domain and (4) the contextual

domain (Pilny et al., 2016; Chen et al., 2021). Individual attributes typically refer to either

demographic and psychological states of nodes in the network. For instance, are ‘”extraverted”

people more likely to form relations in teams? Are their gender differences and inequalities

with such relationship formation? Endogenous attributes refer to the idea that certain already-

present network structures are responsible for ties looking the way they are. For example, if
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George creates a tie with Susan at time 1, theories of reciprocity

would predict that Susan would create a tie with George at time

2. Relational attributes refer to the presence of other ties as co-

evolving with other ties, otherwise known as multiplexity. For

instance, theories of activity foci (Feld, 1981) might predict that

shared membership with a common focus like their “role” in a

teammight predict more ties between individuals. Finally, contextual

mechanisms are more like “macro” phenomenon and refer to things

going on in the environment that influences the entire network.

For instance, Wang and Guan (2020) looked at how cultural

context influences social media relationships between international

government organizations.

Methodologically, usually some type of inferential networkmodel

is used to determine if a certain network mechanism is more likely

than chance alone. For cross-sectional networks, exponential random

graph modeling is a common choice (Lusher et al., 2013). However,

for networks with multiple waves, the stochastic actor-oriented

modeling (SAOM) framework, first presented by Snijders (1996), is a

popular option. Briefly, SAOMs “are a family of models that express

empirically observed changes in network ties and in many cases,

changes in individual attributes as time-aggregated outcomes of a

series of individual decisions” (Kalish, 2020, p. 2)1. These models are

“actor-based,” rather than “tie-based” in that the key inference is taken

from the perspective of each actor in the network, assuming that they

are aware of their environment (i.e., their own ties and attributes of

other actors). Between waves of different networks, it is assumed that

actors make decisions to change ties in a Markov-like process. The

models are estimated by “simulations of sequences of small changes

between time-points with parameters adjusted until the simulations

can reasonably reproduce the data” (Robins, 2015; p. 195). These

sequences are often referred to asministeps.

Studies using SAOMs have been particularly useful to understand

network in organizational and team settings (Chen et al., 2021).

However, a key limitation of most applications using SAOMs is that

they only apply to one sampled network, albeit in at least more than

one wave. For some disciplines like organizational and team research,

this can be a significant limitation because such researchers often

collect data onmore than one sample. For instance, if an organization

has ten different teams, it would make sense to collect network from

each team rather than just one. Here, there can be a danger of

overgeneralization or false inference of network mechanisms from

the result of a single network.

The purpose of this paper is to present a nontechnical and hands-

on introduction to a meta-level SAOM technique where researchers

can simultaneously analyze network drivers from multiple samples

of teams and groups (Pasquaretta et al., 2016; e.g., de la Haye et al.,

2017). This approach is an aggregation of multiple independent

networks into a larger “meta-network” for the purpose of analyzing

omnibus effects. We also follow up with a multi-level model

using Bayesian inference when assumptions of the meta-network

model have been violated. Finally, we also provide a framework to

researchers to interpret their results in line with previous research

and theory.

1 The following paper only considers modeling the evolution of network

relations, rather than also modeling the evolution of attributes simultaneously

(i.e., co-evolutionary models).

Materials and equipment

Before proceeding with the tutorial, we describe the context of

the current experiment from which data was collected (Pilny et al.,

2014, 2020). The scenario revolved around 8 experimental sessions,

consisting of two teams with two people in each team. Participants

were 32 undergraduate students from a Midwest university in the

United States.

The scenario took place in a video-game simulation called Virtual

Battlespace 2 (VBS2; Bohemia Interactive Simulations, 2010). Each of

the two teams, in one tank each, started on opposites sites of a city.

The key goal was to coordinate their simultaneous arrival to a specific

location where they would encounter insurgents and engage in a

battle. The teams could only communicate with each other via a radio

headset and these messages were logged and recorded. Consistent

with each of the three of the four domains of social mechanisms for

network tie formation, we gather data on the following:

1. Key network: Trust. Measured from a question reading “To

what extent do you trust ___” for each of the other three team

members on a Likert scale from 1 = Not at all to 5 = To a very

great extent. This variable was dichotomized so that 4 and 5’s

indicated “trust” and 1, 2, and 3’s indicate “not trust”.

2. Individual domain: Gender.Gender was measured as (1) Man,

(2) Woman, and (3) Other. Because nobody selected “Other”, it

was kept as binary.

3. Relational domain: Communication intensity. A valued

matrix was created that indicated the number of messages each

person sent during the experimental session. This indicated

‘communication intensity’.

4. Endogenous domain. Reciprocity and closure. These are

fairly common endogenous parameters for inferential network

models. Because of the small network size (n = 4), we only

include these dyadic and triadic configurations.

Methods

What follows is an example code using the eight different groups.

We present the following tutorial “from scratch” in order to provide a

realistic account for the obstacles that may emerge from conducting

such an analysis. Indeed, the following code can be used as a template

for specific research projects from a variety of contexts and settings.

Step 1: Install packages

This code simply tells R to find “RSiena” (Ripley et al., 2011)

and install it. The second line loads the packages using the

‘library’ function:

install.packages( “RSiena” ,, repos =

“ http://cran.us.r-project.org” )
library(RSiena)

Step 2: Load key networks

In this example, we have two waves of network trust data from

eight groups. For instance, “Group1w1” represents Group #1 from
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the first wave. The code tells the R to load the data and put it into

a list:

netwT1 <- list()
netwT1[[ 1]] <- read.table( “Group1w1.txt” , sep=“ ” )
netwT1[[ 2]] <- read.table( “Group2w1.txt” , sep=“ ” )
netwT1[[ 3]] <- read.table( “Group3w1.txt” , sep=“ ” )
netwT1[[ 4]] <- read.table( “Group4w1.txt” , sep=“ ” )
netwT1[[ 5]] <- read.table( “Group5w1.txt” , sep=“ ” )
netwT1[[ 6]] <- read.table( “Group6w1.txt” , sep=“ ” )
netwT1[[ 7]] <- read.table( “Group7w1.txt” , sep=“ ” )
netwT1[[ 8]] <- read.table( “Group8w1.txt” , sep=“ ” )

netwT2 <- list()
netwT2[[ 1]] <- read.table( “Group1w2.txt” , sep=“ ” )
netwT2[[ 2]] <- read.table( “Group2w2.txt” , sep=“ ” )
netwT2[[ 3]] <- read.table( “Group3w2.txt” , sep=“ ” )
netwT2[[ 4]] <- read.table( “Group4w2.txt” , sep=“ ” )
netwT2[[ 5]] <- read.table( “Group5w2.txt” , sep=“ ” )
netwT2[[ 6]] <- read.table( “Group6w2.txt” , sep=“ ” )
netwT2[[ 7]] <- read.table( “Group7w2.txt” , sep=“ ” )
netwT2[[ 8]] <- read.table( “Group8w2.txt” , sep=“ ” )

Once loaded, we will create RSiena objects from them. The

important part here is the dimensions. We have four team members

in the network and hence, a 4× 4matrix. Because we have two waves,

the last dimension will be two:

Adv1 <- sienaNet(array(c(as.matrix(netwT1[[ 1]]), as
.matrix(netwT2[[ 1]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv2 <- sienaNet(array(c(as.matrix(netwT1[[ 2]]), as
.matrix(netwT2[[ 2]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv3 <- sienaNet(array(c(as.matrix(netwT1[[ 3]]), as
.matrix(netwT2[[ 3]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv4 <- sienaNet(array(c(as.matrix(netwT1[[ 4]]), as
.matrix(netwT2[[ 4]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv5 <- sienaNet(array(c(as.matrix(netwT1[[ 5]]), as
.matrix(netwT2[[ 5]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv6 <- sienaNet(array(c(as.matrix(netwT1[[ 6]]), as
.matrix(netwT2[[ 6]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv7 <- sienaNet(array(c(as.matrix(netwT1[[ 7]]), as
.matrix(netwT2[[ 7]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Adv8 <- sienaNet(array(c(as.matrix(netwT1[[ 8]]), as
.matrix(netwT2[[ 8]])), dim = c( 4, 4, 2)),
allowOnly = FALSE)

Step 3: Load attribute data

We will load data from the individual domain (gender) and

relational domain (communication intensity). Like Step 2, we will

also put them into a list. Once loaded, we need to tell RSiena that

this is attribute data using the ‘coCovar’ function for the individual

tabular data and “coDyadCovar” for the dyadic attribute in the form

of a matrix:

G1=read.table( “Gender_G1.txt” , sep=“ ” )
G2=read.table( “Gender_G2.txt” , sep=“ ” )
G3=read.table( “Gender_G3.txt” , sep=“ ” )
G4=read.table( “Gender_G4.txt” , sep=“ ” )
G5=read.table( “Gender_G5.txt” , sep=“ ” )
G6=read.table( “Gender_G6.txt” , sep=“ ” )
G7=read.table( “Gender_G7.txt” , sep=“ ” )
G8=read.table( “Gender_G8.txt” , sep=“ ” )
Gender <- list()
Gender[[ 1]] <- G1
Gender[[ 2]] <- G2
Gender[[ 3]] <- G3
Gender[[ 4]] <- G4
Gender[[ 5]] <- G5
Gender[[ 6]] <- G6
Gender[[ 7]] <- G7
Gender[[ 8]] <- G8

Gender1 <- coCovar(as.matrix(Gender[[ 1]])[,])
Gender2 <- coCovar(as.matrix(Gender[[ 2]])[,])
Gender3 <- coCovar(as.matrix(Gender[[ 3]])[,])
Gender4 <- coCovar(as.matrix(Gender[[ 4]])[,])
Gender5 <- coCovar(as.matrix(Gender[[ 5]])[,])
Gender6 <- coCovar(as.matrix(Gender[[ 6]])[,])
Gender7 <- coCovar(as.matrix(Gender[[ 7]])[,])
Gender8 <- coCovar(as.matrix(Gender[[ 8]])[,])
ComIntensiy <- list()
ComIntensiy [[ 1]] <- as.matrix(read.table(

“Chat_G1.txt” ))
ComIntensiy [[ 2]] <- as.matrix(read.table(

“Chat_G2.txt” ))
ComIntensiy [[ 3]] <- as.matrix(read.table(

“Chat_G3.txt” ))
ComIntensiy [[ 4)@]](@ <- as.matrix(read.table(

“Chat_G4.txt” ))
ComIntensiy [[ 5]] <- as.matrix(read.table(

“Chat_G5.txt” ))
ComIntensiy [[ 6]] <- as.matrix(read.table(

“Chat_G6.txt” ))
ComIntensiy [[ 7]] <- as.matrix(read.table(

“Chat_G7.txt” ))
ComIntensiy [[ 8]] <- as.matrix(read.table(

“Chat_G8.txt” ))
ComIntensiy1 <- coDyadCovar(as.matrix(ComIntensiy

[[ 1]]))
ComIntensiy2 <- coDyadCovar(as.matrix(ComIntensiy

[[ 2]]))
ComIntensiy3 <- coDyadCovar(as.matrix(ComIntensiy

[[ 3]]))
ComIntensiy4 <- coDyadCovar(as.matrix(ComIntensiy

[[ 4]]))
ComIntensiy5 <- coDyadCovar(as.matrix(ComIntensiy

[[ 5]]))
ComIntensiy6 <- coDyadCovar(as.matrix(ComIntensiy

[[ 6]]))
ComIntensiy7 <- coDyadCovar(as.matrix(ComIntensiy

[[ 7]]))
ComIntensiy8 <- coDyadCovar(as.matrix(ComIntensiy

[[ 8]]))

Step 4: Create meta-network

The next lines of code simply take everything constructed into

this point and puts it into a meta-network. The last lines put the

networks into an RSiena object:

dataset1 <- sienaDataCreate( Adv = Adv1,
Gender =Gender1, ComIntensity =ComIntensiy1)

dataset2 <- sienaDataCreate( Adv = Adv2,
Gender =Gender2, ComIntensity =ComIntensiy2)

dataset3 <- sienaDataCreate( Adv = Adv3,
Gender =Gender3, ComIntensity =ComIntensiy3)

dataset4 <- sienaDataCreate( Adv = Adv4,
Gender =Gender4, ComIntensity =ComIntensiy4)

dataset5 <- sienaDataCreate( Adv = Adv5,
Gender =Gender5, ComIntensity =ComIntensiy5)

dataset6 <- sienaDataCreate( Adv = Adv6,
Gender =Gender6, ComIntensity =ComIntensiy6)

dataset7 <- sienaDataCreate( Adv = Adv7,
Gender =Gender7, ComIntensity =ComIntensiy7)

dataset8 <- sienaDataCreate( Adv = Adv8,
Gender =Gender8, ComIntensity =ComIntensiy8)

AllGroups <- sienaGroupCreate(list(dataset1,
dataset2, dataset3, dataset4, dataset5,
dataset6, dataset7, dataset8))

GroupEffects <- getEffects(AllGroups) print01Report
(AllGroups, modelname = ’AllGroups’ )

A meta-network is simply a collection of different networks

into a single network object. In particular, the separate networks

are entered into the diagonals of a larger meta-network and the

rest of the meta-network is filled with structural zeros (i.e., ties are

forbidden). This is a similar procedure one would do with a meta-

analysis, combining different studies into a larger meta-dataset to

analyze grand effect sizes.
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Step 5: Check variability of ties

By looking at the corresponding .txt file from “print01Report,”

we need to see if the data is appropriate for analysis, particularly

how much the networks overlap with one another. For instance, the

Distance column represents the Hamming Distance, which is simply

a raw count of how many cells differ from time wave 1 to time wave

2 for each group. However, the Jaccard similarity coefficient may

be more useful because it is standardized. A Jaccard coefficient is a

measure of overlap between data. For instance, think about howVenn

diagram takes two circles and overlaps them to some degree. Imagine

circle 1 was time wave 1 and circle 2 was time wave 2. The greater the

overlap between the two circles in the Venn diagram, the higher the

Jaccard coefficient. Although ideal Jaccard values are a bit subjective,

suggested values might range from 0.30 (little overlap: lots of change

in ties) to 0.70 (lots of overlap: little change in ties) (Kalish, 2020).

Below, each row represents each group and relevant columns are

the possible ties changes and Jaccard coefficient. 0→ 0 simply counts

the number of times a tie stayed the same from “no trust” to “no trust.

0 → 1 counts the number of times a tie changed from “no trust”

to “trust” and so on. Here, we can see that Group 8 is a significant

problem because 1 → 1 represents the amount of times that teams

stayed the same from “trust” to “trust,” which is 12 in this case. In

other words, Group 8 (i.e., G8) has no variation in changes in trust

ties: everybody trusts everybody in both waves:

Tie changes between subsequent observations:
periods 0 => 0 0 => 1 1 => 0

1 => 1 Distance Jaccard Missing
G1: 1 ==> 2 7 2 0 3 2 0.600 0
G2: 3 ==> 4 0 3 0 9 3 0.750 0
G3: 5 ==> 6 3 1 4 4 5 0.444 0
G4: 7 ==> 8 2 3 0 7 3 0.700 0
G5: 9 ==> 10 4 1 1 6 2 0.750 0
G6: 11 ==> 12 3 6 0 3 6 0.333 0
G7: 13 ==> 14 2 6 1 3 7 0.300 0
G8: 15 ==> 16 0 0 0 12 0 1.000 0

As such, let’s remove Group 8 because amodel cannot possibly try

to predict network formation if there is not any present in the data for

that group:

CleanGroups <- sienaGroupCreate(list(dataset1,
dataset2, dataset3, dataset4, dataset5,
dataset6, dataset7)) Group_Effects <-
getEffects(CleanGroups) print01Report(
CleanGroups, modelname = ’CleanGroups’ )

The remaining seven groups look appropriate to analyze.

However, one can make the argument that Groups 2 and 5 should

be kept on eye on because of their high Jaccard coefficients (0.75). It

is important to remember that these rules of thumbs are somewhat

subjective, so with borderline cases, it is up to the researcher to

determine which groupsmight stay andwhichmight go. For instance,

if a group with boarderline high/low Jaccard value is preventing a

model from run in the first place (i.e., the model does not converge:

see Step 6), then this could be a good indicator that removing them

would be justified. For now, we just remove Group 8:

Tie changes between subsequent observations:
periods 0 => 0 0 => 1 1 => 0

1 => 1 Distance Jaccard Missing
1 ==> 2 7 2 0 3 2 0.600 0
3 ==> 4 0 3 0 9 3 0.750 0
5 ==> 6 3 1 4 4 5 0.444 0
7 ==> 8 2 3 0 7 3 0.700 0
9 ==> 10 4 1 1 6 2 0.750 0

11 ==> 12 3 6 0 3 6 0.333 0
13 ==> 14 2 6 1 3 7 0.300 0
15 ==> 16 0 0 0 12 0 1.000 0

Step 6: Run and evaluate model

Here we will specify effects for

(1) The individual domain

a. Homophily: Gender (sameX)

(2) The relational domain

a. Multiplexity: Communication intensity (X)

(3) The endogenous domain

a. Density (added by default)

b. Reciprocity (added by default)

c. Closure (transTrip)

Group_Effects <- includeEffects(Group_Effects,
sameX, interaction1
= “Gender” , include =TRUE)

Group_Effects <- includeEffects(Group_Effects, X,
interaction1
= “ComIntensity” , include = TRUE)

Group_Effects <- includeEffects(Group_Effects,
transTrip, include =TRUE)

Group_Model <- sienaAlgorithmCreate( projname
= ’Group_Clean_out’ )

Group_Results <- siena07(Group_Model, data
= CleanGroups, effects
= Group_Effects) Group_Results

As a rule of thumb, the convergence t-ratios should ideally

be 0, indicating that the simulations are identical to the observed

data. In other words, much like a conventional t-test, small t-values

represent a failure to reject the null hypothesis of no significant

differences between data. Typical cut-off values are 0.10 in absolute

value. Likewise, the overall convergence ratio should be less than 0.25

and there may be problems if any parameter has a standard error of

greater than 4 (Kalish, 2020).

The first thing reported are rate parameters. These are simply rate

values for how many opportunities each actor was afforded to change

ties between waves. For instance, in Group 1, each actor was given an

opportunity to change their trust ties 0.85 times:

Estimates, standard errors and convergence t-ratios
Estimate Standard Convergence Error t-ratio
Rate parameters:
0.1 Rate parameter period 1 0.8588 ( 0.6207 )
0.2 Rate parameter period 2 2.7922 ( 1.8435

) 0.3 Rate parameter period 3 5.4084 ( 4.2564 )
0.4 Rate parameter period 4 1.4176 ( 0.9073 )
0.5 Rate parameter period 5 0.7423 ( 0.5701 )
0.6 Rate parameter period 6 4.1071 ( 2.5836 )
0.7 Rate parameter period 7 4.5355 ( 2.5470 )
Other parameters:
1. eval outdegree (density) 0.2057 ( 0.8979

) −0.0463
2. eval reciprocity −0.0990 ( 0.8507 ) −0.0648
3. eval transitive triplets 1.0254 ( 0.5130

) −0.0570
4. eval Chistory 0.0522 ( 0.0338 ) −0.0561
5. eval same Gender −0.6927 ( 0.7814 ) −0.0623
Overall maximum convergence ratio: 0.1066

To get precise probability values to assess statistical significance

for hypothesis testing, we can run the following code:

parameter <- Group_Results\$effects\$effectName
estimate <- Group_Results\$theta
st.error <- sqrt(diag(Group_Results\$covtheta))
normal.variate <- estimate/st.error

Frontiers inHumanDynamics 04 frontiersin.org

https://doi.org/10.3389/fhumd.2022.982066
https://www.frontiersin.org/journals/human-dynamics
https://www.frontiersin.org


Pilny et al. 10.3389/fhumd.2022.982066

p.value. 2sided <- 2∗pnorm(abs(normal.variate),
lower.tail
= FALSE)

(results.table <- data.frame(parameter, estimate
= round(estimate, 3), st.error
= round(st.error, 3), normal.variate
= round(normal.variate, 2),p.value = round(p.
value. 2sided, 4)))

This returns the following output:

parameter estimate st.error normal.variate p.value
1 outdegree (density) 0.206 0.898 0.23 0.8188
2 reciprocity −0.099 0.851 −0.12 0.9073
3 transitive triplets 1.025 0.513 2.00 0.0456
4 Chistory 0.052 0.034 1.54 0.1226
5 same Gender −0.693 0.781 −0.89 0.3753

Here, we can see that there is a significant effect of transitivity

(Est. = 1.025, SE = 0.51, p = 0.04). Although it looks like the model

converged (i.e., all convergence t-ratios are below 0.10 in absolute

vale and overall convergence ratio is below 0.25), we have to check to

make sure that the data meets the assumptions of the meta-network

model, namely that the effects are the same (i.e., homogenous) across

all seven groups.

Step 7: Check for heterogeneity of e�ects

Indeed, the key assumption of the meta-network approach is

that the effects are homogenous across groups, much like we would

expect homogeneity of variance across groups in an ANOVA.We can

test this using the “sienaTimeTest” function to test this (Lospinoso

et al., 2011). The time test essentially creates dummy variables

corresponding to the various groups and tests for interactions with

the different specified effects following Schweinberger (2012). Here,

we will omit the basic density parameter for collinearity reasons:

timetest <- sienaTimeTest(Group_Results, effects
= 2:5 ) summary(timetest)

Below, we see that the specified effects of reciprocity, transitive

triples, communication intensity, and gender homophily are not

homogenous across groups given that the p-values are significantly

different across the groups:

Effect-wise joint significance tests
(i.e. each effect across all dummies):
chi-sq. df p-value
reciprocity 22.38 6 0.001
transitive triplets 16.85 6 0.010
ComIntensity 26.61 6 0.000
same Gender 32.22 6 0.000

Group-wise joint significance tests
(i.e. each group across all parameters):
chi-sq. df p-value
Group 1 4.75 4 0.314
Group 2 2.09 4 0.719
Group 3 24.98 4 0.000
Group 4 5.38 4 0.250
Group 5 5.21 4 0.266
Group 6 21.98 4 0.000
Group 7 5.28 4 0.260

From the output, one can see that Group 3 (χ2
= 24.98, p< 0.01)

and Group 6 (χ2
= 21.98, p < 0.01) are significantly different with

respect to their parameter estimates. If your data demonstrates such

heterogeneity, there may be serious questions on whether or not the

estimates are reliable or not because the assumption of homogeneity

has been violated. This suggests that a meta-network model is not

exactly appropriate for your data. However, this does not mean that

researchers are out of options and need to abandon the SAOM

framework because there are available options to account for such

heterogeneity of effects described next.

Step 8: Consider a multilevel model

In cases of significant heterogeneity of effects, there are actually

three options available: (1) including dummy variables represent

different groups, a (2) meta-analysis, and/or (3) a multilevel model

using Bayesian estimation. The first option of using dummy variables

to account for heterogeneous groups is feasible, but comes at the

risk of creating bloated models that may be overfitting the data. For

instance, in the current example, if we include dummy variables for

the four effects that were heterogeneous, this means including an

additional 24 variables [(N groups – 1)×(number of heterogeneous

variables)]. Likewise, meta-analysis options sound just like what

they are traditionally used for: they run independent models for

each group, treat them as essentially independent experiments, and

calculate omnibus/aggregate effect sizes for each parameter. However,

for small networks (e.g., n < 8), independent models still need to be

run. These models will likely return unreliable estimates given the

complex Markov Chain Monte Carlo simulations used (see for e.g.,

Yon et al., 2021) and are thus not appropriate for the current data.

Put simply, when small-sized groups are combined into a large meta-

network, sample size is not an issue, but by themselves, they will be

too small.

However, a multilevel model can be used using Bayesian

estimation because it still preserves the larger meta-network. Here,

we can specify the current effects as fixed and also allow them to vary

randomly (Koskinen and Snijders, 2022). The first step is to install the

“RSienaTest” package:

install.packages( “RSienaTest” , repos = “ http://R-Forge.R-
project.org” ) library(RSienaTest)

Then, specify the effects to be random. For initial guidance on

what parameters should be random, the time-test in Step 7 may be a

good place to start. As such, we’ll start off with all parameters as fixed

and random:

Group_Effects2 <- setEffect(Group_Effects, density,
random =TRUE)

Group_Effects2 <- setEffect(Group_Effects2, recip,
random =TRUE)

Group_Effects2 <- setEffect(Group_Effects2,
transTrip, random =TRUE)

Group_Effects2 <- setEffect(Group_Effects2, sameX,
interaction1
= “Gender” , random =TRUE)

Group_Effects2 <- setEffect(Group_Effects2, X,
interaction1
= “ComIntensity” ,random =TRUE)

print(Group_Effects2, includeRandoms =TRUE,
dropRates =TRUE)

The multilevel model uses Bayesian estimation. Although a full

treatment of Bayesian estimation is beyond the scope of this tutorial

(see Koskinen and Snijders, 2022), we will briefly describe it. Bayesian

estimation is often contrasted with null hypothesis significance

testing (NHST). Bayesian estimation attempts to calculate the

probability of a parameter being significant given the observed

data, rather than the probability of observing the data given that

a parameter is not significant (i.e., assuming the null hypothesis

is true). For example, consider the prosecutor’s fallacy (see West

and Bergstrom, 2020). If your DNA was found at a crime scene,

NHST would give you the odds of a false positive, the odds of the
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observing the data assuming DNA testing technology was incorrect

(H0). Although useful, this may not be the most relevant question

at hand. For example, in the prosecutor’s fallacy, it is very unlikely

to observe a false positive in a DNA test and thus, we can reject

the null hypothesis (H0) that the DNA test is wrong. On the other

hand, Bayesian thinking would give you the odds of the alternative

hypothesis (H1) being true, the odds that you are guilty given that

you have a DNA match. Here, the number may be pretty low as well,

meaning that there are several other folks who have the same DNA

profile that matched the crime scene. Put this way, Bayesian tests

against H1 rather than H0.

However, Bayesian estimates depend on the probability of the

alternative hypothesis (H1) before considering the observed data

(i.e., calculating the base rate). In the prosecutor’s fallacy, this is

easy because we know that only one person committed the crime.

In this case, we can estimate what is called a prior, a belief on

what the base-rate estimate would be before collecting data. This

is contrasted with an uninformed prior, which means that any

parameter value can have an equal chance of occurring. Whether

or not informed or uninformed priors are specified, a Bayesian

model will estimate what are called posterior probabilities, which

evaluate the odds of a parameter being significant after considering

the data. But of course, posterior probabilities depend on the original

priors and corresponding p-values indicate the odds that a parameter

is significant given the observed data. Some benefits of Bayesian

estimation are that it sample sizes are typically not an issue and it

may be asking a more straightforward question to testing hypotheses

regarding parameter values. On the other hand, Bayesian estimation

is highly influenced by the priors, which should ideally come from

previous theory and research.

Koskinen and Snijders (2022) specify priors based on previous

research on the evolution of network ties. With respect to density

(i.e., outdegree), they specify a value of−1 given that most socially

constructed networks between individuals tend to be sparse. On the

other hand, they specify reciprocity as +1, given that reciprocity

tends to be evident in a variety of social networks. Uninformed

priors are used for the remained fixed effects. Finally, sigma values

of 0.01 represent the case that groups should tend to be similar to one

another via their standard deviations, 10 times smaller than variations

within groups.

Mu2 <- rep( 0,6 )
Mu2[ 2] <- −1 # outdegree

Mu2[ 3] <- 1 # reciprocity

Sig2 <- matrix( 0,6,6
diag(Sig2) <- 0.01
Sig2
#check to see if it worked correctly
(reffs <- Group_Effects2\$shortName[(Group_Effects2

\$include & ((!Group_Effects2\$basicRate &
Group_Effects2\$randomEffects) |(Group_Effects2
\$basicRate & (Group_Effects2\$group$==$ 1))))])

cbind(reffs, Mu2, sig =diag(Sig2))

Finally, the model can be run. A warning: this estimation might

take a while because it is simulating thousands of networks based

on different possible estimation values, comparing them to the

observed network, and then refining over and over again. The current

estimation took about 3min to run, but will likely be longer for larger

networks and more groups:

Group_Results_Bay <- sienaBayes(Group_Model, data
= CleanGroups, initgainGlobal =0.1 ,
initgainGroupwise = 0.02 , effects
= Group_Effects2, priorMu = Mu2, priorSigma

= Sig2, priorKappa =0.01 , prevAns
= Group_Results, nwarm=50, nmain =250 ,
nrunMHBatches =20, nbrNodes =8, silentstart =FALSE
)

The output is reported below. Remember, we are testing the odds

that the parameters are significant given the data (i.e., verifying)

rather than the probability of observing the data given the null

being true (i.e., falsifying), so high p-values indicate significance (i.e.,

greater than 0.95):

Posterior means and standard deviations are
averages over 1000 MCMC runs (counted after
thinning).

Post. Post. cred. cred. p
mean s.d.m. from to

1. rate constant Adv rate (period 1) 3.1176 (
1.2151 ) 1.2234 5.5436

2. rate constant Adv rate (period 3) 2.7666 (
1.1867 ) 1.0233 5.6828

3. rate constant Adv rate (period 5) 2.9593 (
1.4361 ) 0.8371 6.2014

4. rate constant Adv rate (period 7) 4.6209 (
1.6297 ) 1.6911 8.0913

5. rate constant Adv rate (period 9) 2.9782 (
1.2002 ) 1.0002 5.2208

6. rate constant Adv rate (period 11) 2.2482 (
1.4391 ) ) 0.4014 5.7365

7. rate constant Adv rate (period 13) 2.9784 (
1.2021 ) 1.0253 5.7258

8. eval outdegree (density) 1.5097 ( 0.5948 )
0.2824 2.6564 1.00

9. eval reciprocity −1.0469 ( 0.6063 ) −2.1123
0.1609 0.06

10. eval transitive triplets 0.9941 ( 0.4210 )
0.1462 1.7706 0.99

11. eval ComIntensity 0.2137 ( 0.1184 ) −0.0021
0.4563 0.97

12. eval same Gender −0.7570 ( 0.6398 ) −1.8731
0.4100 0.12

Post.sd cred.from cred.to
eval outdegree (density) 0.2135 0.0889 0.4183
eval reciprocity 0.2039 0.0917 0.4095
eval transitive triplets 0.2006 0.0887 0.4219
eval ComIntensity 0.2357 0.1099 0.4185
eval same Gender 0.2228 0.0855 0.4877

Step 9: Interpret initial results

Here, we can see that the posterior means for multiplexity (PM =

0.21, p = 0.97) and transitivity (PM = 0.99, p = 0.99) effects remain

significant. Moreover, the density parameter is now significant as well

(PM = 1.50, p > 0.99).

However, what about the random effects specified below the

output? Here, what are returned are posterior between-group

standard deviations (SDs). Along with these SDs are credibility

intervals that show each SD is quite different than zero. However, we

would rarely expect group effects to be exactly the same (i.e., an SD

of zero), so these SD estimates do not tell us much about statistical

significance. In the next step, we will determine both convergence and

if we can relax any of the effects specified as random.

Step 10: Assess convergence

The quickest, but perhaps most subjective way to analyze

convergence is by looking at trace and density plots for the fixed

and random effects. The Y-axis is the average value and the X-

axis represents the point of the MCMC chain. Essentially, an ideal
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FIGURE 1

(A–D) Trace plot for convergence diagnosis. Initial estimation (bad convergence). SD, standard deviation; Adv, name of key network; Theta, estimated

coe�cient; Index, iteration in estimation chain.

plot is a perfect perpendicular line with the X-axis that demonstrate

consistent estimates across the MCMC chain with observations

varying randomly across the line. If the line takes a linear or even

nonlinear shape, it means that the final Bayesian estimates may be

skewed and untrustworthy because they are not consistent across

iterations. In the first run, we can see that convergence is unlikely

to be evident (see Figure 1):

RateTracePlots(Group_Results_Bay)
NonRateTracePlots(Group_Results_Bay)

In essentially all of the plots, we see that the model has a tough

time settling on a consistent value. For example, take a look at the

average theta value for reciprocity (in red). It seems to oscillate even

between negative and positive throughout all of the simulations. This

is an obvious sign that the final posteriormeanmay not be an accurate

estimate given that the model seems confused on whether or not

reciprocity is less or more likely in trust formation.

More often than not, the first estimate will not be the last and will

take efforts to refine and tune a final model. Following the literature

and our own personal experiences, below are some tips at fine-tuning

a model:

1. Sometimes there are too many random effects specified. We

suggest iteratively choosing variables with the highest chi-square

values from the “sienaTimeTest” in Step 7.

2. Sometimes successive simulations in generated estimates are too

correlated with one another. Increasing the multiplication factor

will help reduce the correlation between successive network

simulations and thus, increase the amount of Monte Carlo

Markov chain steps. This can be done in the creation of the
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FIGURE 2

(A–D) Trace plot for convergence diagnosis. Second estimation (much better, but not acceptable convergence). SD, standard deviation; Adv, name of key

network; Theta, estimated coe�cient; Index, iteration in estimation chain.

algorithm. The default multiplication factor is 5. Here, we can

increase it to 20:

Group_Model_Second_ru <- sienaAlgorithmCreate(
projname = ’Group_Clean_out’ , mult =

20)

3. Continue an estimate from previous session using the prevBayes

command. If you ‘start from scratch’, it may take a large number

of runs to converge on reliable estimates. As such, starting from

a previous estimate give the algorithm a better starting off point.

For instance:

Group\_Model_Second_run <- sienaBayes(Group_Model,
data = CleanGroups, effects

= Group_Effects2, nmain = 100 , nSampConst
=5, nrunMHBatches = 20, prevBayes
= Group_Model_First_run)

4. Smaller values on “initgainGlobal” (default = 0.1) can

improve stability for the initial Moment of Methods estimation

for the larger meta-network. Likewise, lower values on

“initgainGroupwise” (default= 0.02) can help stabilize estimates

for the separate groups, which may be even more relevant for

small networks (e.g., N < 8). These gain settings determine

the step sizes for the parameter updates and thus, small values

try to prevent extreme changes in parameter values from

iteration to iteration. Moreover, the “reductionFactor” (default

= 0.5) controls the multiplier for the observed rate parameter
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FIGURE 3

Density plots for random e�ects. Theta, estimated coe�cient, Mu, Observed coe�cient.

covariance matrix to obtain the prior covariance matrix for the

basic rate parameters. Lower values may aid in stabilization,

especially if one notices significant divergence later in the

chain of simulations. Finally, larger values on “nrunMHBatches”

(default= 20) can help too because they increase the number of

iterations the algorithmwill go through to find reliable estimates

(see also “nmain” and “nwarm”). For instance:

Group_Results_Third_run <- sienaBayes(Group_Model,
data = CleanGroups, initgainGlobal =

0.01 , initgainGroupwise = 0.001 , effects
= Group_Effects2, priorMu = Mu2, priorSigma
= Sig2, priorKappa = 0.01 , prevAns
= Group_Results_Second_run, reductionFactor =

0.1 , nwarm = 50, nmain = 1000 , nrunMHBatches =

50, nbrNodes = 8, silentstart =FALSE)

After several iterations, consistent values could not be found for

reciprocity and transitivity. As such, we removed random effects for

these parameters and found, for the most part, a stable and converged

model. Significant random effects are still evident as well as significant

fixed effects for communication (multiplexity) and transitivity, but no

longer for density:

Posterior means and standard deviations are
averages over 1000 MCMC runs (counted after
thinning).

Post. Post. cred. cred.
p mean s.d.m. from to
1. rate constant Adv rate (period 1) 2.5196 (

1.1710 ) 0.6761 5.1651
2. rate constant Adv rate (period 3) 3.5734 (

1.3000 ) 1.5524 6.5103
3. rate constant Adv rate (period 5) 2.6259 (

0.9591 ) 1.0805 4.7202
4. rate constant Adv rate (period 7) 2.7331 (

1.0610 ) ) 1.0245 5.1777
5. rate constant Adv rate (period 9) 1.5176 (

0.7621 ) 0.4086 3.2985
6. rate constant Adv rate (period 11) 2.4509 (

0.8880 ) 1.0834 4.5508
7. rate constant Adv rate (period 13) 2.8393 (

0.8879 ) 1.3907 4.7376

8. eval outdegree (density) 1.0668 ( 0.9912 )
−0.5668 3.2752 0.85

9. eval reciprocity 0.6101 ( 0.9716 ) −2.5576
1.1201 0.28

10. eval transitive triplets 1.1104 ( 0.5592 )
0.2430 2.3519 0.99

11. eval ComIntensity 0.1847 ( 0.1347 ) −0.0424
0.5081 0.95

12. eval same Gender −0.3813 ( 0.7945 ) −1.9397
1.1922 0.29

Post.sd cred.from cred.to
eval outdegree (density) 0.2589 0.0923 0.5912
eval ComIntensity 0.2381 0.1031 0.4641
eval same Gender 0.2094 0.0796 0.4496

Below, the trace plots demonstrating some preliminary evidence

of convergence and stability (Figure 2). However, the outdegree

parameter could perhaps be more fine-tuned to be bit more stable

because it seems to vary up and down along the iterations:

NonRateTracePlots(Group_Results_Third_run)

For the effects that were specified as random, it is useful to

create density plots along the groups (see Figure 3) to determine

how significant they are. However, it is important to note that this

is a more qualitative assessment of significance since we do not have

exact probability values on what a typical standard deviation would

be between groups regarding specified effects:

AllDensityPlots(Group_Results_Third_run, legendpos
= “topright” )

By visualizing the average thetas across each group, it might be

worth specifying Gender as only a fixed effect since the thetas are so

similar across groups. For instance, there is considerable overlap with

the lines representing each group, which would suggest high levels

of homogeneity after controlling for other parameters. On the other

hand, multiplexity is well conceptualized as a fixed and random effect

give the different distributions across groups. As such, we can run the

model with gender homophily as only a fixed effect:
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FIGURE 4

(A–D) Trace plot for convergence diagnosis (good convergence). SD, standard deviation; Adv, name of key network; Theta, estimated coe�cient; Index,

iteration in estimation chain.

GroupEffects4 <- getEffects(CleanGroups)
GroupEffects4 <- setEffect(GroupEffects4, density)
GroupEffects4 <- setEffect(GroupEffects4, recip)
GroupEffects4 <- setEffect(GroupEffects4, transTrip

)
GroupEffects4 <- setEffect(GroupEffects4, sameX,

interaction1
= “Gender” )

GroupEffects4 <- setEffect(GroupEffects4, X,
interaction1
= “ComIntensity” )

GroupEffects4 <- setEffect(GroupEffects4, density,
random =TRUE) GroupEffects4 <- setEffect(
GroupEffects4, recip, random =FALSE)

GroupEffects4 <- setEffect(GroupEffects4, transTrip
, random =FALSE) GroupEffects4 <- setEffect(
GroupEffects4, sameX, interaction1
= “Gender” , random =FALSE)

GroupEffects4 <- setEffect(GroupEffects4, X,
interaction1
= “ComIntensity” , random$=$TRUE) print(
GroupEffects4, includeRandoms =TRUE,
dropRates =TRUE)

Mu2 <- rep( 0, 3)
Mu2[ 2] <- −1 # outdegree
Sig2 <- matrix( 0, 3, 3)

diag(Sig2) <- 0.01

Group\_Results\_Model1 <- sienaBayes(Group\_Model,
data
= CleanGroups, initgainGlobal =0.01 ,
initgainGroupwise = 0.0001 , effects
= GroupEffects4, priorMu = Mu2, priorSigma
= Sig2, priorKappa = 0.01 , prevAns
= Group\_Results, nwarm=50, nmain =200 ,
nrunMHBatches =50, nbrNodes =8, silentstart =FALSE
)

Group\_Results\_Model2 <- sienaBayes(Group\_Model,
data
= CleanGroups, initgainGlobal =0.001 ,
initgainGroupwise =0.00001 , effects
= GroupEffects4, reductionFactor =

.05 , nwarm=50, nmain =1000 , nSampConst
=5, nrunMHBatches =100 , prevBayes
= Group\_Results\_Model1)

Posterior means and standard deviations are
averages over 1000 MCMC runs (counted after
thinning).

Post. Post. cred. cred. p
mean s.d.m. from to
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FIGURE 5

Decision tree format for modeling evolution of network dynamics for multiple groups.

1. rate constant Adv rate (period 1) 2.6455 (
1.3979 ) 0.5963 5.8551

2. rate constant Adv rate (period 3) 4.2995 (
1.5241 ) 1.6973 7.5919

3. rate constant Adv rate (period 5) 2.8170 (
1.1100 ) 1.0805 5.4946

4. rate constant Adv rate (period 7) 2.8435 (
1.1817 ) 0.9359 5.4299

5. rate constant Adv rate (period 9) 1.4391 (
0.7493 ) 0.3393 3.1714

6. rate constant Adv rate (period 11) 2.6891 (
1.0114 ) 1.1060 5.0570

7. rate constant Adv rate (period 13) 3.2440 (
1.1451 ) 1.4667 5.8413

8. eval outdegree (density) 1.0494 ( 1.2207 )
−0.7532 3.7799 0.81

9. eval reciprocity −0.4934 ( 0.9038 ) −2.3617
1.1128 0.30

10. eval transitive triplets 1.0262 ( 0.4686 )
0.2161 2.1151 1.00

11. eval ComIntensity 0.1730 ( 0.1153 ) −0.0251
0.4269 0.95

12. eval same Gender −0.5202 ( 1.1184 ) −2.9204
1.4767 0.33
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Post.sd cred.from cred.to
eval outdegree (density) 0.2506 0.0817 0.5575
eval ComIntensity 0.2111 0.0931 0.4095

The trace plots (Figure 4) look quite better than the previous run

with homophily as a random effect. For instance, most of the average

thetas and standard deviations are quite stable along the iterations:

RateTracePlots(Group_Results_Model2)
NonRateTracePlots Group_Results_Model2)

Discussion

After producing converged result, it seems reasonable to discuss

them in light of previous research and theory. However, given the

eclectic nature of studies employing social network analysis, we

would encourage researchers to consider similar (1) node and (2)

relation types of previous studies. The point here is to avoid making

over-generalized statements on the nature of social networks.

For instance, consider our results in the context of similar

studies looking at human work team’s trust networks. Lusher et al.

(2014) looked at a cross-sectional network trust structures of three

professional football (i.e., “footy”) teams and found some similar

and differing results. Whereas transitivity was evident in most of

the teams, reciprocity was also evident. Similarly, Lusher et al.

(2012) looked at trust networks within a corporate management team

for producing sailboats and motor sails in Italy. They too found

evidence of positive transitivity, null reciprocity, and negative gender

homophily (the current results has a negative, albeit insignificant

parameter). Indeed, the key differences in some of these studies is

that the current is a zero-history experimental design, but also the fact

that we looked at the evolution of trust rather than a cross-sectional

snapshot. As for trust evolutionary dynamics and growth, the current

results suggest that trust evolution seems to be more of a triadic (i.e.,

transitivity), rather than dyadic (i.e., reciprocity) phenomenon.

Finally, although the relationship between communication

intensity and trust formation significantly varied across the groups,

the final fixed effect was positive. This supports previous work that

demonstrates the multiplex nature of trust, that is, trust is rarely a

network relation that two nodes might have in isolation from other

ties (e.g., Ellwardt et al., 2012; Lusher et al., 2012; Su, 2021). In

particular, the current results support a communicative constitution

and negotiation of trust, meaning that communication seems to

underlie the formation of trust, rather than trust emergence as a

simple contagious process (e.g., Schoeneborn et al., 2018). Put simply,

the results may suggest that trust in groups seems to be related

to group communication somehow, although the relationship could

certainly be seen as bi-directional (e.g., two groupmembers now trust

each other, so they talk more with each other). Future research may

consider the ways multiple network co-evolve with one another.

In sum, the following paper demonstrates some of the questions

that could be answered if researchers have multiple samples of

longitudinal networks they seek to model. Figure 5 summarizes the

steps provided here into a decision-tree format for researchers to

use. Using the SAOM framework, we presented a hands-on tutorial

on meta-network and multilevel network models that could be

appropriate to reveal what network mechanisms may be responsible

for why the network evolved the way it did.
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