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The strong heterogeneity characteristics of deep-buried clastic low-permeability
reservoirs may lead to great risks in hydrocarbon exploration and development,
which makes the accurate identification of reservoir lithofacies crucial for improving
the obtained exploration results. Due to the very limited core data acquired from deep
drilling, lithofacies logging identification has become the most important method for
comprehensively obtaining the rock information of deep-buried reservoirs and is a
fundamental task for carrying out reservoir characterization and geological modeling. In
this study, a machine learningmethod is introduced to lithofacies logging identification,
to explore an accurate lithofacies identificationmethod for deep fluvial-delta sandstone
reservoirs with frequent lithofacies changes. Here Sangonghe Formation in the Central
Junggar Basin of China is taken as an example. The K-means-based synthetic minority
oversampling technique (K-means SMOTE) is employed to solve the problem regarding
the imbalanced lithofacies data categories used to calibrate logging data, and a
probabilistic calibration method is introduced to correct the likelihood function. To
address the situation in which traditional machine learning methods ignore the
geological deposition process, we introduce a depositional prior for controlling the
vertical spreading process based on a Markov chain and propose an improved Bayesian
inversion process for training on the log data to identify lithofacies. The results of a series
of experiments show that, compared with the traditional machine learning method, the
newmethod improves the recognition accuracy by 20%, and the predicted petrographic
vertical distribution results are consistentwith geological constraints. In addition, SMOTE
and probabilistic calibration can effectively handle data imbalance problems so that
different categories can be adequately learned. Also the introduction of geological prior
has a positive impact on the overall distribution, which significantly improves the
accuracy and recall rate of the method. According to this comprehensive analysis,
the proposedmethod greatly enhanced the identification of the lithofacies distributions
in the Sangonghe Formation. Therefore, this method can provide a tool for logging
lithofacies interpretationof deep and strongly heterogeneous clastic reservoirs influvial-
delta and other depositional environments.
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1 Introduction

Lithofacies can build a bridge between the microscopic and
mesoscopic characteristics of reservoirs, which in turn provides a
basis for macroscale geological studies; thus, lithofacies parameters are
important in reservoir modeling and reservoir characterization. Most
deep clastic rock reservoirs have more complex compositions and
rapid lithofacies changes than conventional reservoirs at shallow
depths, and such strong reservoir heterogeneity results in
significant risks to hydrocarbon exploration (Bloch et al., 2002;
Zhang et al., 2021). The accurate characterization of the lithofacies
distributions of such reservoirs is critical to the success of hydrocarbon
exploration. Due to the high cost of deep well coring and the safety
risks of drilling operations, the available core data and the provided
lithofacies distribution information are often very limited. Therefore,
logging lithofacies identification is an important method for obtaining
lithofacies information from deep reservoirs (Zhou et al., 2016; Liu
et al., 2020).

Traditional lithofacies logging identification methods rely on
interpretation models such as sandstone classification approaches
using T-S charts (Thomas et al., 1977) and logging curve overlays
(Lai et al., 2020). In addition, specific parameters (e.g., rock electricity)
are introduced to assist in lithofacies identification. These methods
have better applications for specific geological problems but often
require simplifying the geological properties (Press et al., 2007; Xu,
2013).

In recent years, a large number of scholars have tried to apply
data-driven log interpretation methods to lithofacies identification
for different regions and types of reservoirs; these approaches are
mainly divided into unsupervised learning methods and supervised
learning methods. Unsupervised learning methods mainly include
factor analysis methods (Asfahani, 2014), principal component
analysis (PCA) (Li et al., 2022), cluster analysis methods (Chen and
Hiscott, 1999), and Gaussian mixture model methods (Dunham
et al., 2020), which focus more on the statistics of the logging
response itself. Supervised learning methods are more concerned
with the correlations between geological properties and logging
responses. These include Bayesian inversion (Qin et al., 2018; Feng,
2021), decision trees (Ren et al., 2022), support vector machines
(SU et al., 2020), neural networks (Gu et al., 2019), gradient
boosting algorithms (Gu et al., 2021; Al-Mudhafar et al., 2022;
Zheng et al., 2022), random forests (Antariksa et al., 2022), and
emerging deep learning methods (Song et al., 2020; Liu and Liu,
2022). Among these methods, Bayesian inversion can apply
different prior frameworks and likelihood models to avoid
inappropriate transitions among different lithofacies in geology
and petrophysics (Hammer et al., 2012). Bayesian inversion is an
uncertainty inversion method based on Bayesian theory, which not
only aims at finding the optimal solution but also evaluates and
analyzes the inversion results.

Although previous research work has contributed significantly
to the rapid development of lithofacies identification methods from
big logging data, some problems are still encountered when
applying big data methods to lithofacies classification in
strongly heterogeneous reservoirs. The most prominent problem

is that the proportions of different lithofacies corresponding to the
vertical upward and logging data vary significantly, and this data
imbalance problem can have an impact on the model classification
(He and Garcia, 2009; Branco et al., 2016). For example, the model
learns a priori information about the proportion of samples in the
training set, so that the actual prediction will focus on the majority
of the samples (which would lead to better accuracy compared to
the minority of the samples). Previous authors have generally
incorporated a minority of lithofacies when considering this
problem, but these minority classes often have more important
implications for hydrocarbon reservoir characterization and
modeling. For example, mudstones in thick sandstones can act
as barriers and baffles for fluid flow. At the same time, high-quality
lithofacies tend to be less represented in formations and are
susceptible to data imbalance. Notably, these minority
lithofacies should not be ignored. Therefore, there is a need to
mitigate the data imbalance problem in logging datasets (Hu and
Sun, 2020; Kim and Byun, 2020; Zhou et al., 2020).

Another problem is that traditional machine learning methods
lack geological constraints, with samples that are independent of each
other and draped for point-by-point recognition (Hammer et al.,
2012). Therefore, the interpretation results do not match the
distribution of the actual stratigraphic conditions, and some
geologically unlikely lithofacies sequences may even appear. It has
been recognized that more geological constraints should be
introduced; more specifically, accurate geological priors should be
introduced in the learning process (Larsen et al., 2006). In fact, to
address these issues, preliminary explorations involving seismic data
bodies have been conducted by researchers to demonstrate that
applying Markov chain methods in a Bayesian framework can lead
to a priori models that are consistent with the lithofacies distribution
of the formation (Kjønsberg et al., 2010; Feng et al., 2018). These
research works provide valuable references on how to introduce
geological constraints in lithofacies logging identification.

The stronger the heterogeneity, the more blurred the boundary
of single-dimensional distinction between lithofacies. It is a
complex nonlinear classification issue for lithofacies logging
identification in strongly heterogeneous reservoirs, and most of
the currently published methods have difficulty achieving accurate
prediction of deep heterogeneous reservoir lithofacies. Therefore,
the present study addresses a machine learning method for
accurately identifying the lithofacies of strongly heterogeneous
reservoirs using conventional logging data, taking a deep fluvial-
delta reservoir in the Central Junggar Basin as an example. Specific
objectives include 1) solving the data imbalance problem regarding
the identification of lithofacies in heterogeneous reservoirs due to
the relatively disparate lithofacies proportions in such reservoirs; 2)
introducing the sedimentary framework using the Markov chain
approach to provide geological constraints for predicting the
lithofacies distribution; and 3) proposing a Bayesian inversion
procedure, that is, applicable to deep strongly heterogeneous
reservoirs. Finally, the developed prediction method is applied
to the identification of reservoirs of the Sangonghe Formation in
the Central Junggar Basin to improve the accuracy of logging
prediction for deep strongly heterogeneous reservoirs.
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FIGURE 1
Regional tectonic position in the study area. (A) The location of the Junggar Basin. (B) The subdivisions of the Junggar Basin and the location of the
Moxizhuang area. (C) The well locations in the Moxizhuang area. The green area shows the oil field.

FIGURE 2
Porosity and permeability frequency histograms and joint probability distribution of the second section of t J1s2 in the Moxizhuang area. (A) Horizontal
permeability frequency histogram. (B) Effective porosity frequency histogram. (C) Joint probability distribution of effective porosity and horizontal
permeability (Different colors represent differentmembers). (D)Cross-plot of effective porosity and horizontal permeability (Subplots are kernel density plots).
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2 Study area

The study area is the Moxizhuang area in the Central Junggar
Basin in northwestern China. It is tectonically located between the
Zhongguai Bulge, the Dabazon Bulge, and the Mosowan Bulge
(Figure 1) (Chen et al., 2005). The Moxizhuang area covers
approximately 240 km2 and has proven oil reserves of
approximately 20.59 million tons. The Lower Jurassic Sangonghe
Formation is the most important exploration target zone, with
burial depths generally exceeding 4,000 m. Eighteen exploratory
wells have been completed in the Moxizhuang area, and a
complete sequence of conventional logs has been obtained. In
addition, 14 wells in the area have been cored in the Sangonghe
Formation. The abundant logging and core data derived from these
wells provided information for this study.

Drilling data show that the second member (J1s2) of the Lower
Jurassic Sangonghe Formation is mainly divided into upper and lower
subsections according to their lithological characteristics, and the

upper submember (J1s2
U) is mainly thick-layered mudstone with

thin sandstone. The lower submember (J1s2
L) is mainly sandstone

with some conglomerate. The Jurassic Sangonghe Formation in the
Moxizhuang area has been carefully sedimentologically studied by
previous researchers and is generally interpreted as a fluvial-deltaic
sedimentary system (Zhang et al., 2000). In J1s2, with the contraction
of the lake basin and strong hydrodynamic conditions, a large-scale
sedimentary sand body with braided fluvial delta-meandering fluvial
delta transitions is developed in the Moxizhuang area. J1s2

L is the
frontal of the braided fluvial delta, with distributary sands that are very
well developed, longitudinally superimposed sands and less mud
deposition. J1s2

U is the frontal of the meandering fluvial delta, with
an elevated water level and reduced material supply; the upper part has
developedmudstone, and distributary channel sands and estuarine bar
sands are deposited at the bottom (Cao et al., 2017; Wang et al., 2021).

The sandstone reservoir in J1s2 exhibits strong heterogeneous
characteristics (see Figure 2), with effective reservoir rocks
interacting via tight interlayers as transitions in the distributary
channel, interchannel and estuary bar (see Figure 3). Controlled by
sedimentary microfacies changes, the lithofacies in this member
mainly consist of medium sandstone and fine sandstone, but
mudstone and conglomerate are developed with relatively disparate
proportions; additionally, there are large physical disparities between
different lithofacies, with porosity mainly ranging from 2.0% to 20.0%
(averaging 11.9%) and permeability mainly ranging from 0.01 to
500.0 mD (averaging 32.1 mD; these can be generally classified as
dense reservoirs). According to its hydrocarbon shows, the sand
distribution of a reservoir is discontinuous, whose tight interlayers
act as the main barriers; the oil reservoirs have a complex oil-water
distribution with frequent alternation of its oil, dry and water zones,
which shows that the strong heterogeneity of the reservoir has a
significant effect on the hydrocarbon accumulation.

3 Data and methods

3.1 Data

This study mainly considers the influences of grain size and
composition on reservoir quality and classifies lithofacies from the
perspective of the feasibility of logging identification based on core
observations to provide geological labels for logging identification.
According to the grain size standard (Krumbein, 1934; Miall, 1977),
the overall grain size of the Sangonghe Formation reservoir is sandy,
including very fine sand, fine sand, medium sand, and coarse sand,
among which the medium- and fine-grained sandstone types are
dominant; small amounts of gravel-bearing sandstone, muddy
gravel sandstone, and conglomerate are also present, as shown in
Table 1. The classification scheme helps when using logging for
lithofacies identification without losing depositional characteristics.
For the convenience of visualization, serial numbers are utilized
instead of lithofacies.

The core data categories of Zhuang 7, Zhuang 101, Zhuang 102,
Zhuang 105, Zhuang 6, Zhuang 3 and Zheng 11 in the Moxizhuang
area are complete, and the logging data of the target section are
complete, so the data of these wells are mainly extracted for analysis
purposes. Based on the sensitivity analysis and the completeness of the
logging series, the nine conventional logging curves gamma ray (GR),
spontaneous potential (SP), caliper (CAL), density (DEN), acoustic

FIGURE 3
Single-well histogram of J1s2 inWell Zhuang 103 in theMoxizhuang
area (IC in the sedimentary microfacies column represents the
interchannel, DC represents the distributary channel, and EB represents
the estuary bar).
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log(AC), compensated dual-spacing neutron (CN), Latero log 8
(RFOC), deep induction logging resistivity (RILD), and medium
induction logging resistivity (RILM) are selected for lithologic
classification.

In addition, different periods, logging series, environments and
logging equipment can cause differences among logging data, and
there is incomplete correspondence between the cores and logging
depths due to the time lag of the coring. Therefore, preprocessing and
core depth correction are required before processing logging data. In
this study, we correct the core depth by the Depth shift function in
Techlog and compare the GR curve to generate a depth shift table after
stretching and panning the core profile.

3.2 Methodology

3.2.1 Naive Bayes
The Naive Bayesian approach is a supervised learning

algorithm based on Bayesian theory, which assumes that the

feature parameters are independent of each other (Zhang, 2004).
Since the logging data are not strictly independent from each other,
they cannot be easily used as direct input data for the classifier.
Therefore, in this paper, the original logging data are subjected to
singular value decomposition using the principal component
analysis (PCA) method (Minka, 2000) and projected into a low-
dimensional space with a linear transformation to obtain the
uncorrelated variables X{x1, x2//, xn}.

The mathematical expression of Bayesian theory is as follows:

P y
∣∣∣∣x1, . . . , xn( ) � P y( )P x1, . . . xn

∣∣∣∣y( )
P x1, . . . , xn( ) (1)

where y is the category label; x1. . .. . . xn represents the feature
parameters; P(y|x1, . . . , xn) is the conditional probability of a set
of observations corresponding to a specific category y, which is the
posterior distribution; P(y) is the prior probability of category y,
which can be obtained from the core observations; and P(x1, . . .xn|y)
is the likelihood function.

TABLE 1 Lithofacies classification comparison table for the Sangonghe Formation in the Moxizhuang area.

No. Core Lithofacies Structure

0 Shale/mudstone Horizontal bedding

1 Very fine- grained sandstone Parallel bedding, ripple bedding

2 Muddy gravel sandstone Massive bedding

3 Fine-grained sandstone Trough cross bedding, plate cross bedding, parallel bedding, ripple bedding

4 Medium-grained sandstone Trough cross bedding, plate cross bedding, parallel bedding

5 Coarse-grained sandstone Trough cross bedding, plate cross bedding

6 Gravel-bearing sandstone Massive bedding

7 Conglomerate Massive bedding
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Since the Naive Bayesian assumption states that the characteristic
parameters are independent of each other, P(x1, . . . , xn) is a constant,
and Eq. 1 is equivalent to:

P y
∣∣∣∣x1, . . . , xn( )∝P y( )∏n

i�1P xi

∣∣∣∣y( ) (2)

where∏n

i�1P(xi|y) is the joint probability that the input variable is X
conditional on the category y.

For each set of X, the category ŷ that maximizes P(y|x1, . . . , xn) is
selected as the output category when making a decision:

ŷ � argmaxyP y( )∏n

i�1P xi

∣∣∣∣y( ) (3)

From the principle of the Bayesianmethod, it is known that the key to
the method is to obtain the appropriate prior P(y) and likelihood
function P(xi|y), which are usually obtained by using the maximum
a posteriori probability (MAP) estimation andMarkov chainMonte Carlo
(MCMC) methods. However, Bayesian inference enables prior
adjustment by applying Bayesian rules on different datasets
(Dymarski, 2011), so the process can be independent of specific methods.

The assumptions of various likelihood functions differ, and their
classifiers also differ. Since each lithofacies has input parameters
characterized by a more obvious normal distribution, the Gaussian
likelihood function is used in this paper to find the joint distribution.
The formula for each characteristic is as follows:

P xi

∣∣∣∣yk( ) � 1������
2πσ2yk,i

√ e
− xi−μyk,i( )2

2σyk,i (4)

where μyk,i
denotes the mean of feature xi in a sample with category yk

and σ2yk,i
denotes the variance of feature xi in a sample with category

yk. The parameters [μy,1...n, σ2y,1...n] for each category y can be
estimated by the maximum likelihood method.

3.2.2 The Markov chain improves the prior
probability

Modern geological studies have found that the iterative addition of
deterministic relationships such as the rhythms, spirals, and cycles of
rock formations and the stochastic relationships formed during
deposition often give the resulting stratigraphic sequence a Markov
chain property (Weissmann and Fogg, 1999; Elfeki and Dekking, 2001;
Eidsvik et al., 2004). This Markov property is reflected in the
lithofacies profile, which can provide an accurate estimation of the
probability P(y) of the distribution of different lithofacies within the
reservoir inside the work area.

This property is expressed as follows: the conditional distribution
for a future moment is only related to the current state if the present
state is known, which is:

π Y t + 1( ) � in+1|Y t( ) � in, Y t − 1( ) � in−1, Y 1( ) � i1, Y 0( ) � i0{ }
� π{Y t + 1( ) � j

∣∣∣∣Y t( ) � i} (5)
where π is the probability,Y(t) is the state at moment t for theMarkov
chain, and i, j is the value taken for its state. There is a linear
correspondence between time and depth in a formation, so Y(t) �
Y(h) the above equation, which represents the state at position h on
the Markov chain.

Considering that a shallower formation depth corresponds to the
later appearance of lithofacies, an upward Markov chain should be
established for a single-well lithofacies sequence. Inferring the next
position state needs to be realized by a transfer matrix, and the
probability P of transferring from state i to j is:

FIGURE 4
The K-means SMOTE oversamples safe areas and combats within-class imbalances (Douzas et al., 2018). (A) Input data. (B) Find k=3 clusters and
compute the imbalance ratio (IR). (C) Use SMOTE to oversample clusters with IR>1, generating more samples in sparse clusters. (D). Oversampled data rectify
the decision boundary.
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P i, j( ) � P i → j( ) � π Yt+1 � j | Yt � i{ } (6)
The number of transitions in the whole classification process are

calculated based on the core data from the bottom up and normalized
to estimate the transfer probability so that the upward transfer
probability matrix P can be obtained. The random sequence
transfer matrix S is obtained according to the lithofacies
proportions, and this matrix is used to determine the lower
transfer probability of each type of lithofacies; then, the transfer
matrix P is modified.

After constructing the Markov transfer matrix P, an initial
lithofacies distribution probability π(0) is randomly given; then,
the probabilities π(t) � π(t − 1)P � . . . � π(0)Pt are formed for
different states at time t. After n iterations over a long time period,
π(t) can be obtained for different iterative processes. When n is
sufficiently large, π(t) becomes very close to the true lithofacies
distribution, and thus the prior probability distribution is
determined as:

P Y � j( ) � lim
n ����→∞

P i, j( )n � ∏t�n
t�0 p πt+1 | πt( ) |� πj, j ∈ I (7)

where i and j are lithofacies categories, n is the number of iterations,
the state space I � 0, 1, 2, . . .{ } represents the total number of
lithofacies categories, and πj is the probability of lithofacies j,
which is approximated by iteration.

In addition, when calculating the prior probability P(Y), it is
necessary to consider how the Markov chain consisting of multiple
wells calculates the transfer matrix, which should be weighted by depth
to obtain the prior probability of the Moxizhuang area. Because the

probability represented by P(Y) is essentially not the frequency of the
lithofacies distribution but rather the thickness of various lithofacies
distributions in the case of stratigraphic determination, the former is
strongly influenced by the sampling interval, and the latter is an
inherent property of the formation. Compared with the conventional
Bayesian method, the spatial relationships among the lithofacies
distributions between different depth points (characterized by the
transfer matrix) are considered in this a priori model, which is thus
better constraining the spatio-temporal relationships of the
sedimentary rocks.

3.2.3 Improving the likelihood function—Based on
the synthetic minority oversampling technique and
isotonic calibration

When performing parameter estimation for the likelihood
function, the model will be biased because the likelihood function
does not accurately describe the minority class distribution due to the
effect of imbalance in the dataset, while the sample data of the
minority class are not sufficiently characterized for the classifier to
adequately learn them (Branco et al., 2016). One way to fight this issue
is to generate new samples in underrepresented classes, which is also
known as oversampling.

The oversampling method used in this paper is the K-means
SMOTE (Chawla et al., 2002; Blagus and Lusa, 2013), which uses
the K-means algorithm to cluster the input dataset classes and
perform SMOTE within clusters with many minority class samples
in safe and crucial areas of the input space, thus avoiding noise
generation and effectively overcoming imbalances between and
within classes (Douzas et al., 2018). K-means SMOTE consists of
three steps: clustering, filtering and oversampling, as shown in
Figure 4.

In the clustering step, the input space is clustered into k clusters
using the K-means clustering method. k is the most important
hyperparameter in the K-means method, and finding the right
value for k is crucial for the effectiveness of the K-means SMOTE,
as it affects the number of minority class clusters found in the
filtering step.

The filtering step selects the clusters to be oversampled and
determines how many samples are to be generated in each cluster,
with the aim of oversampling only the clusters where a few classes
dominate while avoiding as much noise as possible and allocating the
newly generated samples more to the sparse few-class clusters than to
the dense clusters. This can be controlled with the imbalance ratio (IR)
and sampling weights (αos), as follows:

IR � majCount c( ) + 1
minCount c( ) + 1

(8)

where c is the clustering cluster label, majCount is the majority class
sample count for that cluster, minCount is the minority class sample
count for that cluster, and the imbalance ratio (IR) is the ratio of
majCount to minCount for a particular cluster c.

αos � Nrm/NM (9)
where Nrm is the number of samples in the minority class after
resampling, NM is the number of samples in the majority class
after resampling, and αos corresponds to the ratio of Nrm to NM

after resampling. When performing multivariate classification, a
distinction between the majority and minority class is needed.

FIGURE 5
Lithofacies classification workflow based on well logs and core
data.
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In the oversampling step, SMOTE is applied in each selected
cluster to boost the ratio αos between the numbers of minority and
majority samples. The SMOTE has the following flow. First, a random
minority class observation xi is selected, and sample xzi is chosen
among its k nearest minority class neighbors; a new sample is
generated by the following equation:

xnew � xi + λ × xzi − xi( ) (10)
where λ is a random weight in (0, 1), and xi and xzi are the original
samples of a minority class in the selected cluster.

In fact, applying oversampling methods may cause some other
problems for the resulting model (Dal Pozzolo et al., 2015): variance
increases (due to the change in sample size) and posterior distribution
warping (due to the effect on the prior probabilities). The first problem
can be solved by using averaging strategies to reduce the variance
(Wallace et al., 2011), while the second problem requires the
calibration of the new prior probabilities and updating the

likelihood function. According to the Bayesian principle, the
posterior probabilities obtained using partial sample inversions
with guaranteed data independence can also be considered as the
prior probabilities for reinversion. Therefore, this error can be
corrected by calibrating the posterior probabilities of the initial
inversion results.

The probabilistic calibration method not only uses the maximum
posterior probability for discrimination but also includes a fitted
regressor that maps the posterior probability of the classifier output
to (0, 1) to obtain the calibration probability; that is, for a given sample
of classifier output fi, the calibrator predicts p(yi � 1 | fi) (binary
classification). For multiclass classification problems, the one-vs.-rest-
classifier strategy is used to handle this, which involves fitting a
classifier for each class, that is, fitted to all other classes (Zadrozny
and Elkan, 2002). Isotonic regression is a commonly used probabilistic
calibration method, that is, a nonparametric regression model
approach, which considers that the function space is monotonically

FIGURE 6
The clustering step is performed on the input data (PCA transformed). (A) The distance sum of squares (inertia) from the sample to the nearest neighbor is
6319.79 when setting K = 8, and the number of iterations is 12. (B) The distance sumof squares from the sample to the nearest neighbor is 891.84when setting
K = 56, and the number of iterations is 8.

FIGURE 7
Changes in the lithofacies data distribution before and after K-means SMOTE (PCA transformed). (A)Origin data before resampling. (B) Resampling using
K-mean SMOTE.
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increasing (De Leeuw et al., 2010), so given a predicted probability fi,
the true probability is denoted as yi:

yi � m fi( ) + ϵi (11)
where m denotes the monotonically increasing function, which is
also the objective function to be fitted (Jiang et al., 2011), ϵ is
constants.

Then, the decision function is modified as follows:

ŷ � argmaxyP y( ) × m̂ ∏n

i�1P xi

∣∣∣∣y( )( ) (12)

where the likelihood function is corrected using the isotonic
function m̂:

m̂ � argminw ∑ yi − w fi( )( )2 (13)

One algorithm that finds a stepwise constant solution for the
Isotonic Regression problem is the pair-adjacent violators (PAV)
algorithm (Ayer et al., 1955); the above equation can be
simplified as:

f x( ) � minimize∑
i
wi yi − ŷi( )2, subject to ŷi ≤ ŷj whenever

Xi ≤Xj

(14)
where the weights wi are strictly positive, the result should be a
segmented linear function, and the modified likelihood function
can be considered to reflect the distribution of the data features
after oversampling.

3.2.4 Workflow
The flow of the whole method for lithofacies classification

applications is shown in Figure 5. Through stepwise calibration
and validation, the lithofacies information is propagated from the
core section to the overburdened logging section, and the final
lithofacies derived from different wells are geologically matched.
This lithofacies parameter can be used for facies interpretation and
reservoir modeling.

3.3 Metrics

In this paper, a confusion (error) matrix (Powers, 2020) is used
to evaluate the accuracy of classification. By definition, each
column of the confusion (error) matrix represents the predicted
category, and its total represents the data predicted to be in that
category; each row represents the true attribution category of the
data, and its total represents the number of instances in that
category. The precision, recall and F1 score can be easily
calculated on the basis of the confusion (error) matrix (Powers,
2020). K-fold cross-validation (Allen, 1974) was applied in the
calculation to avoid underfitting and overfitting. The method
distributes the training set into k smaller sets, and for each of
the k “folded sets” the following process is performed: a single
subsample is kept as validation data, and the rest of the samples are
used for training, repeated the procession k times with each
subsample validated once, resulting in a single estimate.

4 Results

4.1 Improving data imbalances

Due to the poor independence of the logging data, PCA
conversion is needed, and oversampling is performed on this
basis. In this study, the K-means SMOTE is utilized for
processing, where the main parameters are IR and αos, the
former controlling the algorithm that discriminates the
imbalanced clusters, and the latter controlling the specific
number of resampling operations per class. In addition, the
clustering step uses the minibatch K-means algorithm, thus
reducing the required computational time, and the size of the
minibatch (which is a subset of the input data) is 1024. The
oversampling step uses the nearest neighbors algorithm to
determine the nearest neighbor samples, the number of
neighbors set for the algorithm query is 5, and the neighbor
distance is calculated by the Euclidean metric.

For the clustering step, the general number of clusters k should be
similar to the actual number of categories, as shown in Figure 6. It

FIGURE 8
Sedimentation modeling process in the Moxizhuang area.
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appears that the clustering center tends to deviate from the clusters
when setting k =8, so the number of clusters should be increased to
make the clusters converge. Via continuous testing, we found that
when the number of clusters was set to 56, the distribution interval of
the clusters could be effectively characterized by the clustering center,
and the sum of the squares of the distances from the samples to the
nearest neighbors (inertia) was minimized.

For the sampling weight αos, since this is a multiclass study, the
target class for resampling is specified as all classes except the
majority class, and the ratio is set to guarantee that the numbers of
samples in different classes are equal. For the imbalance ratio IR,
the cluster selection process is more selective when the imbalance
rate threshold is larger, and a higher proportion of minority
samples is required to select clusters. However, the proportions
of some minority class in this paper are too sparse (less than 5% of
the total number of samples), and the common set threshold
(generally 1) makes these classes fail to find suitable clusters for
oversampling, so the criteria need to be relaxed. Therefore, in this
paper, the threshold value is set to 0.25 based on continuous data
characteristic testing to allow the selection of clusters with a high
majority percentage. Clusters above this threshold are considered
unbalanced and need to be oversampled. The number of samples
for each lithofacies is determined based on the sampling weights
[(0, 640), (1, 630), (2, 687), (4, 0), (3, 93), (5, 669), (6, 666), and
(7, 710)].

Resampling was applied to the core data samples from the study
area using the above-mentioned parameters and successfully enlarged
the core data sample number from 2017 to 6128. The distribution of
the newly generated sample is shown in Figure 7. Since the observed
variables have high dimensionality, which is not conducive to
observation, the feature variables are converted to two-dimensional
variables by PCA, with the x-axis as principal component 1 and the
y-axis as principal component 2; the cumulative variance contribution
rate is 73%. Some of the feature spaces are not distributed with sample
points, which may be related to the loss of variance, and principal
components 1 and 2 cannot fully cover the variable space; it is also
possible that the data points have limited characteristics or that
comprehensive data are not collected.

The left figure shows the distribution of the original dataset
without conducting oversampling on two-dimensional variables,
and the right figure shows the distribution of the data under two-
dimensional variables after oversampling. The data distribution is
more balanced after processing, while some discrete data points do
not increase after filtering, such as 3 (fine sandstone) and 4
(medium sandstone). In addition, 7 (conglomerate) is the
sparsest and fullest replenished. However, the data distribution
is different from the original data distribution, and some points in
the feature space are relatively densely distributed, thus affecting
the prior probability when oversampling is performed.
Additionally, the algorithm itself has distortion in the
probability estimation, which requires probability calibration.

4.2 Introduction of geological priors

In this paper, the transfer matrix is calculated using the equally
spaced stratigraphic unit method with a spacing of .125 m, which is
consistent with the sampling interval of the logging curve. Based on
the longitudinal distribution of the lithofacies obtained from theTA
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core observations, the label of each interval point is determined,
and the depositional sequence is established after counting the
lithofacies data of each well section in the Moxizhuang area; the
specific processing flow is shown in Figure 8. In a single well, the
numbers of transfers between different lithofacies are counted from
bottom to top to form a single-well transfer matrix N. For the whole
Moxizhuang area, the representative wells with continuous cores
are selected as those with frequently changing lithofacies and
complete information. The transfer matrices of these wells are
summed up correspondingly according to the depth weighting to
obtain the transfer matrix of the Moxizhuang area, forming the
transfer matrix P shown in Table 2.

The characteristics of the transfer matrix are briefly introduced
by taking row 1 of the transfer matrix obtained from all core
observations of Section 2 of the Sangonghe Formation in the
Moxizhuang area in Table 2. In the core observations, lithofacies
5, 6 and 7 are not converted to lithofacies 0 located in the coarse-
grained sandstone area (including coarse sandstone, gravel-bearing
sandstone, and conglomerate). Above this depth, no mudstone can
be developed directly from a sedimentary point of view. In contrast,
lithofacies 1, 2, 3, and 4 can undergo conversion to 0 with
probabilities of .0313, .0313, .0141, and .0795, respectively.

Based on the construction of the Markov transfer matrix, the
average value of each lithofacies obtained statistically from the core
observation is set as the initial probability, and the transfer matrix
is used for iterative multiplication until a smooth distribution is
obtained, which is the prior probability corresponding to the
lithofacies distribution. Once the difference between the current
matrix and the matrix of the previous iteration is less than the
smooth error or the number of iterations reaches 100000, the
matrix is accepted as a smooth distribution.

Figure 9 gives an example of the process of using a Markov chain
to find the prior probabilities. The probabilities of different lithofacies
in the figure tend to stabilize when the number of iterations reaches 80.
It can be seen from the color phase diagram of the transfer matrix that
the mudstone is relatively stable and not easily transformed into other
lithofacies, while the gravel-bearing sandstone and muddy gravel
sandstone are easily transformed into other lithofacies; this is also
consistent with their geological significance. The mudstone is
relatively stable in the sedimentary sequence and is structurally
distinct from the other lithofacies, while the gravel-bearing
sandstone and muddy gravel sandstone have wide ranges of grain
sizes and are more compositionally distinct from the other lithofacies
and therefore more easily converted.

FIGURE 9
The iterative process of obtaining the prior probabilities. (A) The single-well deposition sequence (part of the Zhuang 101 well section is used as an
example). Litho refers to lithofacies at the core scale. Simple Litho refers to lithofacies at the welling scale. (B) The color phase diagram of the transfer matrix.
(C) The changes in the individual lithofacies probabilities during the iterative process.
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The final calculation results show that the prior probability of
the lithofacies is .095 (mudstone), .102 (very fine sandstone), .086
(muddy gravel sandstone), .211 (fine sandstone), .231 (medium
sandstone), .101 (coarse sandstone), .173 (gravel-bearing
sandstone), and 0.087 (conglomerate)). In other words, in
Section II of the Sangonghe Formation, fine sandstone,
medium sandstone and gravel-bearing sandstone have
dominant positions and occur in the formation with a
probability of approximately 20%, while other lithofacies are
less, generally approximately 10%. To compare the effect of the
a priori correction, the prior and likelihood are also calculated in
this study according to the MCMC method, which is a common
method for calculating such parameters in Bayesian methods, and
the two parameters are found approximated together in this
process. In fact, the prior probabilities are quite different from
those obtained by the MCMC method, which are (.085, .101, .043,
.291, .335, .058, .046, and .041), and the distribution probabilities
of some lithofacies in the latter are relatively extreme and do not

match well with the distribution of reservoir lithofacies in the
Moxizhuang area.

4.3 Bayesian inversion and probability
calibration

To perform Bayesian inversion, the prior is determined
according to the Markov chain, and the likelihood is assumed to
be Gaussian distributed, where the mean and variance are
estimated according to the maximum likelihood method. The
results are shown in Table 3.

Based on this, probability calibration is used to further improve
the posterior distribution, and Figure 10 shows the difference between
the probabilities predicted by the Naive Bayesian method for
lithofacies 4, and the predicted probabilities optimized by two
probability calibrations (isotonic regression and sigmoid function
calibration) for different probability distribution phases and the
true distribution probabilities (some points are shown). As seen
from the figure, for different lithofacies, the probabilistic calibration
method optimizes the predicted probabilities of the Naive Bayesian
method on the basis of the likelihood function. This calibration is
particularly evident in lithofacies 2, 3, 4, and 7, which also correspond
to the lithofacies with the worst identification results for the Naive
Bayesian method. The diagonal line in the figure indicates the case
where the predicted probability is exactly the true probability. The
orange line in the figure corresponds to the probability, that is, the
predicted probability with isotonic regression calibration and thus the
closest to the true sample probability. Because the isotonic regression
process itself is directly optimized for the log loss, its own training
process keeps the predicted probabilities as close to the true labels as
possible.

A set of improved Bayesian inversion processes is formed based
on the above research, from which the confusion (error) matrix
results are obtained by training in 7 wells in the work area. The
outputs are compared with the original Naive Bayesian
classification results, as shown in Figure 11. The left figure
shows the results before improvement and the right figure
shows the recognition results obtained after the improvement.
Compared with that of the classifier before the improvement,

TABLE 3 Statistical table of the characteristic Gaussian parameter (Mean and Std) values for the input data corresponding to different lithofacies in the second section
of the Sangonghe Formation in the Moxizhuang area.

Lithofacies
component

0 1 2 3 4 5 6 7

C1 Mean/Std .424/.321 .183/.334 .033/.266 .014/.317 .006/.257 .065/.332 .143/.250 .319/.567

C2 Mean/Std .133/.167 .300/.256 .039/.239 .026/.277 .095/.296 .065/.260 .153/.258 .059/.276

C3 Mean/Std .240/.154 .152/.188 .034/.273 .018/.173 −.081/.144 −.125/.153 .012/.131 −.050/.148

C4 Mean/Std .074/.206 −.045/.145 .082/.133 .010/.129 −.021/.061 −.013/.096 −.004/.078 .014/.089

C5 Mean/Std .007/.068 .046/.106 .027/.105 .000/.100 −.021/.081 .005/.091 −.020/.112 .070/.119

C6 Mean/Std −.022/.121 .032/.146 .020/.075 .027/.093 −.013/.055 −.021/.053 −.037/.059 −.033/.070

C7 Mean/Std .057/.149 −.032/.113 .021/.074 −.029/.071 .010/.052 .016/.061 .009/.063 .003/.043

C8 Mean/Std −.026/.108 −.000/.076 .016/.069 −.003/.064 .005/.060 −.004/.071 −.012/.056 .025/.062

TABLE 4 Improved multiwell data identification results.

Class Precision Recall F1-score Support

0 .86 .92 .89 77

1 .97 .74 .84 77

2 .85 .83 .84 76

3 .88 .58 .7 77

4 .85 .61 .71 76

5 .72 .99 .83 77

6 .66 .97 .79 77

7 .95 .91 .93 76

— — — — —

accuracy — — .82 613

macro avg .84 .82 .82 613

weighted avg .84 .82 .82 613
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the degree of confusion is greatly reduced, especially for classes 3, 4,
5 and 6. On the basis of the confusion (error) matrix, the precision,
recall and F1 score values of the recognition results can be obtained,

as shown in Table 4, and the recognition accuracy can reach
approximately 0.84, which basically meets the requirements of
lithofacies identification.

FIGURE 10
Comparison between Naive Bayesian identification and two probabilistic calibration curves for the second section of the Sangonghe Formation in the
Moxizhuang area (taking fine sandstone as an example). (A) Calibration plots (reliability curve). It plots the true frequency of the positive label against its
predicted probability, for binned predictions. (B) The histogram gives some insight into the behavior of each classifier by showing the number of samples in
each predicted probability bin.

FIGURE 11
Comparison of the confusion (error) matrix before and after improvement. (A) The confusion (error) matrix of the Naive Bayes. (B) The confusion (error)
matrix of the improved Bayes.
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5 Discussion

5.1 Performance evaluation

To visually analyze the recognition effects of the Bayesian classifier
before and after implementing the improvement described above, evaluate
the bias and variance of the model, and test the generalizability of the
proposed method, training is performed on 5 wells (Zhuang 7, Zhuang
101, Zhuang 102, Zhuang 105, and Zhuang 6) in the Moxizhuang area.
Lithofacies prediction is performed on 2 wells (Zhuang 3 and Zheng 11),
which did not participate in the inversion process; the characteristic
variables are the conventional logging series.

In this study, learning curves are obtained using cross-validation
(Figure 12 and Figure 13) to visualize whether the model is in an
overfitted or underfitted state. The ideal learning curve should have a
low bias and variance, representing convergence and low error. The
horizontal axis of the left graph is the number of training samples, and
the vertical axis represents the accuracy rate.

Figure 12 shows that the accuracies of the Naive Bayesianmethod for
the training and validation sets converge, but the accuracies after
convergence are both approximately 0.62, which is much less than the
desired accuracy; this can be considered an underfitting issue and requires
increasing the complexity of the model, such as by adding features,
increasing the number of classifiers, and reducing the interference terms.
At this point, adding more data does not work. The middle figure shows
the times required for the model to be trained using training datasets of
various sizes; the model is relatively fast, which is consistent with the
characteristics of Bayesian classifiers. Furthermore, it can be seen from the
right figure that the correctness rate achieved in the test set increases
slowly as the training time increases, corroborating the previous
judgment. Figure 13 shows that the improved Bayesian classification
method is able to solve this problem. It sacrifices some of the training time
but meets the needs of the task in terms of accuracy. The study focuses on
the application of the method to fluvial-delta environments, although its
applicability is broader and it can be used to identify lithofacies in other
depositional environments as well.

FIGURE 12
Learning curve of the Bayesian classifier for the inversion of J1s2. (A) Naive Bayes learning curves. (B) Scalability of the model. (C) Performance of the
model. Fit times indicates the convergence time of the model training.

FIGURE 13
Learning curve of the improved Naive Bayesian classifier for the inversion of J1s2. (A) Learning curves of improved Bayes. (B) Scalability of the model. (C)
Performance of the model.
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5.2 Fixed systematic errors caused by SMOTE

Oversampling methods can effectively expand the data size to reach
the balance state, but most of them increase the samples based on local
information. Although a relative equalization is achieved in terms of
quantity, the data distribution of the new dataset obtained after
oversampling cannot be guaranteed because the overall data
distribution is not considered (Lv et al., 2018). In fact, the SMOTE

algorithm may not overcome the data distribution problem, which tends
to cause distribution marginalization. Since the distribution of a sample
determines its optional neighbors, if a sample is located at the edge of the
distribution of the sample set, the generated sample will also be located at
that edge, thus blurring the boundary between different clusters. Although
the fuzziness of the boundary improves the balance of the dataset, it also
increases the difficulty of acquiring accurate prediction results (Li et al.,
2021). This problem is difficult to characterize with a particular error, but

FIGURE 14
Comparison of core tagging probability spectra (taking theChuang 105well as an example). ORIGINmeans no samplingwas performed and the prior and
likelihood were calculated using the MCMCmethod. IMPROCVED represents that Markov chains were used to calculate a priori posterior and to improve data
imbalance using the SMOTE method.

FIGURE 15
Specific discriminatory adjustment of the two-segment probability calibration curve of the Sangonghe Formation. (A)The very fine-grained sandstone
probability is taken as an example. (B) The medium-grained sandstone probability is taken as an example. The input samples are sorted according to the
discriminatory recognition results as the category probabilities, and the number in the upper left corner of the figure represents the log loss.
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it can be corrected with different methods depending on the impact of the
SMOTE algorithm on the prior and likelihood.

For the prior probabilities, the SMOTE algorithm changes the
distribution of the training samples of the data, so it is necessary to
separate the calculation of the prior probabilities from the calculation
of the likelihood function and adjust the prior function based on the
presampling data only. Figure 14 shows the improved Bayesian
probability spectrum for each lithofacies before and after
introducing the prior. The introduction of the geological prior does
not improve the single-point discrimination rate much, but the overall
probability of each lithofacies distribution is obviously more
consistent with the true values after its introduction; moreover, the
transition of each lithofacies is not sharp, which yields better
interpretation accuracy. And for single-point evaluation, the next
step would be to improve the probabilistic calibration methods.
The correct identification rate of a single point should be improved
by correcting the expected probability of a certain class.

In addition, the problemof sample overlap can lead to anomalies in the
parameters of the likelihood function and thus the posterior distribution.
In contrast, the probability calibration method used in this paper can
recalculate the likelihood using the initial inversion results as the prior to
improve the probability distribution. Figure 15 shows the changes in the
discrimination probabilities of fine andmedium sandstone before and after
performing probability calibration, with approximately 10% real samples
and 90% confused samples. The horizontal axis is sorted according to the
predicted probabilities, which shows that the classifier can discriminate the
confused samples more accurately after calibration. In fact, the accuracies
achieved for all types are higher after the improvement, and those of fine
sandstone, medium sandstone, coarse sandstone and gravel-bearing
sandstone, which cannot be better identified through the original
Bayesian inversion process, are also improved.

6 Conclusion

Lithofacies identification in deep strongly heterogeneous reservoirs is
a complex nonlinear classification problem. In this study, we explore
solutions to the key problems faced during the process of lithofacies
identification when using machine learning methods by taking
conventional logging data from the second member of the Sangonghe
Formation in the Moxizhuang area as an example, and establish a set of
Bayesian inversion prediction processes that are applicable to the
lithofacies of strongly heterogeneous reservoirs, taking core data as a
constraint. The following conclusions are mainly obtained.

1) Frequent lithofacies changes in deep strongly heterogeneous
reservoirs pose a challenge to the traditional point-by-point
machine learning-based identification method. The depositional
prior construction technique based on Markov chains can better
constrain the depositional spreading process of the vertical
lithofacies so that the predicted vertical distribution of the
lithofacies conforms to geological constraints.

2) Strongly heterogeneous reservoirs exhibit relatively disparate
lithofacies proportions, forming a data imbalance problem that
causes logging data to fail to fully reflect the characteristics of
minority categories. The likelihood function correction method
that uses the K-means SMOTE with probabilistic calibration can
solve the data imbalance problem of lithofacies identification in
strongly heterogeneous reservoirs.

3) A set of improved Bayesian lithofacies evolution process is established
and applied to lithofacies identification and prediction for multiple
wells in the Moxizhuang area. An application of this approach to the
fluvial-deltaic reservoirs of the Sangonghe Formation in the
Moxizhuang area shows that the new method improves the
recognition accuracy by 20% over that of the traditional machine
learning method and canmore accurately identify the lithofacies types
of deep strongly heterogeneous reservoirs.

The method proposed in this paper can realize pattern recognition for
lithofacies logging, but subsequent work is needed to improve the accuracy
by using the internal hierarchies of lithofacies, introducing the idea of
sedimentation prior into other related algorithms to improve them, and
further matching with the automatic logging stratification method to
realize modular data recognition. The method can identify the
lithofacies for deep and strongly inhomogeneous clastic reservoirs, and
provide a reference for future exploration and development.
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