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Augmented feedback provided by a coach or augmented reality system can facilitate

the acquisition of a motor skill. Verbal instructions and visual aids can be effective

in providing feedback about the kinematics of the desired movements. However,

many skills require mastering not only kinematic, but also complex kinetic patterns,

for which feedback is harder to convey. Here, we propose the electromyography

(EMG) space similarity feedback, which may indirectly convey kinematic and kinetic

feedback by comparing the muscle activations of the learner and an expert in the

task. The EMG space similarity feedback is a score that reflects how well a set

of muscle synergies extracted from the expert can reconstruct the learner’s EMG

when performing the task. We tested the EMG space similarity feedback in a virtual

bimanual polishing task that uses a robotic system to simulate the dynamics of a real

polishing operation. We measured the expert’s and learner’s EMG from eight muscles

in each arm during the real and virtual polishing tasks, respectively. The goal of the

virtual task was to smoothen the surface of a virtual object. Therefore, we defined

performance in the task as the smoothness of the object at the end of a trial. We

separated learners into real feedback and null feedback groups to assess the effects

of the EMG space similarity feedback. The real and null feedback groups received

veridic and no EMG space similarity feedback, respectively. Subjects participated

in five training sessions on different days, and we evaluated their performance on

each day. Subjects in both groups were able to increase smoothness throughout

the training sessions, with no significant differences between groups. However,

subjects in the real feedback group were able to improve in the EMG space similarity

score to a significantly greater extent than the null feedback group. Additionally,

subjects in the real feedback group produced muscle activations that became

increasingly consistent with an important muscle synergy found in the expert. Our

results indicate that the EMG space similarity feedback promotes acquiring expert-

like muscle activation patterns, suggesting that it may assist in the acquisition of

complex motor skills.

KEYWORDS

motor learning, biofeedback, muscle synergies, complex motor skills, virtual reality

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.805867
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.805867&domain=pdf&date_stamp=2023-01-20
https://doi.org/10.3389/fnhum.2022.805867
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.805867/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-805867 January 18, 2023 Time: 6:32 # 2

Barradas et al. 10.3389/fnhum.2022.805867

1. Introduction

Most complex motor skills involve interacting with objects in the
environment. These motor skills require generating not only precise
movements, but also precise forces. In fact, inappropriate forces
may lead to failure in the task. For instance, an experienced nylon-
string guitar player may face difficulties playing a familiar piece on a
steel-string guitar due to the higher stiffness of steel strings. In this
case, even though the required hand movements are kinematically
equivalent, the kinetic (force) requirements differ considerably.

Therefore, to master such complex motor skills, the kinematic
and kinetic components of the task must be learned concurrently.
Appropriate sensory feedback about the execution of the task is
essential for effective training (Kernodle and Carlton, 1992; Young
and Schmidt, 1992; Zubiaur et al., 1999; Hinder et al., 2008). In
particular, augmented feedback from a coach (Reid and Giblin,
2015) or an augmented reality system (Emken and Reinkensmeyer,
2004, 2005; Sigrist et al., 2013) may assist the learner in evaluating
performance aspects that are not easy to self-evaluate (Lauber and
Keller, 2014). Providing augmented kinematic feedback about task
execution is relatively simple. A common coaching technique is to
guide and/or evaluate motion trajectories that the learner generates.
These evaluations may be verbal or visual, relying on in-person
demonstrations, or on video recordings of an expert performer or of
the learners themselves (Al-abood et al., 2001). In contrast, providing
augmented kinetic feedback is in general a more complex problem,
requiring especially instrumented equipment to measure forces or
torques (Broker et al., 1993; Smith and Loschner, 2002). Without
such equipment, augmented kinetic feedback is limited to verbal
instructions about the desired forces in the task. However, verbal
instructions may not be as effective in promoting learning of kinetic
tasks as feedback derived from instrumented equipment (Dowling
et al., 2010).

Here, we explore a new kind of augmented feedback based
on electromyography (EMG) measurements. EMG from muscles
involved in a task can be used to estimate the stiffness of their
corresponding limb (Osu et al., 2002; Shin et al., 2009). According
to the theory of impedance control, the CNS can concurrently satisfy
kinematic and kinetic task goals by adjusting muscle activations
to modulate the stiffness of the end-point of the limb (Hogan,
1985b). This allows the CNS to control the compliance of the
limb to external forces and achieve successful interactions with the
environment (Hogan, 1985a; Burdet et al., 2001). Muscles are also
responsible for generating movement, and consequently EMG signals
contain information about both the kinetics and the kinematics of
movements in a task.

Therefore, we hypothesize that augmented feedback that
quantifies the similarity of the muscle activations of a learner and the
muscle activations of an expert in a task can enhance skill learning by
promoting the acquisition of expert-like muscle activation patterns.
This in turn may promote learning of the kinetic components of
the task. We used muscle synergy analysis (D’Avella et al., 2003) to
identify the muscle activation patterns of the expert, and used these
patterns to reconstruct the learner’s muscle activations. We defined
the resulting reconstruction quality as the EMG space similarity,
which we provided to the learner as a score during training in the
task. Higher scores indicate that the muscle activations of the learner
and the expert reside in spaces that overlap, which may be associated
with the acquisition of expert-like muscle activation patterns.

We tested our hypothesis in the context of a simulated polishing
operation. Expertise in polishing operations entails maintaining the
attack angle between the grinder and the polished object as constant
as possible (Tsujiai et al., 2015). This requires the generation of precise
force patterns that counteract the interaction forces that arise when
pressing the polished object against the grinder (Kodama et al., 2015).
To test our hypothesis, we designed a virtual polishing task that
simulates the dynamic environment of a polishing operation and
provides the EMG space similarity score to learners in real time.
The EMG space similarity score was computed based on the muscle
activation patterns of a polishing expert.

2. Materials and methods

2.1. Subjects

Twenty-one subjects [20 learners: mean age, 28.2 yr (SD 8.9), 19
males, 19 right-handed (self-reported); 1 expert: 59 yr, male, right-
handed] participated in the study after providing written informed
consent. All procedures were approved by the Ethical Review Board
of the Tokyo Institute of Technology.

2.2. Experimental setup

We designed a bimanual virtual task that simulates a polishing
operation with a bench grinder. Participants sat facing a pair
of planar robotic manipulanda (KINARM End-point Lab; BKIN
Technologies) and held onto the handle of each manipulandum
(Figure 1A). A virtual environment was displayed on a mirror placed
on a horizontal plane above the participant’s arms, occluding vision
of the arms and the manipulanda. The mirror reflected images
displayed on a screen placed above it. The virtual environment
consisted of a polished object (object with irregular shape), a grinder
(rectangular object), and score displays (EMG and smoothness scores
or smoothness score only). Participants were able to control the
position of the polished object by moving the manipulanda. Arm
end-point movements were constrained to a horizontal plane at
approximately the height of the xiphoid process of the sternum.

We recorded surface EMG activity from eight muscles in
each arm: deltoid posterior (DeltP), pectoralis major (PectMaj),
triceps brachii long head (TriLong), biceps brachii long head
(BicLong), brachioradialis (BrRad), palmaris longus (PalmLong),
extensor digitorum (ExtDig) and extensor carpi radialis (ExtCR).
Active bipolar electrodes (Trigno, analog output mode; Delsys) were
used to record EMG activity. EMG signals were bandpass filtered
(20–450 Hz) via hardware, and digitized at 2 kHz using an analog-
to-digital converter coupled to the KINARM’s real time computer.
Further EMG processing included rectification, low-pass filtering
(second order Butterworth filter, 5 Hz) and normalization. EMG
signals were normalized to the maximum EMG activity of each
muscle during a maximum voluntary contraction (MVC) task, as
described in the section “2.7. Experimental protocol.”

2.3. Virtual environment

Participants experienced a dynamic virtual environment
that simulated a polishing task (Figure 1A). The polished
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FIGURE 1

Virtual task environment. (A) Experimental setup. Participants held a pair of manipulanda (blue), and moved them to control the position of the polished
object (red line). The main goal of the task was to smoothen the polished object by moving it against the grinder (white rectangle). Contact between
both objects caused the manipulanda to generate forces simulating the contact interaction, which also changed the shape of the polished object. The
EMG and smoothness scores were displayed above the task workspace. Red dots on the arms indicate the location of the EMG electrodes. (B) Simulation
of polishing task dynamics. The robotic manipulanda applied forces on the participants’ arms according to three components: forces to keep the
distance between hands constant simulating a rigid object (FRi), contact between the polished object and the grinder (FCi), and vibration forces (FVi).
Contact forces Fcj originated from the overlap of the vertices of the polished object and the grinder and were applied to both arms. Contact forces also
generated torque (τj) around the centroid of the polished object according to the distance between the contact point and the centroid (rj). The torque τj

was simulated by a pair of forces applied to both arms (Fτ ij). Black arrows represent the main force components (FR, FC, FV). Gray arrows represent
sub-components of the main forces. (C) Forces generated by the robotic manipulanda and position of the virtual object during a sample portion of a trial
in the virtual polishing task. Notice that the magnitude of the vertical forces applied on each hand is coupled to the movement of the object along the
horizontal axis. The position of the object is measured with respect to the center of the front edge of the grinder. (D) Deformation of the polished object
by contact forces with the grinder. The polished object is shown with and without scaling in the vertical direction. The smoothness of the object was
quantified as the area between the outline of the object and a horizontal line at the mean vertical position of all contact points. (E) Smoothness and EMG
similarity scores throughout a trial. The objects in panel (D) correspond to the points indicated by circled numbers. Vertical dashed lines indicate the
portion of the trial displayed in panel (C).

object was represented as a jagged red line formed by
connecting a set of randomly generated contact points.
Thirty contact points were placed at uniform intervals along
a 22 cm long straight line with a random perpendicular
distance to the straight line taken from a uniform distribution
(range: [−2.5, 2.5] mm). The grinder was represented as a
5 × 10 cm rectangular white outline fixed at the center of the
display.

The robotic manipulanda generated forces onto the participant’s
hands to simulate the interaction between objects in the polishing
task (Figure 1B). The generated forces were the sum of three
components:

FTi = FRi+FCi+FVi (1)

where FT is the total force produced by the manipulandum, FR is
a force that simulates the rigidity of the polished object, FC is a
force arising from the contact forces between the polished object
and the grinder, and FV is a vibration force. The subindex i = 1,
2 indicates forces corresponding to the left and right manipulanda,
respectively.

In order to approximate the sensation of holding a rigid
body between both hands, the rigidity of the polished object
was simulated as a pair of rigid spring-dampers. For each

side, the spring-damper was attached between the end-point of
the manipulandum and the end-point of the polished object:

FRi = Fsi+Fdi (2)

Fsi = k
(
phi−poi

)
(3)

Fdi = b (vhi − voi) (4)

where Fs and Fd are the spring and damper forces, ph and po are the
positions of the manipulandum end-point and the polished object
end-point, vh and vo are the velocities of the manipulandum end-
point and the polished object end-point, and k and b are the stiffness
and damping coefficients (k = 1000 N/m, b = 5 Ns/m). Therefore,
the spring-damper produces equal and opposite forces on each hand
that attempt to maintain the position of the manipulanda end-
points close to the ends of the polished object (Figure 1C, horizontal
forces).

Contact forces between the polished object and the grinder were
computed based on the overlap between the polished object and the
grinder. The overlap was detected when one or more contact points
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FIGURE 2

Muscle synergies extracted from the expert during a real polishing operation. (A) Bimanual muscle synergies extracted according to the synergy
selection criteria (R2 > 0.90). The number of synergies was determined as Nb = 6. Synergies were extracted from the palmaris longus (PalmLong), biceps
brachii long head (BicLong), pectoralis major (PectMaj), brachioradialis (BrRad), extensor digitorum (ExtDig), triceps brachii long head (TriLong), deltoid
posterior (DeltP), and extensor carpi radialis (ExtCR) muscles of both arms. (B) Bimanual muscle synergies used to compute the EMG similarity score in
the virtual polishing task. We selected NEMG = 8 to facilitate improvement in the task. Encircled numbers are labels indicating the synergy number. The
value of the synergy importance metric within a synergy set is indicated below each synergy label. (C) Unimanual muscle synergies extracted separately
from the left and right arms according to the synergy selection criteria. (D) Muscle synergy activation coefficients of a subset of synergies of the expert
during a sample portion of a trial in the real polishing task. The upper and lower panels show the activations of bimanual and unimanual synergies,
respectively. The color of the traces indicates the corresponding bimanual or unimanual synergy.

in the polished object entered the area defined by the outline of the
grinder. Contact forces Fc were modeled as elastic forces proportional
to the distance dj between the front edge of the grinder and the
contact point j:

Fcj = kdjy (5)

where k is the stiffness coefficient (k = 1000 N/m) and y is a unit
vector along the y axis, indicating that contact forces were always
perpendicular to the front edge of the grinder. Each of the contact
forces Fcj also generated a torque τj around the mid-point of the
polished object. The torques were computed as the cross-product of
the contact force and rj, the position vector of contact point j with
respect to the mid-point of the polished object.

τj = rj × Fcj (6)

The torques τj were simulated by converting them to a pair of
opposing forces perpendicular to the polished object applied at both
manipulanda end-points,

Fτij =

∣∣∣∣τj
∣∣∣∣

dm
ui (7)

where dm is the distance between the midpoint and the end-point
of the polished object, and u is a unit vector perpendicular to the

polished object. Brackets indicate the magnitude of τj. The directions
of ui were determined according to the direction of τ. The contact-
related force generated by each manipulanda was defined as the
sum of contact forces from all overlapping contact points and their
associated torque forces:

FCi =
∑

j
(Fcj + Fτij) (8)

Vibration forces were produced when the polished object
contacted the grinder. The amplitude of the vibration on each
manipulandum was proportional to the magnitude of the total
contact forces on the manipulandum (gain, g = 0.15) and had a
frequency f of 15 Hz. The direction of the vibration forces was
perpendicular to the grinder:

FVi = y ||FCi|| gsin(2πft) (9)

where t is time. Forces along the vertical axis are mainly the sum of
FCi and FVi (Figure 1C, vertical forces).

The polishing effect between the polished object and the grinder
was simulated by deforming the polished object according to the
computed contact forces on each contact point. Each contact point
j was modeled as a two-dimensional point mass-damper system
(m = 0.1 kg, b = 300 Ns/m2) with the contact force Fcj as input
(Equation 5), producing acceleration of the contact point. We used
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the Euler method to integrate the computed acceleration and obtain
the new position of each contact point at each simulation step.

2.4. Smoothness score

The main goal of the task was to use the grinder to transform
the initially jagged polished object into a smooth and straight line.
We provided learners with feedback about the smoothness of the
polished object (aside from the shape of the object itself) in the form
of a smoothness score during the task. We quantified smoothness
as the area between the line defined by the polished object and a
straight line crossing the polished object from end to end at the mean
vertical position of the contact points (Figures 1D, E). We showed
the smoothness score to participants as a number between 0 and 100
in a linear scale, with 0 indicating the smoothness at the start of a
trial (before polishing), and 100 indicating a perfectly smooth and
flat object (area between object line and straight line is zero).

2.5. EMG space similarity score

An additional objective during the polishing task was to
maximize the EMG space similarity score (EMG score). The EMG
score reflected the similarity between the spaces containing the
muscle activations of the learners and of an expert in the polishing
task. This score was defined as the quality of the reconstruction
of the participant’s EMG activity based on a set of muscle
synergies extracted from the expert (“see the section 2.6. Expert
muscle synergies”). Higher qualities of reconstruction indicate that
participants generate muscle activations that could be generated by
the expert during the polishing task with a high degree of plausibility,
and vice versa. To calculate the quality of reconstruction we first
solved a non-negative linear regression problem to find synergy
activation coefficients c that approximate the measured muscle
activations m based on the expert’s muscle synergies S

min
c
||mr −m||2 s.t. ci ≥ 0 (10)

mr = Sc

where mr are the reconstructed muscle activations. Only synergies S
extracted using the bimanual analysis described in the section “2.8.1.
Synergy extraction” were used. We used the lsqnonneg function in
Matlab to solve this non-negative linear regression problem. We then
defined the quality of reconstruction as

R2
= 100

(
1−

∑
j
∑

i (mij −mrij)
2∑

j
∑

i (mij −mi)
2

)
(11)

where mij is the activation of the ith muscle in the jth sample,
mr are the reconstructed muscle activations, and mi is the mean
activation of the ith muscle within a defined moving window. For
a given time, the moving window contained the most recent 100
samples of m and their corresponding c, which amounts to 50 ms
of data. The reconstruction quality calculated from the window was
stored in an additional window that held the results of the 200
most recently computed reconstruction quality values, containing
information about the latest 150 ms of data. The average value of

the reconstruction quality window was shown to the participants as
feedback. The sizes of the windows were selected so that participants
could perceive a causal relationship between muscle contractions and
the EMG score. Figure 1E shows an example of the EMG space
similarity score for one trial.

2.6. Expert muscle synergies

We used the muscle synergies extracted from an expert as a
template of the muscle synergies that participants should learn to
use during a polishing task. The expert has 35 years of experience
in polishing operations, and has received the title of master from an
industry regulatory organization. The expert continuously engages
in training apprentices. The synergies were extracted from the
expert performing a polishing operation on metal cylinders using
an industrial bench grinder. The real polishing environment differs
from the virtual environment in that motion and forces in the virtual
environment are not constrained to a horizontal plane, and in the
postures of the expert and participants during the task. In the real
environment, the grinder is placed approximately at knee height,
allowing the expert to support their forearms on their upper legs
while performing the task. However, both environments require
oscillatory movements of the arms to the sides to accomplish the
task. The expert performed the polishing operation in 7 trials, each
lasting 60 s. EMG signals were measured and processed using the
same methods described in the sections “2.2. Experimental setup”
and “2.8.1. Synergy extraction.” We pooled the EMG data of all 7
trials for analysis.

2.7. Experimental protocol

Participants attended five experimental sessions of the virtual
polishing task on different days. Sessions were scheduled according to
participant availability. The mean time between sessions was 3.8 days
(SD 3.0). The minimum and maximum times between sessions were
1 and 14 days, respectively. Participants completed the five sessions
in 15.2 days (SD 9.3) on average. The minimum and maximum times
of completion were 5 and 35 days, respectively.

Participants were divided into two groups: the real feedback and
the null feedback groups (10 participants in each group). The real
feedback group received veridic smoothness and EMG scores as
described in the previous sections. The null feedback group received
the veridic smoothness score, but did not receive the EMG score.

Each experimental session consisted of a maximum voluntary
contraction task and the virtual polishing task. The MVC task was
conducted before the virtual polishing task for EMG normalization
purposes. In the MVC task, participants performed maximum
voluntary contractions of their arm muscles by producing maximum
isometric torques at the degrees of freedom of joints that are
relevant to the motion in the task and the muscles used for
EMG measurement (wrist flexion/extension and ulnar/radial
deviation, elbow flexion/extension, and shoulder horizontal
abduction/adduction). We asked participants to push with the
corresponding arm segment (hand, forearm, or upper arm) against
a fixed object that opposed motion around each degree of freedom
of interest. The arm posture during the MVC task was similar to the
baseline posture in the virtual polishing task.
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In each session, before the virtual polishing task, participants
were shown two videos. The first video showed the expert performing
a real polishing operation. The second video showed an example
participant performing a trial of the virtual polishing task. Both
videos illustrated the polishing operation as a cyclic motion of the
arms and the polished object from side to side while lightly contacting
the grinder. Participants in the real feedback group were instructed to
make the polished object as smooth as possible while also attempting
to maximize the EMG score. Participants in the null feedback group
were only instructed to make the polished object as smooth as
possible. Additionally, participants in both groups were encouraged
to explore different movement and force patterns to increase their
scores. Participants in the real feedback group were informed that this
exploration could influence the EMG score.

Each session of the virtual polishing task consisted of 60 trials,
each with a duration of 30 s. Before each trial, participants moved
each end-point of the manipulanda, indicated by white circles, to its
initial position, indicated by red rings in the virtual environment.
The initial position was centered on the display and close to the
participant’s torso. The distance between the initial positions of each
manipulandum end-point corresponded to the size of the polished
object. At this stage, only the initial position indicators were visible,
and no forces were generated by the manipulanda. After holding the
manipulanda for 5 seconds at their initial positions, the polished
object and the grinder became visible, and the simulated physics
of the task were activated. The shape of the polished object was
randomly generated at the beginning of each trial. The appearance
of the virtual objects prompted the participants to begin the task. At
the end of the trial the simulated physics were deactivated and the
grinder disappeared. Participants could observe the resulting shape of
the polished object and rest before starting the next trial. Participants
were required to rest at least 5 seconds between trials, but rested 10.2
seconds (SD 4.0) on average.

2.8. Data analysis

2.8.1. Synergy extraction
We used non-negative matrix factorization (NMF) (Lee and

Seung, 1999) to extract muscle synergies from the EMG signals
collected during the actual polishing task with the expert, and the
virtual polishing task with the experiment participants. In our main
analysis, the processed EMG signals from muscles of both arms were
pooled together to extract bimanual synergies. In the case of the
expert polisher, synergies were extracted for all number of synergies
N from 1 to 16. We selected the number of synergies by finding
the smallest Nb that resulted in a reconstruction quality R2 of the
processed EMG of at least 0.90 (Berger et al., 2013; Barradas et al.,
2020). We used the expert’s extracted synergies in the bimanual
analysis to compute the EMG space similarity score during the
experimental sessions. However, we decided to use a larger number
of synergies NEMG for the EMG score, as a pilot test showed that
the EMG score was predominantly negative when Nb was used. We
then extracted muscle synergies offline from each participant and
experimental session. We set the number of synergies to NEMG for
each participant for comparison to the expert’s synergies.

We also conducted a secondary synergy analysis in which the
processed EMG signals from the muscles of each arm were analyzed
separately to extract unimanual synergies for each arm. The number

of synergies Nu for each arm of the expert polisher was selected as
described above, except that Nu was taken from 1 to 8. The number
of synergies from each participant, experimental session, and arm
were set to Nu for comparison to the expert’s synergies. Note that
the unimanual synergies were not used to compute the EMG space
similarity score.

2.8.2. Muscle synergy similarity metric
We performed a similarity analysis between the expert’s

muscle synergies and participants’ synergies extracted from each
experimental session to assess changes in the synergies in both the
bimanual and unimanual analyses. We defined the similarity between
two different set of synergies as the average cosine of the angle
between individual corresponding synergies in the two sets:

sim =
1
N

∑N

i=1
cos θi =

1
N

∑N

i=1

si1 · si2
||si1|| ||si2||

(12)

where N is the number of synergies in the set, θ is the angle
between two individual synergies when considering them as a vector,
and si1 and si2 are matched individual synergies to be compared
represented as vectors. For each session, we matched individual
synergies of the expert and the participants by computing the cosine
similarity between each synergy in the expert’s synergy set and all
other synergies in the participant’s synergy set. The pair of synergies
with the largest similarity was considered a match, and was removed
from the synergy sets. The process was then repeated with the
remaining synergies in each set until all synergies in one set had
been matched to a synergy in the other set. For each participant, we
computed the muscle synergy similarity metric separately for each
session in the experiment.

2.8.3. Muscle synergy importance
We calculated the relative contribution of each extracted muscle

synergy to the reconstruction of the EMG activity of the expert.
Given that muscle synergies computed using NMF are not necessarily
linearly independent, it is generally not possible to assess the
contribution of each synergy by reconstructing the EMG using only
the synergy of interest as in other matrix factorization algorithms like
PCA. Instead, we defined the contribution of each synergy in terms
of a synergy importance metric as

IMPsi = 1−
R2

sri

R2sf
(13)

where IMPsi is the synergy importance of synergy i = 1, . . ., N, R2
sri is

the reconstruction quality achieved with a reduced synergy set, from
which synergy i has been removed, and R2

sf is the reconstruction
quality achieved with the full synergy set. Therefore, larger values of
the importance metric indicate a larger contribution of the synergy of
interest to EMG reconstruction. To compute R2

sri, we recalculated
the synergy coefficients for the reduced synergy set that optimally
reconstruct the EMG by performing a non-negative linear regression,
as described in Equation 10.

We also applied this metric to participants in the virtual task
using the expert’s muscle synergies. This allowed us to measure
the degree to which the participants’ EMG can be explained by
individual synergies of the expert. For each participant, we computed
the muscle synergy importance metric separately for every session
in the experiment.
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2.8.4. Polishing attack angle
The attack angle in a polishing operation is the angle formed

between the grinder and the surface of the polished object. The
variability of the attack angle is an indicator of the skill level in the
polishing task (Kodama et al., 2015; Tsujiai et al., 2015). Therefore, we
measured the attack angle that subjects used during the experiment.
Given that the grinder in the virtual task is static and parallel to
the horizontal in the task, the attack angle is determined by the
orientation of the polished object with respect to the horizontal. For
each participant, we calculated the standard deviation of the attack
angle within each trial, and averaged the result of all trials within one
session.

2.8.5. Statistical analysis
The main outcome variables of the experiment were the average

smoothness and EMG space similarity scores across learners in both
the real and null feedback groups. Secondary outcome variables
were the average variability of the polishing attack angle, the muscle
synergy similarity and the muscle synergy importance. We assessed
differences in the outcome variables using mixed two-factor ANOVA
tests with trial session as the within-subjects factor (with five levels:
sessions 1–5), and feedback type as the between-subjects factor. In
cases where the sphericity assumption of the mixed ANOVA test was
not met, we used the Greenhouse-Geisser correction. Furthermore,
in cases where the outcome variables did not satisfy the normality
assumptions of the ANOVA test, we used the non-parametric
ANOVA-type statistic (ATS) implemented in the nparLD package in
R (Noguchi et al., 2012). The significance threshold was set at p = 0.05.
We performed post-hoc tests with Bonferroni corrections.

3. Results

3.1. One muscle synergy of the expert
predominantly contributes to EMG
reconstruction

We analyzed the muscle activations of 8 muscles from both arms
of an expert performing a real polishing operation. In the bimanual
analysis, we identified 6 muscle synergies (Nb = 6), which achieved
a reconstruction quality (R2) of 0.90 of the original EMG signals.
We also quantified the contribution of each extracted synergy to the
reconstruction quality of the expert’s EMG signals by calculating the
synergy importance metric in the bimanual analysis. We found that
synergy 2 played a predominant role in the reconstruction of the
EMG signals (Figure 2A). Synergy 2 had an importance value of 0.35.
which was 1.4 times larger than the synergy with the next highest
importance (0.25).

3.2. Bimanual muscle synergies capture
temporal coordination of unimanual
synergies in the expert

In the unimanual analysis, we identified 3 muscle synergies
in each arm (Nu = 3, R2

left = 0.91, R2
right = 0.90) (Figure 2C).

The synergies in both arms had a largely equivalent composition,
which we quantified as the cosine similarity between corresponding

synergy pairs in both arms (syn 1: 0.95, syn 2: 0.93, syn 3: 0.87).
A comparison between the bimanual and unimanual synergies
revealed that unimanual left synergy 1 and unimanual right synergy
2 can be combined to form a bimanual synergy that highly
resembles the important bimanual synergy 2 (cosine similarity: 0.92).
Similarly, unimanual left synergy 2 and unimanual right synergy
1 can be combined to form a synergy that resembles bimanual
synergy 3 (cosine similarity: 0.86). The activation coefficients of
bimanual synergies 2 and 3 show that, during the task, the synergies
are activated in an alternating pattern (Figure 2D). Furthermore,
the activations of the unimanual synergies contained in bimanual
synergies 2 and 3 are locked in phase with each other, and with their
corresponding bimanual synergy (Figure 2D).

3.3. Real feedback group showed
improvement in smoothness and EMG
space similarity scores

Participants in the real feedback group showed an improvement
in the mean smoothness score throughout the experiment [session
1: 57.0 % (SD 7.1), session 5: 62.2 % (SD 11.4)]. Participants in
the null feedback group also showed an improvement in the mean
smoothness score [session 1: 59.6 % (SD 7.1), session 5: 64.8 % (SD
9.0)]. A mixed two-factor ANOVA analysis showed that there was
no statistically significant interaction between the effects of training
session and feedback type (real or null) on the mean smoothness
score [F(2.14,38.55) = 0.323, p = 0.74]. The ANOVA analysis also
determined that there was a statistically significant main effect of
training session [F(2.14,38.55) = 5.79, p = 0.005], but not of feedback
type [F(1,18) = 0.30, p = 0.59]. A post-hoc analysis confirmed a
statistically significant difference in the mean smoothness score
between training sessions 1 and 2 [paired t-test with Bonferroni
corrections, p = 0.039]. Figure 3 shows the progression in the
smoothness scores for all participants.

We used the extracted bimanual synergies from the expert with
NEMG = 8 to reconstruct the EMG signals of participants in the
virtual polishing task and compute the EMG space similarity score
(Figure 2B). The reconstruction quality R2 of the expert’s EMG by the
synergy set with NEMG = 8 was 0.94. Participants in the real feedback
group showed an improvement in the mean EMG score throughout
the experiment [session 1: 29.4% (SD 10.3), session 5: 37.7 % (SD
14.3)]. Participants in the null feedback group showed a smaller
improvement in the mean EMG score [session 1: 23.6% (SD 9.1),
session 5: 29.0% (SD 9.4)]. Due to the presence of outliers and non-
normality in the data we used a non-parametric test (ATS). The ATS
analysis (nparLD) showed that there was no statistically significant
interaction between the effects of training session and feedback type
on the mean EMG score [F(3.06, ∞) = 0.35, p = 0.79]. The ATS
analysis also determined that there was a statistically significant main
effect of feedback type [F(1.00, ∞) = 9.70, p = 0.002], but not of
training session [F(3.06, ∞) = 2.05, p = 0.10]. Figure 3 shows the
progression in the EMG score for all participants.

We also measured the variability in the attack angle throughout
the experiment as the standard deviation of the attack angle across
all trials in a session. Participants in the real feedback group showed
a decrease in the mean variability of the attack angle [session 1: 2.2◦

(SD 1.2), session 5: 1.3◦ (SD 0.5)]. Similarly, participants in the null
feedback group showed a significant decrease in the mean variability
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FIGURE 3

Progression of the smoothness score, EMG similarity score and attack angle variability in the real and null feedback groups. The attack angle variability
was measured as the standard deviation of the attack angle across all trials in one session. Thick lines indicate the mean score across participants in each
group. Light lines indicate scores for each participant. Error bars indicate the standard error. The third column summarizes statistical comparisons.
Asterisks indicate significant differences between metrics: ∗∗∗p < 0.001, ∗p < 0.05.

of the attack angle [session 1: 2.4◦ (SD 1.8), session 5: 1.6◦ (SD 0.7)].
An ATS analysis showed that there was no statistically significant
interaction between the effects of training session and feedback type
on the variability of the attack angle [F(2.01,∞) = 0.31, p = 0.56]. The
ATS analysis also determined that there was a statistically significant
main effect of training session [F(2.01,∞) = 6.22, p = 0.002], but not
of feedback type [F(1.00, ∞) = 0.31, p = 0.58]. A post-hoc analysis
confirmed a statistically significant difference in the mean variability
of the attack angle between training sessions 1 and 2 [ATS with
Bonferroni corrections, p< 1× 10−9], 1 and 3 [p< 1× 10−4], 1 and
4 [p < 1 × 10−4], and 1 and 5 [p = 0.04], but no difference between
the rest of the session pairs. Figure 3 shows the progression in the
variability of the attack angle for all participants. Interestingly, the
variance across subjects of the standard deviation of the attack angle,
that is, a measure of the variability across subjects of the variability
of the attack angle within subjects, was significantly smaller in the

real feedback group than in the null feedback group during session 4
(F-test for equality of variances, p = 0.021).

3.4. Real feedback group showed
increased importance and similarity to
one muscle synergy of the expert

The muscle synergies of participants in the real feedback group
did not appreciably become more similar to the expert’s bimanual
synergies (NEMG = 8) as a whole throughout the experiment
according to the mean muscle synergy similarity metric [session 1:
0.54 (SD 0.05), session 5: 0.57 (SD 0.04)]. This was also true for
participants in the null feedback group [session 1: 0.56 (SD 0.05),
session 5: 0.57 (SD 0.03)]. A two-way ANOVA analysis showed
that there was no statistically significant interaction between the
effects of training session and feedback type on the mean synergy
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similarity to the expert [F(4,72) = 0.93, p = 0.45]. Additionally, the
analysis determined no statistically significant main effects of training
session [F(4,72) = 1.16, p = 0.34] or feedback type [F(1,18) = 0.04,
p = 0.85]. Figure 4A shows the progression of the synergy similarity
metric of participants in the real feedback and null feedback groups.
Supplementary Figure 1 shows the synergies extracted from a
representative participant in the real feedback group in sessions
1 and 5.

We also examined the cosine similarity of participant’s individual
muscle synergies to the corresponding expert synergy (NEMG = 8)
during each session of the experiment. In the bimanual analysis, we
found that only synergy 3 showed a trend for increasing similarity
in the real feedback group (Figure 4B). Participants in the real
feedback group showed an increase in the cosine similarity of synergy
3 [session 1: 0.44 (SD 0.42), session 5: 0.70 (SD 0.29)], whereas
participants in the null feedback group showed a decrease [session
1: 0.72 (SD 0.22), session 5: 0.55 (SD 0.36)]. An ATS analysis showed
that there was a statistically significant interaction between the effects
of training session and feedback type on the similarity of synergy 3
[F(3.35,∞) = 2.71, p = 0.037]. A statistically significant main effect
of feedback type was found [F(1.00,∞) = 4.02, p = 0.045], but not of
training session [F(3.35,∞) = 0.89, p = 0.45].

Similarly, in the unimanual analysis we found that only synergy
1 of the left arm showed a trend for increasing similarity in the real
feedback group (Figure 5). Participants in the real feedback group
showed an increase in the cosine similarity of synergy 1 [session 1:
0.63 (SD 0.23), session 5: 0.74 (SD 0.19)], whereas participants in the
null feedback group showed no increase [session 1: 0.69 (SD 0.11),
session 5: 0.68 (SD 0.17)]. An ATS analysis showed that there was
no statistically significant interaction between the effects of training
session and feedback type on the similarity of synergy 1 [F(3.74,
∞) = 1.08, p = 0.36]. A statistically significant main effect of feedback
type was found [F(1.00, ∞) = 5.06, p = 0.025], but not of training
session [F(3.74,∞) = 0.68, p = 0.59].

Additionally, we examined the importance of the expert’s
bimanual synergies in reconstructing the EMG of the participants in
the virtual polishing task. In particular, we examined the importance
of synergy 3 (IMPs3), as it was the only synergy for which similarity
increased throughout the experiment (Figure 4C). We found that
IMPs3 increased for participants in the real feedback group [session
1: 0.03 (SD 0.05), session 5: 0.13 (SD 0.12)]. In contrast, IMPs3 did
not increase for participants in the null feedback group [session 1:
0.14 (SD 0.26), session 5: 0.06 (SD 0.1)]. An ATS analysis showed
that there was a statistically significant interaction between the effects
of training session and feedback type on IMPs3 [F(3.37, ∞) = 4.64,
p = 0.002]. Statistically significant main effects of feedback type
[F(1.00,∞) = 4.41, p = 0.036] and training session [F(3.37,∞) = 2.84,
p = 0.031] were found.

Interestingly, out of all synergies in the expert synergy set with
Nb = 6, synergy 3 of the set withNEMG = 8 is most similar to synergy 2,
the predominant synergy (cosine similarities between synergy 3 from
set NEMG = 8 and synergies from set Nb = 6: syn 1: 0.37, syn 2: 0.71,
syn 3: 0.15, syn 4: 0.60, syn 5: 0.30, syn 6: 0.35).

4. Discussion

Learning a new motor skill entails concurrently acquiring
kinematic and kinetic movement patterns to satisfy the goals of a

task. Augmented feedback that contains kinematic and/or kinetic
information provided by a coach or an augmented reality system
can facilitate motor skill learning (Young and Schmidt, 1992;
Vander Linden et al., 1993; Lauber and Keller, 2014). Humans
are able to simultaneously meet kinematic and kinetic task goals
by appropriately modulating muscle activations, which control the
stiffness of the limbs during a movement, and set the level of
compliance in interactions with tools and other objects (Hogan,
1985b). Therefore, EMG from the muscles involved in the task
can provide information about the kinematics and kinetics of the
task. Here, we propose the EMG space similarity feedback, a new
kind of augmented feedback that compares the EMG of learners
to the EMG of an expert in the task. This kind of feedback could
provide implicit comparisons between the kinematics and kinetics
of movements of learners and the expert. The EMG space similarity
feedback could be especially relevant for skills that have an important
kinetic component, which in contrast to the kinematic component,
is hard to evaluate by external observers without the use of special
equipment.

We tested the EMG space similarity feedback in a virtual
environment that simulates a polishing operation with a grinder,
which requires precise kinematic and kinetic patterns of movement
(Kodama et al., 2015). We divided participants into two groups: real
and null feedback groups. The real feedback group was provided
with the EMG space similarity feedback at all times, whereas
the null feedback group was not. While both groups were able
to improve the EMG score throughout the experiment, the real
feedback group consistently showed larger EMG scores. However,
we found that the groups did not differ significantly in their
performance in the task, as measured by the smoothness score
(Figure 3). This suggests that the smoothness objective of the virtual
polishing task may be achievable independently of the way muscles
are engaged in the task. Therefore, a variety of muscle activation
strategies may be able to produce equivalent smoothness results
in the virtual task. In any case, we have demonstrated that the
EMG space similarity score can induce the use of muscle activation
patterns that are increasingly consistent with a template synergy
set.

Theories of motor skill learning posit that the acquisition of
a skill is the result of the adjustment of a variety of processes
and computations in the CNS (Willingham, 1998). Under this
view, strategic and perceptual-motor integration processes must
first transform the explicit goal of smoothening the polished object
into lower level goals that correspond to suitable kinetics and
kinematics for the task. Therefore, optimization of these processes
may not directly cause improvements in task performance, especially
in the early stages of learning, as other processes (i.e., sequential
and/or dynamic processes) may need to be further tuned to
exploit the output of the strategic and integration processes. The
EMG space similarity feedback could contribute to these complex
processes, as it can guide learners to generate muscle activations
in a desired space, which can be associated to a corresponding
kinetic and kinematic space that includes the goal actions. Thus,
the EMG score may contribute to the overall process of motor skill
learning.

We expected that the EMG score would reflect the similarity
between the expert’s and the learner’s muscle synergies. Indeed, the
EMG space similarity score is a local approximation to the global
variance accounted for (VAF) metric, which has been described in
previous research as a holistic measure of the similarity of two synergy
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FIGURE 4

Bimanual synergy similarity and importance metrics in the real and null feedback groups. (A) Mean synergy similarity metric. Thick lines indicate the
mean score across participants in each group. Light lines indicate scores for each participant. Error bars indicate the standard error. (B) Cosine similarity
metric of individual synergies (1–8). (C) Synergy importance of individual expert synergies (IMPs1–IMPs8). The third column summarizes statistical
comparisons. The S.I. legend indicates a significant interaction between session number and feedback type on the outcome variable.

FIGURE 5

Cosine similarity metric of individual unimanual synergies in the real and null feedback groups. The first and second panels show the similarity metric for
the left and right arms, respectively. Solid and dashed lines show the results for the real and null feedback groups, respectively. The third column
summarizes statistical comparisons. The asterisk indicates a significant effect of feedback type on the similarity of synergy 1 of the left arm to the
corresponding expert synergy.
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sets (Perreault et al., 2008; Roh et al., 2013). The only difference is that
our EMG score continuously evaluates the quality of reconstruction
of EMG within short time windows, as opposed to using the whole
data set at once. However, we did not find any improvements in the
muscle synergy similarity metric that mirrored the improvements
in the EMG score by the real feedback group. This underscores
that both metrics quantify synergy similarity in different ways.
Namely, two different synergy sets may produce muscle activations
in increasingly overlapping regions of the muscle activation space
without necessarily becoming more similar themselves. One way to
visualize this is that a vector space may have multiple bases, and the
bases can be orthogonal to each other. An additional reason is that the
global VAF metric considers the variance of the data corresponding
to each synergy to determine the similarity between synergy sets,
whereas the muscle synergy similarity metric does not (Perreault
et al., 2008). Therefore, the effect of individual synergies that explain
larger portions of the variance is prioritized in the global VAF metric,
as discussed below. These observations suggest that the EMG score
cannot promote the directed learning of muscle synergies strictly,
but instead allows to approximate the desired muscle activation
space.

Illustrating the preference of the EMG score for important
individual synergies, we found that participants in the real feedback
group showed a tendency to improve the similarity of a single synergy
to one of the expert’s synergies (synergy 3 from the extended set with
NEMG = 8) (Figure 4B and Supplementary Figure 1). Moreover, we
also found that synergy 3 of the expert became increasingly important
(Equation 13) in reconstructing the EMG signals of participants in
the real feedback group throughout the experiment (Figure 4C).
However, we did not observe this effect in the null feedback group.
Therefore, the real feedback group acquired an expert-like synergy
during training.

We can further explain the nature of the synergy similarity and
EMG space similarity metrics by considering the rest of the individual
synergies. While one synergy increased in similarity to synergy 3
of the expert, another synergy decreased in similarity to synergy
7, and the rest of the synergies did not show appreciable changes
(Figure 4). Therefore, any increase in the mean synergy similarity
score was canceled. However, the importance of synergy 7 was
very low throughout the experiment, suggesting that the observed
increases in the EMG score reflected the acquisition of synergy 3 of
the expert.

Interestingly, synergy 3 from the expert’s set withNEMG = 8 highly
resembles synergy 2 from the set with Nb = 6, which is the synergy
with the highest importance in the Nb = 6 set (Figure 2). In fact,
synergy 2 in the set with Nb = 6 appears to have fragmented into
synergies 3 and 4 in the set with Nb = 8, which is common when
increasing N in the non-negative matrix factorization algorithm
(Cheung et al., 2012; Barradas et al., 2020). This explains why the
importance of synergies 3 and 4 in the set with Nb = 8 is reduced
with respect to their parent synergy in the set with Nb = 6. That is,
in our synergy importance metric, removing one of the fragmented
synergies while leaving the other one in the set allows a better
reconstruction of the EMG activity in the task than if both fragments
were removed, reducing the importance metric of both fragments.
However, synergy 3 (and not synergy 4) in the NEMG = 8 set encodes
a strong bimanual coordination pattern that is also characteristic
of synergy 2 in the set with Nb = 6, and which may be essential
to explain its high importance. Therefore, participants in the real

feedback group not only acquired an expert-like synergy, but they
acquired the most important synergy within the expert’s synergy
set.

It is possible that the expert-like synergy that participants in the
real feedback group acquired is associated with kinematic and/or
kinetic patterns that are relevant to both the actual and the virtual
tasks. This synergy is composed mainly of the co-activation of the left
triceps long head, an elbow extensor, and the right brachioradialis, an
elbow flexor. Therefore, this synergy could be involved in producing
a counter-clockwise torque around the center of the polished object
when held bimanually. The grinder also produces torques around the
object during contact with off-center spots on the object. Therefore,
this synergy could be important to counter the torque from the
grinder, stabilizing the object during contact. This is reasonable, as
an important symmetric synergy that could stabilize the object in
the opposite direction is present in the expert’s synergy set with
Nb = 6 (synergy 3). Synergy 7 in the synergy set with NEMG = 8
(or synergy 3 in Nb = 6) is symmetric to synergy 2 in the set with
Nb = 6, suggesting that the expert uses symmetric patterns to stabilize
the object. However, subjects in the real feedback group did not
show muscle activation patterns consistent with this synergy. This
again highlights the fact that the EMG space similarity feedback
does not seem to be able to promote learning desired muscle
synergies directly.

Here, we computed the EMG space similarity feedback via a
bilateral muscle synergy analysis that pools signals from both arms
(Jarrassé et al., 2014; Botzheim et al., 2021). This analysis can capture
timing relationships between synergies of both arms as a spatial
structure, which enables the EMG score to provide information about
the coordination of both arms (Figure 2). However, a large body
of evidence indicates that limb-specific synergies are encoded in
spinal circuits across species (Kargo and Giszter, 2008; Kargo et al.,
2010; Giszter, 2015; Takei et al., 2017; Yang et al., 2019; Cheung
and Seki, 2021). An EMG score based on a unimanual synergy
analysis would not be able to convey the necessary information
about bimanual coordination to effectively learn expert-like muscle
activation patterns. However, a unimanual synergy analysis of both
arms revealed that subjects in the real feedback group showed
increased similarity to one of the left arm synergies of the expert.
Interestingly, this learned unimanual synergy constituted the left
arm component of the important bimanual synergy discussed above
(synergy 2 in the set with Nb = 6, and synergy 3 in the set
with NEMG = 8). Therefore, the unimanual analysis allowed us to
observe that, in addition to an increased interarm coordination,
the acquisition of the important bimanual synergy was due to the
acquisition of a left arm synergy, but not a right arm synergy
(Figure 5). This warrants further research, as the EMG space
similarity feedback may have an effect on arm specialization via
interarm differences in synergy control (Sainburg, 2005).

The attack angle between the grinder and the polished object
has been previously identified as a kinematic variable that reflects
expertise in a polishing task (Kodama et al., 2015). Expert polishers
show smaller variability in the attack angle than inexperienced
people. Because of the interaction forces between the grinder and the
polished object, reducing variability in the attack angle most likely
also involves precise kinetic patterns. We found that participants
in both the real and null feedback groups showed a reduction
in the variability of the attack angle throughout the experiment.
It is notable that participants tended to modify their kinematic
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patterns in a way that characterizes expertise in the task without
receiving explicit instructions to do so. Interestingly, the real feedback
group appeared to be more consistent in reducing the variability
in the attack angle during the experiment, as the variance among
subjects in this metric was smaller than for the null feedback group.
This may indicate increased stability in the motion against the
grinder.

Training paradigms to shape muscle activations using EMG as
both a control and an augmented feedback signal have been proposed
previously. Feedback that promotes changing the timing of peak
EMG of a single muscle during a cycling task has been shown
to also promote time shifts in the activations of other muscles,
resulting in novel muscle activation patterns (Torricelli et al., 2020).
However, it is unclear whether these novel muscle activations can
be shaped to a desired pattern, or bring about useful or even
new kinematic or kinetic movement patterns. In a different kind
of tasks, the position of objects in a virtual environment can be
controlled as a function of EMG. The function can be defined
so that successful completion of the task requires decorrelating
the activity of two or more muscles (Wright et al., 2014; Mugler
et al., 2019), or learning entirely new muscle activations patterns
(Berger et al., 2021). Therefore, whereas learning in these tasks
may reshape muscle activation patterns, it is unclear whether the
newly learned patterns are transferable to more ecological tasks. In
contrast, the EMG space similarity feedback can be used during
actual ecological tasks, where it complements task performance
feedback. Therefore, as long as the task constraints are reasonably
met, it can assist in reshaping muscle activations in a task-relevant
way.

One limitation of our study is that there are different task
constraints in the actual and virtual polishing environments. Namely,
in the actual polishing operation, the expert sat in front of the grinder,
which was placed at the height of the hips in a sitting posture. This
allowed him to perform the polishing operation while supporting
his forearms on top of his upper legs. Consequently, the side-to-side
polishing motion involves not only arm, but also leg movements.
Additionally, contact between the grinder and the polished object
produces friction forces in the vertical direction. In contrast, in
the virtual polishing environment, the polishing movement was
restricted to a horizontal plane located at approximately the height
of the sternum when sitting upright. Therefore, in the virtual task the
weight of the arms is not supported and the legs were not involved
in the task. Furthermore, our robotic system only produced forces
on the horizontal plane. Differences in the task biomechanics may
entail differences in the optimal arm kinematics and kinetics in the
actual and virtual tasks. Moreover, differences between the sizes of
body parts of the expert and the learners may also entail different
biomechanical constraints even within the same task, real or virtual.
This suggests that the EMG space similarity feedback may contain
information about the actual task that is inappropriate or irrelevant
for the virtual task. However, even if the expert or template synergies
corresponded to an arbitrary task unrelated to the task of interest, our
results show that learners are able to use the EMG space similarity
feedback to increasingly move their muscle activation patterns into
the space spanned by the expert synergies.

This could offer an explanation to the observation that some
participants in the real feedback group showed a decline in the
smoothness score after reaching a peak, even though they were
able to keep improving the EMG score. Because of the different
biomechanical contexts of the actual and virtual tasks, attempting

to further imitate the expert’s EMG patterns could be difficult and
even detrimental to performance. However, the positive results up
to session 3, and the lack of evident differences in performance
between the real and null feedback groups suggest that the EMG score
conveys sufficiently compatible information between both tasks. This
may involve force application patterns onto the grinder that are
universally useful in polishing-like operations.

The emphasis on important synergies and the possible presence
of inappropriate synergies for the virtual task in the expert’s synergy
set suggest an improvement to the implementation of the EMG
space similarity score. Reducing the expert synergy set to appropriate
and/or important synergies would produce a score that is more
related to useful kinetic and kinematic movement patterns. However,
it must be taken into account that reduced synergy sets cannot
account for some important task-space components in some tasks
(Barradas et al., 2020). Another improvement to the EMG score
would be to include information about the timing of the expert
synergies during the task. This would provide a more direct way
to indicate the desired kinetic and kinematic patterns. However,
this can only work under the assumption that the expert patterns
of muscle activation have been previously acquired. Therefore, we
envision the current EMG space similarity score as a way to promote
the acquisition of expert-like muscle activation patterns, that is, the
building blocks of movement. Upon the acquisition of these building
blocks, further training on how to use these blocks is needed.

In the future we plan to study the transferability of the polishing
skill within the virtual environment. Namely, it is necessary to verify
whether subjects in the real feedback group are able to retain the
improved performance levels after the removal of the EMG space
similarity feedback in the virtual task. Next, we also plan to study
the transferability of the polishing skill between the actual and virtual
environments. In a first stage, the expert polisher would perform the
task in the simulated environment. Such a study would allow us to
directly measure the kinematic and kinetic patterns that the expert
uses during the task and compare them to the patterns acquired by
the learners. This would confirm whether the movement patterns of
the expert are actually conveyed to the learners through the EMG
space similarity feedback. In a second stage, the learners would
perform a baseline session in the real environment followed by
training in the virtual environment, and finally, a transfer test in the
real environment. Improvements in the transfer test would not only
further confirm that the EMG score teaches appropriate kinematic
and kinetic patterns, but would also establish a basis for augmented
reality training of highly skilled technicians.

Overall, our results suggest that augmented feedback in the
form of an EMG space similarity score can facilitate the acquisition
of expert-like muscle activation patterns. Thus, the EMG space
similarity score may assist in learning a complex skill by placing
the muscle activations of learners in a space that could facilitate
producing expert-like motions. Thus, the EMG space similarity
feedback could be a useful tool to facilitate motor training for
technicians and athletes. Further research is necessary to determine
its applicability in a broader range of tasks, and to investigate the
mechanisms through which it operates. A promising feature of the
EMG score is that it probably conveys feedback about desired task
kinetics, which usually requires especially instrumented equipment.
EMG measurement systems can be used in a wider range of contexts
than such equipment. Therefore, it is possible that the EMG score
could be used as a substitute or in parallel to more specialized
equipment to provide kinetic feedback.
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