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Monitoring marine use is essential to effective management but is extremely

challenging, particularly where capacity and resources are limited. To

overcome these limitations, satellite imagery has emerged as a promising

tool for monitoring marine vessel activities that are difficult to observe

through publicly available vessel-tracking data. However, the broader use of

satellite imagery is hindered by the lack of a clear understanding of where and

when it would bring novel information to existing vessel-tracking data. Here,

we outline an analytical framework to (1) automatically detect marine vessels in

optical satellite imagery using deep learning and (2) statistically contrast

geospatial distributions of vessels with the vessel-tracking data. As a proof of

concept, we applied our framework to the coastal regions of Peru, where

vessels without the Automatic Information System (AIS) are prevalent.

Quantifying differences in spatial information between disparate datasets—

satellite imagery and vessel-tracking data—offers insight into the biases of each

dataset and the potential for additional knowledge through data integration.

Our study lays the foundation for understanding how satellite imagery can

complement existing vessel-tracking data to improve marine oversight and

due diligence.

KEYWORDS

automatic information system (AIS), automated vessel detection, data integration,
deep learning, fisheries management, log-Gaussian Cox process, satellite imagery,
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Introduction

Geospatial information on marine vessels offers powerful

insights that can be used for marine surveillance to strengthen

national security, at-sea safety, fisheries management, and

biological monitoring. A widely available source for such

information is satellite-based vessel-tracking data collected

through the Automatic Identification System (AIS). Originally

designed to avoid vessel collisions, vessels larger than specific

sizes (for example, about 20 m in the U.S. and 15 m in the EU)

engaging on international voyages are required to transmit their

geolocations to AIS (International Maritime Organization,

2015). Thanks to their extensive spatial and temporal

coverages, AIS data are successfully applied to various aspects

of marine monitoring, such as global fishing activities on the

high seas (Kroodsma et al., 2018), anomaly detection of vessel

behavior (Zhen et al., 2017), and animal conservation (Guzman

et al., 2013; Queiroz et al., 2019; Womersley et al., 2022).

Despite their popularity, AIS data have critical limitations

for marine surveillance. First, AIS suffers from drastic signal

interference when too many vessels transmit signals in one

location (Eriksen et al., 2006), making it impossible to

distinguish high-density areas from low-density ones. Second,

vessels on domestic voyages or of small sizes are not required to

transmit AIS signals, biasing our knowledge of marine use

towards large vessels on the high seas. Despite the significant

contribution of small-scale fisheries to seafood catches (Mills

et al., 2011), their importance to livelihoods and nutrition (Short

et al., 2021), and their potential for ecological impacts through

bycatch or overfishing (Peckham et al., 2007), the size selectivity

of AIS data largely excludes small-scale fisheries, limiting our

understanding of their effort at a global scale. Finally, vessels can

cheat the system by turning off AIS transmitters onboard (Welch

et al., 2022) or by spoofing their positions or identities

(Katsilieris et al., 2013), making AIS less suitable for detecting

illicit behavior (see Balduzzi et al., 2014 for more details of the

threats to AIS). For commercial fishing vessels, many countries

mandate the Vessel Monitoring System (VMS) to track

geolocations of vessels registered to their countries via satellite,

but national governments curate the data and often do not make

them publicly available. The limitations of these data suggest

that additional data are needed to supplement vessel-tracking

data for a more complete understanding of vessel dynamics.

The desire to overcome current data limitations has led to a

greater exploration of the possibilities offered by satellite

imagery. The most commonly used is Synthetic Aperture

Radar (SAR) imagery (Pichel and Clemente-Colón, 2000;

Bovenga et al., 2014; Snapir et al., 2019), which uses beam-

scanning radar to capture images independent of light and cloud

coverage. Optical imagery has been emerging as an alternative to

SAR imagery thanks to its higher resolution, more frequent

updating, broader geospatial coverage, and easier accessibility
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compared to SAR data (Kanjir et al., 2018). Although optical

satellite imagery could complement existing vessel-tracking data

by providing additional information, its use for marine

surveillance is challenged by two major limitations. One is the

difficulty in classifying vessel types (such as fishing vessels,

leisure boats, passenger vessels, cargo ships, and tankers) at

typical image resolutions (for example, 3 m per pixel), hindering

applications to specific research domains. Another limitation is

the inability to track vessel movement and infer their activities

given low update rates (for example, once a day).

Limitations of both vessel-tracking data and satellite imagery

could be alleviated through data integration. In imagery-based

vessel detection, data integration is often used to enhance

geospatial coverage and detection accuracy by cross-matching

vessels with vessel-tracking data through interpolation (Brekke

et al., 2008; Jubelin and Khenchaf, 2014; Mazzarella et al., 2015).

This approach contributes to estimating the pervasiveness of

“dark” vessels operating without AIS signals (Hsu et al., 2019;

Kurekin et al., 2019), or identifying fishing vessels operating

illegally within foreign EEZs (Park et al., 2020a). In contrast to

the gaining popularity of data integration, however, satellite

imagery has not been used to complement geospatial

information to include detection of small vessels that do not

transmit AIS signals, or to quantify interactions (e.g., spatial

overlap on fishing grounds) between industrial fleets and small-

scale fisheries, for example. To enable broader use of satellite

imagery for marine surveillance, it is important to understand

what information satellite imagery could add to existing vessel-

tracking data.

In this study, we present an analytical framework to evaluate the

possibilities of satellite imagery to complement existing vessel-

tracking data. Specifically, we illustrate (1) a deep learning

approach for detecting vessels in optical satellite imagery and (2)

a statistical method to compare vessel distributions detected in

satellite imagery with AIS data towards assessing the added value of

satellite imagery. As a proof of concept, we applied this analytical

framework to two ports in Peru and explored the new insights

generated through data integration.
Methods

Satellite imagery data

Images taken by PlanetScope satellites were sourced from

Planet (www.planet.com). We downloaded satellite scenes from

more than 40 locations on the Peruvian shoreline from 2016 to

2021. Each scene is an RGB-NIR image at a resolution of 3 m per

pixel, having a cloud coverage rate lower than 3%. We processed

the data by manually cropping off land area and gridding each

scene into a set of 299 × 299 × 3 RGB images. Then, we created

our own dataset to train and test the model described below by
frontiersin.org
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manually labeling vessel bounding boxes. Although several

datasets of vessel images exist in the public domain (Gallego

et al., 2018; Kaggle, 2018), the images we worked with were at a

lower resolution, less well lit, and contained smaller vessels.

Therefore, we opted to create our own dataset to improve the

model performance (Quinonero-Candela et al., 2008). We ended

up with 308 images containing at least one vessel and 11,538

images containing no vessels. In total, there were 3,046 vessel

instances in the dataset.
Automated vessel detection model

To automatically locate vessels in satellite imagery, we used

Faster R-CNN (Ren et al., 2015) with ResNet-50 (He et al., 2016)

backbone pretrained on the COCO image dataset (Lin et al., 2014).

We opted for Faster R-CNN as it is one of the state-of-the-art deep

learning models for object detection. There are other deep learning

models with different architectures for object detection, such as U-

Net (Ronneberger et al., 2015) and YOLO (Redmon et al., 2016),

which could be equally suitable. Our Faster R-CNN model was

trained end-to-end using SGD optimizer with a learning rate of

0.001, momentum of 0.9, weight decay of 0.0005, and batch size of

16. The Faster R-CNN model was trained for 20 epochs, as

determined by the best validation F-1 score. To improve

detection accuracy and speed, we first ran the image through a

binary classifier to determine whether there were any vessels present

in the image. The classifier model is a ResNet-50 model pretrained

on ImageNet1k and fine-tuned on the same dataset as the Faster R-

CNN detector model. The classifier model was trained for 4 epochs,

as determined by the best validation F-1 score. To address dataset

imbalance, we sampled an equal number of images containing

vessels and images without vessels for each mini-batch when

training both models. To augment our dataset, each training

image was first randomly flipped horizontally with a probability

of 0.5, then vertically with a probability of 0.5. Validation and test

splits are each sourced from a location along the shore not

contained in the training dataset. The model was implemented in

the Python package torchvision ver. 0.13.0.

The model was evaluated on the hold-out test set consisting of

41 vessels and 269 images without vessels at IoU (Intersection over

Union) = 0.1. If one needs a more reliable estimate for model

performance, K-fold cross-validation is preferrable to hold-out,

although it requires more computational resources and time.
Comparing satellite imagery with AIS
data

To assess whether our approach provides additional

information relative to existing vessel-tracking data, we

explored the similarity of vessel distributions detected in

satellite imagery and the AIS data using a log-Gaussian Cox
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process (LGCP) model (Møller et al., 1998). The utility of this

spatial model lies in the parametric characterization of the

underlying process of point patterns for interpretations.

Thanks to its flexibility, LGCP is widely used to model spatial

point patterns in various fields, including ecology (Conn et al.,

2014; Waagepetersen et al., 2016), epidemiology (Li et al., 2012;

Giorgi et al., 2016), and seismology (D’Angelo et al., 2022), but

has not been applied to marine vessels yet. In this paper, we

introduce the LGCP model as a powerful instrument to compare

vessel distributions between AIS data and satellite imagery. The

model could readily be extended to ask more complex questions

by incorporating covariates, such as fish distributions and ocean

climate data. If flexibility of the process-based approach is not

required, one can compare two point patterns using simpler

distance-based methods, such as nearest neighbor distance and

Ripley’s K function (Diggle, 2013).

LGCP characterizes spatial point patterns as a Poisson point

process that is conditionally dependent on a spatially varying

intensity field modeled as a Gaussian process. That is, for a set of

locations s in a region of interest D, we represent the Poisson

intensity function l(s) by log l(s) = z(s), where z(s) is a

realization of a Gaussian process for s ∈ D. The univariate

LGCP can be naturally extended to model two datasets as point

processes over D (Møller et al., 1998; Gelfand and Schliep, 2018).

Assuming that each dataset follows an independent Poisson

process with intensity l1(s) and l2(s), respectively, they can be

modeled together as LGCP with log intensity z(s) = (z1(s), z2
(s))T, where z(s) is a vector of Gaussian process with m = (m1,
m2)T and covariance functions c(s, s′) = cov(z1(s), z2(s′)) for s ∈
D and s′ ∈ D (Gelfand and Schliep, 2018).

Using a linear model of coregionalization (Gelfand et al.,

2004), we can rewrite the log intensity as z(s) = b + AV(s), where

b = (b1, b2)T is a vector of intercepts, A is a lower triangular

matrix with element aij, and V(s) = (V1(s), V2(s))
T is a vector of

independent Gaussian processes V1(s) and V2(s) with mean 0

and variance 1, respectively (Gelfand and Schliep, 2018). Here,

coefficient a21 of the lower triangular matrix A indicates the

magnitude of dependence between the two intensity fields,

where positive and negative values indicate spatial clustering

and inhibition of points of the two datasets, respectively. When

there is no local spatial dependence between the intensity fields,

we expect a21 to be close to zero.

This model can also accommodate covariates that may

explain vessel distributions. We can easily do so by extending

the log intensity as z(s) = X(s)g + AV(s), where g is a vector

consisting of an intercept and slopes of variables of interest

corresponding to a design matrix X(s).
Applying the framework

As a proof of concept, we applied our framework of

detecting vessels in satellite imagery and comparing vessel
frontiersin.org
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distributions with vessel-tracking data to areas off the ports of

Talara and Paita in northern Peru (Figure 1). We selected these

locations because vessels on the images were likely to consist of

fishing vessels and differ from the AIS data, considering that

both ports are located in the Piura region, where small-scale

fisheries are predominant (Alfaro-Shigueto et al., 2010).

Although large commercial fishing vessels are not allowed to

operate near the coast of Peru, the port of Talara experiences

heavy traffic by AIS-carrying vessels (mostly passengers and

tankers), whereas the port of Paita is less used by them. For each

area, we aggregated vessel locations (10 × 10 km2) from January

1 to December 31, 2020. To explore whether the information of

vessel distribution was different from that from the AIS data, we

obtained the AIS data pre-processed by Global Fishing Watch

(https://globalfishingwatch.org). For each vessel on the days

when the satellite images were taken, we subsampled the AIS

data by selecting one vessel location around 10 am at a local time

(time when the satellite images were taken) within a 1-hour

buffer to mirror the frequency of the satellite imagery data.

To apply the bivariate LGCP model, we divided each area

into 10 × 10 grid cells and summed the number of vessels in each

cell (1 × 1 km2) for each point type (AIS or satellite imagery). We

fitted a bivariate LGCP model to the vessel counts using an

exponentiated quadratic kernel as a covariance function of

Gaussian process V1(s) and V2(s). For priors, we used a
Frontiers in Marine Science 04
uniform distribution between 100 and 5,000 for length scale l

of the kernel. For the elements of matrix A, we used an

exponential distribution with l = 1 for a11 and a22 and a

normal distribution with m = 0 and s = 10 for a21. For the

intercepts b1 and b2, we used a normal distribution with m = 0

and s = 10. We checked the adequateness of the model structure

and priors by diagnosing the trace plots and posterior predictive

distribution. The posteriors were obtained over 2 chains, with

1,000 draws after 1,000 burn-ins each, using the No-U-Turn

Sampler (Hoffman and Gelman 2014). The model was fitted in

the Python package PyMC ver. 4.4.0. The script and the model

performance checks can be found in the GitHub repository

(https://github.com/stanford-cos/lgcp).
Results

Our framework started with automatically detecting marine

vessels in optical satellite imagery. For the performance of the

vessel detection model, we report F1 score, precision, recall, and

AP (Average Precision) following standard convention. AP

measures the area under the precision-recall curve by

changing the model confidence score from 0 to 1. Our

ResNet-50 classifier and Faster R-CNN detector pipeline

performs at F1 = 0.84, precision = 0.87, recall = 0.80, and AP
A B

C

FIGURE 1

Study sites and vessel distributions. (A) Green squares near Talara and Paita in Peru indicate the areas where we applied the automated vessel
detection model. (B) Locations of vessels from the AIS data and the optical satellite imagery near Talara. (C) Locations of vessels near Paita. AIS
data is displayed in red circles, satellite in blue crosses. Data were collected from January 1 to December 31, 2020. For the AIS data, one vessel
location was subsampled to mirror the sampling frequency of the satellite imagery data.
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= 0.72. F1, precision, and recall are measured using a classifier

confidence threshold of 0.1 and detector confidence threshold of

0.5 (see Figure 2 for example).

The model detected 118 vessels in Talara and 151 vessels in

Paita (Figure 1). In Talara, vessels were concentrated in the

northeastern part of the focal region near the port entrance, as

well as the southeastern part. We observed a similar distribution

in the AIS vessels. By contrast, in Paita, the distribution of vessels

detected in satellite imagery were different from that of the AIS

data. In the satellite imagery, a high concentration of vessels was

detected in the southern part of the focal region outside the Port

of Paita, whereas AIS vessels were aggregated in the southeastern

part of the focal region near the port entrance (Figure 1).

The point pattern analysis showed that differences in vessel

distributions between satellite imagery and AIS data depended

on locations. In the bivariate LGCPmodel fitted to the point data

in Talara, the positive value of a21 indicates that the vessel

distributions from the AIS data and the satellite imagery partly

share the common underlying process (Table 1). That is, the

vessel distributions obtained from the satellite imagery and the

AIS data show relatively similar patterns. In Paita, by contrast,

the small value of a21 with 94% HDI overlapping zero indicates

little dependence between the two distributions (Table 1). That

is, the spatial point patterns in the two samples were likely to be

underpinned by different processes in this region, which was

characterized by a11 and a22.

Visualization of the estimated model parameters illuminated

contrasting differences in the processes that underpinned the

vessel distributions (Figure 3). When the posterior predictive

distributions of the estimated intensities l1(s) and l2(s) were
resampled for the 0.2 × 0.2 km2 cells in Talara, we see dense
Frontiers in Marine Science 05
vessel distributions in the northeast corner of the focal region

and relatively low densities elsewhere in both the AIS data and

satellite imagery. In Paita, we see a high density of AIS-carrying

vessels near the port entry in the southeast corner of the focal

region, but vessels detected in the satellite imagery are

concentrated outside the port (Figure 3).
Discussion

This study demonstrates a potential application of satellite

imagery to complement publicly available vessel-tracking data.

Specifically, we show that satellite imagery could provide

additional information to AIS datasets on vessel distribution.

In our proof of concept, we found that the vessel distribution in

the satellite imagery was independent of that in the AIS data in

Paita. Considering the prevalence of small-scale fisheries in the

area (Alfaro-Shigueto et al., 2010), it is possible that the satellite

imagery detected small vessels without AIS devices. By contrast,

in Talara, we found that vessel distributions were more similar

between AIS and satellite imagery. This indicates that vessels

detected in satellite imagery would likely be AIS vessels or non-

AIS vessels that show a geospatial distribution similar to AIS

vessels. The differences in AIS and satellite imagery vessel

distributions could depend on many factors, including

location, time, and spatial and temporal resolutions of interest,

and our framework allows systematic investigation to test such

factors. These new insights could then be used to strengthen

marine surveillance under limited resources. For example, it

could help identify and prioritize areas heavily utilized by small-

scale fishing fleets for additional surveillance methods.
FIGURE 2

Example of vessel detection. Top: original images. Bottom: vessel detection algorithm applied to the corresponding images. Boxes indicate the
vessels detected by our algorithm.
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The analytical framework we introduced here can also be used

as a robust foundation to investigate factors that bring about

differences in vessel distributions between data sources. For

example, we could learn the dynamics of vessels that do not

transmit AIS signals and explore the potential factors that
Frontiers in Marine Science 06
underpin differences in distribution by systematically comparing

geospatial patterns of vessels between AIS data and satellite imagery

across locations and over time. Such an approach is particularly

useful when trying to glean a comprehensive picture of vessel

dynamics for a given area. In addition, the LGCP model can

easily be extended to include covariates, such as water

temperature, chlorophyll-a, bathymetric features, and distance to

marine protected areas, to explore factors that drive realized

geospatial distributions of marine vessels.

The research field of automated vessel detection has been

rapidly advancing, with the improvement of deep learning

techniques for object detection (Cheng et al., 2016; Kang et al.,

2017; Liu et al., 2021a) and the adoption of novel approaches, such

as use of wakes behind moving vessels (Graziano and Renga, 2021;

Liu et al., 2021b) andmultispectral imagery (Wang et al., 2021). The

field of vessel detection will further advance with the increasing

accessibility to super high-resolution imagery (Jérôme, 2019), which

could allow the classification of vessel types and fishing gears in the

near future. These advances in technology and data quality will

accelerate the possibilities of the applications of satellite imagery,

and this study exemplifies one direction to embrace unprecedented
TABLE 1 Posterior estimates for the bivariate log-Gaussian Cox
process (LGCP) model fitted to vessel distributions in two locations in
Peru.

Talara Paita

l 885 (709, 1086) 3150 (2077, 4460)

b1 −1.307 (−2.242, −0.293) −1.270 (−3.972, 1.599)

b2 −1.108 (−1.884, −0.317) 0.277 (−2.954, 3.473)

a11 2.170 (1.615, 2.733) 2.815 (1.347, 4.332)

a22 1.128 (0.687, 1.622) 3.068 (1.545, 4.894)

a21 1.164 (0.678, 1.723) −0.266 (−2.765, 2.336)
Values in parentheses are 94% highest density intervals (HDI). The positive value of a21 in
Talara reveals clustering of vessel positions between AIS and satellite imagery, whereas
the weak value of a21 overlapping zero in Paita indicates no dependence.
A B

DC

FIGURE 3

Model estimates of vessel distributions. (A) AIS data in Talara, (B) satellite imagery in Talara, (C) AIS data in Paita, and (D) satellite imagery in Paita.
Values are the sample means of the posterior predictive distributions corresponding to 0.2 × 0.2 km2 cells. For all images the warmer (yellow)
the color the higher the number of vessels detected. Note that the intensity scales vary across the 4 images.
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opportunities, in addition to the traditional cross-matching with

vessel-tracking data.

Ocean problems are often complex and multifaceted, making it

challenging to address with a single data source. Data integration

offers a powerful framework that could highlight where due

diligence is needed. Quantification of information differences

illuminates the biases of each dataset. A clear understanding of

such biases supports the effective integration of similar data types,

such as VIIRS (Hsu et al., 2019), over-the-horizon radar (Ponsford

et al., 2017; Yang et al., 2022), and hyperspectral imagery (Park

et al., 2018; Park et al., 2020b). Ultimately, knowing the uniqueness

of each data source will help gauge the likelihood of generating new

knowledge beyond the original scope of each dataset to address

specific questions through data integration. By looking through

multiple lenses, we can triangulate the problems, shed light on

different aspects, and discover novel insights. At the same time, our

study echoes the importance of a multi-data approach and data

sharing in marine surveillance (Dupont et al., 2020).
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