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Exposure to solar ultraviolet
radiation establishes a novel
immune suppressive lipidome
in skin-draining lymph nodes
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Georges E. Grau1, Anthony S. Don1 and Scott N. Byrne1,3*

1The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney,
NSW, Australia, 2Heart Research Institute, The University of Sydney, Sydney, NSW, Australia,
3Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Sydney,
NSW, Australia
The ability of ultraviolet radiation to suppress the immune system is thought to

be central to both its beneficial (protection from autoimmunity) and

detrimental (carcinogenic) effects. Previous work revealed a key role for lipids

particularly platelet-activating factor and sphingosine-1-phosphate in

mediating UV-induced immune suppression. We therefore hypothesized that

there may be other UV-induced lipids that have immune regulatory roles. To

assess this, mice were exposed to an immune suppressive dose of solar-

simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2

neutral lipids, and 2 phospholipids) with significantly increased levels in the

skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry

of the lipids in combination with imaging mass cytometry identification of

lymph node cell subsets indicated a preferential location of UV-induced lipids

to T cell areas. In vitro co-culture of skin-draining lymph node lipids with

lymphocytes showed that lipids derived from UV-exposed mice have no effect

on T cell activation but significantly inhibited T cell proliferation, indicating that

the lipids play an immune regulatory role. These studies are important first

steps in identifying novel lipids that contribute to UV-mediated

immune suppression.

KEYWORDS

immune regulation, immune suppression, lipids, ultraviolet radiation, mass
spectrometry, extracellular vesicles
1 Introduction

Exposure to the ultraviolet (UV) radiation in sunlight suppresses the local cutaneous

immune response and is a major risk factor for the development of UV-induced skin

cancers (1). The formation of pyrimidine dimers (2, 3) and production of cis-urocanic

acid (4) within the skin following UV exposure are well-established molecular signals
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1045731/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1045731/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1045731/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1045731/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1045731&domain=pdf&date_stamp=2023-01-20
mailto:scott.byrne@sydney.edu.au
https://doi.org/10.3389/fimmu.2022.1045731
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1045731
https://www.frontiersin.org/journals/immunology


Tse et al. 10.3389/fimmu.2022.1045731
responsible for local immune suppression. However, UV is also

capable of causing systemic immune suppression which is

associated with protection from several autoimmune diseases

(5). The suppressive signal generated in UV irradiated skin is

transmitted to local draining lymph nodes by migrating

Langerhans cells (LC) (6, 7) and mast cells (8). Recently

arrived LCs interact with Natural Killer (NK) T cells to

suppress the immune response in an IL-4-dependent manner

(7) while IL-10-producing mast cells (9) interact with follicular B

cells (8). Ultimately, these early cellular events lead to the

generation of antigen-specific, long-lived UV-Tregs (10, 11)

and UV-Bregs (12–15). The skin-draining lymph nodes are

therefore a key anatomical site for UV-suppression of immunity.

Recently we showed that a single dose of solar-simulated UV

altered lymphocyte recirculation between the skin-draining

lymph nodes and the peripheral blood (16). This phenomenon

was due to UV increasing the amount of the chemotactic lipid,

sphingosine-1-phospate (S1P), in the lymph nodes. The increase

in S1P led to a downregulation of sphingosine-1-phospate

receptor 1 (S1P1) receptors and a sequestration of naïve and

central memory T cells in the lymph nodes. This provided the

first evidence that UV can modulate the immune system by

manipulating lipids in the skin-draining lymph nodes.

There is a growing recognition for the role of bioactive lipids

and lipid metabolism in modulating the immune response. Lipid

oxidation for example, is required for regulatory T cell

proliferation (17–19) and the generation of memory T cells

(20). In addition, bioactive lipids such as lysophosphatidylserine

suppress CD4+ T cell activation and proliferation by inhibiting

IL-2 production and the upregulation of early activation markers

such as CD69 (21, 22). Binding of lysophosphatidylserine also

suppresses the generation of regulatory T cells (21), in which IL-

2 inhibition is likely similarly involved. Indeed, UV radiation

alters lipid in the skin by increasing production of sphingolipids,

prostanoids and hydroxy fatty acids whilst reducing production

of free fatty acids and triglycerides (23–25). Of particular

importance, UV radiation of the skin triggers the release of the

immunosuppressive lipid, platelet-activating factor (PAF) and

its analogs. Activation of PAF receptors on dermal mast cells and

Langerhans cells initiates their migration to the skin-draining

lymph node (26, 27). Antagonism of PAF receptors and/or PAF-

receptor deficiency attenuates UVB-induced systemic (28, 29),

but not local immune suppression (30).

In light of our finding that UV upregulates S1P, in addition

to other immune suppressive lipids such as PAF in the skin (31,

32), we hypothesized that exposure to UV may activate other

immune modulating lipids in the skin-draining lymph nodes. In

this study, we used non-targeted lipidomics to identify six novel

UV-induced lipids in the skin draining lymph nodes. Using a

combination of imaging mass spectrometry and cytometry of the

nodes we were able to reveal that the upregulated lipids were

preferentially expressed in the T cell areas following UV

exposure. Finally, when the lipids induced by UV were
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isolated from the skin-draining lymph nodes and incubated

with lymphocytes, they suppressed the proliferation of T cells.

Thus, ultraviolet radiation induces immunosuppressive lipids

where T cell activation occurs – in the skin-draining

lymph nodes.
2 Materials and methods

2.1 Animals and UV radiation

Female C57BL/6 mice (Australian BioResources Ltd, Moss

Vale, Australia) aged 7-10 weeks were housed at 22°C on a 12 h

light-dark cycle with free access to water, and chow (Specialty

Feeds, WA) provided ad libitum. The fluorescent lights used in

the animal house did not emit any UV radiation. All mice were

shaved and housed together and provided with sufficient nesting

material for them to self-regulate their body temperature. Mice

were shaved on the back and exposed to a single, immune

suppressive 8 J/cm2 dose of solar-simulated UV generated with a

1000 W xenon arc solar simulator (Oriel, Stratford, CT) with an

output of 8% UVB and 92% UVA. Full details on the UV spectra

has been published by us previously (33). In female C57BL/6

mice, a solar simulated UV dose of 3.64J/cm2 is the minimum

required to induce a statistically significant increase in skin

thickness (the minimal edematous dose; MEdD) (33). Unlike

humans, mice don’t make a readily detectable erythemal

response to UV, and so the MEdD is used as a surrogate for

the minimal erythemal dose (MED). Thus, the dose used is

2.2MEdD which translates to approximately 15min of midday

summer sun in Sydney, Australia. Control mice were shaved,

sham-irradiated and co-housed with irradiated mice. The animal

experiments were approved by the University of Sydney Animal

Ethics committee (#1352).
2.2 Imaging mass cytometry

Skin-draining (inguinal) lymph nodes were collected 24

hours post-UV radiation and freshly frozen in embedding

media containing 5% v/v carboxymethylcellulose and 10% v/v

gelatin (both Sigma, St. Louis, USA) which is optimal for mass

spectrometry imaging, generating significantly less background

than OCT (34). 10 µm sections were fixed in 100% cold acetone

for 10 minutes. For staining, the slide was rehydrated, blocked

using an avidin-biotin blocking kit (Life Technologies, Carlsbad,

USA) and 10% mouse serum containing anti-CD16/32 antibody

(50 µg/mL, clone 93, Biolegend, San Diego, USA). 50 mL of a

master mix containing anti-mouse CD45-FITC, CD35-biotin,

CD62L-APC and CD11b-PE in 2% mouse serum was added and

stained at 22°C for 2 hours. The CD45-FITC antibody was used

to provide visual confirmation that the staining process was

successful. The use of CD35-biotin, CD62L-APC and CD11b-PE
frontiersin.org
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primary antibodies allowed for amplification of weaker antibody

stains with a secondary metal-conjugated antibody and ensured

that all our markers of interest could be included in the panel.

Antibody clones and concentrations are stated in Table 1. The

slide was then washed in Tris-buffered Saline and Tween (TBST;

all from Sigma). A second master mix containing metal-

conjugated antibodies was added to each section and

incubated overnight at 4°C. The next morning, the slides were

washed and fixed for 9 min using formalin (Fronine, Riverstone,

Australia). Following fixation, the slide was washed in TBST and

stained with iridium DNA intercalator for 30 min at 22°C. The

slide was again washed first with TBST and then in distilled

water. The slide was dried at 22°C and imaged within one week

of staining. Imaging was conducted using the Hyperion Imaging

System coupled to a Hel ios (Fluidgm, South San

Francisco, USA).
2.3 Lipid extraction

Lipids were extracted from skin-draining lymph nodes as

previously described (16). For lipidomic studies, 50 µL of pooled

internal standards (all from Avanti Polar Lipids, Alabaster, USA)

containing 20 µM C12 (18:1/12:0) glucosyl (b) ceramide (C12

GluCer), 20 µM C17 (18:1/17:0) ceramide (C17 Cer) and 4 µM

of C17 (17:1) sphingosine (C17 Sph) were spiked into the

extraction solution along with the lymph nodes. For T cell

functional studies, no internal standards were added.
2.4 Non-targeted mass spectrometry

5 µL of lipid sample was injected into ThermoFisher Scientific

Vanquish Ultra-High Pressure Liquid Chromatography (UHPLC)

system coupled to a Waters Acquity UPLC C18 column (1.7 µm

pore size, 2.1 x 100 mm). The HPLC operated with gradients of

solvent A (60% acetonitrile, 40% water, 0.1% formic acid (Sigma)

and 10 mM ammonium formate (Sigma)) and solvent B (90%

isopropanol, 10% acetonitrile, 0.1% formic acid and 10 mM

ammonium formate) (Organic solvents were from Fisher

Chemical, New Hampshire, USA) (Table 2).

The lipid scan was conducted using a Thermo Fisher Scientific

Q Exactive HF-X Hybrid Quadrupole-Orbitrap™ mass

spectrometer in full scan/data-dependent MS/MS (ddMS2) mode

between m/z 220 and 1600. These scans were conducted in both

positive and negative ion mode to ensure all classes of lipids are

captured. Analysis of the peaks was conducted using Compound

Discoverer (Thermo Fisher Scientific, Waltham, USA).

Molecules of interest were fragmented either by adding the

lipids of interest onto the inclusion list, or by using a targeted-

selected ion monitoring followed by ddMS2 in both positive and

negative ion mode. The fragmentation pattern was analyzed in

LipidSearch 4.0 (Thermo Fisher) to identify the molecules. The
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identification was considered correct if: 1) An A or B grade was

obtained in LipidSearch (grading indicates confidence in

identifying the fatty acids and lipid group); 2) fragments were

consistent with identification (e.g. fragments of headgroups and

fatty acids were found); and 3) fragmentation and identification

was consistent across 3 individual experiments.
2.5 Mass spectrometry imaging

The lymph nodes were cryosectioned at 10 µm thickness and

mounted onto indium tin oxide (ITO) slides (Bruker Daltonics,

Billerica, USA). The slide was prepared for matrix-assisted laser

desorption/ionization (MALDI) mass spectrometry imaging

following a previously established method (35) to sublimate

recrystallized 2, 5-dihydroxybenzoic acid (DHB) (Sigma) onto

the ITO slide. The slide was then loaded into the UltrafleXtreme

(Bruker) mass spectrometer. Elemental red phosphorus (Sigma)

was used to calibrate the instrument. The sections were then

ablated at 15 µm raster width (i.e. 15 µm spatial resolution) and

full scan analyzed at m/z 380-1800. The peaks and images were

analyzed on SCiLS lab (Bruker).
2.6 Primary lymph node cell culture
with lipids

Naïve skin-draining lymph nodes were collected inside

biosafety cabinets under sterile conditions before being dissociated

with 25 gauge needles (Terumo, Shibuya City, Japan) and cells

passed through a cell strainer (Miltenyi, Bergisch Gladbach,

Germany) to obtain single cell suspensions. Cells were then

counted using a haemocytometer (Livingstone, Toronto, Canada)

and viability assessed using trypan blue (Life Technologies,

Carlsbad, USA).

For proliferation assays, cells were prepared for

carboxyfluorescein succinimidyl ester (CFSE; Thermo Fisher)

staining by washing once in RPMI 1640 medium (Life

Technologies) then resuspending in pre-warmed RPMI to a

concentration of 5 x 107 cells/mL. CFSE was added to the cells at

a 1 in 1000 dilution (final concentration 5µM). The cells were

immediately inverted and placed in a 37°C incubator for 10

minutes. Cells were inverted every 3-4 minutes and the staining

stopped with the addition of cold complete RPMI (RPMI with

10% charcoal-stripped FCS (Thermo Fisher), 0.05 mM 2-

mercaptoethanol (Sigma) and 1% penicillin-streptomycin

(Invitrogen, Waltham, USA)) at 4 times the initial volume.

Cells were washed twice more with complete RPMI.

For T cell activation assays, non-CFSE-labelled cells were

seeded into U-bottom 96-well plates (Corning, New York, USA)

at 2 x 105 cells/well. For T cell proliferation assays, CFSE-labelled

cells were seeded into the plates at 5 x 105 cells/well. Dried lipid

preparations were reconstituted in complete RPMI and added to
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TABLE 1 List of antibodies used for imaging mass cytometry.

Fluorochrome/Metal Antibody Clone Concentration Source

FITC CD45 30-F11 5 µg/mL BD

Biotin CD35 8C12 1.25 µg/mL BD

APC CD62L MEL-14 2 µg/mL eBioscience

PE CD11b M1/70 2 µg/mL Biolegend

Structural cell markers

115In Lyve1 Polyclonal 4 µg/mL R&D

160Gd Podoplanin 8.1.1 4 µg/mL Biolegend

165Ho CD31 390 4 µg/mL BD

Pan-immune marker

174Yb anti-FITC/FITC-CD45 FIT-22 4 µg/mL Biolegend

Myeloid markers

142Nd CD11c N418 8 µg/mL Biolegend

144Nd Ly6G 1A8 2 µg/mL Biolegend

146Nd CD207 (Langerin) 4C7 4 µg/mL Biolegend

154Sm CD169 3D6.112 4 µg/mL Biolegend

156Gd Anti-PE/PE-CD11b PE001 4 µg/mL Biolegend

161Dy F4/80 BM8 3 µg/mL Biolegend

163Dy CD64 X54-5/7.1 2 µg/mL Biolegend

170Er Anti-biotin/biotin-CD35 1D4-C5 1 in 200 DVS/Fluidgm

176Yb Ly6C HK1.4 2 µg/mL Biolegend

T cell markers

152Sm CD3e 145-2C11 4 µg/mL Biolegend

153Eu CD4 RM4-5 1.8 µg/mL Biolegend

168Er CD8a 53-6.7 4 µg/mL Biolegend

145Nd CD69 H1.2F3 4 µg/mL Biolegend

171Yb CD44 IM7 2 µg/mL BD

162Dy Anti-APC/APC-CD62L APC003 1 in 100 DVS/Fluidgm

158Gd FoxP3 FJK-16s 1 in 200 DVS/Fluidgm

B cell markers

149Sm CD19 6D5 2 µg/mL Biolegend

150Nd IA-IE M5/114.15.2 2 µg/mL Biolegend

159Tb B220 RA3-6B2 2 µg/mL Biolegend

Pan-nuclei marker

191Ir/193Ir DNA intercalator 1.25 ng/mL DVS/Fluidgm
F
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cells at a ratio of one lymph node amount of lipids to one lymph

node number of cells as previously described (16). A final

concentration of 0.27 mg/mL of anti-CD3 (clone 1452c11) and

0.17 mg/mL of anti-CD28 (Biolegend, clone 37.51) antibodies

were added to the cells. The plates were incubated at 37°C with

the activation plate analyzed after 24 hours and proliferation

analyzed at 72 hours.
2.7 Large extracellular vesicle isolation
and analysis

To assess large extracellular vesicles (LEVs), 6 hours post-UV

(or sham-UV) treatment, skin-draining lymph nodes were collected

in double filtered FACs buffer (phosphate-buffered saline (PBS)

with 0.5% bovine serum albumin (BSA, Bovogen, Melbourne,

Australia) and 0.4% ethylenediaminetetraacetic acid (EDTA)).

Lymph node capsules were broken apart and a single-cell

suspension achieved, retaining both the resulting cells and

suspension. Lymph node cell viability was assessed by trypan blue

staining and quantified using a haemocytometer. LEVs were

harvested from all samples using multiple centrifugations: 1500xg

for 15 minutes to remove cells, 13000xg for 2 minutes to remove

cellular debris and platelets, and 18000xg for 60 minutes at 4°C to

pellet LEVs. LEV pellets from each condition were then

resuspended in a final volume of 100ml filtered PBS and kept at

-80°C until they were prepared for flow cytometric analysis.
2.8 Flow cytometry staining

Cells were washed and pre-stained with Fixable Viability

Dye eFluor 455UV (Thermo Fisher) and FcBlock (Biolegend) for
Frontiers in Immunology 05
15 minutes at 22°C. Cells were then washed and 50 mL of

primary antibody mix added (Table 3). Cells were stained in

the dark at 4°C for 30 minutes. For the proliferation studies, cells

were then washed, fixed in 50 mL of fixation buffer (Biolegend)

for 20 minutes, washed and resuspended in FACs buffer ready

for analysis. For the activation studies, cells were prepared for

intracellular staining using a FoxP3/transcription factor staining

buffer set (Thermo Fisher). Cells were fixed and permeabilized

for 20 minutes at 22°C. Cells were then washed with

permeabilisation buffer and resuspended in 50 mL of

intracellular antibody mix. After 30 minutes of staining at 22°

C, cells were washed again with permeabilization buffer and then

resuspended in FACs buffer ready for analysis.

LEVs were stained with annexin-V AF488 (BD, Franklin

Lakes, USA) and selected parent antibodies: T cells (CD4,

Biolegend, clone RM4-5 or CD8, eBioscience, clone 53-6.7), B

cells (CD19, eBioscience, clone 1D3), monocyte/macrophages

(CD11b, Biolegend, clone M1/70), platelets (CD41, BD,clone

MWReg30), endothelial cells (CD105, BD, clone MJ7/18), mast

cells (CD117, Biolegend, clone ACK2) or keratinocytes (pan-

keratin, CST, clone C11) for 25 minutes in binding buffer and

enumerated on a BD LSRFortessa for 120 seconds at medium

flow rate. Countbright, absolute counting beads (Invitrogen)

were used as an internal standard to allow direct enumeration of

EVs per microlitre of supernatant. LEVs were analyzed on a FSC

vs SSC dot plot. To define the LEV gate, we used 0.22–1.34 mm
latex beads (Nano Fluorescent Size Standard Kit, Yellow, Flow

Cytometry Grade, Spherotech, Lake Forest, USA). Events falling

within the LEV gate were then analyzed for parent-antibody and

AnnexinV-AF488 fluorescence on a cytogram.
2.9 Statistics

For experiments with n values of greater than 6,

comparisons between 2 groups were done by Student’s t

tests. For experiments with n values of 6, a Shapiro-Wilks

normality test was performed (a=0.05; p<0.05) and for

normally-distributed data, a Student’s t test (comparing 2

groups) or ordinary one-way ANOVA with a Holm-Sidak

multiple comparisons test (comparing more than 2 groups)

were used. For groups that failed the Shapiro-Wilks normality

test, and for experiments with n values less than 6 a non-

parametric analysis using Mann-Whitney test (comparing 2

groups) or Kruskal-Wallis test with Dunn ’s multiple

comparisons (comparing more than 2 groups) were used.

Data from individual mice was expressed as a fold change

(normalized) to the mean of the No UV control group in each

experiment. Thus the relative expression/frequency of the No

UV group would be a value of 1, enabling different

experimental repeats to be pooled.
TABLE 2 LC gradients and flow-rate.

Time (min) Flow-rate (mL/min) % Solvent B

0.0 0.280 30

3.0 0.280 30

4.5 0.280 43

5.5 0.280 55

8.0 0.280 65

13.0 0.280 85

14.0 0.280 100

20.0 0.280 100

20.2 0.360 30

24.8 0.360 30

25.0 0.280 30
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3 Results

3.1 UV does not alter skin-draining lymph
node architecture nor T cell distribution

We have previously demonstrated that exposure to UV

results in local skin-draining lymph node hypertrophy (8, 16).

To determine if this UV-induced lymph node hypertrophy is

associated with changes in lymph node architecture, we

performed imaging mass cytometry assessing 24 immune and

structural markers. UV-exposure did not change gross lymph

node architecture, with B cell follicles (B220+), T cell areas

(CD3+), macrophage areas (defined by varying expressions of

CD11b, CD169 and F4/80), lymphatics (Lyve-1+) and high

endothelial venules (CD31+) all appearing to be similar to

control unirradiated lymph nodes (Figure 1A)

UV-irradiated skin-draining lymph nodes preferentially

sequester naïve and central memory T cells (16). Imaging

mass cytometry revealed that CD4+ and CD8+ T cell

distribution was similar between unirradiated control and UV

lymph nodes with both T cell subsets abundant in the cortical

area and CD4+ T cells prominent in the interfollicular space

closer to the lymphatic sinuses (Figure 1B). This is consistent
Frontiers in Immunology 06
with other studies demonstrating that CD4+ T cell localize with

lymph node resident cDC2s close to the lymphatic sinus,

whereas CD8+ T cells localize with the more centrally-located

resident cDC1 population (36). In both groups there was a

greater concentration of CD44+ memory T cells adjacent to the

follicles. Hence, UV-induced lymph node hypertrophy is not

associated with changes in lymph node architecture.
3.2 UV-radiation alters the skin-draining
lymph node lipidome

We next assessed if UV radiation of the skin alters lipids

within the skin-draining lymph nodes. Lipids extracted from the

skin-draining lymph nodes were analyzed using non-targeted

mass spectrometry. Six identifiable lipids were significantly

increased in the skin-draining lymph nodes following UV

exposure (Figure 2A). These lipids were acylcarnitine (20:4)

(neutral mass of 447.3348), acylcarnitine (20:3) (449.3505),

diglyceride (18:1_20:4) (642.5221), phosphatidylcholine (o-

38:6) (791.5823), triglyceride (16:1_14:1_18:2) (798.6743) and

phosphatidylethanolamine (22:0_18:2) (799.6102). Thus the

UV-altered lipids belonged to a variety of lipid classes.
TABLE 3 List of flow cytometry antibodies.

Marker Fluorochrome Concentration Clone Company

Common to both lymph node cell panels

CD16/32 Purified 5 µg/mL 93 Biolegend

Live/dead eFluor 455UV 1 in 1000 Thermo Fisher

CD3e PE-CF594 1 µg/mL 145-2C11 BD

CD4 PerCP 1 µg/mL RM4-5 Biolegend

Cell activation panel (24 hours)

CD8a FITC 2.5 µg/mL 5H10-1 Biolegend

CD62L BV421 1 µg/mL MEL-14 BD

CD44 BV786 0.2 µg/mL IM7 BD

CD25 APC-eFluor780 2 µg/mL PC61.5 eBioscience

FoxP3 (intracellular) PE 1 in 50 150D Biolegend

CD69 PE-Cy7 1 µg/mL H1.2F3 Thermo Fisher

S1P1 APC 1 in 100 713412 R&D

Cell proliferation panel (72 hours)

CD8a APC-Cy7 1 µg/mL 53-6.7 Biolegend

CD11c APC 2 µg/mL N418 eBioscience

CD19 PE 1 µg/mL eBio1D3 eBioscience

B220 BUV737 1 µg/mL RA3-6B2 BD

I-A/I-E BV510 2.5 µg/mL M5/114.15.2 Biolegend
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We next determined whether the UV altered lipids shared

similar anatomical distribution across the lymph node. Since

lipids cannot be imaged by immunohistochemistry or

immunofluorescence, mass spectrometry imaging was

conducted. Fresh-frozen lymph nodes were sectioned and

sublimated with a lipid-ionizing DHB matrix. Lymph nodes

were imaged by matrix-assisted laser desorption/ionization

(MALDI) mass spectrometry imaging. In this method, the

laser ablated a series of 15 mm pixels generating a non-

targeted scan of detectable lipids at each pixel. A specific mass

was selected and a gradient map generated to display the level of

expression across the acquired area. We were able to detect 2

masses matching those of triglyceride (16:1_14:1_18:2; m/z

799.347) and phosphatidylethanolamine (22:0_18:2; m/z

800.327) with a hydrogen adduct (last 2 panels in Figure 2A

showing the ammonium adduct, and imaging shown in

Figure 2B). Both lipids appeared to localize to the same areas

in the outer regions of each individual skin-draining lymph

node, suggesting that the lipids may be draining into the lymph

node. Mass spectrometry imaging data alone however did not
Frontiers in Immunology 07
reveal obvious differences in the lipid location between

unirradiated control and UV-irradiated skin-draining

lymph nodes.

To more closely interrogate the lymph node cells present in

the high lipid areas, we mapped the location of the lipids to the

serial section used for immune cell imaging. This revealed that

the high lipid areas (as outlined in dotted lines) in the UV lymph

nodes were more centrally located than in the control

unirradiated lymph nodes (Figure 2B). To quantify this, B220

(B cell follicles), CD3 (T cell zones) and CD169 (macrophages in

subcapsular sinus) expression within the high lipid “hotspot”

areas were calculated as a percentage of the total area of the high

lipid region of interest. The UV high lipid areas trended towards

decreased CD169+ and B220+ expression whilst increasing CD3+

expression [6 different lymph nodes from 6 individual mice (3

no UV and 3 UV) are shown in Figure 2C]. This data indicated

that while no specific cell subset was associated with the high

lipid regions, UV-induced lipids appear to preferentially locate

more towards the T cell areas and away from the subcapsular

sinus and B cell follicles.
B

A

FIGURE 1

UV exposure does not alter skin-draining lymph node architecture. Skin-draining (inguinal) lymph nodes were collected from mice exposed (or
not) to 8 J/cm2 UV 24 h after exposure. Lymph node sections were stained and analyzed by imaging mass cytometry. (A) Representative images
of immune and structural markers. (B) Representative images of CD4+, CD8+, and CD44+ T cells. Scale bars represent 100 µm.
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3.3 UV-induced skin-draining lymph
node lipids do not alter T cell subsets

Due to the preferential accumulation of UV-induced lipids

in the T cell areas of lymph nodes, we next assessed whether UV-

induced lipids affected lymphocyte activation and/or

differentiation. To address this, we extracted the entire lipid

fraction from the skin-draining lymph nodes of unirradiated

control and UV-exposed mice. These bulk lipids were added to

lymph node cells isolated from untreated skin-draining lymph

nodes and incubated for 24 hours before T cell subsets were

assessed by flow cytometry. The gating strategy to identify naïve,

central memory, effector memory and regulatory T cells is

shown in Figure 3A. To compare the effect of unirradiated

control-derived and UV-derived lipids on T cell activation, the

frequencies of subsets were normalized to the no lipid control.

No differences were observed in the ability of lipids (from

control or irradiated mice) to alter CD4+ or CD8+ T cells

subsets, including Tregs (Figure 3B).

The failure of lipids alone to alter T cell subsets could be due

to the absence of T cell stimulation. We therefore assessed

whether lymph node lipids were able to suppress T cell

activation in the presence of anti-CD3 and anti-CD28

antibodies. Similar to what was observed in the absence of T
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cell stimulation, adding lipids from unirradiated control or UV-

irradiated mice did not affect CD4+ or CD8+ T cell activation in

the presence of stimulation (Figure 3C). Hence, lipids from skin-

draining lymph nodes, whether the skin is exposed to UV or not,

do not alter T cell subsets.
3.4 UV-induced skin-draining lymph
node lipids suppress T cell expansion

Clonal expansion is a requisite event for robust immune

responses. Indeed, inhibition of T cell proliferation is a highly

effective strategy underpinning the therapeutic success of immune

suppressants (37). It was possible, therefore, that lipids from lymph

nodes draining UV-exposed skin could be inhibiting T cell

proliferation. To assess this, lipids isolated from the skin-draining

lymph nodes of unirradiated control and UV-exposed mice were

added to CFSE-labelled cells isolated from naïve skin-draining

lymph nodes. Anti-CD3 and anti-CD28 antibodies were added to

induce proliferation. 72 hours later, the cells were stained and

analyzed by flow cytometry. As expected, the addition of anti-CD3

and anti-CD28 successfully caused CD4+ and CD8+ T cell

proliferation. The addition of lipids derived from the skin-

draining lymph nodes of mice exposed to UV, but not from
B C

A

FIGURE 2

UV altered several lipids in the skin-draining lymph nodes with possible preferential localization to T cells areas. Skin-draining lymph nodes were
collected from UV-irradiated and control mice 24 h after exposure. (A) Lipids extracted from skin-draining lymph nodes were analyzed by non-
targeted mass spectrometry. Normalized relative expression of the lipids (acyl chain) across 3 independent UV experiments (each with n = 5-6
mice per group) are shown. Statistics were done by Student’s t test with mean shown. (B) Mass spectrometry imaging and imaging mass
cytometry were conducted on serial sections of lymph nodes. Representative lymph nodes shown with expression of lipids dictated by the
gradient and dotted lines indicating high lipid areas. Scale bar represents 100 µm. (C) Areas of high lipid were quantified for the presence of
CD169, B220 and CD3 expression for lymph nodes from 6 individual mice (3 NoUV and 3 UV).
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B

C

A

FIGURE 3

Lipids derived from UV-irradiated skin-draining lymph nodes have no effect on T cell subsets. Skin-draining lymph nodes were collected and lipids
extracted. Lipids were then added to untreated skin-draining lymph node cells with or without anti-CD3 and anti-CD28 stimulation. Cells were
cultured for 24 hours and stained for flow cytometry analysis. (A) Gating strategy for the identification of CD4+ and CD8+ T cell subsets. CD62Lhi

CD44lo T cells were defined as naïve, CD62Lhi CD44hi T cells as central memory, CD62Llo CD44hi T cells as effector memory and CD4+ CD25+

FoxP3+ cells as regulatory T cells. (B) T cell subsets following lipid co-culture without stimulation. (C) T cell subsets following lipid co-culture with
stimulation. Relative frequency was calculated as a ratio to the no lipid control of each independent experiment. Median and individual mice (lipid
donors, n = 6-7) from 2 independent UV-irradiation experiments are shown. Statistics were done by two-tailed unpaired Mann-Whitney test.
Frontiers in Immunology frontiersin.org09

https://doi.org/10.3389/fimmu.2022.1045731
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tse et al. 10.3389/fimmu.2022.1045731
unirradiated control mice significantly inhibited both CD4+ and

CD8+ T cell proliferation (Figure 4A).

To examine whether the lipids were reducing the number of

cells proliferating or reducing the number of divisions each cell

undergoes (or both), division index and proliferation index were

calculated (38). Lipids from UV-exposed mice significantly
Frontiers in Immunology 10
decreased the division index for both helper and cytotoxic T

cells (Figure 4B) indicating that the lipids suppressed the average

number of divisions undertaken by all T cells. The proliferation

index was also lower for CD8+ T cells, but failed to reach

statistical significance for CD4+ T cells, meaning that once a

CD8+ T cell commenced proliferation, it underwent fewer
B

A

FIGURE 4

Lipids from UV-irradiated skin-draining lymph nodes suppress T cell proliferation. Skin-draining lymph nodes were collected and lipids
extracted. Lipids were then added to CFSE-stained untreated skin-draining lymph node cells with or without anti-CD3 and anti-CD28. Cells
were cultured for 72 h and assessed for CFSE expression by flow cytometry. (A) Representative histograms of CFSE expression in CD4+ and
CD8+ T cells with and without lipids and/or stimulation. (B) Normalized division and proliferation index of CD4+ and CD8+ T cells with
stimulation and either lipids from NoUV or UV mice. Division and proliferation indexes were normalized to the stimulated no lipid control of
each independent experiment. Median and individual mice (lipid donors, n = 6) from 2 independent UV irradiation experiments are shown.
Statistical analysis was by a two-tailed unpaired Student’s t tests.
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B C D E

F

A

FIGURE 5

iLN LEV are increased at early but not late timepoints post UV exposure. (A) At the times indicated, or at 6h post UV, inguinal lymph nodes (iLN)
were isolated and LEV isolated and analysed by flow cytometry. LEVs were gated using size beads (0.22, 0.45, 0.88, 1.34µm) to select particles
0.1-1mm (left plot), with a representative plot showing Keratin+ LEVs (right plot). Fold increases in total iLN LEVs at 2, 4, 6, 20 and 24h post UV.
At 6h post UV, total iLN LEVs were analyzed as (B) x100, 000 and (C) per iLN cell, calculated from (D) total iLN cell count. (E) Heatmap
summarises changes in parent LEVs displayed as minimum-maximum percentile scaling where 100 is the maximum for each marker. (F) Each
point represents an individual mouse UV-exposed (red) or not (grey). ‘Parent’ cell specific LEVs from T cells (CD4+ and CD8+), B cells (CD19+),
monocyte/macrophages (CD11b+), platelets (CD41+), endothelial cells (CD105+) mast cells (CD117+) and keratinocytes (pan-keratin+) were
assessed as fold change of absolute numbers x100,000. Statistical analysis was by a 2-way ANOVA with an uncorrected Fisher’s LSD or Mann-
Whitney test. *p< 0.05, **p< 0.01, ***p< 0.001, ****p<0.0001; ns, not significant.
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divisions in the presence of lipids isolated from the lymph

nodes of UV-exposed mice. Together, this indicates that UV-

lymph node lipids significantly decrease the number of

proliferating cells and, at least for CD8+ cytotoxic T cells,

reduce the number of divisions undertaken by cells that had

commenced proliferation.
3.5 Skin-derived large extracellular
vesicles rapidly appear in the lymph
nodes following UV

Signals generated in UV-exposed skin leads to systemic

immune suppression via the formation of microvesicles which

are submicron (0.1-1mm) large extracellular vesicles (LEV)

generated from the budding of cell membranes in response to

stressors and danger-signals. LEVs derived from keratinocytes

can be readily detected in the skin and plasma of mice and

humans exposed to UVB radiation (39). Whether solar-

simulated UV-induced skin LEVs find their way to draining

lymph nodes has not been investigated before. Since LEVs can

transport lipids as both cargo and on the membrane surface (40,

41), it is possible that skin-derived LEVs transport lipids to the

skin-draining lymph nodes which could explain how UV alters

the lymph node lipidome. To investigate this, groups of mice

were exposed to UV before the LEVs in their skin-draining

lymph nodes were analyzed by flow cytometry at various times.

UV significantly increased the proportion of LEVs in the skin-

draining lymph nodes at 2, 4 and 6h after UV (Figure 5A).

Absolute numbers of LEVs were also increased 6h after UV

exposure (Figure 5B). This increase preceded hypertrophy of the

lymph nodes which typically occurs no earlier than 24h post

exposure (Figures 5C, D) (8). Detailed flow cytometry analysis

found that the only significant UV-induced increase was in

keratin+ LEV thus confirming their skin origin (Figure 5E).

Indeed, keratin+ LEV in the lymph nodes of control unirradiated

mice were almost undetectable (Figure 5E). In addition, we

found no change in LEV derived from other parent cells

including T cells (CD4+ and CD8+ LEV), B cells (CD19+

LEV), monocyte/macrophages (CD11b+ LEV), platelets

(CD41+ LEV), endothelial cells (CD105+ LEV) or mast cells

(CD117+ LEV) (Figures 5E, F with representative flow plots

shown in Supplementary Figure 1). Thus, LEV from UV-

exposed skin find their way to secondary lymphoid organs and

represent an important way in which peripheral regulatory

signals are transmitted to the immune system.
4 Discussion

The skin-draining lymph nodes are a major site of UV-

induced immune suppression, where the activation of UV-Tregs,
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UV-Bregs and sequestration of naïve and central memory T cells

occurs. Here we have demonstrated that UV upregulates 6

unique, previously undescribed UV-induced lipids, mostly in

the T cell zones of lymph nodes, and that some of these lipids

can suppress the expansion of T cells.

We previously showed that exposure to UVB prior to

contact sensitization inhibits the expansion of effector T cells

in the skin-draining lymph nodes (42). Until now, the

mechanism behind this suppression was not known. There

was no evidence for any of the described processes including

prostaglandin E2 (PGE2), pyrimidine dimers, cis-urocanic acid,

reactive oxygen species, or the generation of functional Tregs

(42, 43), to be responsible for this suppression. Here we show

that lipids isolated from UV-irradiated skin-draining lymph

nodes suppress T cell expansion. The lipid extraction method

we used has been previously established as resulting in very

minimal non-lipid material being extracted (44) and has been

used in other similar lipid-tissue culture experiments (45), giving

us confidence that the immune suppressive effects observed were

indeed lipid-mediated. This suggests that UV-induced lipids in

the local draining lymph nodes are at least in part responsible for

a dampened T cell response post-UV exposure.

Our lipidomic analysis identified 2 acylcarnitines, a

phosphatidylcholine, a diglyceride, a triglyceride and a

phosphatidylethanolamine as being significantly increased in

the skin-draining lymph nodes of UV-exposed mice. Previous

studies have identified the lipids PGE2, PAF and arachidonic

acid as being involved in UV-immune suppression (28). PGE2 is

unlikely to be detected using untargeted mass spectrometry as it

is too low in abundance. And due to its extremely short half-life,

PAF is unlikely to be detectable under the experimental

conditions used. However, the increased levels of acylcarnitine

(20:4) we observed (Figure 2A) is a close surrogate for increased

arachidonic acid as arachidonic acid is released from lipids that

contain the arachidonyl fatty acid chain (20:4) in response to cell

stimuli, usually associated with activation of phospholipase A2

(the enzyme that cleaves the 20:4 fatty acid from the lipid).

Whilst there is limited knowledge on how the specific lipids

we identified affect cell-mediated immunity, the changes in

acylcarnitines, diglycerides and triglycerides suggest that UV

alters fatty acid metabolism. Indeed this is known to occur in the

skin following UV exposure, whereby the expression of genes

related to lipid synthesis are decreased (23, 24). Our group has

also shown that UV exposure on the skin significantly increases

total liver triglycerides (46). The possibility of UV modulating

fatty acid metabolism is of particular importance as naïve T cells,

but not effector T cells, use fatty acid oxidation and have high

levels of acylcarnitine molecules (47, 48). Furthermore,

regulatory T cells also use lipid oxidation to sustain

proliferation (17–19). Since an increase in naïve T cells (16)

and regulatory T cells (49) occurs in the skin-draining lymph

nodes following UV irradiation, this potential change in lipid
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metabolism may be an additional mechanism of maintaining

naïve and regulatory T cells numbers in the lymph nodes.

Whilst the fragmentation data allowed for the identification

of the lipid headgroup and acyl chains, the location of double

bonds within the fatty acyl chain and the position of fatty acids

on the glycerol headgroup cannot be distinguished by LC-MS/

MS with electrospray ionization, as used for this study. This

means that the specific lipids identified in this study cannot be

synthesized currently as the exact structure is unknown. As the

molecular structure affects the bioactivity of the lipid, this needs

to be ascertained before functional studies can be conducted.

Additionally, commercially available lipids typically contain

identical fatty acids meaning that the UV-lipids identified in

this study cannot be purchased, restricting the functional assays

possible to interrogate whether the specific increases in lipids we

have observed are responsible for inhibiting T cell expansion.

Visualization of UV-altered lipids using imaging mass

spectrometry in combination with imaging mass cytometry

was a powerful interrogation tool which revealed that lipids

with masses close to triglyceride and phosphatidylethanolamine

were found preferentially in T cell areas in the lymph nodes and

further away from B cell follicles. In this study, mass

spectrometry imaging was critical as lipids cannot be imaged

by traditional immunohistochemical or immunofluorescent

methods. However, mass spectrometry imaging does have

some limitations. Mass accuracy is particularly important as it

allows for the accurate identification of the lipid ion. However,

the mass accuracies varied for the instrument used for lipidomic

analysis (mass accuracy of 1 ppm) and imaging mass

spectrometry (mass accuracy of ± 30 to 120 mDa). Since the

imaging mass spectrometer had low mass accuracy and no

fragmentation was done to ascertain the exact lipid identity,

we cannot be certain that the same lipids identified in the

lipidomic studies were imaged. Similarly, without an exact

lipid identity, we are forced to assume that the imaged lipids

were independent of each other and not isotopic ions (the same

compound but with a series of ions differing by onem/z unit). In

addition, the imaging mass spectrometer has lower sensitivity in

comparison to the quadrupole-orbitrap mass spectrometer used

for our lipidomics studies. This resulted in some of the low-

abundance UV-induced lipids not being imaged.

This study has highlighted the ability of UV-induced lipids

to suppress T cell proliferation in the skin-draining lymph

nodes. A number of potential lipid candidates responsible for

the suppression have been identified. Simultaneous

sequestration of naïve and central memory T cells in the

lymph nodes (16) will maximise the chances that the immune

suppressive lipids we have discovered can influence T cell fate.

The current limitations of lipid imaging resolution means that it

is not yet known whether the associated cells are producing the
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lipid or are affected by the lipid. The conspicuous location of the

lipids around the outer regions of the lymph nodes suggests that

the lipids may be draining into the lymph nodes from the

irradiated skin. Alternatively, exposure of the skin to UV,

which enlarges dermal lymphatic vessels (50) and increases

vascular flow, may result in increased drainage of cutaneous

UV-induced lipids. This hypothesis would be consistent with

free fatty acids and triglycerides being depleted in the epidermis

following UV exposure (23). An alternative possibility that we

considered and tested is that UV-induced skin lipids reach the

lymph nodes packaged within large extracellular vesicles (LEV).

UV induces LEV formation by keratinocytes in a PAF-

dependent manner (51, 52) and in humans, LEV numbers

within the skin and plasma (flow cytometrically identified by

their surface expression of calcium-sensing receptors) are

significantly increased post-UVB exposure (39). Our data

shows that the same immune suppressive dose of solar

simulated UV significantly increases the number of keratin-

expressing LEVs in the local-draining lymph nodes 6 hours

following exposure. Increases in skin-derived mast cells are not

detectable in lymph nodes until 24h after UV exposure (8) so

these events would appear to be distinct. To our knowledge this

is the first-time antibodies to keratins have been used to identify

skin-derived LEV. This approach is supported by proteomic data

confirming the expression of keratins in LEVs (53). Showing that

skin-derived LEVs are the source of the T cell-suppressing lipids

in draining lymph nodes awaits next generation flow cytometers

that can sort keratin+ LEVs for lipidomic analysis. In the

meantime, studies inhibiting UV production of LEVs with

topical acid sphingomyelinase inhibitors like imipramine could

be performed. Indeed, this pharmacological strategy has already

been shown to be effective in mice (39) and is currently being

trialed in humans (NCT04520217).

Precisely how UV alters systemic immune responses is not

well known. This is important if we are to harness the beneficial

effects of UV to prevent and treat non-skin diseases like multiple

sclerosis (5). The mechanisms appear to be different to that

which mediate local immune suppression at the irradiated site.

The release of skin-LEVs containing PAF (39) and alterations to

S1P in lymph node nodes (16) are novel and major ways in

which UV modulates distant, non-skin immune responses.

Establishing a lymph node lipidome that suppresses T cell

proliferation appears to be another.
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