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Aim: This study aimed to examine the effect of the weight initializers on the

respiratory signal prediction performance using the long short-term memory

(LSTM) model.

Methods: Respiratory signals collected with the CyberKnife Synchrony device

during 304 breathing motion traces were used in this study. The effectiveness of

four weight initializers (Glorot, He, Orthogonal, and Narrow-normal) on the

prediction performance of the LSTM model was investigated. The prediction

performance was evaluated by the normalized root mean square error (NRMSE)

between the ground truth and predicted respiratory signal.

Results: Among the four initializers, the He initializer showed the best

performance. The mean NRMSE with 385-ms ahead time using the He initializer

was superior by 7.5%, 8.3%, and 11.3% as compared to that using the Glorot,

Orthogonal, and Narrow-normal initializer, respectively. The confidence interval of

NRMSE using Glorot, He, Orthogonal, and Narrow-normal initializer were [0.099,

0.175], [0.097, 0.147], [0.101, 0.176], and [0.107, 0.178], respectively.

Conclusions: The experiment results in this study indicated that He could be a

valuable initializer in the LSTM model for the respiratory signal prediction.

KEYWORDS

respiratory signals prediction, initializer, long short-term memory, radiation therapy, He
initializer, Glorot initializer, orthogonal initializer, narrow-normal initializer
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1 Introduction

During radiation therapy treatment delivery process, tumor in

certain organs, such as the lung, would be subject to substantial

motion due to patient respiration (1–5). This motion may lead to the

leakage of radiation dose from the tumor target to nearby normal

tissues, which would sharply degrade the accuracy and quality of the

radiation therapy treatment. Respiratory motion could be measured

and monitored by several mature techniques. However, the real-time

adaptation to motion during radiotherapy treatment is challenging,

and latencies in hundreds of milliseconds may still exist (6–10).

Hence, prediction of the tumor motion in advance could help

reduce these latencies and improve the quality of radiotherapy

treatment in mobile cancers.

Many machine learning models have been proposed to predict the

respiratory motion. Putra et al. investigated the prediction

performance of the Kalman filter (KF) for a short latency (11).

Recent studies have demonstrated the merit of artificial neural

network (ANN) models on respiratory signal prediction, especially

for the nonlinear signals (3, 12, 13). Sharp et al. indicated that the

ANN models could have better prediction performance as compared

to the KF method (6). Sun et al. proposed a revamped multilayer

perceptron neural network (MLP-NN) called Adaboost MLP-NN

(ADMLP-NN), which showed more accurate predictions than the

MLP-NN (3). One of the main limitations of the ANN models was

that they generally ignore the temporal dependence of the previous

inputs. The recurrent neural network (RNN) was introduced to

include the consideration of temporal information. However, the

gradient disappearance and explosion problems restricted the

application of RNN on long-term memory prediction. A special

RNN model known as long short-term memory (LSTM) (14) had

been proposed to overcome the above weakness of RNN (gradient

disappearance and explosion problems). Various studies have

demonstrated the superior performance of the LSTM model in

different time-series prediction tasks (15–20), including the

respiratory signal prediction. Wang et al. showed that the

prediction performance of a suitable LSTM model could be three-

fold higher than that of the ADMLP-NN model (18). Another two

studies also showed the potential of the LSTM model in the

respiratory signal prediction (19, 20).

Neural network models are sensitive to their initial weights (21,

22). When the neural network was successfully proposed initially, the

Narrow-normal initializer was usually used to generate the initial

value of weight from a predefined normal sampling distribution. The

weights between layers are initialized using a fixed variance

distribution, which may cause the problem of gradient

disappearance or gradient explosion (21, 22). This defect hampered

the extensive use of the Narrow-normal initializer. The Glorot

initializer (23) provided a normalized initialization, which could

maintain the activation and the back-propagated gradient variances

during training based on the linear activation. Then, He et al. took the

rectifier nonlinearity into account and proposed the He initializer

(24). Sachs et al. illustrated that if the initial weight obeyed an

orthogonal matrix, the initial conditions could keep the error vector

norm through the deep neural network during back propagation

process while generating depth independent learning times. Based on

this finding, the orthogonal initializer (25) was proposed.
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While the critical importance of the proper weight initializers on

time-series prediction performance has often been noted in previous

works (21–26), researchers often focused on improving the model

architecture. Therefore, there is a lack of knowledge on the effect of

initializer on respiratory signal prediction using the LSTM model.

The aim of this study was to examine the effect of different initializer

on the performance of LSTM model in the patient respiratory signal

prediction. The primary contributions of this study were concluded

as follows:

1. To the best of our knowledge, this is the first study to investigate

the effectiveness of the weight initializers on the respiratory prediction

problem using the LSTM model. In this study, we investigated the

influence of the four common weight initializers discussed in the

literature (22, 27) on the prediction performance of LSTM model

using 304 breathing motion cases from an open-access database

collected by the CyberKnife Synchrony tracking system (Accuray,

Sunnyvale, CA) with a 26-Hz sampling rate.

2. We further investigated the effect of the irregular breathing

patterns on the prediction performance for each initializer and

demonstrated the advantage of using the He initializer on irregular

respiratory pattern patients.

The results illustrated that the initial weight algorithms in the

LSTM model would exert substantial effect on the respiratory signal

prediction performance. The He initializer could be an optimal choice

for the respiratory signal prediction, especially for the irregular

respiratory pattern patients.
2 Methods

2.1 Prediction process

The general workflow for the prediction process used in this study

is outlined in Figure 1. Each respiratory signal was divided into two

segments separated by time A. Respiratory signals prior to time A

were used as training data, and those after time A were used for

testing. Among the training data, the signals before and after time C

were used as the input and prediction outputs, respectively. LSTM

neural network was implemented as the prediction model. The testing

data (positions after the time A) were used to evaluate the developed

LSTM prediction model. The testing data were divided into two

segments separated by time D. The signals before time D were defined

as the testing input, and those after time D were defined as the testing

outputs or ground truth. The trained LSTM prediction model was

applied to the testing inputs to generate the prediction signal P’,

which was compared to the testing outputs or ground truth P

for evaluation.
2.2 Long short-term memory neural
network

A bidirectional architecture LSTM layer was developed to test the

performance of all the four initializers in this study (17, 18). The

formulas of the LSTM layer are illustrated in the Equations 1–8.

it = s Wxixt  + Whiht−1  +Wcict−1  + bið Þ (1)
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ft = s Wxf xt +Whf ht−1 +Wcf ct−1 + bf
� �

(2)

ct = ftct−1 + it tanh Wxcxt +Whcht−1 + bcð Þ (3)

ot = s Wxoxt +Whoht−1 +Wcoct + boð Þ (4)

ht = ottanh(ct) (5)

hft = tanh Wf
xhxt +Wf

xhh
f
t−1 + bfh

� �
(6)

hbt = tanh Wb
xhxt +Wb

hhh
b
t+1 + bbh

� �
(7)

yt = Wf
hyh

f
t +Wb

hyh
b
t + by (8)

Here, it, ft, ct, ot, ht, h
f
t , h

b
t , and yt refer to the input gate, forget

gate, memory cell vectors, output gate, hidden vector sequence,

forward hidden vector sequence, backward hidden vector sequence,

and output, respectively. The tanh and s stand for the two activation

functions as given by the Equations 9 and 10.

s (x) =
1

1  + e−x
(9)

tanh (x) =
ex − e−x

ex + e−x
(10)

Wxi,Whi,Wci,Wxf,Whf,Wcf,Wxc,Whc,Wxo,Who, andWco denote

the weighted parameters, while the bi, bf, bc, and bo represent the

intercepts. A plurality of LSTM layers can be stacked into a deeper

neural network, which can fit the complicated functions between the

inputs and targets.
2.3 Initializers

For the Glorot initializers (also called the Xavier initializer), the

weights Wij of each layer were initialized with the heuristic as follows
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Wi j  e  U −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

NI +NO

s
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

NI +NO

s" #
(11)

Here, U[ −d, d ] was sampled independently from a zero-mean

uniform distribution in the bounds [ −d, d ] . N0 was four times of the

hidden unit number, and NJ was the input channel number.

For the He initializer (24), the weights Wij were sampled

according to a zero-mean normal (Gaussian) distribution with the

following standard deviation (SD):

Wij  e  G −

ffiffiffiffiffiffiffiffi
2

NI

r
,

ffiffiffiffiffiffiffiffi
2

NI

r� �
(12)

Here, the size of NJ was the input channel number for the input

weight and the hidden unit number for the recurrent weight.

For the Orthogonal initializer (25), the orthogonal matrix Q was

first established by producing the Gaussian matrices randomly and

then computed by the QR decomposition using the formula Z = QR,
where Z obeyed unit normal distribution.

For the Narrow-normal initializer, the weights were obtained by

sampling from a normal distribution with 0 mean and 0.01

SD independently.
2.4 Prediction performance evaluation

A total of 304 breathing motion traces collected by the

CyberKnife Synchrony (Accuray, Sunnyvale, CA) tracking system

and procured from an open dataset (18, 28) were used in this study.

The detail information of the dataset is illustrated in Table 1. The first

1-min signal was used to train the LSTM model with different initial

methods, while the following 30 s was applied to evaluate the

effectiveness of each initial method. The ahead time was about 385

ms (10 samples). All the evaluation metrics were based on the

following default hyper-parameters in this study: three LSTM

layers, 0.001 initial learning rate, 50 time lags, and 300 hidden units.

RMSE is one of the main metrics used for respiratory signal

prediction evaluation (2–4, 8–11, 19, 20). However, the root mean
FIGURE 1

Flow chart of the prediction algorithm.
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square error (RMSE) was not a dimensionless and normalized metric

(29), and it would not be suitable for comparing the performance of

respiratory signal prediction across different patients before

normalization (12, 18). Hence, in order to minimize the effect of

signal amplitude on different cases, the NRMSE instead of the RMSE

between the real and predicted signal were used to evaluate the

predication performance for all initializers (29). The NRMSEs used

in this study are illustrated by Equations 13 and 14.

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tA+B−tD+1+1oA+B

t=tD+1
P0 tð Þ − P tð Þ� �2r

Range P tð Þð Þ (13)

Range P tð Þð Þ = Max P tð Þð Þ −Min P tð Þð Þ   tϵ D + 1,A + Bð Þ   (14)

Here, P(t) and P'(t) were the ground truth and predicted signal at

the time fame t, respectively.

Breathing irregularity was examined to test prediction

performance of the LSTM model using the four initializers on

different breathing patterns. As illustrated in the Equation 15, the

breathing irregularity was defined as the average of the standard

deviation (SD) of the maximum (i.e., peak) and minimum (i.e., valley)

amplitudes. Patients were split into two groups by the median value of

the irregularity (r= 0.22).

r =
SDpeaks + SDvalleys

2
(15)
3 Results

Figure 2 shows the NRMSEs using four initializers (Glorot, He,

Orthogonal, and Narrow-normal) with a 385-ms ahead time. The He

initializer showed the best prediction performance. The mean of

NRMSE using the He initializer was lower by 7.5%, 8.3%, and 11.3%

compared to the Glorot, Orthogonal, and Narrow-normal initializer,

respectively. The He initializer was more robust than the other three

initializers, as it achieved the narrowest confidence interval (CI)

among all the four initializers.
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The prediction performance of the four initializers with different

ahead time is shown in Figure 3. The prediction performance using all

of the four initializers decreased when the ahead time increases. The

prediction performance using the He initializer for all the ahead time

examined in this study were higher than the other three initializers.

The average prediction performance gap between the He initializer

and other three initializers increased when the ahead time increases.

The prediction performance of the regular and irregular breathing

groups, which are divided by the median irregularity is shown in

Figure 4. For all the four initializers, the performance of the irregular

group was inferior to the regular group. The prediction performances

of Glorot, He, and Orthogonal were similar in the regular group.

However, the mean of NRMSE in the irregular group using the He

initializer was superior by 11.0% (Glorot), 11.6% (Orthogonal), and

14.1% (Narrow-normal), respectively. The upper limits of the 95%

confidence interval (CI) of the NRMSE for the irregular group

patients were lowest for He (0.147) and were 0.175, 0.176, and

0.178 for Glorot, Orthogonal, and Narrow-normal, respectively.

The effect of the four important hyper-parameters on the

prediction performance was explored and shown in Figure 5. Four

different values (1, 2, 3, and 4) were selected to evaluate the effect of

the Nl on the prediction performance (Figure 5A). The LSTM model

showed the similar prediction performance with one to three LSTM

layers for the Glorot and Orthogonal initializers. For He and Narrow-

normal initializers, the LSTM model with two or three LSTM layers

showed similar prediction performance. The effect of Tl on the

prediction performance was examined by five selected values (1, 5,

10, 25 and 50) (Figure 5B). Time lag of 10 showed the best

performance for the He and Narrow-normal initializers, while 5

showed the best performance for the other two initializers. The

influence of Hu was explored on five values (30, 50, 100, 300, and

500) (Figure 5C). The prediction performance kept improving as the

Hu increased from 30 to 500 for all the four initializers. Four Lr values
(0.0001, 0.001, 0.01, and 0.1) were investigated. The NRMSE using the

first three initializers (Glorot, He, and Orthogonal) was lowest when

Lr was 0.001. Narrow-normal initializer showed the best prediction

performance when Lr was 0.01.
TABLE 1 Detail information of the dataset used in this study.

Items Result

Sampling Rate 26 Hz

Collected Equipment CyberKnife Synchrony

Treatment Place Georgetown University Hospital

Trace Number 304

Treatment Fraction 102

Patient Number 31

Private Information None

Respiratory Signal Record Way Fiducial marker on patient’s chest

Datasets Range in Duration 80–158 min

Imaging Data None
FIGURE 2

Prediction performance of the four initializers.
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4 Discussion

The effect of four common initializers on the performance of

respiratory signal prediction using the LSTM model was examined in

this study. The results illustrated that the He initializer outperformed

the other three initializers for its higher respiratory prediction

performance. A suitable initializer would substantially improve the

prediction performance.

The prediction performance using all the four initializers became

lower when the ahead time increases. This was probably because the

relationship between the training and predicted respiratory signals

would diminish when the ahead time increases. However, the

prediction performance deterioration using the He initializer was

slower than the other three methods. This may suggest that the He

initializer could enhance LSTM’s ability to capture longer ahead

time information.

The prediction performance of the irregular breathing group was

lower than the regular breathing group for all the four initializers.

This may be contributed by the factor that the relationship between

the prior and future signals in the irregular group was more difficult to
Frontiers in Oncology 05
capture than that in the regular group. The prediction performance of

Glorot, He, and Orthogonal was similar in the regular group.

However, the mean of NRMSE using the He initializer in the

irregular group was lower compared to other three initializers. This

suggested the superior ability of He initializer in capturing connection

between prior and future signals. The upper limit of the 95% CI of the

NRMSE using the He initializer was lower than that using other three

initializers, suggesting that the He initializer might improve the

general performance of the LSTM model in breathing

signal prediction.

We also investigated the influence of hyper-parameters setting

on the prediction performance for each initializer. A total of four

important hyper-parameters was examined in this study. A large

numerical value of the first three hyper-parameters (Nl, Tl, and Hu)

represented a complex network, which would fit a more

complicated function but easy to overfit. The prediction

performance became better as the first three hyper-parameters

increased initially. However, as these three hyper-parameters

continue to increase, the prediction performance improved only

slightly and even could deteriorate. This may be because when these
FIGURE 4

Prediction performance of the two groups divided by the median irregularity. The green and red bars represented 95% CI of the NRMSE for the RE and IR
groups, respectively.
FIGURE 3

Prediction performance of the four initializers with different ahead times.
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three hyper-parameters were too small, the LSTM model would not

fit the respiratory curve well. Hence, the increase in these three

hyper-parameters could improve the prediction performance

initially. However, too large Nl, Tl, and Hu would raise the risk of

overfitting for the LSTM model and potentially degrade the

prediction accuracy. The Lr scales and updates the magnitude of

the LSTM model weights to minimize the loss function. If Lr was
too small, the converge time would be long, and the risk of trapping

in undesirable local minimum increases. On the other hand, if Lr
was too large, a suboptimal result may be obtained. Finally, 0.001

and 0.01 achieved the best performance for Narrow-normal and the

other three initializers, respectively.

One of the limitations of this study was that all the respiratory

signals from this database were originally detected by the fiducial

marker placed on patient’s chest. These external signals may be

different from the real internal tumor motion. Besides, the dataset

was collected from a single center. In the future, we would further

evaluate the effect of the initializers on actual tumor motion signals or

internal respiratory signals ideally from multi-centers.
5 Conclusion

The influence of the four weight initializers on the performance

of respiratory signal prediction using the LSTM model was

investigated in this study. The results suggested that the weight

initialization methods would exert substantial effect on the

respiratory signal prediction performance. The He initializer could

be an optimal initializer for the respiratory signal prediction

using the LSTM model, especially for the irregular respiratory

pattern patients.
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