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In this paper, taking the shale of Chang 7-Chang 9 oil formation in Yanchang
Formation in the southeastern Ordos Basin as an example, through the study of
shale heterogeneity characteristics, starting from the preprocessing of supervision
data set, a logging interpretation method of total organic carbon content (TOC) on
the lithofacies-based Categorical regression model (LBCRM) is proposed. It is show
that: 1) Based on core observation, and Differences of sedimentation and structure,
five lithofacies developed in the Yanchang Formation: shale shale facies, siltstone/
ultrafine sandstone facies, tuff facies, argillaceous shale facies with silty lamina and
argillaceous shale facies with tuff lamina. 2) The strong heterogeneity of shale makes
it difficult to accurately explain the TOC distribution of shale intervals in the
application of model-based interpretation methods. The LBCRM interpretation
method based on the understanding of shale heterogeneity can effectively
reduce the influence of formation factors other than TOC on the prediction
accuracy by studying the characteristics of shale heterogeneity and constructing
a TOC interpretation model for each lithofacies category. At the same time, the
degree of unbalanced distribution of data is reduced, so that the data mining
algorithm achieves better prediction effect. 3) The interpretability of lithofacies
logging ensures the wellsite application based on the classification and regression
model of lithofacies. Comparedwith the traditional homogeneous regressionmodel,
the prediction performance has been greatly improved, TOC segment prediction is
more accurate. 4) The LBCRM method based on shale heterogeneity can better
understand the reasons for the deviation of the traditional model-based
interpretation method. After being combined with the latter, it can make logging
data provide more useful information.
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1 Introduction

Organic matter content is an indispensable basic data for source rock evaluation, shale oil
and gas reservoir evaluation and sweet spot prediction. (Curtis, 2002; Passey et al., 2010;
Sondergeld et al., 2010; Alfred and Vernik, 2012; Ma, 2015; Altowairqi et al., 2015; Aldrich and
seidle, 2018; Guo et al., 2021; Wei et al., 2021; Meng, 2022). Laboratory core test and analysis
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technology is the most direct and accurate means to obtain the organic
matter content of shale, in which total organic carbon content (TOC)
is the most readily available and commonly used characterization
index of organic matter content. Restricted by the lack of core data or
incomplete coring in most wells, the interpretation of formation TOC
with high resolution and high coverage logging data is an important
means for rapid, accurate and continuous quantitative evaluation of
organic matter content in shale formations (Yu et al., 2017; Wang
et al., 2019; Liang et al., 2021; Chan et al., 2022; Meng et al., 2022; Zhao
et al., 2022).

At present, a large number of TOC logging interpretation
methods, techniques or models have been proposed. These
methods can be divided into two categories: model-driven and
data-driven (Huang and Williamson, 1996). Model-driven methods
include formation density curve method (Schmoker, 1979; Schmoker
and Hester, 1981), natural gamma intensity method (Schmoker, 1981;
fertl and Chilinger, 1988), I-x method (Dellenbach et al., 1983), ΔlogR
and its improved method (Passey et al., 1990; wang et al., 2016; zhao
et al., 2017), CARBOLOG (Carpentier et al., 1991), etc. This type of
method constructs a statistical relationship between logging response
and TOC through specific assumptions (Sondergeld et al., 2010). For
example, the formation density curve and the natural gamma intensity
method construct the TOC logging interpretation method through the
linear volume equation of the logging response (Huang and
Williamson, 1996), and the ΔlogR establishes the non-linear
relationship between the ΔlogR and the TOC by obtaining the
superposition baseline of the porosity curve and the resistivity
curve at the pure water-bearing non-hydrocarbon source rock
under the premise of the known shale mature section (Passey
et al., 1990; 2010).

Huang and Williamson (1996) pointed out that the model-driven
method need to determine the key parameter to accurately estimate
the organic matter content of the shale section. The above drawbacks
restrict the application of model-driven methods in the interpretation
of organic matter content and promote the development of data-
driven methods (Huang and Williamson, 1996). Different from the
model-driven method, the data-driven method can fully explore the
statistical relationship between multi-logging response characteristics
and TOC, which is more suitable for TOC interpretation of strongly
heterogeneous shale (Huang andWilliamson, 1996). Currently, a large
number of data mining algorithms have been applied to TOC logging
interpretation, including multiple linear regression, Gaussian mixture,
optimization algorithm, SVM, BP neural network, deep neural
network, etc., (Mendelzon and Roksoz, 1985; Huang and
Williamson, 1996; Wang et al., 2014; Tan et al., 2015; Yu et al.,
2017; Zhu et al., 2020; Zheng et al., 2021; Chan et al., 2022).

In the data-driven TOC interpretation technology, there are
two challenges: First, the formation logging response is not only
affected by TOC, but also by multi-formation factors such as
particle size, mineral composition, element composition, pore
development degree, pore fluid properties, etc., resulting in the
logging response and organic matter content is not a simple linear
relationship (Huang et al., 1996; yang et al., 2004; rezaee et al.,
2007). The above characteristics have caused a prominent problem,
whether the conventional logging series can provide sufficient
features to make the TOC interpretation have high enough
accuracy, in other words, in the formation with the same or
similar logging response, whether the samples have different
TOC values. Chan et al. (2020) showed that the accuracy of

TOC interpretation based solely on conventional logging series
may not be ideal. The TOC deep learning interpretation model
constructed by adding element information to conventional
logging series data is significantly better than the results of
Mahmoud et al. (2017) that rely solely on conventional logging
prediction models (Chan et al., 2020). It can be seen that the simple
introduction of more complex machine learning algorithms cannot
completely solve the accurate interpretation of TOC. It is also
necessary to understand the above problems from the perspective
of data characteristics, which is particularly important in shale oil
and gas reservoirs with strong heterogeneity of lithology, mineral
composition and elemental composition.

Another problem comes from the data mining algorithm itself. In
all data-driven TOC interpretation methods, the goal is to minimize
the difference between the predicted value and the true value of the
expected value (such asMSE and RMSE, etc.) (Huang andWilliamson,
1996; Wang et al., 2014; Tan et al., 2015; Yu et al., 2017; Zhu et al.,
2020; Zheng et al., 2021; Chan et al., 2022), which is the most direct
indicator of learning algorithms in model training and performance
verification. However, TOC test samples are often sampled by
equidistant or random methods. The strong heterogeneity of shale
inevitably causes some TOC numerical interval samples to be more
concentrated. The TOC data exhibit skewed distribution with a long
tail (Yu et al., 2019; Wang et al., 2012), causing an imbalance in data
distribution (Branco et al., 2016). The learning goal of minimizing the
expected difference makes the learning algorithm pay more attention
to the characteristics of high-frequency distribution samples, resulting
in lower prediction accuracy for data with a small number of samples
(Branco et al., 2016; 2018). Unfortunately, the TOC interval with low
data density may be the focus of shale reservoir research, such as shale
sections with high TOC distribution. At present, the application of
learning algorithms in imbalanced data is still less involved in
regression problems such as TOC logging interpretation (Branco
et al., 2016; 2018).

In view of the above problems, this paper takes Yanchang
Formation in Ordos Basin as the research object, and proposes a
logging interpretation method of organic carbon content based on
rock facies classification regression model (LBCRM) from the
preprocessing of supervised data sets. This method adds an
additional dimension of lithofacies to the TOC-logging response
monitoring data set through the study of shale heterogeneity
characteristics. The TOC interpretation sub-model based on SVM
algorithm is constructed by classification, which effectively reduces the
influence of formation factors other than TOC on TOC interpretation
accuracy. At the same time, the degree of unbalanced data distribution
is reduced, which makes the data mining algorithm achieve better
prediction results. XGboost can be used to construct a high-precision
rock facies logging identification method, which ensures the
availability of rock facies and makes this method have practical
application potential. In addition, based on the analysis of
heterogeneity characteristics, the interpretation results of this
method can also be combined with the traditional model-driven
method to obtain more formation parameters.

2 Materials

This study is based on the Yanchang Formation shale in the
southeastern Ordos Basin (Figure 1A). The shale is a Triassic
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continental deposit, and the mud shale section is located in the Chang
7 ~ Chang 9 oil formation. The data come from core samples and
conventional logging curves of 12 wells (Figure 1B). As shown in
Table 1, based on the core description of the above 12 wells, the
samples were selected for TOC, mineral composition, extraction and
pyrolysis test, and the core homing work was carried out.

Among them, the TOC sample size is 459. Statistics show that the
TOC distribution is 0.34 wt%~29.11 wt% (4.76% on average). From

Figure 1C, it can be found that the data exhibit skewed distribution
with a long tail. The high-density data distribution area is located at
3 wt% ~ 8 wt%, showing that the data has an unbalanced distribution
(Buda et al., 2018; Liu et al., 2019).

In addition to the TOC test, the whole rock mineral composition
and pyrolysis test were also carried out in this study. These data were
used to illustrate the differences in mineral composition and oil
content of different lithofacies.

FIGURE 1
(A) Location of Ordos Basin and study area (modified by Yang et al., 2005); (B) Horizontal distribution of wells in the study area; (C) TOC frequency
distribution histogram.

TABLE 1 Testing data and conventional well logs used in this study.

Well
name

Testing Gamma
ray (GR)

Sonic
(DT)

Resistivity
(ILD,ILM, Rt)

Density
(DEN)

SGR
(URAN,
THOR,
POTA)

Neutron
porosity
(CNL)

Caliper
(CAL)

TOC Mineral
composition

Pyrolysis

YY2 16 × × √ √ √ √ √ √ √

YY12 25 × × √ √ √ √ √ √ √

YY18 50 25 × √ √ √ √ √ √ √

YY22 104 52 × √ √ √ √ √ √ √

YY27 25 × 27 √ √ √ √ √ √ √

YY28 52 35 26 √ √ √ √ √ √ √

FY1 74 21 × √ √ √ √ √ √ √

FY3 30 23 × √ √ √ √ √ √ √

B36 20 × × √ √ √ √ √ √ √

WY1 46 13 12 √ √ √ √ √ √ √

W169 8 × × × √ √ × × × ×

DT5 9 × × × √ √ × × × ×
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Except W169 and DT5 wells which lack Density, SGR and Neutron
logging series, 10 wells have complete logging series. In this study, the
10 wells were selected to construct the LBCRM method, W169 and
DT5 were used for the extended application of the LBCRM method.

3 Methodology

3.1 Principle of LBCRM

In essence, data-driven TOC logging interpretation is a typical data
regression problem based on learning algorithms. Suppose that a
supervised data set Dt � (xi, yi){ }ni�1, where x∈X, y∈Y, is derived from
the joint distribution PX × Y. The goal of the data-driven method is to
establish a mapping relationship f∈F:X ->Y, such that the expected error
εex � E(x,y)~PX × Y L(f(x), y) is minimized, where L (f (x), y) is the loss
function, representing the difference between the predicted value f (x) and
the supervised target y value. In practice, the joint distribution PX × Y is
unknown, x and y generally take values from the supervised data setDt, so
the objective of the regression problem is to minimize
εem � E(x,y)~Dt L(f(x), y). When the supervised data set is large
enough, ε = |εex-εem| is small enough, so that the regression fitting
relationship f has better prediction effect. For logging interpretation, x
is the conventional logging response, f is the formation characteristic
parameters, including mineral composition, element composition and
organic matter content.

Compared with the easily available TOC data, other formation
parameter data are often difficult to obtain for various reasons.
Therefore, the target output in the supervised data set Dt of TOC
logging interpretation is only TOC data. This requires that
conventional logging responses can provide sufficient differentiated
features to distinguish TOC values. A comparative study by Chan et al.
(2020) and Mahmoud et al. (2017) found that prediction accuracy can
be significantly improved by adding dimensional information to
conventional logging responses, suggesting that conventional
logging responses may not be sufficient to provide complete
features for accurate interpretation of TOC.

Similar to Chan et al. (2020), the TOC interpretation model based
on rock facies classification and regression improves the prediction
accuracy of TOC by adding additional dimension information to
logging information. Based on the study of shale heterogeneity, this
method constructs a relatively homogeneous lithofacies unit and uses
it as additional information to constrain TOC interpretation. The
mathematical expression of the regression target of this method is to
divide the Dt data set into m subsets Dm

t , and establish a function
mapping relationship fj for each subset to minimize Eq. 1:

εem �∑m
j�1
εjem �∑m

j�1
E x,y( )~Dj

t
L f x( ), y( ), (1)

where m is the number of types of lithofacies units,j∈ [1.2,. . .m].
Figure 2 shows the basic idea of this method. Traditional data-

driven TOC interpretation methods use a uniform regression model
(URM) when constructing prediction models. As shown in Figure 2A,
firstly, the homogeneous regression model ignores that the input data
is not enough to provide enough differentiated features to describe the
output target. Secondly, the data imbalance in the supervised data
makes the learning algorithm have the data characteristics in the
rectangular area in Figure 2B, but the fitting model in Figure 2A

cannot have good prediction performance for the data outside the gray
rectangular area. The classification fitting regression model shown in
Figure 2C can increase the type dimension information, so that the
learning algorithm can obtain a more accurate prediction model in the
data within different categories. At the same time, as shown in
Figure 2D, this method can also reduce the imbalance of the data,
so that the learning algorithm will not only focus on the data with high
frequency distribution, especially for the high density of local data
distribution caused by the coincidence of different types of data.

3.2 Classification of lithofacies

At present, the classification of shale rock facies is mainly divided
into two categories. One is based on the difference of sedimentary and
structure on the core scale of mud shale section (Singh et al., 2008;
Zhen et al., 2016; Kristen, 2015; Long et al., 2022; Zhang et al., 2022);
the second is based on rock physics parameters, especially mineral
composition parameters (Wang et al., 2012; Gao et al., 2018; Ou et al.,
2018; Schlanser, 2015).

In this study, the rock has three corresponding characteristics. One
is that the rock facies type is not easy to be too complicated for the
consideration of well site application, which makes it difficult to
establish a logging identification method with high prediction
accuracy. The second is easy to obtain. On the one hand, it is
conducive to the formation of large-scale data sets, on the other
hand, the rock type classification using TOC data; The third is the
thickness of rock facies should be above the vertical resolution of the
logging. Taking DEN with the highest vertical resolution in
conventional logging as an example, the thickness of rock facies
should be at least 30 cm.

Due to the numerous petrophysical parameters affecting the
logging response, a more complex classification scheme will be
formed in the rock facies construction, and it is easy to fall into
the rock facies classification only for TOC data with petrophysical
parameters. Therefore, this study uses the difference of sedimentary
and structure on the core scale as the basis for the division of rock
facies. At the same time, in order to avoid the occurrence of complex
lithofacies types, only the sedimentary characteristics that have
obvious influence on rock physics characteristics are considered. In
addition, in order to correspond to the vertical resolution of logging,
the thickness of a single rock facies layer is at least 30 cm.

3.3 Machine learning method

The data mining algorithms used in this study include SVR
(support vector machine) and XGboost. In addition, genetic
algorithm is used to optimize the hyperparameters of the above
two algorithms, and K-fold cross validation is used to improve the
generalization ability of the training model.

3.3.1 SVR method
SVR has incomparable advantages in data mining of small sample

data sets. Considering that there may be a small amount of data in
some data sets after the construction of sub-data sets, this paper
chooses SVR as the basic data mining algorithm for TOC logging
interpretation. The basic concept of SVR method is to project the
input data into a higher dimension by kernel function, so as to find a
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hyperplane to establish a regression function. For a given data set
{(x1,y1),. . .. . ., (xl,yl) }, where xi∈Rn is the input data, yi∈R1 is the target
output value, and the SVR estimation function is:

f x( ) � wT · Φ x( ) + b, (2)
where w and b are hyperplane parameters, Φ(x) denotes the
eigenvectors after x projection. The standard form of SVR for
solving hyperplane parameters is (Vapnik, 1998):

min
w, b, ξ, ξ*

1
2
wTw + C∑l

i�1
ξ i + ξ*i( ). (3a)

受制于.
Subject to

wT ·Φ xi( ) + b − yi ≤ ε + ξ i, (3b)
yi − wT ·Φ xi( ) − b≤ ϵ + ξ*i ,

ξi, ξ
*
i ≥ 0, i � 1,/, l,

where C is the penalty coefficient or regularization parameter, and ε,
ξ,ξ*∈R are slack variables introduced to penalize the fitting function.
Eq. 1 can be transformed into a dual problem to solve, and the original
problem is transformed into its corresponding Lagrangian function
form, and by minimizing:

min
α, α*

1
2
∑l
i�1
∑l
j�1

αi − α*i( ) αj − α*j( )K xi, xj( ) + ε∑l
i�1

αi + α*i( )
+∑l

i�1
yi αi − α*i( ). (4a)

Subject to

∑l
i�1

αi − α*i( ) � 0, (4b)

0≤ αi, α
*
i ≤C, i � 1,/, l,

where αi = (α1, α2,. . .αl) is the Lagrange multiplier, and K (xi,xj) is the
kernel function. The final regression equation is:

f x( ) �∑n
i�1

αi − α*i( )K xi, xj( ) + b. (5)

In this paper, polynomial kernel function, radial basis kernel
function (RBF) and sigmod kernel function are selected to
explain TOC respectively, so as to optimize the best kernel
function type.

3.3.2 XGboost
XGboost was first proposed by Chen and Guestrin (2016). It is a

machine learning algorithm that relies on the boosting principle
and explores weak learners to comprehensively predict. This is
mainly due to its well-known high prediction accuracy. Its basic
principle is to generate a sub-classifier to fit the prediction residuals
of the previous sub-classifiers, thereby continuously reducing the
residuals between the true value and the predicted value, and finally
integrating all sub-classifiers to give the final prediction result. The
expression is:

ŷi �∑K
k�1

fk xi( ) , fk ∈ F. (6)

FIGURE. 2
Schematic diagram of regression prediction model based on rock facies classification (A) The effect of using a uniform regression fitting model in the
case of incomplete input data and unbalanced supervised data; (B) The unbalanced distribution characteristics of the data set; (C) The effect of using
classification fitting regression fitting model in the case of incomplete input data and unbalanced supervised data; (D) classification fitting regression
subdataset imbalance distribution reduction.
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Among them, ŷi is the calculated predictive value of the i th
sample; K denotes the number of decision trees; fk denotes the kth
submodel; xi represents the input feature of the ith sample; F
represents the set of sub-classifiers. In the Xgboost sub-classifier,
the Classification and Regression Tree is usually selected. In the
Xgboost algorithm, the objective function is composed of a loss
function and regularization parameters. The expression is:

L φ( ) �∑
i

l ŷi, yi( ) +∑
k

Ω fk( ), whereΩ f( ) � γT + 1
2
λ w‖ ‖2 . (7)

Among them, l(ŷi, yi) is the residual between the predicted
value ŷi and the target value yi; fk is the function expression of the k
sub-classifier; Ω(fk) is the penalty term of the model complexity,
which can be used to smooth the final learned weights to avoid
overfitting. XGboost is trained iteratively to obtain an
approximation of L(φ). Assuming that the sub-classifier trained
in the t iteration is ft, after the t iteration, the objective function can
be expressed as:

Lt �∑n
i�1
l ŷt−1

i + ft xi( ), yi( ) +Ω fk( ). (8)

Equation. 8 can be further optimized using second-order
approximation:

Lt �∑n
i�1

l ŷt−1
i , yi( ) + gift xi( ) + 1

2
hif

2
t xi( )[ ] +Ω fk( ), (9)

where, gi and hi are the first-order and second-order partial derivatives
(gradients) of l, respectively, where gi � zŷt−1 l(ŷ(t−1)

i , yi) 和

hi � z2ŷt−1 l(ŷ(t−1)
i , yi). After taking them into Eq. 9 and removing

the constant term, we can obtain:

~L
t �∑n

i�1
gift xi( ) + 1

2
hif

2
t xi( )[ ] +Ω ft( ). (10)

Define Ij={i | q (xi) = j} as an instance set of leaf node j. Eq. 10 is
rewritten by extending Ω to:

~L
t �∑n

i�1
gift xi( ) + 1

2
hif

2
t xi( )[ ] + γT + 1

2
λ∑T
j�1
wj

2

�∑n
j�1

∑
i∈Ij

gi
⎛⎝ ⎞⎠wj + 1

2
∑
i∈Ij

hi + λ⎛⎝ ⎞⎠w2
j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + γT. (11)

Therefore, the objective function is transformed into a function of
the first and second partial derivatives of the loss function l, the leaf
node weight, and the number of leaf nodes. In the case of fixed tree
structure q(x) the optimal weight wj*of leaf node j can be calculated by
the following formula:

FIGURE 3
The difference of sedimentary and structure on the core scale (A–E): The characteristics of different rock facies on the core (F) distribution and logging
response of rock facies in coring section of well YY22.

Frontiers in Earth Science frontiersin.org06

Yin et al. 10.3389/feart.2022.1106799

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1106799


w*
j � − ∑i∈Ij gi∑i∈Ij hi + λ

. (12)

The optimal solution formula of the objective function is as
follows:

~L
t
q( ) � −1

2
∑T
j�1

∑i∈Ij gi
2∑i∈Ij hi + λ

+ γT. (13)

XGboost iteratively adds branches to construct sub-classifiers on
the initial leaf nodes through a greedy algorithm to determine the
optimal tree structure of the CART tree. Suppose there is a leaf node, IL
and IR are instances of the left and right nodes after the node is
branched. Let I = IL∪IR, then the loss after branching is reduced to:

Lsplit � 1
2

∑i∈IL gi
2∑i∈IL hi + λ

+ ∑i∈IR gi
2∑i∈IR hi + λ

− ∑i∈I gi
2∑i∈I hi + λ

[ ] − γ. (14)

If Lsplit is greater than 0, the objective function decreases after the
leaf node is split into two leaf nodes, so as to determine the node
segmentation. On this basis, XGboost is optimized by feature pre-
ranking, quantile approximation, and parallel lookup to quickly find
the nearest split point.

3.3.3 Genetic algorithm
In the SVM and XGboost algorithm, there are a large number of

hyper-parameters, which will affect the final prediction results.
Therefore, it is necessary to use hyper-parameter optimization
algorithm to determine which hyper-parameter system the SVM

FIGURE 4
Frequency distribution histogram of TOC in TUFF (A), SS (B), AS (C), ASLS (D) and ATLS (E).
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and XGboost algorithm can achieve the best prediction results.
This study used Genetic Algorithm to optimize hyperparameters.

Genetic algorithm was first proposed by Holland (1973). It is a
parallel stochastic optimization algorithm developed from the
simulation of natural genetic mechanism and biological evolution
theory. The genetic algorithm starts with a set of randomly generated
parameters to be optimized, which is called the initial population,
where each parameter pair is called an individual. Genetic algorithm
encodes each individual in series to form chromosome, and
determines the fitness function according to the optimization
objective to calculate the fitness of each individual. Several
individuals with high fitness values are selected from the initial
population, and the chromosomes encoded by these individuals are
crossed and mutated to form a new generation of individual
populations. Then the fitness of each individual in the new
population is calculated, and the above operations are performed
repeatedly until the target value or the maximum number of iterations
satisfying the fitness is met. In the iterative process, the genetic
algorithm can preserve the individuals with good fitness values and
eliminate the individuals with poor fitness. The new population not
only inherits the information of the previous generation, but also is
superior to the previous generation. Through continuous iteration, the
parameters can be optimized.

3.4 Evaluation metics systems

In order to evaluate the predictive performance of the model,
four evaluation indicators were used in this study, including RMSE,
R2, MAE, MAPE, Mlogloss and Confusion matrix. The first four
indexes are used to evaluate the prediction performance of TOC,
and the latter two are used to evaluate the accuracy of rock facies
identification.

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
, (15)

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣, (16)

MAPE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣
yi

, (17)

Among them, yi represents the true value of TOC, ŷi is the predicted
value of TOC, and n represents the number of TOC data. The lower
the value of the above index represents the better performance of the
prediction model.

mlogloss � −1
n
∑n
i�1
∑m
j�1
yi,j log pi,j( ), (18)

where n represents the number of samples, i is the ith sample; m
represents the number of classes, j is the jth category; yi,j represents
whether the ith sample belongs to the jth class, belongs to 1, else to 0;
pi,j represents the probability that the prediction model predicts the
ith sample as j.

The Confusion matrix is defined as:

Confusionmatrix �
n11 n12 / n1m
n21
..
.

n22 /

..

.
1

n2m
..
.

nm1 nm2 . . . nmm

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (19)

In the formula, m is the number of categories divided, the subscript
represents the label, and nij represents the number of samples whose real
label is i and predicted as j. The Confusion matrix can be used to obtain
the prediction accuracy, the accuracy of each category (P), and the recall
rate (R). The calculation formula is as follows:

acc � ∑m
i�1nii∑m

i�1∑m
j�1nij

, (20)

Pi � nii∑m
j�1nji

i ∈ 1,/, m, (21)

Ri � nii∑m
j�1nij

i ∈ 1,/, m. (22)

TABLE 2 Comparision of mineral Composition and Pyrolysis parameters for different lithofacies.

Lithofacies Type Mineral composition Pyrolysis parameters

Feldspar and
quartz (%)

Clay (%) Carbonate
(%)

Pyrite
(%)

S1
(mg/g)

S2 (mg/g) S1/TOC × 100 (mg/
g TOC)

TU Average 82.26 13.12 3.76 0.86 0.32 0.96 26

Range 73.3~87.8 8~17.5 0~9.2 0~2.5 0.31~0.32 0.84~1.07 4~48

ATSL Average 41.57 42.67 6.18 8.88 3.75 16.88 62

Range 24.6~63.1 22~56.5 0~17.3 2.4~24.9 0.86~6.4 4.3~48.29 24~108

AS Average 33.74 57.02 6.78 2.48 3.65 11.10 70

Range 17.6~48.5 45.5~75 0~18.3 0.4~7 2.3~5.54 8.24~16.32 5~109

ASLS Average 45.66 41.33 11.22 1.79 4.75 9.67 116

Range 27~63.8 20.5~56 2.3~36.3 0.4~6.3 1.93~6.14 4.22~15.2 75~302

SS Average 57.17 24.74 17.22 0.86 2.15 4.20 173

Range 13.8~82.4 8.7~37.5 3.6~50.5 0~4 0.37~6.2 0.47~15.71 69~398
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4 Discussion

4.1 Lithofacies and characteristics

4.1.1 Lithofacies
Based on core observation, according to the difference of

sedimentary structure and structure, five lithofacies are developed
in the shale of Yanchang Formation, which are argillaceous shale facies
(AS), siltstone/very fine sandstone facies (SS), tuff facies (TUF),
argillaceous shale facies with silty lamina (ASLS) and argillaceous
shale facies with tuff lamina (ATLS). The above five rock facies are easy
to identify at the core scale. AS are black, grayish black, fine particles
(Figure 3A), and do not develop or develop a small amount of silty or
tuffaceous layers; SS is mainly gray and grayish white, and a very small
amount of grayish black argillaceous bands are developed (Figure 3B);
TUF is grayish yellow, easily broken (Figure 3C), relatively
homogeneous, and basically does not develop other lithologic
layers; ASLS are mainly gray-black argillaceous shale, with a large

number of gray-white and gray silty layers distributed inside. The
thickness of these layers is generally millimeter and centimeter
(Figure 3D), and the cumulative thickness of silty layer accounts
for 20%–50%. The main body of ATLS is black argillaceous shale, with
a large number of yellow or grayish yellow tuffaceous laminae
distributed inside. The laminae thickness is generally in the
millimeter and centimeter levels (Figure 3E). The cumulative
thickness of the tuffaceous layer accounts for 20%–50%. Based on
the above principles, a columnar distribution map of rock facies in
12 wells was drawn.

4.1.2 Distribution characteristics of TOC in
lithofacies

In the TOC frequency distribution diagram of different lithofacies
shown in Figure 4, there are differences in the distribution range of
TOC in different lithofacies. The TOC of TUF and SS is low, mainly
distributed below 2.0 wt%, (Figures 4A,B )and the TOC distribution of
AS and ASLS is medium (Figures 4C,D). The average values are

FIGURE 5
Distribution characteristics of GR (A), DT (B), DEN (C), CNL (D), logRt (E), and U (F) in different TOC intervals of rock facies.
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5.03 wt% and 6.39 wt% The above four lithofacies have no obvious
exhibit skewed distribution with a long tail, and the data have good
balance. In the Yanchang Formation shale, the TOC of the ATLS is
generally high, and the numerical distribution range is from 3 wt% to
22 wt% (Figure 4E). The frequency distribution guidance diagram of
the lithofacies shows a weak skew distribution. Compared with
Figure 1C, the proportion of data greater than 8 wt% is all
increased, and the imbalance of data is weakened.

The relative proportion of different rock facies in the shale section
of the Yanchang Formation is the main reason for the unbalanced
distribution of TOC data in Figure 1C. In the shale interval, AS has the
highest proportion of thickness, which can account for the total
thickness of the shale interval. Secondly, the TOC distribution
characteristics of ASLS samples are similar to those of AS, which
causes the overall TOC data to be concentrated in the TOC intervals of
the above two lithofacies, while in other distribution intervals,
especially in the high-value TOC interval of ATLS, there are fewer
samples, resulting in unbalanced distribution of data in Figure 1C. The
data imbalance of TOC sub-data set of rock facies obtained by
classification is reduced, which is helpful for learning algorithm to
obtain more accurate prediction model.

4.1.3 Relationship between TOC and logging
response in different lithofacies

As mentioned above, the relationship between formation logging
response and TOC is affected by other formation parameters,
including mineral composition, elemental composition, and organic
matter type. Table 2 shows the differences in mineral composition and
organic matter types between different rock facies.

From the perspective of mineral composition, AS has the
characteristics of high clay mineral content, low felsic content and
medium pyrite content. TUF and SS are characterized by low clay
mineral content, low pyrite and high felsic content. The difference is
that TUF has high carbonate content and SS has high carbonate
content. ASLS has obvious transitional characteristics between AS and

SS, that is, clay mineral content, carbonate mineral content, clay
mineral content and pyrite are all at a medium level; the main
characteristic of ATSL is the highest content of pyrite, which can
reach 8.9% on average, and other minerals are at a medium level.

Through pyrolysis data, it can be seen that S1 and S2 are higher in
the three rock phases of ATSL, AS and ASLE, with an average value of
more than 3.5 mg/g and 9.5 mg/g. The S1 and S2 values of SS are
lower, with an average value of 2.15 mg/g and 4.2 mg/g. The S1 and
S2 values of TUF are the lowest, and S1 and S2 are below 1 mg/g. From
the S1/TOC × 100 index, the SS value is the highest, reaching an
average of 173 mg/g TOC, followed by ASLS (an average of 116 mg/g
TOC), The average value of AS and ATSL is about 65 mg/g TOC, and
TU is the lowest, only 26 mg/g TOC. S1/TOC is often used to evaluate
the oil content in rocks (Jarvie, 2008). Considering that shale oil may
adsorb/dissolve in kerogen, the higher S1/TOC value is generally
considered to be a higher content of movable oil, that is, the
higher oil content in pores (Li et al., 2015).

In addition, Qiu et al. (2014) and Akhtar et al. (2018) studied the
geochemical characteristics of tuff layers in the Yanchang Formation
of the Ordos Basin and found that tuff layers generally have high U
and Th contents. In a comparative study, Lu (2020) and Yin et al.
(2017) found that the layers of siltstone or silty lamina in Zhangjiatan
shale often have low U and Th content, while argillaceous shale has
relatively high U and Th content.

Figure 5 shows the logging response distribution of each rock
facies in different TOC intervals, and the trend line is drawn by the
connection of 50th perecentile point in each interval. Because tuff
generally has the characteristics of hole enlargement (as shown in
Figure 3F, YY22 well 1310 m), the logging response value has great
uncertainty, so the relevant data of tuff are not drawn. It can be seen
from Figure 5 that there are great differences in the logging response
trend lines between different TOC intervals in different rock facies,
which also shows that the differences in mineral composition,
element composition and oil content of different rock facies will
affect the relationship between logging response and TOC.

TABLE 3 Optimal parameter series and cross validation root mean square error of SVM regressor obtained by genetic algorithm under different kernel function
parameters.

Kernel
function type

Optimize
parameters

Optimize
range

LBMRM URM

AS ATLS ASLS SS

Best
value

CV
MSE

Best
value

CV
MSE

Best
value

CV
MSE

Best
value

CV
MSE

Best
value

CV
MSE

Polynomial Ε [2−10,210] 2−5.71 0.67 2−4.67 2.28 2−5.48 0.42 2−3.14 0.18 2−6.29 1.5

Γ [2−10,210] 2−2.80 2−3.41 2−2.88 21.27 2−3.48

C [2−10,210] 24.87 28.39 25.66 21.10 10

D [2,10] 2 2 2 2 2

RBF Ε [2−10,210] 2−5.79 0.6 2−4.88 2.49 2−7.92 0.43 2−8.09 0.11 2−5.35 1.32

Γ [2−10,210] 2−5.21 2−2.24 2−1.33 25.53 22.92

C [2−10,210] 27.08 25.80 25.38 2−9.89 2−1.04

Sigmod Ε [2−10,210] 2−5.94 0.62 2−5.52 3.01 2−5.36 0.45 2−3.34 0.148 2−6.03 1.57

Γ [2−10,210] 2−6.64 2−6.83 2−7.58 20.03 2−5.83

C [2−10,210] 29.99 29.99 29.99 22.43 29.92
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From Figure 5, the relationship between TOC and logging
response in different lithofacies can be classified into two categories:

One is that the trend lines are similar in direction but not
coincident, as shown in Figures 5A–F. In Figures 5A, F, because
ATLS has the highest U and Th content, it often has higher GR and U
logging values under the same TOC conditions as other lithofacies.
Similar SS and ASTL have lower U and Th than AS, which makes it
have lower GR and U values. The difference in mineral composition
may be the main reason for the inconsistency of the trend lines in
Figures 5B, C. For example, the high density of pyrite and carbonate
makes ASTL and SS lithofacies have higher density values under the
same TOC, and similar minerals also make ASTL and SS have lower
acoustic time difference. The difference in oil content caused the non-
coincidence of the trend line in Figure 5D. Oil has a higher H+ content

than kerogen, resulting in SS and ASLS with higher S1/TOC under the
same TOC. Higher neutron porosity values, on the contrary, ASTL
neutron porosity is low.

The second is the difference in the direction of the trend line,
as shown in Figure 5E, the resistivity logging response distribution
in different TOC intervals. The obvious feature is that the trend
line of ATLS lithofacies is not obvious, and even in some TOC
intervals, the resistivity decreases with the increase of TOC. The
high content of pyrite in ATLS may be a key factor in this
phenomenon, which also causes the resistivity of ATLS to be
generally lower than that of other rock phases under the same
TOC. Secondly, the low content of clay minerals with good
conductivity and high oil content also lead to higher resistivity
of SS and ASLS than AS.

FIGURE 6
Curve of the fitness with the genetic algorithm otimization in AS training datasets (A), ATLS training datasets (B), ASLS training datasets (C), SS training
datasets (D) and all data training datasets (E).

TABLE 4 Interpretation accuracy evaluation indexes of LBCRM and URM applied in different petrographic verification sets.

Evaluation metics LBCRM URM

AS ATLS ASLS SS All testing data AS ATLS ASLS SS All testing data

Sample Number 43 17 15 11 86 43 17 15 11 86

MSE 0.70 2.24 0.49 0.20 0.91 1.15 11.73 0.59 1.86 3.23

RMSE 0.84 1.49 0.70 0.37 0.95 1.07 3.42 0.77 1.36 1.80

MAPE 15.76 16.37 15.20 37.84 19.56 16.32 25.14 15.90 93.23 31.65
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It can be seen that the introduction of rock facies in the analysis
of TOC and logging response relationship can better understand
the relationship between TOC and different logging responses, so
that the relationship is less affected by shale formation factors such
as mineral composition and element composition.

4.2 TOC interpretation of LBCRM

4.2.1 Model building
In this study, four SVRmodels of rock facies were constructed, which

were AS, SS, ATLS and ASLS. For three purposes, the predictionmodel of
tuff facies (TUF) was not constructed: 1) the phenomenon of borehole
enlargement is obvious in this lithofacies, and the quality of logging data is
poor; 2) The proportion of tuff facies in the Yanchang Formation
reservoir is low, and the number of TOC test samples is small. 3) The
TOC content of the lithofacies is generally low and the values are
concentrated (Figure 4A). Datas are derived from FY1, YY18, WY1,
YY12, YY2, YY27, YY28, and B36 wells. The total number of data is 412,
of which AS, SS, ATLS and ASLS are 214,55,71 and 72 respectively. The
above data are randomly assigned to supervised training data sets and
validation sets at a ratio of 1:4.

For the need of comparison, this study also constructed a
prediction model under the uniform regression fitting mode. The
same as the above data, the supervised data did not contain the
relevant samples of tuff facies, and the supervised training data set and

verification set were obtained from the corresponding data sets of the
above four lithofacies. The supervised data include seven kinds of data
such as AC, DEN, GR, Rt, PE, Th/K, U/Th, and TOC. The data
normalization is carried out by the following formula:

y′
i �

ymax − yi

y max − y min
. (23)

Among them, the logging data uses the same maximum and
minimum values in the above five supervised data sets. Since the
TOC of the samples in SS is much lower than that of the other rock
facies, in order to ensure the final prediction accuracy, the TOC of
the SS supervised data set is normalized to [0,3], and the TOC of
the remaining four supervised data sets is normalized to [0,30],
which is normalized to [0,30] in the uniform regression fitting
model.

In this study, SVR is used as the basic algorithm, and genetic
algorithm is used to optimize the hyper-parameters in SVR. The
optimized parameters include kernel function type and its key
parameters (Table 3). The fitness function of the genetic algorithm
is the cross-validation MSE of the training data (using the K-fold
cross-validation method, K = 3). The genetic algorithm uses the
bidding model to select the optimal individual (the selection ratio
is 0.2). After crossover and mutation operations, a new generation of
population is formed. The number of populations in each generation is
150, and the number of iterations is 200. Table 3 shows the range of
hyperparameter optimization.

FIGURE 7
Comparison of measured and predicted TOC (A,C): using uniform regression prediction model;(B,D): classification regression prediction model based
on rock facies. The different form of data points in Figures (C,D) represent lithofacies types.
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SVR and genetic algorithm are implemented based on libsvm
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) and geatpy package
(http://geatpy.com/index.php/quickstart/).

4.2.2 Performance of model prediction
Figure 6 shows the fitness curves of TOC interpretation model

(Figures 6A–D) and homogeneous regression interpretation model
(Figure 6E) based on rock facies classification and regression under
genetic algorithm optimization. Table 4 lists the optimal parameters of

the above optimization process and their corresponding cross
validation MSE. It can be found from Figure 6 and Table 4 that
the RBF kernel function obtains higher cross-validation accuracy in
both interpretation models, that is, the cross-validation MSE is the
smallest, which is better than the other two kernel functions. The
optimal cross MSE obtained by the RBF kernel function in the
homogeneous regression interpretation model is 1.3. In the TOC
interpretation model based on rock facies classification regression, the
optimal cross MSE in the tuffaceous/clay interbedded shale data set is

TABLE 5 Parameter to be optimized of XGboost and its optimal value in genetic algorithm.

No. Parameter name Encoding type optimal range best value

1 Learning rate Real number (0.3, 0.5] 0.48

2 Max_depth Integer [5, 15] 11

3 Min_child_weight Integer [5, 10] 4

4 Gamma Real number [0, 0.4] 0.1

5 Sub_sample Real number [0.7, 1] 0.85

FIGURE 8
(A) The fitness change curve of genetic algorithm in XGBoost rock facies logging interpretation model optimization; (B) The confusion matrix of
prediction results and measured results in WY1 and FY3 using XGboost rock facies logging interpretation model; (C) Comparison of rock facies prediction
results and real results of Well WY1.
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2.18, and the optimal root mean square error of other data sets is less
than 0.7.

In order to better evaluate the generalization ability and prediction
accuracy of the above model, the above model is applied in the
corresponding validation set, and the TOC in each validation set
data is predicted respectively. Figure 7 is the projection plot of the
predicted TOC value and the measured TOC value of different
prediction models. Figure 7A is the projection plot of the
prediction results of the uniform regression interpretation model in

its response data set, and Figure 7B is the projection plot of the
prediction results of the classification regression interpretation model
based on lithofacies in their respective validation data sets. Figure 7A
shows that the overall prediction effect of the uniform regression
interpretation model is poor. As shown in Table 4, MSE is 3.23, RMSE
is 1.80, and MAPE is 31.65. It is worth noting that in the interval of
TOC>9% in Figure 7A, the predicted value of the prediction model
seriously deviates from the true value, and the relative error of the
predicted value of individual data points is far more than 25%. In
comparison, the classification regression interpretation model based
on rock facies shown in Figure 7B has better prediction performance.
The distribution of data points is closer to the baseline of real TOC
equal to predicted TOC. TheMSE, RMSE andMAPE in the evaluation
indexes are 0.91, 0.95 and 19.56, respectively. The prediction ability is
greatly improved compared with the uniform regression model.

Through the difference of prediction performance of the two
interpretation models in different rock facies, the reason of poor

FIGURE 9
The prediction results of lithofacies and TOC in 1,250 ~ 1,340 m shale section of FY3.

TABLE 6 Evaluation metrics of XGboost classification model in validation set.

evaluation metics Tuff ATLS AS ASLS SS

Recall 0.81 0.80 0.90 0.77 0.88

Precision 0.81 0.82 0.89 0.73 0.91
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prediction performance of homogeneous prediction model can be
further analyzed. Figure 7C shows the relationship between real and
predicted TOC in different lithofacies under the homogeneous
regression model. It can be seen from the figure that although the
overall prediction performance is not good, the homogeneous
regression model has higher prediction performance on AS and
ASLS, and each evaluation index is at a lower level. The reason for
the great decrease of prediction performance is ATLS and SS. The
evaluation indexes MSE, RMSE and MAPE of ATLS prediction results
are 11.73, 3.42 and 25.14 respectively. Considering the low TOC
characteristics of SS, it may be more appropriate to use MAPE for

evaluation, but MAPE = 93.23 is obviously beyond the acceptable
range. The reason for the above characteristics can be attributed to the
fact that the uniform regression model makes the learning algorithm
pay more attention to the learning of data features in the high
distribution density interval. The SVR algorithm learns more
feature information from the 3% ~ 8% interval shown in Figure 1C
for training, so that the evaluation index MSE is minimized. In this
case, the prediction model will extract features from the two lithofacies
of AS and ASLS. Figure 5 shows that the characteristics of TOC and
logging in different lithofacies have certain differences, which results
in the decline of prediction performance in ATLS and SS.

The classification regression prediction model based on lithofacies
solves the problem of poor prediction performance of single prediction
model in ATLS and SS, making the prediction performance close to AS
and ASLS. As shown in Table 4, the prediction indexes of ATLS and SS
have been greatly improved (Figure 7D). The MSE, RMSE and MAPE of
ASLS are 2.24.1.49 and 16.37 respectively, and SS is 0.20,0.37 and
37.84 respectively. At the same time, the prediction performance of
AS and ASLE has also been improved. For example, the MSE, RMSE
andMAPE of AS are reduced to 0.70,0.84 and 15.76, and ASLS is reduced
to 0.49,0.70 and 15.20, respectively.

The above prediction results show that the classification regression
interpretation based on lithofacies can obtain better TOC prediction
accuracy in the case of data imbalance and multi-stratigraphic factors.

4.3 TOC computation in shale interval by
LBCRM

4.3.1 Model construction and performance
evaluation of lithofacies test interpretation

The basis for the application of TOC interpretation model with
better prediction performance is lithofacies interpretability. In this
study, the lithofacies delineated in the coring section of 8 wells and
their corresponding logging response values are used as supervised
data sets, and the lithofacies logging recognition model is established
by XGBoost algorithm.

The supervised data set includes seven kinds of logging data and
lithofacies labels such asAC,DEN,GR,U, CAL, Th and Rt. The logging
data uses the original data, and the lithofacies are coded according to
TUFof 1, ATLS of 2, AS of 3, ASLS of 4, SS of 5. The XGboost
algorithm is based on the XGboost package (https://github.com/dmlc/
xgboost). The base model type is gbtree, the learning task is multi:
softmax, and the learning objective is mlogloss. In XGboost training,
K-fold cross-validation is used to obtain the cross-validation mlogloss
value to determine the optimal number of iterations of the tree in
XGboost, where K = 7, the maximum number is 200, and the optimal
number of iterations is output after 30 iterations without performance
improvement. Hyperparameters such as learning rate, max _ depth,
min _ child _ weight, gamma and sub _ sample are optimized by
genetic algorithm. The fitness function is set to cross mlogloss. The
optimization range and coding method are shown in table 5.

Figure 8A shows the optimal and average fitness curves in the
genetic algorithm optimization process, where the optimal mlogloss is
0.019, and the optimal parameters shown in Table 5 are determined.
The maximum number of times obtained by using this parameter is
179. Using the prediction model obtained by this parameter training,
556 data points in the coring sections of WY1 and FY3 were identified,
and the confusion matrix shown in Figure 8B was drawn (Figure 8C).

FIGURE 10
(A) The distribution characteristics of different rock facies on the
ΔlgR chart; (B) Thermal evolution maturity prediction based on ΔlogR
plot using AS ata.

TABLE 7 Comparison of Ro based on AS data and ΔlogR chart interpretation with
real Ro.

Well name ΔlgR
interpretation

Actal RO (%) Cai et al., 2020)

LOM RO (%)

YY2 10~11 0.82~1.05 1.10

YY22 10~11 0.82~1.05 1.05

W169 9~10 0.67~0.82 0.85

DT5 8~9 0.56~0.67 0.50
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The prediction accuracy of the model in the prediction set, the
prediction accuracy and recall rate of each class are calculated by the
confusion matrix (Table 6). It can be seen that the accuracy and recall
rate of the four rock phases of TUF, ATLS, AS and SS are greater than
0.80, and the prediction accuracy and recall rate of ASLS are low,
which can still reach about 0.75. The overall prediction accuracy is
0.86, which shows that the prediction model has high prediction
accuracy and lays the foundation for the application of LBCRMmodel
in actual drilling.

4.3.2 Application for TOC content assessment
Based on lithofacies prediction model and LBCRM method, the

TOC content of shale can be predicted. Firstly, the lithofacies
prediction model is used to identify the lithofacies types of shale
section, and the response TOC interpretation model is used to predict
TOC for each lithofacies type. Figure 9 shows the lithofacies
identification and TOC interpretation results of the shale depth
section of 1,250 ~ 1,340 m in Well FY3. For comparison, the figure
also shows the TOC calculated by a single regression model. It can be
seen from Figure 9 that the TOC interpretation results obtained by the
LBCRM, TOC interpretation model are closer to the measured values.
Especially at 1,277 ~ 1,283 m, LBCRM successfully explained that in
addition to the high TOC content in this depth section, the single
regression model explained it as lower TOC.

4.4 Inspiration to model - Based
interpretation

Model-based TOC interpretation is a method of TOC
interpretation under appropriate assumptions and key
parameters (Huang and Williamson, 1996; sondergeld et al.,
2010). The strong heterogeneity of shale makes it difficult to
accurately explain the TOC distribution of shale sections in the
application of model-based interpretation methods. The LBCRM
interpretation method based on the understanding of shale
heterogeneity can better understand the model-based
interpretation method and make the latter play a role in the
logging interpretation of some key parameters.

ΔlogR is the most classical and widely used model-based TOC
interpretation method. Passey et al. (1990) pointed out that in
immature shale, the resistivity curve is close to the base value, and
ΔlgR is mainly provided by the amplitude of acoustic time difference
deviating from the base value. In mature shale, both resistivity and
acoustic travel time deviate from the baseline, and ΔlgR comes from
the amplitude of the above two deviations from the base value. This
also caused a statistically non-linear relationship between TOC, AC, Rt
and maturity (Ro).

However, there are obvious differences in the content of
conductive minerals and oil content between different rock
phases, which will inevitably affect the relationship between
ΔlgR-TOC by adding additional factors beyond maturity. For
example, the relationship between resistivity and TOC shown in
Figure 5E, in the case of the same TOC, the ATLS has the
characteristics of low resistivity and low acoustic time
difference, and has the characteristics of low maturity in the
ΔlogR chart shown in Figure 10A (Passey et al., 1990). The
resistivity logging values of SS and ASLS are larger due to high
oil content, which makes them have high maturity characteristics

in the ΔlogR chart, and the two lithofacies often cross multiple
LOM intervals; in the ΔlogR chart, the data points from AS are
often concentrated in or near a certain LOM interval. The influence
of shale heterogeneity on the Δlog method has prompted a large
number of scholars to propose improved models (Wang et al., 2016;
zhao et al., 2017), these methods without exception hope to expand
the reference range of Δlog by selecting different baselines.

This paper does not focus on improving the traditional model-
based prediction method to achieve better TOC prediction
performance, but according to the characteristics of AS
concentrated in a certain LOM interval in ΔlogR, the
combination of LBCRM and ΔlogR is proposed to realize the
logging estimation of Ro. Through the data distribution of AS
on the ΔlogR-TOC chart of YY22, YY1, W169 and DT5 wells (the
data are all derived from the shale of Chang 7) (Figure 10B), the
LOM of the above 4 wells is estimated. Based on the conversion
relationship between LOM and Ro by Passey (2010), the Ro
distribution interval can be estimated (Table 7), Compared with
the measured Ro of four wells in this area by Cai et al. (2020), the
estimated value is close to the measured value, which fully shows
that LBCRM can not only use logging to obtain more accurate TOC
distribution in shale section, but also help geologists to explain
more formation parameters after being used together with the
model-based method.

5 Conclusion

1) In this study, a TOC interpretation model based on lithofacies
classification regression was proposed. Through the study of shale
heterogeneity characteristics, this method can effectively reduce
the influence of formation factors other than TOC on prediction
accuracy by constructing TOC interpretation model for each rock
facies category, and reduce the degree of data imbalance
distribution, so that the data mining algorithm can achieve
better prediction results.

2) The interpretability of lithofacies logging ensures the wellsite
application based on the regression model of lithofacies
classification. Compared with the traditional homogeneous
regression model, the prediction performance is greatly
improved, and the prediction of high TOC and low TOC
sections is more accurate.

3) The LBCRMmethod based on the heterogeneity of shale can better
understand the reasons for the deviation of traditional model-
based interpretation methods. When combined with the latter, it
can make the logging data provide more useful information.
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