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Diabetic kidney disease (DKD) is one of the major microvascular complications of

diabetes mellitus and is also one of the serious risk factors in cardiovascular events,

end-stage renal disease, and mortality. DKD is associated with the diversified,

compositional, and functional alterations of gut microbiota. The interaction

between gut microbiota and host is mainly achieved through metabolites, which

are small molecules produced by microbial metabolism from exogenous dietary

substrates and endogenous host compounds. The gut microbiota plays a critical

role in the pathogenesis of DKD by producing multitudinous metabolites.

Nevertheless, detailed mechanisms of gut microbiota and its metabolites

involved in the occurrence and development of DKD have not been completely

elucidated. This review summarizes the specific classes of gut microbiota-derived

metabolites, aims to explore the molecular mechanisms of gut microbiota in DKD

pathophysiology and progression, recognizes biomarkers for the screening,

diagnosis, and prognosis of DKD, as well as provides novel therapeutic strategies

for DKD.
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Introduction

Diabetic kidney disease (DKD) is a pivotal complication of diabetes mellitus and

significantly increases the risk of cardiovascular disease and end-stage renal disease

(ESRD), that ultimately results in dialysis or high-mortality and economic burdens (1).

The increased number of DKD and ESRD is partially attributed to lifestyle and dietary habits

associated with diabetes and hypertension (2). Management and treatment strategy of

patients with DKD includes controlling blood glucose, blood lipid, and blood pressure as
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1124704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1124704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1124704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1124704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1124704/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1124704&domain=pdf&date_stamp=2023-01-19
mailto:wupengcg@zzu.edu.cn
mailto:zhangsuoliu@zzu.edu.cn
https://doi.org/10.3389/fimmu.2023.1124704
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1124704
https://www.frontiersin.org/journals/immunology


Mao et al. 10.3389/fimmu.2023.1124704
well as blockade of the renin-angiotensin system (RAS); however, the

risk of DKD still remains to be high (3) indicating the presence of

unrecognized factors and mechanisms involved. The occurrence and

progression of DKD is correlated to the interaction between gene and

environment (4). Despite that hyperglycemia-induced metabolic

alterations, hemodynamics changes, RAS activation, podocyte

injury or loss, epithelial dysfunction, inflammation, and

immunoreaction contributed to disease progression, specific

molecular mechanisms and pathogenesis need to be explored (5).

The gut microbiota is powerful for maintaining host internal

environmental homeostasis. For one thing, microbiome prevents

infection caused by pathogens, promotes the digestion and

absorption of nutrients, and synthesizes essential vitamins and

amino acids (6). For another thing, it exerts an anti-inflammatory

function (6), regulates fat metabolism (7), and participates in immune

system development (8). And thirdly, gut microbiota-derived

metabolites such as short-chain fatty acids (SCFAs), bile acids

(BAs), lipopolysaccharide (LPS), and trimethylamine N-oxide

(TMAO) are essential mediators of microbial-host crosstalk by

interacting with host environment (9). The diversified,

compositional, and functional alterations of gut microbiome are

termed dysbiosis (10), which leads to a reduction in SCFAs and an

increase in uremic toxins, activation of RAS, inflammation, and

aggravated immune response. Nonetheless, specific mechanisms by

which gut microbiota affects DKD have not been fully elucidated. This

review summarized the role of gut microbiota and its metabolites in

DKD, discussed underlying mechanisms of gut microbiota involved

in DKD progression, and explored its potentials in DKDmanagement

and treatment.
Gut microbiota and its metabolites

Gut microbiota

The human gastrointestinal tract possesses a plentiful microbial

community which col lec ts approximate ly 100 tr i l l ion

microorganisms, including bacteria, fungi, viruses, phages, and

archaea (11). Commonly, the gut microbiota is comprised of 6

phy l a inco rpora t ing w i th Bac t e r o i d e t e s , Fr im i cu t e s ,

Verrucomicrobia, Proteobacteria, Actinobacteria, and Fusobacteria,

in which Bacteroidetes and Frimicutes are the majority components

(12). The stability of intestinal microbiota is closely related to host

health and disease. What is more, gut microbiota is symbiotic with the

host and participates in a variety of physiological activities, such as

fermenting food, resisting pathogens and regulating immune function

(13). The gut microbiota contributes to host physiology by producing

a multitude of metabolites (14) (Figure 1). Numerous metabolites

derived from gut microbiota fermentation are vital factors in host-

microbiota cross-talk and have been shown to be correlated with

kidney function.

16S rDNA, metagenomics, and mass spectrometry can be utilized

to explore the diversity, composition, and function of gut microbiota

as well as microbiota-related serummetabolites in patients with DKD.

Interaction studies between plasma metabolomics and gut

microbiome in experimental DKD mouse/rat model provided

evidence for the gut-metabolism-kidney axis, and verified the
Frontiers in Immunology 02
involvement of gut microbiota and circulating metabolites in DKD

progression (15, 16). DKD patients displayed dysbiosis with

composition, richness and diversity in gut microbiota (17–19).

Roseburia intestinalis was significantly decreased while Bacteroides

stercoris was increased in DKD patients (20). Furthermore, studies in

early DKD caused by type 1 diabetes indicated that differences in gut

microbiota and serum metabolite profiles were dependent on

albuminuria levels (21). Several studies also revealed diversity and

species differences in gut microbiota between DKD patients and non-

DKD patients (22–24).
SCFAs

SCFAs are produced by the fermentation of polysaccharides with

the assistance of gut microbiota and are the main source of nutrition

for colon epithelial cells. Acetate, propionate, and butyrate generated

from the bacterial fermentation of dietary fiber are the predominant

SCFAs (25). SCFAs have been shown to inhibit the activity of histone

deacetylase (HDAC) and involve in G protein-coupled receptors

(GPRs) mediated signaling pathway (26, 27). SCFAs can bind to

GPRs such as GPR41, GPR43, GPR109A, and olfactory receptors

(Olfr) 78, and then were absorbed into system circulation after

reaching distant tissues. Furthermore, SCFAs were demonstrated to

participate in the sustainment of intestinal barrier integrity (28),

enhance glucose and lipid metabolism, restraint energy expenditure

(29), and modulate immunoreaction and inflammatory responses

(30). The reduction of SCFAs-producing bacteria as well as low serum

and fecal SCFAs level may be correlated with kidney injury (31–33).

Butyrate was reported to improve the intestinal barrier function by

promoting the production of colonic mucin and tight junction

proteins (ZO-1) (34). It could also mitigate oxidative stress,

inflammation, and fibrosis in kidney disease through GPRs or

HDAC (35–37). Serum valerate and caproate levels were negatively
FIGURE 1

Gut microbiota-derived metabolites.
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correlated with the progression of DKD to ESRD (38). It has been

shown that acetate mediated the dysregulation of cholesterol

homeostasis by activation of GPR43, thereby contributing to the

tubulointerstitial injury of DKD (39).
Bile acids

BAs are synthesized from cholesterol in the hepatocytes and

participates in the absorption of lipid as well as metabolic or

inflammatory signaling pathways (40). The primary BAs including

chenodeoxycholic acid (CDCA) and cholic acid (CA), are

indispensable for lipid and vitamin digestion and absorption by

conjugating to glycine or taurine (41). Primary BAs could

transform and decompose into secondary BAs via gut microbiota.

The gut microbiota modulates BA metabolism process through

deconjugation, dehydrogenation, and dihydroxylation of primary

BAs (42). Additionally, the synthesis of BAs is influenced by

cholesterol 7a-hydroxylase (CYP7A1) and sterol 27-hydroxylase

(CYP27A1) regulating via gut microbiota (14). BAs are ligands for

G protein-coupled bile acid receptor (TGR5) and nuclear hormone

receptor farnesoid X receptor (FXR). Moreover, the profiles of BAs

and gut microbiota influence each other. BAs could alter the

composition of intestinal microbiota. Conversely, microbiota

modulates the size and composition of the BA pool as well as BA

signaling (43). BAs combine with TGR5 to improve insulin sensitivity

via glucagon-like peptide-1 (GLP-1) and regulate energy expenditure

in muscle or brown adipose tissue (44). The activation of FXR

decreases lipogenesis and hepatic gluconeogenesis, and inhibits

bacterial overgrowth and translocation by producing antimicrobial

peptides (45). FXR and TGR5 play a renal protective role in diabetes

and obesity-related kidney disease by regulating renal signaling

pathways (46). Gentiopicroside inhibits the NF-kB signaling

pathway via TGR5 activation, thereby alleviating inflammation and

fibrosis in DKD (47).
Tryptophan

An essential aromatic amino-acid, tryptophan, generally

originates from daily diet such as fish, milk, oats, cheese. Besides

the synthesis of proteins, dietary tryptophan could act as a precursor

of critical metabolites including kynurenine, serotonin, indole, and its

derivatives (48). Kynurenine, a tryptophan-derived metabolite

produced by tryptophan 2,3-dioxygenase and indoleamine (2, 3)-

dioxygenase, is correlated with kidney function (49, 50). Tryptophan

is decomposed by bacterial tryptophanase into indole, which is a

compound responsible for intercellular signal transduction,

participating in the gene expression of intestinal epithelium

connections and anti-inflammatory factors in intestinal epithelial

cells, as well as maintaining host-microbiota homeostasis on the

mucosa surface (51). As downstream critical metabolites, 3-(2-

Hydroxyethyl) indole, 3-methylindole, and indoleacrylic acid were

downregulated in the DKDmodel and were reinstated after treatment

with Tangshen Formula (15). Some compounds produced by

tryptophan metabolism are ligands for the aryl hydrocarbon

receptor (AhR) and could induce AhR conformational changes.
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Moreover, these compounds are involved in the gene expression of

pro-inflammatory factors, the metabolism of cytochrome P450 (CYP)

superfamily CYP1A1, CYP1A2, CYP1B1 and cyclooxygenase-2

(COX-2), or the degradation of selective proteins (52). The deficient

activation of AhR pathway could reduce the production of GLP-1 and

interleukin (IL)-22, increase intestinal permeability and LPS

translocation, which contribute to inflammation and insulin

resistance (53). Based on the combined analysis of gut microbiota,

serum metabolites and clinical indicators in DKD patients,

phenylalanine and tryptophan metabolic pathways were

demonstrated to be associated with the progression of DKD (54).
Other metabolites

Branched-chain amino acids (BCAAs) are essential amino-acids

synthesized by gut microbiota, including valine, isoleucine, and

leucine. BCAAs modulate protein synthesis, glucose/lipid

metabolism, insulin resistance, and immunity, as well as maintain

homeostasis (55). Polyamines, such as spermine, putrescine,

polyamine oxidase and acrolein, are participated in the

development of kidney disease by altering the metabolism of

intestinal microbiota (56). The dysbiosis of gut microbiota

promotes the production of bacteria-derived uremic toxins, such as

indoxyl sulfate (IS), endotoxin, TMAO, and p-cresyl sulfate (PCS),

which increase intestinal permeability and transfer into the systemic

circulation through the damaged intestinal barrier. Accumulation of

uremic toxins in kidneys could lead to kidney dysfunction (57).

TMAO, a gut microbiota-derived metabolite, was associated with

mortality and renal outcome in type 1 diabetes (58). Higher serum

TMAO levels increased the risk of abdominal aortic venture in

hemodialysis patients (59). Phenyl sulfate (PS) contributed to

podocyte damage and albuminuria and was shown to be related to

the progression of DKD (60). Imidazole propionate, a metabolite

produced by the breakdown of histidine via gut microbiota, was

increased in type 2 diabetes, affecting host inflammation and

metabolism (61). Both PS and TMAO could be involved in the

development of DKD through a secretory associated senescence

phenotype and chronic low-grade inflammation (62). IS and PCS

contributed to the nephrology and cardiovascular toxicities via the

activation of inflammation and oxidative stress (63). Additionally,

several uremic toxins such as urea, TMAO, PCS, and 3-carboxylic

acid 4-methyl-5-propyl-2-furan propionic (CMPF) were associated

with glucose homeostasis abnormalities and diabetes incidence (64).

The dysbiosis of Gram-negative bacteria and increased LPS level were

detected in type 2 diabetes related DKD (65).
Gut microbiota-related factors
in DKD progression

Insulin resistance

DKD originates from metabolic dysregulation including

hyperglycemia, hyperlipidemia, and insulin resistance (4).

Hyperglycemia increases the generation of advanced glycation end

products. The variance in insulin levels and insulin resistance might
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be a significant factor in DKD. Severe albuminuria and

glomerulosclerosis were occurred in animals with complete deletion

of podocyte insulin receptor (66). The dysbiosis of gut microbiota is

linked to insulin resistance (67, 68) (Figure 2). A few species of

microbiota, especially Prevotella copri and Bacteroides vulgatus are

associated with insulin resistance and then impact host metabolism

(69). Gut commensal Bacteroides acidifaciens could improve insulin

sensitivity and may have therapeutic potential for diabetes and obesity

(70). Microbiota depletion such as antibiotic-treated or germ-free

mice could enhance insulin sensitivity and glucose tolerance (71).

Podocyte insulin resistance caused podocyte injury and led to

albuminuria in early DKD. Dysregulated GPR43 by gut microbiota

dysbiosis resulted in podocyte insulin resistance through the

inhibition of adenosine monophosphate-activated protein kinase

(AMPK) -a ac t i v i t y ( 72 ) . Bu t y r a t e enhanced AMPK

phosphorylation and increased GLP-1 secretion, thereby alleviating

insulin resistance and renal failure (34). Imidazole propionate, a

microbial histidine-derived metabolite, may contribute to insulin

resistance through activation of mechanistic target of rapamycin

complex1 (mTORC1) (73).
RAS

RAS is critical in the pathogenesis and progression of DKD.

Moreover, local RAS might play a greater role than the circulating

RAS (74). The secretion of renin in the juxtaglomerular apparatus

plays an important role in the activation of intrarenal RAS by

hyperglycemia. Olfr78 expressed in the renal juxtaglomerular

afferent arteriole responded to signals from intestinal microbiota by

mediating renin secretion, after that SCFAs could modulate blood

pressure through Olfr78 and GPR41 (75). Succinate accumulated in

the distal nephron-collecting duct, and activation of GPR91

responded to hyperglycemia through the stored (pro)renin and

provoked tissue injury in DKD (76). The activation of intrarenal
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RAS by gut microbiota dysbiosis-derived excessive acetate was

involved in the kidney injury of early DKD (77). Gut microbiota

could promote angiotensin II (Ang II)-induced vascular dysfunction

and hypertension by facilitating CCL2/IL-17-driven vascular immune

cell infiltration and inflammation (78). Conversely, butyrate exerted

an improvement for Ang II-induced renal injury and an

antihypertension action by attenuating expression of (pro)renin

receptor and renin as well as suppressing the (pro)renin receptor-

mediated intrarenal RAS (79). During the fermentation of probiotics,

angiotensin converting enzyme (ACE) inhibitory peptide and renin

inhibitory peptide could be released, which are beneficial for lowering

blood pressure (80, 81). In addition, ACE2 was associated with

tryptophan metabolism and was sensitive to intestinal inflammation

(82). A few uremic toxins such as IS and PCS are important

stimulator of local RAS. Moreover, the inhibition of RAS

ameliorated IS and PCS induced renal fibrosis (83).
Inflammation

Inflammation accompanies the pathogenesis and progression of

DKD whereas anti-inflammatory therapies might be beneficial for

alleviating renal damage in DKD. Several inflammatory pathways

participate in the complicated molecular networks and processes in

DKD, including chemokines (CCL2, CX3CL1 and CCL5),

inflammatory cytokines (IL-1, IL-6, IL-18), adhesion molecules, E-

selectin, a-actinin 4, transcription factor nuclear factor-kappa B (NF-

kB), and tumor necrosis factor (84). The initial stage of the

inflammatory response to injury or metabolic dysfunction involves

the release of proinflammatory mediators and the recruitment of

leukocytes. Therefore, targeting inflammatory-resolution pathways

might contribute to impede the progression of DKD (85). SCFAs

could be involved in the modulation of pro-inflammatory and anti-

inflammatory responses by inhibiting HDAC directly and binding

GPRs indirectly (86). SCFAs produced by dietary fiber fermentation
FIGURE 2

Gut microbiota-related factors in the progression of diabetic kidney disease.
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decreased the expression of inflammatory cytokines, chemokines, and

fibrosis-promoting proteins in experimental DKD, thereby reducing

albuminuria, glomerular hypertrophy, podocyte injury, and

interstitial fibrosis. Moreover, this process required the involvement

of GPR43 or GPR109A (87). Host/gut microbiota-derived tryptophan

metabolites regulated AhR and then affected oxidative stress and

inflammation in DKD (88). TMAO and PS accelerated kidney

inflammation and fibrosis, resulting in development of DKD (60,

89). LPS, combined with toll-like receptors (TLRs) TLR2 and TLR4,

participated in the inflammatory process of DKD through NF-kB
activation and pro-inflammatory cytokines release, leading to the

renal injury (90). Obesity enhanced intestinal permeability and

chronic low-grade inflammation by inducing gut microbiota

dysbiosis, ultimately causing the exasperation of DKD (91)
Immunity

The activation of innate immunity through immune cells and

resident renal cells contributed to the initiation and maintenance of

inflammation (92). TLRs induced sterile tubulointerstitial

inflammatory responses via NF-kB signaling pathway. The

nucleotide-binding oligomerization domain, leucine-rich repeat

and pyrin domain-containing 3 (NLRP3) inflammasome were

associated with the connection of metabolic stress and pro-

inflammatory cascades by inducing IL-1b and IL-18. The

kallikrein-kinin system contributed to inflammatory progression

by generating bradykinin and activating bradykinin receptors.

Furthermore, coagulation enzymes promoted the activation of

protease-activated receptors on kidney cells, leading to renal

inflammation and fibrosis in DKD. Gut microbiota plays a

significant role in maintaining host homeostasis as well as in

modulating immune system (93). There have several studies

characterizing the complex interaction between DKD, microbes

and its metabolites, and immune responses. The microbiota

colonized the intestinal tract after birth and regulated the

antigenic responsiveness of lymphatic tissue (94). With the

involvement of gut microbiota, the intestinal immune system

started to build up and to be matured gradually. The dysbiosis of

gut microbiota at t rac ted immune ce l l ac t iva t ion and

proinflammatory factors secretion, which led to immune

dysregulation and inflammation (95). Mitochondrial antiviral

signaling protein (MAVS), a component of innate immunity, was

involved in maintaining intestinal integrity and barrier function.

Damaged MAVS was conducive to the disrupted intestinal

homeostasis, contributing to DKD progression (96). Microbiome-

host interactions cooperatively maintained microbial community

stability through metabolite-mediated innate immune modulation.

What’s more, metabolites could influence the host’s immune

homeostasis (97). Gut microbiota-derived metabolites passed

through the intestinal barrier, accumulated in the circulation,

recognized by immune system, and performed functions through

gut-microbiome-immune axis (98). Bacteroids-derived SCFAs

contributed to the activation of immune system by promoting

neutrophil chemotaxis and inducing differentiation and

proliferation of natural killer cells and Tregs (99).
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Management and treatment options for
gut microbiota in DKD

Clinical drugs

Various kinds of drug may alleviate DKD by affecting intestinal

microbiota. Metformin was shown to contribute to several SCFAs-

producing microbiota and increase the production of butyrate and

propionate, thus participating in glucose homeostasis (100). Sodium-

glucose cotransporter 2 inhibitor, as emerging antidiabetic drugs

including empagliflozin, canagliflozin and dapagliflozin, restored

the diversity of gut microbiota in experimental DKD mouse model.

Moreover, reduced LPS production and increased SCFAs production

by regulating the microbiota were observed in patients after inhibition

of SGLT2 (101–103). Pirfenidone treatment increased gut microbial

diversity in diabetic mouse model and reversed gut microbial

dysbiosis and diabetic ketoacidosis biomarkers (104). Magnesium

lithospermate B was found to ameliorate kidney injury by modulating

gut microbiome dysbiosis and BAs metabolism (105). Abundant

polysaccharides are beneficial for DKD. Polysaccharide from

Armillariella tabescens mycelia, Cordyceps cicadae polysaccharide,

and Bupleurum polysaccharide were demonstrated to modulate gut

microbiota dysbiosis and inflammatory response (106–108).

Traditional Chinese medicine such as Zicuiyin (109), Moutan

Cortex polysaccharide (110), QiDiTangShen granules (111),

Shenyan Kangfu tablet (112), and Tangshen Formula (113), have

been used clinically to treat DKD. They had a significant curative role

in regulating gut microbiota, eliminating intestinal toxins, inhibiting

renal inflammation and immunity, alleviating renal injury, and

protecting kidney function.
Dietary intervention

Diet is fundamental to support human growth, health, and

reproduction. Furthermore, diet was also shown to modulate and

maintain the symbiotic gut microbiota communities colonized the

intestinal tract (114). Under multiple host-containing endogenous

and exogenous factors, diet becomes a pivotal determinant of the

structure and function in gut microbiota (115) (Figure 3). The latest

review regarding the effect of dietary nutrient intake on gut

microbiota indicated that diet-microbiota crosstalk and

personalized nutrition strategies are associated with chronic kidney

disease progression (116). Moreover, the variation in dietary protein

sources affected the gut microbiota, microbiota-derived metabolites,

immune cell activation, and production of inflammatory cytokines

(117). Studies from human population with different diets showed

that Bacteroides was enriched in a protein-rich diets while Prevotella

was enriched in a carbohydrate-based diets (118). Whole-plant fibers

from fresh vegetables contained a lot of necessary micronutrients

compared with highly processed fibers or fibers from seed coats (119).

Plant-based low-protein diets seemingly contributed to postpone

kidney replacement therapy by disturbing RAS, reducing

proteinuria, and decreasing insulin resistance (120). Fermented and

germinated foxtail millet whole grain diet raised the bacterial diversity

especially probiotics, thereby ameliorating kidney injury in
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experimental DKD mouse model through inhibition of inflammation

and immunity signaling pathways (121). A high linolenic acid diet

aggravated gut microbiota dysbiosis and inflammatory responses in

diabetes mouse model. Conversely, a low n-6/n-3 ratio diet improved

glucose homeostasis, inhibited systematic inflammation, and

ameliorated DKD (122). Punicalagin from pomegranates, a

prospective bioactive polyphenol, was shown to alleviate diabetic

kidney injury through gut-kidney axis (123).
Probiotics and synbiotics

Probiotics contain live microorganisms that can change

composition of microbiota and are supposed to provide health

benefits to host (124). Synbiotics, a mixture comprising live

microorganisms and substrates selectively utilized by host

microorganisms confer a health benefit on the host (125) (Table 1).

Probiotic and synbiotic supplementation, such as Lactobacillus

acidophilus, Lactobacillus casei and Bifidobacterium bifidum, had

beneficial effects on blood glucose and intestinal imbalance,

production of uremic toxins, and inflammation or oxidative stress

in diabetic hemodialysis patients (126–128). Furthermore, probiotics

could ameliorate insulin resistance, stabilize fasting blood glucose

levels, and improve antioxidant status (90, 129). Addition of

probiotics such as Lactobacillus acidophilus, Streptococcus

thermophilus and Bifidobacterium longum reduced the blood urea

nitrogen level and uric acid concentration in patients with stage 3 and

stage 4 chronic kidney disease (130, 131). Systematic review and

meta-analysis demonstrated that probiotics might ameliorate high

sensitivity-C reactive protein and oxidative stress biomarkers, as well
Frontiers in Immunology 06
as regulate lipid profile and anthropometric indices in DKD patients

(132, 133).
Prebiotics and postbiotics

Prebiotics such as noncarbohydrate food components, are

substrates that are selectively used by host microorganisms for

health benefits (134). The supplementation of prebiotics in daily

dietary could exterminate pathogens, facilitate the growth of

beneficial microorganisms, and regulate host intestinal microbiota

(135). Moreover, prebiotic supplements might increase SCFAs levels

(notably butyrate), restore intestinal barrier function, and relieve

inflammatory response (136). Fructooligosaccharides could alleviate

pathological changes in diabetes related kidney disease (137). Inulin-

type fructans, a type of dietary fiber, was demonstrated to improve

kidney diseases via modulating gut microbiota and SCFAs profile

(138). Additionally, inulin-type fructans also decreased insulin

resistance, serum insulin and fasting blood glucose levels, and

increased fasting serum GLP-1 level in diabetes rats (139, 140).

Resistant starch is a prebiotic compound that accelerates

proliferation of health-promoting gut microbiota such as

Bifidobacteria and Lactobacilli, increases the production of SCFAs,

decreases the concentrations of uremic toxins and alleviates renal

dysfunction (141). Postbiotics, defined as “preparation of inanimate

microorganisms and/or their components that confers a health

benefit on the host” in 2019 (142), have appeared increasingly in

the literature and products; however, their effects on DKD are

insufficient in research. Postbiotics exert immunomodulatory and

intestinal barrier protective roles by increasing anti-inflammatory

cytokine secretion and ZO-1 expression (143). Postbiotic-GABA-salt,
FIGURE 3

The management and therapeutic strategies of diabetic kidney disease based on gut microbiota.
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spirulina formulations, sonicated Lactobacillus paracasei and O.

formigenes lysates contribute to improve renal outcomes (144, 145).
Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is a treatment in which

the microbial community from a healthy donor’s stool was minimally

transplanted into the patient’s intestinal tract (146). FMT is

implemented with the purpose of restoring normal function of the

gut microbiota and has generally been adapted into treatment for

Clostridium difficile infection (147). Faecal microbiota is separated

cautiously from selected donor’s stool, quantified in accordance with

viable bacteria, and cryopreservation (148). Transplantable materials

can be delivered in the form of encapsulated oral medication (149). As

a true organ, gut microbiota is indispensable to human

pathophysiology, suggesting that FMT might be an advantageous

treatment for problems with metabolism, autoimmunity, and system

development (150). Body weight gain, insulin resistance, albuminuria,

and tumor necrosis factor-a levels in experimental DKD mouse

model could be prevented by FMT (151). After six weeks post-FMT

using stool derived from lean donors, the peripheral insulin sensitivity

was significantly improved in male patients with metabolic syndrome,

although the result was not sustained in following few weeks (152).

Another double blind randomized controlled trial demonstrated that

TMAO or proxies of vascular inflammation was undifferentiated in

patients with metabolic syndrome received FMT from either lean
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donors or autologous (153). Hence, abundant experiments are needed

to explore these potential therapeutic indications.
Conclusion and perspective

The pathogenesis and pathophysiology of DKD incorporate not

only hyperglycemia-induced metabolic alterations, hemodynamics

changes, RAS activation, podocyte injury or loss, epithelial

dysfunction, inflammation, and immune dysregulation, but also the

influences of environmental factors and interactions between host

and gut microbiota as well as its metabolites. Gut microbiota is

associated with kidney disease, confirming the presence of gut-

kidney axis through the involvement of genetic, immunity and

dietary approaches. The gut microbiota participates in host

homeostasis by producing a myriad of metabolites, which act ss key

signaling molecules and substrates for metabolic reactions. The

combination of metagenomics and metabolomics could help to

investigate the relationship between dysbiosis of gut microbiota and

metabolic disorders. Nonetheless, there are still complexities to

overcome in identifying the potential causality of some metabolites

from fully microbiota-derived or diet and host itself. High-quality

microbiome analysis workflow is important to obtain reliable and

repeatable results (154).

Dietary intervention, probiotics, synbiotics, and prebiotics are

widely acceptable to patients in relative safety and traditional concept.

However, various intestinal bacteria and metabolites have
TABLE 1 Differences between probiotics, synbiotics, prebiotics, and postbiotics.

Classification Probiotics Synbiotics Prebiotics Postbiotics

Definition Live microorganisms that, when
administered in adequate amounts,
confer a health benefit on the host

A mixture comprising live
microorganisms and substrate(s)
selectively utilized by host
microorganisms that confers a
health benefit on the host

A substrate that is selectively
utilized by host microorganisms
conferring a health benefit

Preparation of inanimate
microorganisms and/or their
components that confers a health
benefit on the host

Category Bifidobacterium (adolescentis,
animalis, bifidum, breve and
longum); Lactobacillus (acidophilus,
casei, fermentum, gasseri, johnsonii,
paracasei, plantarum, rhamnosus and
salivarius)

Complementary (prebiotic +
probiotic); Synergistic (live
microorganism + substrate)

Conjugated linoleic acids and
polyunsaturated fatty acids;
Oligosaccharides; Human milk
oligosaccharides; Phenolics and
phytochemicals; Readily
fermentable

Inactivated strain (such as
Bacteroides xylanisolvens,
Apilactobacillus kunkeei and
Saccharomyces boulardii);
Bacterial lysates; Spirulina
formulations

Health benefit Healthy digestive tract construction
(such as infectious diarrhoea,
antibiotic-associated diarrhoea, and
ulcerative colitis); Healthy immune
system construction (including
preventing allergic disease,
decreasing inflammation, and
enhancing anti-infection activities)

Treatment of NAFLD, obesity and
metabolic syndrome, T2DM and
glycaemia, IBS, CKD,
dyslipidaemia, PCOS, AD, and
inflammation; Prevention of
surgical infections and
complications, sepsis in infants,
and AD; Eradication of
Helicobacter pylori

Metabolic health; Satiety; Improved
absorption of calcium and other
minerals, bone health; Skin health;
Digestive tract health; Allergy;
Constipation; Immune function in
elderly individuals

New antimicrobials; Targeted
anti-inflammatory,
immunoregulatory, and enhance
vaccination efficacy agents; Novel
signaling molecules that affect gut
pain, sensation, secretion, and
motility; Fermented infant
formulas and bacterial lysates

Mechanism Colonization resistance;
Normalization of perturbed
microbiota; SCFA production;
Increased turnover of enterocytes;
Regulation of intestinal transit;
Competitive exclusion of pathogen;
Vitamin synthesis; Bile salt
metabolism; Gut barrier
reinforcement

Complementary approach
combines prebiotic (targets
autochthonous beneficial
microorganisms) and probiotic;
Synergistic approach selects
substrate that is utilized by the co-
administered live microorganism,
enhancing its functionality

Modulation of SCFA production;
Promotion of beneficial microbiota;
Bile salt metabolism; Alteration of
bacterial growth and interaction
with immune system; Enhanced
secretion of satiety hormones
peptide YY and GLP-1;
Immunological modulation

Modulation of resident
microbiota, immune responses,
and systemic metabolic responses;
Enhancement of epithelial barrier
functions; Regulation of systemic
signaling via the nervous system
NAFLD, non-alcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; IBS, irritable bowel syndrome; CKD, chronic kidney disease; PCOS, polycystic ovarian syndrome; AD, atopic dermatitis;
SCFA, short-chain fatty acid; GLP-1, glucagon-like peptide1.
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heterogeneous effects on host, some of which are beneficial to human

health and others contribute to pathophysiology of diseases. Hence, it

is necessary to investigate the signals and effects mediated by different

bacteria and metabolites as well as reasonable application of bacteria

community in the treatment strategies. Gut Microbiota-derived

metabolites could act as biomarkers of DKD. Identification of

biomarkers for screening, diagnosis, and prognosis of DKD as well

as exploration of molecular mechanisms or pathways involved in

DKD can facilitate individualized prevention and treatment.

However, further studies involving human trials are needed to

investigate the beneficial role of prebiotics, probiotics, synbiotics or

FMT in DKD management by regulating gut microbiota. The

therapeutic strategy targeting intestinal microbiota has prodigious

potential in the future and will open an emerging perspective and

orientation for DKD treatment.
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