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Free complement and
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neuroinflammatory and
neurodegenerative disorders
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The complement system is implicated in a broad range of neuroinflammatory

disorders such as Alzheimer’s disease (AD) and multiple sclerosis (MS).

Consequently, measuring complement levels in biofluids could serve as a

potential biomarker for these diseases. Indeed, complement levels are shown

to be altered in patients compared to controls, and some studies reported a

correlation between the level of free complement in biofluids and disease

progression, severity or the response to therapeutics. Overall, they are not (yet)

suitable as a diagnostic tool due to heterogeneity of reported results. Moreover,

measurement of free complement proteins has the disadvantage that

information on their origin is lost, which might be of value in a multi-

parameter approach for disease prediction and stratification. In light of this,

extracellular vesicles (EVs) could provide a platform to improve the diagnostic

power of complement proteins. EVs are nanosized double membrane particles

that are secreted by essentially every cell type and resemble the (status of the)

cell of origin. Interestingly, EVs can contain complement proteins, while the

cellular origin can still be determined by the presence of EV surface markers. In

this review, we summarize the current knowledge and future opportunities on

the use of free and EV-associated complement proteins as biomarkers for

neuroinflammatory and neurodegenerative disorders.
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1 Introduction

The diagnosis for disorders of the central nervous system

(CNS), including neurodegenerative and neuroinflammatory

diseases, is still challenging (1). Because of their rising

prevalence, high heterogeneity and the urge for early and

accurate disease detection, the need for reliable biomarkers for

diagnosis, prognosis or treatment response is high. Since

dysregulation of the complement system is a common

pathologic feature in several CNS diseases (2–7), a lot of

research has been conducted to investigate its biomarker

potential. Complement proteins are indispensable during

development of the nervous system, more specifically during

synaptic pruning and axonal growth (8–12). However, several

studies have shown that a broad list of CNS diseases, including

Alzheimer’s disease (AD) and multiple sclerosis (MS), are

associated with aberrant, complement-mediated synapse

elimination (5, 10, 11). Furthermore, expression and activation

of complement proteins is often observed in disease-associated

CNS lesions including AD and MS plaques (2, 13–16). Most

importantly, in regard to biomarker research, the level of several

complement proteins in biofluids is often found to be altered in

CNS disease patients compared to (healthy) controls. In this

review, we will discuss the potential and the limitations of

complements proteins as biomarkers in neuroinflammatory

and neurodegenerative diseases, focusing on AD and MS.
2 The complement system

As an essential part of the innate immune system, the

complement system ensures rapid recognition and clearance of

pathogens or danger-associated signals (5, 17, 18). In addition,

the system also coordinates adaptive immune functions (3, 18).

The complement system comprises more than 40 proteins and

embodies a complex set of interactions (5, 18). Overall,

complement activation can be achieved via three pathways,

which are summarized in Figure 1 and are extensively

reviewed by others (3, 5, 19, 20). The classical and lectin

pathways show a similar course, however their way of

activation differs (3, 5, 19). The classical pathway is triggered

via binding of the C1 complex to the Fc domain of antibodies

present in pathogen-immune complexes, or via its interaction

with apoptotic cells or polyanionic molecules such as

phosphorylated tau or amyloid-beta (Ab) fibrils (3, 5, 19). In

the lectin pathway, activation happens via the recognition of

microbial carbohydrates by pattern binding proteins, including

mannose-binding lectin (MBL), resulting in the activation of

mannan-binding lectin serine protease 1 (MASP1) and MASP2

(3, 5, 19). After activation, both the classical and lectin pathway

mediate C4 and C2 conversion into C4a/C4b and C2a/C2b,
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respectively. Subsequently, C2a and C4b complex together form

the C3 convertase (C4b2a). In contrast, the alternative pathway

acts differently, as hydrolyzed C3 (C3H2O) and factor B (fB) are

cleaved by factor D (fD) and form a solvent-based C3 convertase

(C3H2OBb) (3, 19). The latter pathway is constantly active at low

level to scan cells for alerting signals (19). Eventually, all

complement activation pathways lead to the cleavage of the

central complement protein C3, resulting in C3a/C3b formation

(3, 5, 19). Since C3b also forms a C3 convertase together

with cleaved factor B (C3bBb), a vicious cycle of C3 cleavage

is formed that efficiently amplifies the response (3, 19).

Subsequently, an additional C3b binds to the C3 convertase

(C4b2a3b or C3bBb3b) to form C5 convertase, by which C5

is converted into C5a/C5b. These effector molecules are

classified as opsonins (C3b, C5b) and anaphylatoxins (C3a,

C5a) (3, 5, 19). On the one hand, opsonins will mediate

efficient target elimination via the formation of the C5b-C9

complex, also known as the membrane attack complex

(MAC) or the terminal complement complex (TCC), to

mediate target lysis. On the other hand, opsonins tag the

target to enhance phagocytosis. Additionally, anaphylatoxins

induce leukocyte chemotaxis.
3 The potential of free complement
proteins as biomarkers

3.1 Free complement as biomarker in AD

The early diagnosis of AD patients is crucial for better

patient care, the timely administration of potential treatments

and enrolment in clinical trials. The present reliance on clinical

cognitive and behavioral testing, brain scans and medical history

does not fulfill this necessity, with definitive diagnosis only

possible postmortem. Unfortunately, the identification of early

biomarkers is an arduous task as brain changes are estimated to

already occur twenty years before symptoms arise (21, 22)

together with a large individual variability in starting age,

symptoms, and the speed of disease progression. It is thus of

great importance to further unravel the early molecular changes

to identify novel diagnostic tools. Currently, the most predictive

AD biomarker is the combination of lowered levels of amyloid-

beta 42 (Ab42) with increased total tau (tTau) and

phosphorylated tau (pTau) levels in the cerebrospinal fluid

(CSF). Although promising, their levels stagnate after disease

onset and do not allow staging from mild cognitive impairment

(MCI) to AD dementia (23, 24). Furthermore, CSF collection by

lumbar puncture is invasive and not frequently performed for

AD diagnosis as is the case for MS as discussed further. As

opposed to CSF, plasma AD biomarkers are less established, and

the availability is still limited. Hence, additional biomarkers to
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improve preclinical diagnosis, staging and prognosis are

necessary. The growing evidence on the involvement of the

complement system in AD has brought attention on its use as

such a biomarker. For example, polymorphisms in multiple

complement genes are associated with increased AD risk (25–

29). Furthermore, C1q is activated by Ab and reciprocally

promotes Ab aggregation (30–33). Similarly, C1q is activated

by tau and induces microglial engulfment of excitatory synapses

(34, 35). A broad range of preclinical studies making use of

complement inhibitors and/or knock-out (KO) mouse models

also indicate that complement dysregulation is not a secondary

reaction to pathology but a disease-driving force (2), for instance

by mediating aberrant synaptic pruning (12, 36, 37).

Consequently, complement proteins could have early

biomarker potential, and numerous efforts have been made to

measure and compare their levels in CSF and plasma inMCI and

AD patients and/or different control groups.
Frontiers in Immunology 03
3.1.1 Complement proteins levels in CSF and
their biomarker potential

Studies on CSF complement levels are generally consistent

with either increased or unchanged levels in AD (Table 1).

More specifically, an increase in the CSF levels of C1s (38), C1q

(38), C4 (45), clusterin (39, 48, 49), complement receptor 1

(CR1) (45) and factor H (fH) (41) has been reported in AD

patients compared to healthy controls (HC) and/or MCI.

Conversely, unchanged levels were shown for C1q (39, 40),

clusterin (50) and fH (39, 44, 46). For the central complement

protein C3, the outcomes in case-control studies are most

inconsistent. On one hand, we found four studies reporting

elevated C3 levels in the CSF of AD patients compared to HC

(41–43) or MCI (45). On the other hand, C3 concentration was

unaltered in two other studies (44, 46), in which the cohort

sizes were two to three times larger than in the discussed

studies showing increased levels. Notably, a recent meta-
FIGURE 1

Overview of the complement cascade. The complement cascade can be activated via three different pathways. In the classical pathway, the C1
complex (C1r, C1s, C1q) recognizes antibody complexes (A) bound to pathogens, polyanionic molecules such as pTau and Ab (B) or damage-
associated patterns on apoptotic cells (C). Following C1 activation, C2 and C4 will be converted to C2a/b and C4a/b, respectively. C2a and C4b
complex together and form a C3 convertase, which will cleave C3 to create C3a and C3b. Subsequently, C3b will complex with C2aC4b to form
C5 convertase, which will lead to the conversion of C5 into C5a and C5b. Finally, C5b will initiate the formation of the MAC complex by
recruiting C6, C7, C8 and C9, ultimately resulting into target lysis. Several other activation products (C3b, C4b) formed during the complement
pathway enhance phagocytosis via opsonizing the target. The lectin pathway is activated via the recognition of microbial carbohydrates
(D) including MBL, resulting in the activation of MASP1/2. Thereafter, the same cascade steps as described above for C3 and C5 conversion are
initiated. On the contrary, the alternative pathway is constitutively active at low level for constant scanning of cells. Here, a limited number of C3
molecules is hydrolyzed, which exposes a new binding site for fB. Subsequently, fD will cleave fB-bound C3 resulting in Bb-bound hydrolyzed
C3, which functions as a C3 convertase resulting in C3a/C3b production. Thereafter, C3b will again react with fB and properdin. The resulting
complex consisting of properdin, C3b and Bb also functions as a C3 convertase, which will again cleave C3 into C3b and C3a. Eventually,
properdin and Bb will capture two C3b molecules to form a C5 convertase. By this, C5 can be cleaved, resulting in MAC formation as described
above. As indicated in this figure, several amplification loops are present within the complement pathways. There are also different regulating
factors that influence or inhibit certain parts of the cascade. For example, fH acts as inhibitor for the C3 convertases in the alternative pathway
and acts as a cofactor for fI, which is in turn a regulator for the degradation of several activation products including the inactivation of C3b into
iC3b. Additionally, clusterin acts as an inhibitor of MAC formation. mannan-binding lectin serine protease 1/2 (MASP1/2), mannose binding lectin
(MBL), phosphorylated tau (pTau), amyloid-b (Ab), factor I (fI), factor H (fH), factor B (fB), membrane attack complex (MAC). Figure created in
Biorender and content in accordance with Dalakas et al. (3), Ricklin et al. (19) and Schartz et al. (5).
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analysis combining clinical data from peer-reviewed articles in

close to three thousand records demonstrated increased C3

CSF levels (39) supporting the positive studies. However, the

two cited studies showing unchanged C3 levels were not

included in this meta-analysis, which may have skewed the

comparison. Next, one study reported significantly elevated

CSF C4 levels in AD patients compared to HC, and an

increased trend compared to MCI (45). To our knowledge,

no studies reported a decrease in complement levels in the CSF

of AD/MCI patients.
Frontiers in Immunology 04
Although significant differences in multiple CSF

complement components were found between diagnostic

groups, none was reported to show adequate capability for

classifying AD versus MCI/HC patients. More specifically,

Daborg et al. showed that adding the complement proteins

CR1, C3 and C4 to a multivariate constructed receiver

operating characteristic (ROC) curve for the core biomarkers

tTau, pTau and Ab42 did not improve the area under the curve

(AUC) (45). In the study of Toledo et al. the addition of C3, fH

or C3:fH ratios did not improve the performance of tTau:Ab42 in
TABLE 1 Overview of changes and biomarker potential of complement proteins in the cerebrospinal fluid (CSF) of mild cognitive impairment
(MCI) and Alzheimer’s disease (AD) patients compared to a control group.

Cerebrospinal fluid

Protein Comparison Change Ref.

C1s AD vs HC ↑ (38)

C1q

AD vs HC
= (39, 40)

↑ (38)

MCI vs HC = (40)

NA + correlation with tTau (40)

C3

AD vs HC
↑ (39, 41–43)

+ correlation with cognitive impairment (MMSE) in AD (41, 42)

AD vs MCI
= (44)

↑ (45)

AD vs MCI vs HC

=
- correlation with cognitive decline progression (ADAS-Cog) in MCI

(46)

+ interaction between C3 levels and APOE E4 alleles on CSF amyloid and tau (47)

AD vs MCI ↑ (45)

C4
AD vs HC ↑ (45)

AD vs MCI (↑) (45)

Clusterin

AD vs HC ↑ (39, 48, 49)

AD vs MCI vs HC
=

+ correlation with Tau and pTau
(50)

NA + correlation with Ab-associated atrophy in non-demented elderly (51)

CR1 AD/MCI-AD vs MCI/HC ↑ (45)

Factor H

AD vs HC

= (39)

↑ (41)

+ correlation with cognitive impairment (MMSE) in AD (41)

AD vs MCI = (44)

AD vs MCI vs HC
=

- correlation with cognitive decline progression (ADAS-Cog) and lateral ventricular volume in MCI
(46)
fro
The characteristics of the patient groups that were compared are indicated in the ‘comparison’ column. The ‘change’ column indicates which level alteration was observed for the respective
complement component. Symbols: ↑ significant increase, (↑) increased, unsignificant trend, = unchanged. Amyloid-beta (Ab), Alzheimer’s disease (AD), Alzheimer's Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog), healthy control (HC), mild cognitive impairment (MCI), mini-mental state examination (MMSE), not applicable (NA), total tau (tTau).
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classifying AD subjects or MCI subjects versus HC (AUC 0.84

regardless of C3 and/or fH inclusion) (46). Similarly, Wang et al.

showed that none of the ROC calculations using C3 or fH alone

yielded acceptable sensitivity and/or specificity (41). The only

exception was when the value of C3:Ab42 and fH:Ab42 ratios was
also evaluated for AD versus control, where high sensitivity and

specificity were achieved (C3:Ab42, sensitivity 92.1% and

specificity 76.9%; fH:Ab42, sensitivity 92.1% and specificity

80.2%). Finally, Brosserson et al. indicated that CSF C1q levels

in AD patients versus HC are not diagnostic with a

discriminative power (equally weighted sensitivity and

specificity) around 60% (40).

Taken together, CSF complement levels seem unsuitable

as diagnostic AD biomarkers. Nevertheless, they could have

potential as predictor for disease severity. A longitudinal

analysis of MCI patients indicated a negative correlation

between C3 and fH levels and cognitive decline progression

(46) but this was not reflected by lower levels in AD/MCI

patients in cross-sectional analyses. In addition, lower fH

levels were also shown to correlate with increased lateral

ventricular volume in MCI patients, which represents a
Frontiers in Immunology 05
marker of disease progression (52). As opposed to the

inverse correlation between complement levels and

cognitive impairment in MCI, a positive correlation is

observed in AD patients. Indeed, in a cohort of AD patients

with CSF hemoglobin concentration less than 200 ng/ml, a

significant correlation between lower mini-mental state

examination (MMSE) score and increased concentrations of

CSF C3 and fH was reported (41). In addition, another study

mentions that CSF C3 was positively correlated with cognitive

impairment in their AD cohort, but it should be noted that

the data and analysis could not be found in the report (42).

Finally, it has been reported that C1q, C3 and clusterin are

also associated with higher tTau levels (40, 47, 50) and that

clusterin correlates with Ab-associated atrophy in non-

demented elderly (51).

3.1.2 Complement proteins levels in the blood
and their biomarker potential

Because of the accessibility of plasma- over CSF-based

biomarkers, their identification and potential use has been

explored extensively (Table 2). However, since the blood is not
TABLE 2 Overview of changes and biomarker potential of complement proteins in the plasma of Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) patients compared to a control group.

Plasma

Protein Comparison Change Ref.

C1q AD vs HC (↑) (39)

C1R AD vs HC (↑) (53)

C1s
AD vs HC = (54)

MCI convertors vs MCI non-convertors = (54)

C3

AD vs HC

= (39)

trend for + correlation with cognitive decline (MMSE) in combined group of AD and
MCI

(55)

↑ (55–57)

(↑) (53)

aMC vs NC ↑ (58)

MCI vs HC ↑ (57, 59)

sMC vs NC ↑ (58)

AD vs MCI ↓ (59)

NA - correlation with AD risk. Risk amplified in APOE ϵ44 carriers (60)

iC3b
AD vs HC = (54)

MCI convertors vs MCI non-convertors = (54)

C4 AD vs HC
= (39, 53)

↑ (56, 59)

(Continued)
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TABLE 2 Continued

Plasma

Protein Comparison Change Ref.

C4a AD vs HC
↑ (61)

(↑) (39)

C4d

AD vs HC = (54)

MCI convertors vs MCI non-convertors = (54)

aMC vs NC ↑ (58)

sMC vs NC ↑ (58)

C6
aMC vs NC ↓ (58)

sMC vs NC ↓ (58)

C9
AD vs HC

= (54)

(↑) (39)

MCI convertors vs MCI non-convertors = (54)

TCC
AD vs HC = (54)

MCI convertors vs MCI non-convertors ↓ (54)

C1
inhibitor

AD vs HC ↓ (53)

NA
- correlation with rosiglitazone drug efficacy in AD patients as defined by change in

ADAS-Cog score
(62)

Clusterin

AD vs HC
=

(39, 48, 50,
63)

↑ (54, 56)

AD vs HC vs LBD vs depr vs FTD vs VD
vs PD

= (64)

MCI convertors vs MCI non-convertors ↑ (54)

MCI vs HC ↑ (50)

NA

- correlation with cognitive decline rate in AD (MMSE) (50)

+ correlation with severity of AD (MMSE) (63, 65)

+ correlation with entorhinal cortex atrophy, disease severity (MMSE) and rapid clinical
progression in AD

(66)

+ correlation with cognitive decline rate in MCI (MMSE) (50)

+ correlation with decreased brain atrophy rate in MCI (67)

↑ AD risk (65)

↓AD risk in younger old persons (59–61, 63, 68–73)
↑ AD risk in older persons (74–83)

(72)

↑ risk for progression from MCI to AD (50)

CR1 AD vs HC ↓ (59)

Factor B AD vs HC
= (53)

(↓) (39)

Factor Bb
AD vs HC = (54)

MCI convertors vs MCI non-convertors = (54)

(Continued)
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in direct contact with the diseased brain as is the case for CSF,

combined with its complexity and heterogeneity, the

identification of reproducible plasma biomarkers is

challenging. Moreover, the majority of soluble complement

proteins originate from the liver (84) which could mask brain-

derived complement perturbations. Accordingly, AD plasma

biomarker studies are more heterogenous and conflicting in

comparison to CSF studies.

For the three classical complement activator proteins C1q,

C1r and C1s, strong evidence for altered levels is lacking, with a

trend for increased levels in AD plasma in C1q and C1r (39, 53)

while no differences are reported related to C1s (54). Analyses on

the plasma concentrations of the alternative complement

pathway component fB or its cleaved form Bb also

consistently found no differences (39, 53, 54). Similarly, no

significant differences were observed in the terminal pathway

proteins (39, 54) in AD patients compared to HC. To our

knowledge, no evidence for the involvement or increased levels

of lectin pathway components in AD has been published.

Presumably, it seems that the focal point of changes in AD

plasma complement levels is the central axis of the complement

system, and not the activator and terminal pathways. Indeed,

several studies reported a significant increase in C3 levels in the

plasma of AD patients (53, 55–58). Notably, one study reported

elevated plasma C3 levels in MCI patients compared to HC, but

also compared to AD patients (59). Together, these studies

indicate that plasma C3 levels are increased in AD, with a

more pronounced increase in the earlier MCI phase.

Surprisingly, a meta-analysis by Krance et al. did not endorse

these results, underlying the heterogeneity in plasma

measurements (39). Substantial variability was indeed detected
Frontiers in Immunology 07
in the plasma meta-analysis, but the source of the C3

heterogeneity could not be identified. Moreover, a larger scale

population study indicated that low baseline levels of plasma C3

are associated with higher AD risk, which was amplified in

APOE ϵ44 highly susceptible individuals (60). Case-control

comparisons on plasma C4 levels are less consistent. Increased

C4 concentrations in AD patients have been reported compared

to HC (56, 58, 59, 61). In contrast, other studies did not replicate

the increased C4 levels (39, 53, 54). Remarkably, a recent study

detected elevated C4 in the saliva of AD patients, albeit without

diagnostic utility (68).

For the complement regulators C1 inhibitor, CR1, fH, factor

I (fI) and clusterin, case-control studies also indicated changes in

their plasma levels. Firstly, one study indicated lower C1

inhibitor levels in AD plasma (53) and another group showed

the same for CR1 (59). Interestingly, polymorphisms in the CR1

gene are a well-known AD risk factor replicated in multiple

datasets (25–27, 29, 69). Secondly, studies measuring fH levels

are divided between unaltered (39, 53, 54, 70) and increased (56,

71) concentrations in the plasma of AD patients compared to

HC. Two studies also reported significantly higher fH in MCI

subjects versus HC (57, 59) while no difference was observed

between MCI patients converting to AD compared to non-

convertors (54), arguing against the use of plasma fH as a

prognostic AD biomarker. Next, reports on the C3b/C4b

protease fI are contradicting, with a study showing unchanged

levels between AD and HC (54), another study reporting

increased levels in AD plasma compared to MCI (59) and a

comparison between MCI convertors and non-convertors

indicating a decreased fI plasma concentration (54). Finally,

levels of the terminal pathway inhibitor clusterin have been
TABLE 2 Continued

Plasma

Protein Comparison Change Ref.

Factor H

AD vs HC
=

(39, 53, 54,
70)

↑ (56, 71)

MCI convertors vs MCI non-convertors = (54)

MCI vs HC ↑ (57, 59)

NA
- correlation with rosiglitazone drug efficacy in AD patients (ADAS-Cog) (62)

+ correlation with disease severity (MMSE) (71)

Factor I

AD vs HC = (54)

AD vs MCI ↑ (59)

MCI convertors vs MCI non-convertors ↓ (54)
f

The characteristics of the patient groups that were compared are indicated in the ‘comparison’ column. The ‘change’ column indicates which level alteration was observed for the respective
complement component. Symbols: ↑ significant increase, (↑) increased, unsignificant trend, ↓ significant decrease, = unchanged. Alzheimer’s disease (AD), Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog), depression (depr), frontotemporal dementia (FTD), asymptomatic mutation carrier (aMC), healthy control (HC), Lewy Body dementia (DLB), mild
cognitive impairment (MCI), mini-mental state examination (MMSE), not applicable (NA), Parkinson’s disease (PD), symptomatic mutation carrier (sMC), vascular dementia (VD).
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shown to be increased in AD (54, 56) and MCI (50) patients,

although this observation has been refuted in other reports (39,

48, 50, 63). Of note, AD-related alterations in clusterin levels

could be age-dependent, as it has been shown that higher

concentrations are associated with increased dementia risk

among elderly persons, as opposed to a decreased risk younger

elderly people (72).

Despite the overarching trend of altered complement plasma

levels in AD, especially in central axis complement proteins and

complement regulators, most studies agree regarding their

limited suitability as diagnostic biomarkers. For instance,

Cheng et al. reported an accuracy of 64.3% of C4 to

distinguishing AD from HC, with 64.3% sensitivity and 64.4%

specificity (56). Cutler et al. reported that C1 inhibitor gave a

sensitivity and specificity of both 58%, and a sensitivity of only

30.2% when the specificity was set at 80% (53). In addition,

setting specificity at 80% gave a sensitivity value of 40% for fH in

a ROC analysis by Hye et al. (71). Based on the complexity of

AD, combinations of complement proteins with each other or

with other variables might hold more potential. In a model by

Hakobyan et al. combining clusterin with co-variables associated

with AD, the predicted specificity was 75% at 70% sensitivity

(54). In the same study, a model combining clusterin, TCC and

fI with APOE status was predictive of MCI conversion with an

AUC of 0.85 (79% predicted specificity at 80% sensitivity).

Furthermore, a model from Wang et al. containing C3 and fH

together with four other protein markers (ApoeE1, ApoCIII,

ApoE, A2 macroglobulin) and age, sex, genotype, and education

level covariates could differentiate MCI and AD from HC with

an AUC of 0.743 and 0.837 respectively (41). Finally, a model

combining fB and fH with age could moderately predict MCI

progression to AD (AUC of 0.71) (59).

Similar to CSF, plasma complement levels have also been

analyzed as predictor for disease severity. Thambisetty et al.

observed a trend (p-value 0.07) for association between plasma

C3 and MMSE score in a combined group of AD and MCI

subjects (55). Moreover, another study showed the same

association for fH, with increased plasma concentrations

correlating with increased cognitive decline (decreased MMSE

scores) (71). However, the authors made use of semiquantitative

immunoblotting, so a validation study with alternative

quantitative assays is necessary. The complement-associated

protein clusterin is most associated with AD severity.

Importantly, clusterin is a multifunctional protein, so this

association could also stem from other mechanism than

inhibition of the terminal complement pathway. For example,

clusterin is also involved in Ab aggregation and clearance,

cholesterol and lipid regulation, and apoptosis (73, 85).

Nevertheless, it is recognized as a robust marker of disease

severity in both MCI and AD, as its association with cognitive

decline (50, 63, 65, 66) and atrophy (50, 66, 67) has been

replicated across studies in using different assay platforms.

Finally, one study explored the use of complement levels as
Frontiers in Immunology 08
potential marker for drug efficacy, in which the plasma levels of

C1 inhibitor and fH were negatively correlated with the efficacy

of the PPARg agonist rosiglitazone in AD patients (62).
3.2 Free complement as biomarker in MS

MS is an inflammatory, autoimmune-mediated disease of

the CNS which is characterized by the formation of

inflammatory demyelinating lesions and neurodegeneration

(86, 87). The exact etiological basis for this disease is still

unknown, although it is clear that both genetics and

environmental triggers are involved. Nowadays, magnetic

resonance imaging (MRI) is still the most important tool for

MS diagnosis, disease activity and treatment response (88, 89).

In general, at least two demyelinating lesions disseminated in

space and time must be identified for diagnosing MS.

Additionally, identification of oligoclonal bands and IgG into

the CSF of patients is commonly used but is very labor intensive

and costly (88, 89).

Also in MS pathology, several reports indicate the link with

the complement system. For example, many complement

proteins are detected in both white and grey matter lesions

(13–16). More specifically, immunohistochemical analysis of MS

plaques of patients with progressive MS revealed the presence of

several complement proteins (C3, fB, C1q), activation products

(C3b, iC3b, C4d, TCC) as well as regulators (fH, C1 inhibitor,

clusterin) (13). Regarding the cellular source, reactive astrocytes

and microglia are often proposed as primary sources of

complement (13, 14). Complement-mediated demyelination is

believed to be dominated by the classical pathway, as C1q is

highly present in MS plaques and C3 as well as MAC activation

is observed in white matter lesions (3, 13). Next to its role in

demyelination, complement has been suggested to be implicated

in mediating synaptic alterations by being involved in aberrant

synaptic pruning. Mainly based on animal studies, C3-mediated

synaptic loss is claimed to be linked with microglial activation

and phagocytosis (74–76, 90). Finally, several complement KO

mouse models illustrate the involvement of complements in MS

pathology. For example, a study with C3 KO mice indicates the

requirement of C3 for development of maximal experimental

autoimmune encephalomyelitis (EAE) disease (77). Also,

inhibition of the alternative complement pathway via

monoclonal antibody-mediated fB inhibition, attenuated

chronic EAE but did not prevent disease development (78).

Over the past decades, several studies explored the presence

of complement components in the blood and CSF to evaluate

their potential as biomarkers for MS diagnosis, disease severity

and prognosis. In these studies, the levels of a broad variety of

complement components were measured in biofluids from MS

patients and compared with HC or non-inflammatory other

neurological disease patients (NI-ONDC), or comparing

different MS patient subgroups (Tables 3, 4). In the following
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1055050
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Burgelman et al. 10.3389/fimmu.2022.1055050
TABLE 3 Overview and biomarker potential of complement components evaluated in the cerebrospinal fluid (CSF) of multiple sclerosis (MS)
patients compared to a control group.

Cerebrospinal fluid

Protein Change Comparison Ref. Biomarker potential Ref.

C1q ↑
MS (RR, CIS) vs HC
rMS vs HC
MS (RR, SP) vs NI-ONDC

(79,
91)

Positive correlation with neuroinflammatory and neurodegenerative
marker levels

(79)

C1s (↑) MS (RR, SP, PP) vs HC (92) NA

C1
inhibitor

(↑) MS (RR, SP, PP) vs NIDC (93) NA

C3

↑
MS (NS) vs HC
rMS vs HC
MS (PP, SP, RR) vs NI-ONDC

(79, 83,
94, 95)

Positive correlation with EDSS score
↑ associated with MRI lesion number (≥9), nerve injury (NFL)

(95)
↓

RRMS vs controls (with low back pain, no
white matter abnormalities)

(96)

=

MS (NS) vs HC
MS (NS) vs ONDC
pMS vs controls (NS)
CIS vs RRMS

(82, 97,
98)

C3a

↑

MS (RR, CIS) with new T2 lesions during
follow-up (4y) vs absence of new T2
lesions
EDA-3 vs NEDA-3 scored MS patients
(RR, CIS) follow up (1y)

(79) Positive correlation with neuroinflammatory and neurodegenerative
marker levels, T2 and GAD+ MRI lesions at baseline and during follow
up.

(79)

=
MS (RR, CIS) vs HC
rMS vs ONDC

(79,
99)

iC3b ↑ CIS vs NIDC (93) NA

C4

(↑) MS (RR, SP, PP) vs NIDC (93)

NA

↓ pMS vs controls (NS) (98)

=

MS (NS) vs HC
MS (NS) vs ONDC
MS (RR, SP) vs controls (low back pain,
no white matter abnormalities)
CIS vs RRMS

(82, 83,
96, 97)

C4a
↑ MS (RR, SP, PP) vs HC (80)

NA
= rMS vs ONDC (99)

C4b ↑ active RRMS vs NI-ONDC (94) NA

C5a = MS vs ONDC (99) NA

TCC
(C5b-9)

↑
MS (RR, NS) vs NI-ONDC
RRMS vs ON-MS with ON
CIS vs NIDC

(93,
100,
101)

Positive correlation with EDSS (101)
(↑) MS (RR, SP, PP) vs HC

(92,
102)

= MS (RR, CIS) vs HC (79)

C9

↓ rMS/pMS vs ONDC
(103,
104)

NA(↓) MS (RR, SP, PP) vs. HC (92)

= MS (NS) vs ONDC
(105,
106)

(Continued)
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TABLE 3 Continued

Cerebrospinal fluid

Protein Change Comparison Ref. Biomarker potential Ref.

Factor H
↓

MS vs HC
active RRMS vs NI-ONDC

(94,
107) NA

(↑) MS (RRMS, pMS) vs ONDC (108)

Factor B
↓ MS vs HC (107)

NA
(↓) MS (RR, SP, PP) vs HC (92)

Factor I
↑ CIS vs NIDC (93)

NA
= MS (RR, SP, PP) vs HC (92)

MASP-2 = MS (SP, PP) vs controls (NS, non-MS) (81) NA

FHR125 ↑ CIS vs NIDC (93) NA

sCR2 ↑ MS (SP, RR) vs NI-ONDC (91) Positive correlation with MSSS (91)

Clusterin (↑) MS (RR, SP, PP) vs HC (92) NA
F
rontiers in I
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The characteristics of the patient groups that were compared are indicated in the ‘comparison’ column. The ‘change’ column represents the observed level alteration for the respective
complement component between patient populations as represented in the ‘comparison’ column. The ‘biomarker potential’ column includes the studies that indicate a positive correlation
between the level of the respective complement component and a measure as assessment of ongoing disease activity or severity, disease progression, patient stratification and/or response to
treatment. To cover as much as research as possible, we did not set restrictions concerning the publication date of the references that were retrieved for this review. Symbols: ↑: significant
increase; (↑): increased, unsignificant trend; ↓: significant decrease; =: unchanged. clinically isolated syndrome (CIS), evidence of disease activity (EDA), expanded disability status scale
(EDSS), Factor H-related (FHR), gadolinium positive (GAD+), healthy controls (HC), magnetic resonance imaging (MRI), mannose-binding lectin-associated serine protease (MASP-2),
multiple sclerosis (MS), MS severity score (MSSS), neurofilament light chain (NFL), no evidence of disease activity (NEDA), non-inflammatory other neurological disease controls (NI-
ONDC), not applicable (NA), not specified (NS), optic neuritis (ON), primary progressive (PP), relapsing-remitting (RR), relapsing-remitting multiple sclerosis (RRMS), relapsing MS
(rMS), secondary progressive (SP), progressive MS (pMS), terminal complement complex (TCC).
TABLE 4 Overview and biomarker potential of complement components evaluated in plasma or serum of multiple sclerosis (MS) patients
compared to a control group.

Plasma/serum

Protein Change Comparison Ref. Biomarker potential Ref.

C1s

↑ NMO vs RRMS (109)

NA↓ RRMS vs HC (109)

= MS (RR, SP, PP) vs HC (92)

C1
inhibitor

↑
MS (RR, SP, PP) vs HC
NMO vs RRMS

(92, 109)
↑ 3 months IFNA treatment (RRMS) vs baseline (110)

↓ RRMS vs HC (109)

C3

↑
MS (RR, SP, PP) vs HC
MS (RR, CIS) vs HC
rMS vs HC

(79, 92)

Positive correlation with EDSS (111)
↓

MS (RR, SP) vs controls (low back
pain, no white matter abnormalities)
NMO vs RRMS

(96, 109)

= pMS vs controls (NS) (98)

iC3b ↓ RRMS vs HC (109) NA

C3a

↑ MS (RR, PP, SP) vs HC (112)

NA
=

MS (RRMS, CIS) vs HC
early relapse onset MS vs(NI-) ONDC
rMS vs ONDC

(79, 99,
113)

(Continued)
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TABLE 4 Continued

Plasma/serum

Protein Change Comparison Ref. Biomarker potential Ref.

C3bc NA NA NA ↑ 3 months IFNA treatment (RRMS) vs baseline (114)

C4

↑

MS (RR, SP, PP) vs HC
RRMS vs HC
relapse RRMS vs remission RRMS
NMO vs MS

(92, 111,
115)

Positive correlation with EDSS (111)
(↑) MS (RR, SP, PP) vs HC (80)

=
MS (RR, SP) vs controls (low back
pain, no white matter abnormalities)

(96)

C4a

↑

MS (RR, SP, PP) vs HC
Acute/active RRMS vs HC
pMS vs controls (NS)
active RRMS vs stable RRMS

(80, 92,
98)

NA
↓

MS (RR, SP, PP) vs HC
NMO vs MS (RR, SP, PP)

(112)

=
rMS vs ONDC
early relapse onset MS vs(NI-) ONDC

(99, 113)

C4d ↑ NMO vs RRMS (109) NA

C5
↑ NMO vs RRMS (109)

NA
= early relapse onset MS vs(NI-) ONDC (113)

C5a
↑ NMO vs RRMS (109)

NA
= rMS vs ONDC (99)

TCC
(MAC or
C5b-9)

↑
MS (RR, SP, PP) vs HC
NMO vs RRMS

(109,
112)

↑ three and six months IFNA treatment (RRMS) vs baseline (114)↓ RRMS vs. HC (109)

=
early relapse onset MS vs(NI-) ONDC
MS (RRMS, CIS) vs HC

(79, 113)

C9

↑ acute RRMS vs stable RRMS (92)

NA↓ MS (RR, SP, PP) vs HC (92)

= pMS/rMS vs ONDC (103)

Factor H

↑

MS (RR, SP, PP) vs HC
Acute/relapse RRMS vs stable/
remission RRMS
pMS (PPMS, SPMS) vs RRMS
transition rMS to pMS
NMO vs RRMS

(92, 108,
109, 116)

Positive correlation with EDSS
Distinguishing SPMS from RRMS (89.41%, distinction, 69.47% specificity

positive predictive value of 72.38%, test cut-off value 4237 mg/l)
(108)

↓
remission RRMS patients on vs off
treatment

(108)

= early relapse onset MS vs(NI-) ONDC (113)

Factor B =
MS (RR, SP, PP) vs HC
acute RRMS vs stable RRMS

(92) NA

Factor
Ba

= early relapse onset MS vs(NI-) ONDC (113) NA

Factor
Bb

↑ NMO vs RRMS (109)
NA

↓ RRMS vs HC (109)

(Continued)
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sections, we describe the overall alterations in complement

levels in CSF and blood and discuss which correlations could

be established between complement levels and measures

for MS severity, progression, patient stratification and

treatment response.

3.2.1 Complement proteins levels in CSF and
their biomarker potential

CSF is a biofluid that is frequently collected by lumbar

punction as part of the MS diagnosis process to test oligoclonal

banding as a sign of intrathecal antibody synthesis (86). Table 3

represents an overview of complement components that were

examined in the CSF of MS patients compared to a control group.

In general, the alterations of complement components in the CSF

of MS patients compared to a certain control group are quite

cohesive between studies. Most studies indicate that the amount of

complement factors is significantly increased (C1q, C4a) or

unchanged (C3a, C4, MASP-2, fI) in the CSF of MS patients

compared to HC (79–83, 92). Exceptions are fH and fB, which

showed a significant decrease in CSF of MS patients compared to

HC (94, 107). For complement C3, research outcomes are

conflicting, as two studies indicate a significant increase (79, 83)

while one study did not observe a difference in CSF C3 levels (82)

in MS patients compared to HC. Only two studies evaluated CSF

TCC levels in MS patients versus HC (79, 102). Mollnes et al.

reported increased TCC levels in 30% of the MS patients (102),

while Håkansson et al. reported that there was no difference in

TCC levels between MS patients and HC (79). Instead of HC, a lot

of studies included (NI-)ONDC patients as control group. Here,

the majority of investigated complement factors was elevated

(C1q, C1 inhibitor, iC3b, C4b, fI, fH, TCC, FHR125, soluble

Complement Receptor 2 (sCR2)) or unchanged (C3a, C4, C4a,

C5a) in CSF of MS patients compared to NI-ONDC patients (82,

91, 93–96, 99–101, 108). Of the examined complement factors, fH
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was unanimously decreased (94, 103, 104). For C3, two studies

reported a significantly increased amount in MS patients versus

NI-ONDC (94, 95). In contrast, one study could not detect a

difference in C3 levels (82) and another study described decreased

C3 levels in MS patient compared to a control group with low

back pain (without white matter abnormalities) (96). The same

was true for terminal factor C9, for which two studies indicated a

significant decrease in MS versus ONDC (103, 104), while two

other studies could not detect differences between MS and ONDC

(105, 106). Also for C4, CSF levels were increased in one study

(93) while unchanged in another study (82). A few studies also

investigated whether CSF complement levels were different

between specific subgroups of MS patients. For example,

comparing clinically isolated syndrome (CIS) patients with

relapsing-remitting (RR) MS patients did not show any changes

in C3 or C4 levels (97). Interestingly, C3a levels in the CSF of

RRMS and CIS patients were significantly elevated when they

encountered new T2 MRI lesions during a follow-up period of 4

years compared to RRMS and CIS patients that did not develop

new MRI lesions during the same follow-up period (79).

Moreover, C3a levels were also significantly increased in

patients that received evidence of disease activity (EDA)-3

scoring compared to no evidence of disease activity (NEDA)-3

scoring patients during a follow-up time of one year (79).

Although investigated by a limited number of studies, some

correlations were discovered between the level of a single

complement factor and a measure for ongoing disease activity

or severity, disease progression and patient stratification (Table 3).

Most of the significant correlations could link a complement level

to a measure for disease severity or progression. For example, a

positive correlation was observed between CSF C3 levels and

expanded disability status scale (EDSS) score (95), CSF TCC levels

and EDSS score (101) and CSF sCR2 levels and MS severity score

(MSSS) score (91). Furthermore, C1q levels and C3a levels were
TABLE 4 Continued

Plasma/serum

Protein Change Comparison Ref. Biomarker potential Ref.

= MS (RR, SP, PP) vs HC (92)

Factor I =
MS (RR, SP, PP) vs HC
early relapse onset MS vs(NI-) ONDC

(92, 113) NA

MASP-2 ↑
MS (SP, PP) vs controls (NS, non-
MS)

(81) NA

Clusterin = MS (RR, SP, PP) vs HC (92) NA
frontier
The characteristics of the patient groups that were compared are indicated in the ‘comparison’ column. The ‘change’ column represents the observed level alteration for the respective
complement component between patient populations as represented in the ‘comparison’ column. The ‘biomarker potential’ column includes the studies that indicate a positive correlation
between the level of the respective complement component and a measure as assessment of ongoing disease activity or severity, disease progression, patient stratification and/or response to
treatment. To cover as much as research as possible, we did not set restrictions concerning the publication date of the references that were retrieved for this review. Symbols: ↑: significant
increase; (↑): increased, unsignificant trend; ↓: significant decrease; =: unchanged. clinically isolated syndrome (CIS), expanded disability status scale (EDSS), healthy controls (HC),
Glatiramer acetate (GA), interferon alpha (IFNA), mannose-binding lectin-associated serine protease (MASP-2), MS severity score (MSSS), multiple sclerosis (MS), neuromyelitis optica
(NMO), non-inflammatory other neurological disease controls (NI-ONDC), not applicable (NA), not specified (NS), optic neuritis (ON), progressive MS (pMS), primary progressive (PP),
secondary progressive (SP), relapsing MS (rMS), relapsing-remitting (RR), relapsing-remitting multiple sclerosis (RRMS), Response Gene To Complement 32 (RGC-32), terminal
complement complex (TCC).
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both positively correlated with the level of neuroinflammatory and

neurodegenerative markers in the CSF (79). Remarkably, C3a

levels were positively correlated with the amount of gadolinium-

positive and T2 MRI lesions present at baseline and after follow-

up (79).

Some studies also aimed to determine the source of

complement factors in the CSF by measuring CSF:blood ratios

of certain complement factors. An increased CSF:blood ratio

suggests that elevated CSF complement levels are either a

consequence of peripheral leakage due to dysfunctional brain

barrier function or intrathecal complement synthesis. To clarify

this, researchers studied whether a correlation exists between an

increased CSF:blood ratio for complement proteins and an

increased CSF:blood ratio for albumin and/or a raised IgG

index, which are considered as two measures for MS disease

activity (117–119). One study recorded significantly increased

CSF:serum ratios for fH in MS patients compared to ONDC,

which was strongly correlated with CSF:serum albumin ratio

(Pearson’s correlation = 0.83, P < 0.001), suggesting influx of fH

from periphery to CSF due to brain barrier dysfunction (108).

Also for complement proteins C1s and clusterin, the CSF:plasma

ratio correlated with CSF:serum albumin ratio (92). On the other

hand, CSF:serum ratio for C4a was increased in MS patients

compared to HC, but CSF C4a levels showedmoderate correlation

with CSF IgG (r = 0.53, p = 0.01) while not with CSF albumin,

suggesting C4a CSF was more likely the result of intrathecal

synthesis (80). For C9 and fB, CSF:plasma ratio correlated with

both CSF:serum albumin ratio and IgG index (92).

3.2.2 Complement protein levels in the blood
and their biomarker potential

Over the years, a broad variety of complement components

present in the blood was studied in MS patients versus different

control groups. As discussed above, blood is a more accessible

biofluid than CSF, but it is also more prone to non-disease

specific influences such as general inflammation. Therefore, it is

not surprising that studies regarding complement level

alterations in the blood show more variable results compared

to CSF analyses. An overview of complement components that

were examined in the blood of MS patients compared to controls

is shown in Table 4.

In the blood, several studies reported upregulated C3, C4

and fH levels in MS patients compared to HC (79, 80, 92, 108,

112, 115, 116). However, in case of C3 this increase rendered

insignificant when an adjustment for high-sensitivity C-reactive

protein (hsCRP) levels was performed via covariance analysis,

meaning that C3 levels in the plasma were affected by hsCRP as a

result of systemic inflammation rather than MS disease itself

(79). For fB, fI and clusterin, no difference in blood levels

between MS patients and HC could be detected (79, 92), while

iC3b and C9 were described to be decreased in MS compared to

HC (92, 109). Several studies also reported alterations in MS

versus HC for C1s, C1 inhibitor, C3a, C4a, TCC and factor Bb
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but the results of these studies were conflicting. Blood levels of

C1 inhibitor and C4a were increased (80, 92) or decreased (109,

112) in MS versus HC. C1s and factor Bb levels were shown to

stay unchanged (92) or decreased (109). In contrast, C3a was

reported to stay unchanged (79) or increased (112). Also for

TCC, the results of the different studies are variable, as it was

reported to be increased (112), decreased (109) or unchanged

(79) when MS was compared with HC. Most studies that

implemented (NI-)ONDC patients as control group concluded

there was no difference with the blood levels of the investigated

complement factor (i.e., C3a, C4, C4a, C5, C5a, C9, fH, factor

Ba) compared to (NI-)ONDC patients (96, 99, 103, 113), except

one study which reported decreased C3 levels in serum of MS

patients versus control patients with low back pain (96). Some

complement factors were also found to differ between certain MS

patients groups or between MS patients and other demyelinating

diseases such as neuromyelitis optica (NMO). For example,

increased levels of C1s, C1 inhibitor, C4d, C5, C5a, fH, factor

Bb and TCC and decreased levels of C3 were detected in the

blood of NMO patients versus MS patients (109). Within MS

patient populations, acute or active RRMS patients showed

increased levels of C4a, C9 and fH compared to stable RRMS

patients (80, 92, 108).

Regarding the biomarker potential of blood detected

complement components, a positive correlation between the

level of C3, C4 and fH and EDSS score as a measure for disease

activity or severity was described (108, 111). Furthermore, fH also

positively correlated with MSSS scores and was a valuable marker

for distinguishing secondary progressive (SP) MS from RRMS,

with a positive prediction value of 72,4%. fH is therefore an

interesting biomarker candidate as indicator of disease

progression and disease course (108). To our knowledge, no

study found a real correlation between complement levels and

response to therapy. However, it was reported that after three

months interferon alpha (IFNA) treatment, C1 inhibitor and TCC

levels were elevated in RRMS patients compared to their baseline

levels (110, 114). For TCC, blood levels were also increased six

months of IFNA treatment compared to baseline levels (114).

Instead of complement factors themselves, the expression of a

gene induced by complement activation, namely Responsive Gene

to Complement 32 (RGC-32), could have remarkable biomarker

potential for the prediction of both relapse and responsiveness to

Glatiramer acetate (GA) therapy (120). Kruszewski et al.

investigated the expression level of RGC-32 in peripheral blood

mononuclear cells and could show decreased expression of RGC-

32 in peripheral blood mononuclear cells (PBMCs) of RRMS

patients in acute disease state compared to RRMS patients in

remission (120). On the contrary, GA responders showed

upregulation of RGC-32 expression compared to GA non-

responders (120). By implementing ROC analysis, they could

claim that RCG-32 expression levels could predict the probability

for relapse and GA responsiveness with 90% and 85% probability,

respectively (120).
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3.2.3 Biomarker potential of combined
complement factors in MS

As summarized in Tables 3, 4, few correlations are described

between the level of one single complement component and a

measure for ongoing disease activity or severity, disease

progression, patient stratification and/or response to

treatment. However, the combination of multiple complement

factor could be a stronger tool to create predictive models.

Indeed, a few studies reported logistic regression (LR) models

encompassing a set of complement factors together with other

clinical patient characteristics to be valuable as a predictive tool.

Combining C9 plasma levels, disease duration and age resulted

in a LR model to predict for clinical relapse within a group of

RRMS patients (AUC 0.73) (92). In the same research, another

LR model combining C3, C9, C1 inhibitor and fH plasma levels

could predict the probability of MS compared to HC (AUC 0.97)

(92). Another study created a LR model comprising plasma

levels of C1 inhibitor and TCC, which was effective to

distinguish NMO from MS patients (AUC 0.98) (109).

Furthermore, a model which combined CSF levels of C3, C9,

fB, C1q, fI and properdin with patient age was also valuable for

distinguishing NMO from MS (AUC 0.81) (93). In a study with

relatively small patient groups, the CSF levels of C3, C4, IgM,

mononuclear cells, neuron-specific enolase, S100 and lactate, as

well as CSF:blood albumin ratio and IgM index were taken into

account to calculate a score that could successfully discriminate

between RRMS and SPMS patients (121).
3.3 Free complement as biomarker
in other neurological diseases

The involvement of the complement system in the pathology of

other neurodegenerative and neuroinflammatory diseases such as

Parkinson’s disease (122), ischemic stroke (122, 123), glioblastoma

multiforme (124), is extensively reviewed by others. Compared to

AD and MS, the applicability of free complement as biomarker was

less extensively studied in these other pathologies. Therefore, the

biomarker potential of free complement in other neurological

diseases will not be addressed in this review.

4 The biomarker potential of
complement-containing
extracellular vesicles

As discussed previously, complement proteins are involved

in the pathology of several neuroinflammatory and

neurodegenerative diseases. Even though the level of free

complement proteins in both blood and CSF has been

thoroughly studied (Tables 1–4), there is no clear consensus

for implementation of complement proteins as biomarkers until

today. However, the consideration of shifting to complement-
Frontiers in Immunology 14
containing extracellular vesicles (EVs) as interesting biomarkers

instead of free complement proteins has gained progressive

attention during the past five years.
4.1 Extracellular vesicles

EVs are nanosized double membrane particles which are

released by a broad variety of cell types (125, 126). They carry a

lot of biological information (i.e., proteins, nucleic acids,

metabolites, lipids) which typically resembles the state of their

cell of origin. This biological information packed within EVs can

be transferred to other nearby or distant cells, which categorizes

EVs as an important form of intercellular communication (127).

Dependent on their way of biogenesis, EVs can be further

divided into subclasses. Exosomes are formed as intraluminal

vesicles (ILVs) within multivesicular bodies as a part of the

endosomal pathway (127). Subsequently, MVBs fuse with the

plasma membrane to release the ILVs as exosomes (127). The

second EV subtype are ectosomes or microvesicles, which are

formed by direct outwards budding of the plasma membrane

(127, 128). A third group of EVs, the apoptotic bodies, are

specifically formed during apoptotic cell death via random

blebbing of the plasma membrane (127). Despite the

description of these different EV subtypes, discriminatory

subtype-specific markers are lacking (125, 129). For this

reason, we will collectively use the term EV in this review.

EV research, especially in the context of biomarker studies,

needs to fulfill the requirements for high standardized isolation

and quality control. Therefore, the Minimal Information for

Studies of EVs (MISEV) guidelines were developed and are

continuously updated (129). EV sample preparation procedures

as well as EV source information must be accurately described.

This includes a description of the volume of fluid, and/or cell

number, and/or tissue mass from which EVs were extracted, as

well as the quantification of EV amount per volume of initial

fluid or per number of producing cells/mass of tissue by

implementing two distinct methods such as assessing protein

amount, particle number and lipid amount. Additionally, EV

nature are recommended to be verified by checking the presence

of at least three protein markers. More specifically, analysis of at

least one transmembrane or glycosylphosphatidylinositol (GPI)-

anchored protein associated with the plasma membrane and/or

endosomes (general or cell-/tissue-specific), one cytosolic or

periplasmic protein marker and one non-EV co-isolated

structure is required to prove the presence and purity of the

EV preparations. Additionally, researchers can only claim the

nature of small EVs by evaluating an extra set of markers, which

comprises proteins that are situated in/on intracellular cellular

compartments, including the Golgi apparatus, mitochondria,

autophagosomes, peroxisomes and the endoplasmic reticulum.

Proteins associated with these intracellular compartments are

normally not enriched in smaller EVs (<200 nm diameter) (129).
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4.2 Why EVs are interesting in the
context of biomarker studies

The consideration of shifting from free protein levels to EV-

associated protein levels in biomarker research stems from the

fact that EVs have multiple characteristics regarding biomarker

potential, which could overcome some of the limitations of free

proteins. Firstly, the membranous nature of EVs makes them

stable carriers that can protect their cargo from degradation

(130). Secondly, it is possible to unravel the cellular source of

EVs via analyzing the presence of cell-specific markers (131). In

the context of disease, it can be an advantage to focus on EVs

carrying the protein of interest originating from a cell type that is

specifically engaged in the pathology to narrow down off-target,

non-specific sources. For CNS diseases, it is a major advantage

that brain-derived EVs can cross brain barriers and can thereby

be isolated from peripheral biofluids (132). These peripheral

liquid biopsies are more easy to collect compared to CSF and are

a less expensive alternative to imaging (132). For example,

astrocyte EVs are often defined by the presence of L-

Glutamate/L-Aspartate Transporter (GLAST), while L1 cell

adhesion molecule (L1CAM) is an extensively studied marker

to enrich for neuronal EVs (131, 132). Thirdly, EVs carry disease

specific signatures as they mimic the status of their cell of origin

(130, 132). Knowledge about cellular EV origin can not only be

an advantage for diagnostic purposes, but also allows to gain

more insights into the underlying disease mechanisms itself

(130, 133, 134). Finally, analysis of EVs can improve

measurement sensitivity and signal-to-noise ratio, specifically

when enriched for a certain cell type-specific EV population

(132, 135). The improved sensitivity can be illustrated by the fact

that alterations in plasma EVs are often absent in complete

plasma (132). Since most EVs present in the blood do not

originate from the CNS, the choice to enrich for EVs

produced by neurons or glial cells can improve signal-to-noise

ratio (132).

In the following sections, we will describe the findings of

studies on the complement content of EVs in different

neurological pathologies, which illustrates their growing

importance in the field of biomarker identification. The most

important conclusions regarding EV-associated complement, as

well as EV characterization and EV quality control conducted by

the studies discussed in this review are summarized in Table 5.
4.3 Complement-containing EVs
in dementia

Among the different CNS diseases, complement-associated

EVs have been investigated most intensively in the context of

dementia, more particularly in AD. Moreover, most of the AD-

focused studies aim to specifically investigate astrocyte-derived

EVs (AEVs), because astrocytes play an important role during
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AD pathology. While astrocytes have highly important neuronal

supportive functions during homeostatic conditions (156, 157),

they transform to a proinflammatory (A1) phenotype during

neurodegenerative diseases, mediating neurotoxicity via a

mechanism that is currently not completely elucidated (158–

160). Importantly, pro-inflammatory A1 astrocytes are shown to

highly upregulate the expression of complement protein C3 in

brain tissue samples of AD patients and AD mouse models

(161–163). The involvement of astrocyte-related complement

upregulation in relation to the astrocyte-mediated neurotoxicity

has been proposed, but the question remains whether astrocytes

are the main complement source in AD (37, 159, 161).

Analysis of complement content of plasma-derived AEVs

from AD patients versus age- and gender- matched HC indicated

significantly increased factors of the classical and alternative

pathways (C1q, C4b, C3d, C3b, fB, fD, fBb, and TCC), while

mannose-binding lectin levels were unchanged (138, 139). A

similar set of increased complement components (C1q, C4b, fD,

fBb, C5b, C3b, and TCC) was observed in patients with MCI that

converted to dementia within 3 years (MCIC) compared to

stable MCI patients (MCIS) (139). The observation that the

mean complement levels in AEVs were higher in patients with

moderate AD compared to preclinical AD was further confirmed

in a longitudinal study where AD patients were tracked over a

period of 5 to 12 years (138). Furthermore, AEV levels of

complement regulatory proteins (CD46, CD59, CR1, decay

accelerating factor) were decreased in AD versus HC (138) and

MCIC versus MCIS (139). On top of the complement

enrichment, these AEVs were also characterized by an elevated

inflammatory content as their IL-6, IL-1b and TNF loading was

higher in AD patients compared to HC (138). Remarkably, when

comparing complement levels in AEVs and neuron-derived EVs

(NEVs), the level of investigated complement components in

NEVs is 6- to 50- fold lower than in AEVs (138). These findings

therefore support the hypothesis that these complement-

enriched, inflammatory AEVs are contributing as astrocyte-

produced factors that are conceivably neurotoxic during the

late inflammatory phase of AD (138). This hypothesis is

strengthened by another study that reported the ability of AD

patient plasma-derived AEVs to induce MAC deposition on

neurons, accompanied with disruption of neuronal membrane

integrity, reduction of neurite density and the reduction of

neuronal viability (137). On top of this, these results indicate

that AEV-associated complement proteins may be implemented

as predictive biomarkers for MCI to AD conversion (138, 139).

Next to AEVs, microglial-EVs (MEVs) and NEVs are also

studied in the context of AD. Regarding microglial-derived

EVs (MEVs), one study isolated MEVs from human cortex

tissue and reported elevated MEV-associated C4 levels, as well

as upregulated complement regulator CD59 in AD versus HC

(140). In contrast to AD, EV-associated complement in

frontotemporal lobar degeneration (FTLD) was only

investigated once, in which sporadic as well as genetic forms
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TABLE 5 Minimal Information for Studies of EVs (MISEV) guidelines related information about EV isolation and characterization in the studies discussed in this review, investigating human- and
mouse-derived EVs.

n EV characterization Ref.

Global quantification Protein marker
detection

e ☐ A
☒ B (NTA)
☐ C
☐ D
☐ E

☒ 1 (CD9)
☒ 2 (TSG101)
☐ 3
☒ 4 (Calnexin)

(136)

IP ☒ A (0,5 ml)
☒ B (NTA)
☒ C (Bradford)
☐ D
☒ E

☒ 1 (CD81, CD9, CD63)
☒ 2 (ALIX)
☒ 3 (ApoA1)
☒ 4 (GM130)

(137)

IP ☒ A (250 µl)
☐ B
☐ C
☐ D
☐ E

☒ 1 (CD81, CD59, CD55)
☐ 2
☐ 3
☐ 4

(138)

IP ☒ A (250 µl)
☐ B
☐ C
☐ D
☐ E

☒ 1 (CD81, CD59, CD55)
☐ 2
☐ 3
☐ 4

(139)

ity
+

☐ A
☒ B (TRPS)
☐ C
☒ D (lipidomics)
☒ E

☒ 1 (CD9, CD81, CD63,
CD11b)
☒ 2 (syntenin-1)
☒ 3
☒ 4 (GM130, Calnexin)

(140)

(Continued)
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Patient studies

Patient info
(disease/controls)

Biofluid/
tissue as

EV
source

EV cellular
source
(marker)

Complement content EVs EV isolati

Dementia FTLD (genetic
GRN/C9orf72,
sporadic)

HC Plasma Bulk ↑ C1q, C3, C4 cargo per EV in FTLD
↓ C4 cargo in GRN+(homo) vs GRN+(het)
and sporadic
↑ C4 cargo in sporadic vs GRN+(het)
↑ C4 EV/plasma ratio in sporadic vs GRN+
FTLD
↓ C4 EV/plasma ratio in GRN+ (homo) vs
HC and other FTLD groups
↑ C3 EV/plasma ratio in sporadic vs HC and
other FTLD groups

Total Exosom
Isolation kit

AD, FTLD A/G HC Plasma Bulk (CD81+)
Astrocytes
(GLAST+)
Neurons
(L1CAM+)

AEVs and NEVs of AD patients are
neurotoxic (induction Membrane Attack
Complex (MAC) expression, membrane
disruption, reduced neurite density, decreased
cell viability)

ExoQuick +

AD (mild)
AD (moderate)

A/G HC
Pre-
clinical
AD

Plasma Astrocytes
(GLAST+)

↑ C1q, C4b, C3d, factor B, factor D, fBb, C3b
and TCC (C5b-C9) in AEVs of mild AD vs
HC.
Mean complement levels higher in moderate
AD vs preclinical AD.

ExoQuick +

MCIC
AD (mild,
moderate)

MCIS
A/G HC

Plasma Astrocytes
(GLAST+)

↑ C1q, C4b, fD, fragment Bb, C5b, C3b, C5b-
C9 in AEVs of MCIC vs MCIS.
↓ CD46, CD59, and type 1 complement
receptor in AEVs in MCIC vs MCIS.

ExoQuick +

AD
Braak stage V-VI

A/G HC Brain
tissue
(parietal
cortex)

Microglia
(CD11b+)

Proteomic EV analysis
↑ C4, CD59 in MEVs from AD vs HC

GentleMACS
tissue
dissociation
Sucrose dens
gradient UC
IP
o
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TABLE 5 Continued

Patient studies

EV characterization Ref.

lobal quantification Protein marker
detection

A (200 µl)
B
C (Bradford)
D
E

☒ 1 (CD81, CD9)
☐ 2
☐ 3
☐ 4

(141)

A (5 ml)
B
C (BCA)
D
E

☐ 1
☐ 2
☐ 3
☐ 4

(142)

A (0,5 ml)
B (NTA)
C
D
E

☐ 1
☐ 2
☐ 3
☐ 4

(143)

A (5 ml)
B (NTA)
C (NanoDrop)
D
E

☒ 1 (CD81, CD9)
☒ 2 (TSG101)
☒ 3 (HSA)
☐ 4

(144)

A
B
C
D
E

☐ 1
☐ 2
☐ 3
☐ 4

(145)

A (500 µl)
B
C (BCA)
D
E

☒ 1 (CD9, CD81)
☒ 2 (TSG101)
☐ 3
☒ 4 (Calnexin)

(146)

A
B (NTA)
C

☒ 1 (CD63, CD81)
☒ 2 (ALIX)

(147)

(Continued)
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Patient info
(disease/controls)

Biofluid/
tissue as

EV
source

EV cellular
source
(marker)

Complement content EVs EV isolation

Parkinson’s
disease

PD
HY stages II and
III

HC Plasma Bulk Proteomic EV analysis
↓ Clusterin, C1r in PD vs HC

SEC (EV-
Second)

☒
☐

☒
☐

☒

PD
Mild and severe

HC Serum Bulk Proteomic EV analysis
↓ C1q in PD vs HC
↑ Clusterin, C1r in progression from mild to
severe PD
↓ C1q in progression from mild to severe PD

DUC ☒
☐

☒
☐

☐

Multiple
sclerosis

RRMS, pMS HC Plasma Astrocytes
(GLAST+)

↑ C1q, C3b/iC3b, C5, C5a, fH (pMS vs. HC)
↑ C1q, C3, C3b/iC3b, C5, C5a, fH (RRMS vs
HC)
No difference: C4, C9, fB (MS vs. HC)

ExoQuick + IP ☒
☒
☐

☐

☐

RRMS IIH CSF Bulk Proteomics on CSF-EVs
C3b, C4, C6, fB, fH uniquely enriched in
RRMS-EVs vs RRMS-CSF, while not
enriched in IIH.

Precipitation +
SEC (ExoSpin)

☒
☒
☒
☐

☒

MS NA CSF NA MAC-containing “vesicles” NA ☐

☐

☐

☐

☐

Ischemic
stroke

Symptomatic IS HC Serum Bulk Proteomic EV analysis
↑ C1qB, C1r in IS vs HC

ExoTrap ☒
☐

☒
☐

☐

IS
(CS, CSC)

HC Serum Bulk
Neurons
(L1CAM+)

Proteomic EV analysis
C1qA: unique for serum EVs and NEVs from
CSC-IS patients.

ExoQuick Ultra
(Bulk)

☐

☒
☐

G
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TABLE 5 Continued

Patient studies

EV characterization Ref.

Global quantification Protein marker
detection

☐ D
☒ E

☒ 3 (Albumin)
☐ 4

☒ A (5 ml)
☒ B (NTA)
☒ C (MicroBCA)
☐ D
☒ E

☒ 1 (CD81, CD9, CD63,
CD41a)
☒ 2 (HSP70)
☐ 3
☒ 4 (GM130)

(148)

☒ A (15 ml blood)
☒ B (NTA)
☐ C
☐ D
☒ E

☒ 1 (CD9, CD63)
☒ 2 (TSG101)
☐ 3
☐ 4

(149)

☒ A (0.5 ml)
☒ B (NTA)
☐ C
☐ D
☒ E

☒ 1 (CD9, ITGA2B, ITGA6,
PDCD6IP)
☒ 2 (ANXA1/2/6, FLOT1,
HSP90A1B, GAPDH,
HIST1H4A)
☐ 3
☒ 4

(150)

EV characterization Ref.

Global quantification Protein marker
detection

☒ A (500 µl)
☒ B (NTA)
☐ C
☐ D
☒ E

☒ 1 (CD81, CD9)
☒ 2 (TSG101)
☐ 3
☒ 4 (Calnexin)

(151)

(Continued)
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Patient info
(disease/controls)

Biofluid/
tissue as

EV
source

EV cellular
source
(marker)

Complement content EVs EV isolation

C3 abundant in IS (CSC and CS) and HC in
serum EVs and NEVs.

SmartSEC + IP
(NEVs)

Brain
tumor

GBM HC Plasma Bulk Proteomic EV analysis
↑ C3, C5, C1q, fH in GBM vs HC

DUC

GBM HC Plasma Bulk Proteomic EV analysis
↑ C3, C4b in GBM vs HC

DUC

GBM
Grade II-IV

MEN
HC

Plasma Bulk Proteomic EV analysis
↑ C3 in GBM vs controls

SEC (qEV,
Izon)

Mouse studies/primary culture studies

Mouse model
Cell culture

Biofluid/
tissue as

EV
source

EV cellular
source
(marker)

Complement content EVs EV isolation

Dementia AbO
CPE primary
culture

Scram-
bled
CPE
primary
culture

Culture
medium

CPE cells Proteomic EV analysis
↑ C3 in AbO-stimulated CPE vs scrambled

SEC (qEV)
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TABLE 5 Continued

Mouse studies/primary culture studies

EV isolation EV characterization Ref.

Global quantification Protein marker
detection

IP (ExoSORT) ☐ A
☒ B (NTA)
☒ C (Bradford)
☐ D
☐ E

☒ 1 (CD81, CD9, CD63)
☒ 2 (FLOT1)
☒ 3 (APOA, albumin)
☒ 4 (Calnexin)

(152)

DUC + sucrose
gradient

☒ A (0.4g)
☒ B (NTA)
☒ C (BCA)
☐ D
☒ E

☒ 1 (CD9, CD81, CD63,
ITGA)
☒ 2 (ANXA5)
☐ 3
☒ 4 (GM130, CYC1)

(153)

Precipitation
(Total Exosome
Isolation
reagent) or
SEC

☒ A (50µl)
☒ B (DLS)
☐ C
☐ D
☒ E

☒ 1 (CD9, ITGA)
☒ 2 (ANXA4, ANXA5,
ANXA7)
☐ 3
☐ 4

(154)

SEC (qEV –

70nm)
☒ A (50µl)
☐ B
☒ C (MicroBCA)
☐ D
☐ E

☒ 1 (ITGB1)
☒ 2 (HSPA8, ACT)
☒ 3 (Albumin)
☐ 4

(155)

eckbox B) Analysis of particle number. Checkbox C) Analysis of protein amount. Checkbox D) Analysis of
ted studies, consult checkboxes 1-4. Checkbox 1) Transmembrane or Glycosylphosphatidylinositol (GPI)-
city. Checkbox 3) Assessment of presence/absence of expected contaminants. Checkbox 4) For small EVs
EV), neuronal-EV (NEV), microglial-EV (MEV), not described (ND), not applicable (NA), idiopathic
r Degeneration (FTLD), Parkinson’s disease (PD), Glioblastoma multiforme (GBM), meningioma (MEN),
MCIC), Hoehn and Yahr (HY), healthy controls (HC), age-gender matched healthy controls (A/G HC),
etry (MS), differential ultracentrifugation (DUC), ultracentrifugation (UC), Annexin A5 (ANXA5), flow
itation (IP), Tunable Resistive Pulse Sensing (TRPS), factor H (fH), factor B (fB), factor D (fD), terminal
wildtype (WT).
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Mouse model
Cell culture

Biofluid/
tissue as

EV
source

EV cellular
source
(marker)

Complement content EVs

2xTg-AD
5xFAD
3xTg-AD

WT Plasma Neuron
(L1CAM+)
Astrocyte
(GLAST+)

↑ AEV C1q in 3xTg-AD vs WT

CAST.APP/PS1 CAST
WT HC

Brain
tissue

Bulk Proteomic EV analysis
C1qa, C1qc increased in EVs from CAST
APP/PS1 vs WT, but not significant

Brain
tumor

GBM mouse
model
Longitudinal
samplings
(baseline, T1, T2)

NA Serum Bulk Proteomic EV analysis
Complements among group of deregulated
proteins in EVs
C1ra and C1sa deregulated in EVs between
T2 and T1 stages.

GBM mouse
model
Longitudinal
samplings
(baseline, pre-
symptomatic T1,
symptomatic T2)

NA Serum Bulk Proteomic EV analysis
↓ C4b in T1 vs baseline
↑ C1qa, C1ra, C1s1 in T1 and T2 vs baseline

For global EV quantification requirements, consult checkboxes A-E. Checkbox A) Cell number/fluid volume/tissue mass from which EVs were isolated. Ch
lipid amount. Checkbox E) Analysis by electron microscopy. For information regarding EV protein marker detection that has been conducted by the indica
anchored protein(s) localized in cells at plasma membrane or endosomes. Checkbox 2) Cytosolic protein(s) with membrane-binding or -association capa
<200nm: verifying protein(s) associated with compartments other than plasma membrane or endosomes. extracellular vesicles (EVs), astrocyte-EV (A
intracranial hypertension (IIH); multiple sclerosis (MS), relapsing-remitting MS, progressive MS (pMS), Alzheimer’s disease (AD), Fronto-Temporal Loba
ischemic stroke (IS), subcortical (SC), cortical-subcortical (CSC), mild cognitive impairment (MCI), MCI stable (MCIS), MCI converting to dementia (
homozygous (hom), heterozygous (het), Nanoparticle Tracking Analysis (NTA), Bicinchoninic Acid Assay (BCA) Bradford assay (BA), mass spectrom
cytometry (FC), transmission electron microscopy (TEM), size exclusion chromatography (SEC), high sensitivity flow cytometry (hsFC), immunoprecip
complement complex (TCC), human serum albumin (HSA), heat-shock protein (HSP), A-beta oligomers (AbO), choroid plexus epithelial cells (CPE),
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of FTLD (heterozygous/homozygous GRN mutation carriers,

intermediate/pathological C9orf72 expansion carriers) were

included. Although the concentration of plasma EVs was

lower in sporadic and genetic FTLD patients, the C1q, C3 and

C4 cargo per EV was higher in FTLD compared to EVs from HC

(136). Additionally, EV-complement related differences between

different subgroups of FTLD were also detected. For example, C4

cargo was decreased in GRN+ homozygous genetic FTLD versus

heterozygous GRN+ and pathological C9orf72 genetic FTLD,

while EV-associated C4 increased in sporadic FTLD compared

to heterozygous GRN+ FTLD (136). C1q, C3 and C4 EV:plasma

ratios were also compared between the different groups.

Compared to HC, C3 EV:plasma ratios were elevated in

sporadic FTLD while C4 EV:plasma ratios were decreased in

homozygous GRN+ FTLD (136). Moreover, C4 EV:plasma

ratios were increased in sporadic FTLD versus GRN+ genetic

FTLD but decreased in homozygous GRN+ FTLD versus all

other FLTD groups (136). For C1q, no differences in EV:plasma

ratios could be detected amongst all groups investigated (136).

Next to patient studies, there is a limited amount of EV

research on animal models for AD, in which complement

components were found into EVs. C1q levels were shown to

be increased in plasma-derived AEVs from 3xTg-AD mice

compared to WT mice (152). Moreover, C1q levels in plasma-

derived AEV were positively correlated with C1q levels in the

hippocampus and cortex, which implies that C1q levels in AEVs

can reflect C1 levels in the indicated brain regions (152).

Another study showed an insignificant increase in C1qa and

C1qc levels in CAST APP/PS1 mice brain derived EVs compared

to EVs from WT control mice (153). Moreover, we previously

reported an increased release of C3-containing EVs by choroid

plexus epithelial (CPE) cells that were stimulated with amyloid-

beta oligomers (AbO), identifying a novel source of

complement-containing EVs that might potentially be detected

in the CSF as biomarker for AD (151).
4.4 Complement-containing EVs in
Parkinson’s disease

For PD, two small-sized proteomic studies on blood-derived

EVs from sporadic PD patients in different progression stages

compared to HC revealed alterations in the level of EV-

associated complement proteins (141, 142). Both studies aimed

to identify potential EV-associated biomarkers for PD diagnosis

and PD progression. A pilot study with 16 PD patients, stratified

via the stage of PD progression according to the Hoehn and

Yahr (HY) stages (HY stages II and III), observed a significant

decrease of complement proteins clusterin and C1r, as well as

apolipoprotein A1 (ApoA1) in plasma EVs from PD patients

versus HC (141). Therefore, these three EV-enriched proteins

may be proposed as potential biomarker candidates for PD
Frontiers in Immunology 20
diagnosis (141). However, only ApoA1 present in the EV

fractions could be correlated with PD progression, as ApoA1-

EV levels were decreased in PD patients with HY stage III versus

HY stage II, while plasma protein levels of ApoA1 remained

unchanged (141). However, we want to remark that ApoA1 has

been indicated as a contaminant that often co-isolates with EVs

during EV preparations according to the MISEV guidelines

(129). On the contrary, the second proteomic study on serum

EVs, including 20 PD patients subdivided according to the HY

scale into mild (HY < 3) and severe (HY > 3), could identify

complement proteins that were significantly altered during PD

disease progression (142). Here, increased EV levels of clusterin

and C1r were detected in PD patients with progression from

mild to severe disease, whereas decreased levels of EV-associated

C1q were detected in PD patients versus HC as well as during

progression from mild to severe PD (142). These results indicate

a potential for clusterin, C1r and C1q as EV biomarkers for PD

progression (142). In conclusion, when comparing both PD

studies, both C1r and clusterin might be interesting

biomarkers for PD diagnosis and/or progression, but

validation with larger patient cohorts is essential.
4.5 Complement-containing EVs in MS

The first observation of complement-associated vesicles in

MS was made over 30 years ago by Scolding et al., who

discovered the presence of MAC-containing vesicles in the

CSF of MS patients (145). These MAC-containing vesicles

were also found to be produced by oligodendrocytes as a

response to complement activation (145). More recently, two

patient studies report altered complement EV content in biofluid

samples of MS patients. One proteomic analysis of EVs isolated

from the CSF of RRMS patients revealed a unique enrichment of

several complement proteins (C3b, C4, C6, fB, fH) in EVs

compared to CSF levels, while these were not enriched in CSF-

EV samples of idiopathic intracranial hypertension control

patients (144). We found one study that investigated the

biomarker potential of complement-containing EVs in MS. In

this study, the potential of circulating NEVs and AEVs as

biomarkers for complement-mediated synaptic loss during MS

was examined (143). Therefore, synaptic proteins were analyzed

in NEVs while a wide spectrum of complement components

(C1q, C3, C3b/iC3b, C4, C5, C5a, C9, fB, fH) was measured in

AEVs (143). Interestingly, decreased levels of synaptic proteins

synaptopodin and synaptophysin in NEVs were strongly

correlated with increased levels of complement proteins (C1q,

C3b/iC3b, C5, C5a, fH) in AEVs in MS plasma samples

compared to HC (143). Importantly, the increase in

complement proteins within EVs was only present in AEVs,

while total plasma EVs or neat plasma was not showing

differences between MS and HC (143).
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4.6 Complement-containing EVs in
glioblastoma multiforme

Also in the cancer field, circulating EVs may carry potential

biomarkers that could be highly valuable to accelerate and

further improve the diagnosis and follow-up process for

specific malignancies. In this review, we particularly focus on

GBM brain tumors, the most prevalent, highly malignant glial

tumor in the CNS which is frequently diagnosed only in later

disease stages and is associated with a poor prognosis (164). Also

in this neurological pathology, the intercommunicative role of

EVs has been described in the bidirectional crosstalk between the

GBM tumor and its microenvironment (165–167). The

involvement of the complement system in GBM pathology is

also illustrated by multiple reports and is reviewed by others

(124, 168). In general, the complement system seems to play a

role in several aspects of GB tumorigenesis, such as the

maintenance and migration of glioma stem-like tumor niche

cells, GB tumor angiogenesis and immune cell cross talk (124).

Other key findings include the presence of complement deposits

(C1q, C3, TCC, fB) in tumor tissue (169) and altered

complement (C1q, fB) levels in serum (169).

For plasma EVs isolated from GBM patients, three

independent proteomic analyses all indicated the enrichment

for complement protein C3 compared to HC (148–150).

Additionally, also enrichment for C1q, C4b and fH were

reported in one of the indicated EV proteome studies (148,

149). Next to complement components, enrichment for other

inflammatory and coagulation proteins characterize the overall

inflammatory signature of GBM-plasma EVs across studies (148,

149). Strikingly, this inflammatory EV phenotype disappeared

after tumor resection, which highlights the potential to use this

signature to distinguish GBM tumor bearing patients from HC

(149). Findings from GBMmouse model studies further support

the growing potential of EV-associated complement

components in GBM biomarker research. In a longitudinal

study, serum samples for EV analysis were collected to

monitor disease progression and therapeutic interventions

(154). Here, complement proteins (C1rs, C1ra) were present

within the list of deregulated proteins in both GBM 12 days after

tumor induction (T1) and GBM 21 days after GL261

implantation (T2) (154). A second longitudinal study with a

similar set-up, which analyzed the proteome of EVs from serum

collected at baseline, pre-symptomatic (T1) and symptomatic

stages (T2), detected upregulated levels of C1qa, C1s1 and C1ra

in T1 and T2 stages versus baseline, while C4b was

downregulated during T1 stage compared to baseline (155).
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4.7 Complement-containing EVs in
ischemic stroke

Besides neurodegenerative and neuroinflammatory diseases,

complement proteins are also shown to play a role in the

pathogenesis of (neuro)vascular disorders such as atherosclerosis

and IS (123, 170). On the one hand, the lectin and alternative

complement pathways as well as C3a and C5a binding to their

receptors, are implicated in secondary brain tissue injury (123,

170). For example, after a cerebral ischemic event, C3aR and C5aR

expression was activated on endothelial cells, glial cells and

leukocytes, which may promote inflammatory and/or repair

processes at ischemic sites by regulating glial cell activation and

chemotaxis (171, 172). Also, the therapeutic potential of

modulated complement activation has been illustrated by the

fact that modulation or inhibition of complement activation can

effectively reduce ischemic brain injury (173, 174). Also, increased

levels of C1q and the C1r-C1s-C1inhibitor complex are associated

with poor cardiovascular outcomes (175, 176). On the other hand,

complement factors including C3a and C5a are also important

mediators of neurogenesis and neural plasticity during cerebral

ischemia (177, 178). For further extensive reading about the

involvement of complement in IS, we refer to reviews written by

others (123, 170). In literature, the role of EVs in IS and their

potential to transfer information about post-IS processes

involving tissue damage and repair have been extensively

reviewed as well (179–181). Therefore, linking EVs and

complement proteins is an interesting strategy for EV-

biomarker identification in IS.

For IS, two proteomic studies on blood-derived EVs were

conducted (146, 147). In the first Japanese study with small

sample size, four proteins among which C1q subunit B and C1r

subunit were significantly enriched in serum EVs from patients

who developed symptomatic stroke compared to the HC (146).

An important remark here is that the serum samples for EV-

proteome analysis obtained in this study were collected during

regular health check-ups and not nearby the moment of IS itself,

and the diagnosis of IS was based on questionnaires which may

imply measurement errors. The second study investigated EV

proteome profiles of a larger cohort of IS patients, subdivided in

subcortical (SC) and cortical-subcortical (CSC) IS patients, in

which serum samples were collected within the first 24h post-IS

(147). Here, it was discovered that the C1q A chain protein was

specifically present in serum EVs as well as serum-derived NEVs

from CSC-IS patients (147). Remarkably, C3 was abundantly

present in serum EVs and serum-derived NEVs of CSC- and SC-

IS patients as well as HC (147).
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5 Discussion

Despite the high number of studies investigating

complement proteins in the blood and CSF of AD and MS

patients, there is currently no clear consensus on their clinical

applicability as biomarker. Possible explanations for the high

variability across studies include small patient cohorts, different

patient inclusion/exclusion criteria or diagnostic parameters and

the use of various methods to analyze complement content.

Indeed, different complement analysis tools with variable

sensitivity and specificity are implemented across biomarker

studies to measure complement proteins, including western blot,

ELISA, proteomics and multi-array immunoassays. Even when

the same detection method for complement components was

implemented, variation still arises due to the usage of different

complement antibodies or the way samples were prepared for

analysis. Moreover, sample collection and analysis should be

further standardized for biomarker research and application.

Overall, a limited number of studies could show a statistically

significant correlation between the level of (a) certain

complement protein(s) and disease parameter(s), but the

concerning correlations are only described by single studies. In

the future, it is required to repeat these studies with bigger

patient cohorts to confirm these correlations. However,

complement dysregulation is definitely not restricted to one

particular CNS disease and almost all complement proteins seem

to be affected. Therefore, it is unlikely that free complement

components alone will be valuable as biomarkers to distinguish

between CNS diseases. Nevertheless, they can still be valuable for

supporting the diagnostic process, for example by representing a

part of the biomarkers that change within a certain disease

instead of considering them as secluded biomarkers for disease

diagnosis, progression and response to treatment.

Proteins captured inside or at the surface of EVs as

biomarkers have several advantages over free proteins. For

example, EVs are stable and protect their cargo from

degradation. Interestingly, the cellular source of EVs can be

determined by detection of cell-specific markers present on or

inside EVs. Finally, EVs are carriers of disease specific signatures

because they mimic the status of their cell of origin. This is not

only an advantage for diagnostic purposes, but also allows to

gain more insights into the underlying disease mechanisms. For

example, AD biomarkers are difficult to analyze in peripheral

biofluids, while brain-derived EVs can be isolated from

peripheral sources by making use of EV enrichment via cell

type specific markers on EVs (e.g., GLAST, L1CAM). However,
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before being able to implement EVs as clinical biomarker

platform, EV isolation and quality control procedures should

be further standardized. Moreover, the knowledge about

complement-containing EVs is still limited and until today, no

effective correlation studies to link complement-EV levels with

disease characteristics have been conducted yet. Notably, as most

research on complement EV content is based on proteomic

analyses, complement proteins can be detected inside EVs.

However, it is possible that the measured complement proteins

are only associated with the EVs at their outside instead of being

a real part of their cargo. In conclusion, shifting the focus to

complement-containing EVs as potential biomarkers for

neuroinflammatory and neurodegenerative diseases seems very

promising, but further research is still needed to reveal its

true value.
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