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The potential role of short chain
fatty acids improving ex vivo
T and CAR-T cell fitness
and expansion for cancer
immunotherapies

Adrián González-Brito and Mireia Uribe-Herranz*

Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona,
Barcelona, Spain
Adoptive cell therapies, like tumor-infiltrating lymphocytes or chimeric antigen

receptor T cells, have become an important immunotherapeutic approach against

cancer. One of the main struggles of T cell immunotherapies is how to obtain the

most effective T cell phenotype, persistence, and differentiation potential to infuse

into patients. Adjusting the T cell ex vivo cell culture conditions is a key factor to

increase and improve the efficacy of cellular immunotherapies. In this review, we

have summarized the ex vivo impact of short chain fatty acids, a group of gut

microbiota derived metabolites, on T cell culture and expansion for

immunotherapies. There is a complex gut microbiota-immune system

interaction that can affect antitumor immunotherapy efficacy. Indeed, gut

microbiota derived metabolites can modulate different biological functions in

the immune system local and systemically.
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Introduction

According to the World Health Organization, cancer is the second leading cause of death

worldwide with almost 10 million deaths in 2020. Cancer immunotherapy has rapidly

become one of the cornerstones of cancer therapy along with surgery, radiation therapy and

chemotherapy. It works by stimulating the immune system to recognize and kill cancer cells

and control tumour growth in a way that prevents damage to the healthy cells. It is agreed

that modern cancer immunotherapy began with the publication in 1893 of the first use of

Coley’s bacterial toxins to treat tumours (1). Since then, many different types of

immunotherapies against cancer have been developed, from stem cell transplants,

monoclonal antibodies, and immune checkpoint inhibitors to cellular immunotherapies

like cancer vaccines or T-cell transfer therapy. Adoptive cell therapies represent a promising

and fast evolving approach for the treatment of cancer and include tumour-infiltrating
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lymphocytes (TILs) (2) or chimeric antigen receptor (CAR) T cells

(3). In the last decade, the CAR T-cell therapy has yielded exceptional

efficacy rates for the treatment of several hematologic malignancies

(4–8). CAR-T cells are genetically modified T cells that combine, an

antigen recognition domain of a specific antibody with an

intracellular domain of the CD3-z chain protein into a single

chimeric protein region that promotes T-cell cytotoxic activity and

proliferation. Hence, CAR-T cells can target the very same antigen

expressed in the tumoral cell surface, in a major histocompatibility

complex (MHC)-independent manner. There have been ground-

breaking responses to treatment but, so far, CAR-T cell therapy is

available and effective only for a minority of patients. The main

concerns regarding treatment efficacy are CAR-T cell differentiation

potential, proliferation, and persistence (9). There are multiple

approaches attempting to address these problems from the

manipulation of CAR constructs, the selection of T-cell subset

populations, pharmacological inhibitors, or the optimization of the

CAR T-cell manufacturing process. This last approach will be the

focus of this review.

Tuning the ex vivo cell culture conditions is key to determine

differentiation status and survival of CAR-T cells. Developing the

desired CAR-T profile, undifferentiated, less exhausted, and

persistent, is an area of intense research. One of the first options to

improve the T-cell fitness is the choice of the T-cell source to

manufacture the CAR-T cells. It has been extensively shown that T-

cell origin has a critical impact on the CAR-T biological activity and

proliferation [reviewed in (10)]. Besides the source of T cells and T-

cell subtypes, multiple additional strategies are being tested to tune

the ex vivo cell culture conditions; the manufacturing time, the

stimulation with cytokines, the T-cell activation, the gene delivery

system, and strategies to target or reprogramme the T-

cell metabolism.

Currently, protocols to manufacture CAR-T cells are varied and

long, taking up to several weeks. In our experience, with a locally

developed academic anti-CD19 CAR-T (ARI-0001) for a clinical trial,

the expansion takes between 9 and 12 days (11). So far, no

standardization has been reached in the field. A key aspect that

differs between protocols is the stimulation with cytokines, being the

most common and studied interleukin 2 (IL-2), 7 (IL-7), 15 (IL-15)

and 21 (IL-21). IL-2 stimulates cell proliferation and maintains

viability during the ex vivo expansion (12). However, since

stimulation with IL-2 can also induce an exhausted T-cell profile, a

well-known alternative is to switch it for IL-7, IL-15, and IL-21, with

the aim of promoting naïve and memory cell proliferation and

preventing T-cell differentiation (13). Regarding T-cell activation

strategies, the most employed are the anti-CD3/anti-CD28

monoclonal antibodies either soluble, bound or in magnetically

coated beads, which act as artificial antigen presenting cells. The

gene transfer system is another component that can be modified

during the CAR-T cell ex vivo manufacturing. Currently, the usual

choice is a viral vector because of its high transduction efficacy. The

most common system used in the available manufactured CAR-T

therapies are the lentivirus, followed by retrovirus. However, viral

gene transfer has a major disadvantage. Besides the limitation in gene

size (<10 Kb), the insertion of the gene occurs randomly which could

potentially lead to oncogenesis through the activation of an oncogene
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or suppression of a tumor-suppressor gene. To avoid this issue, non-

viral systems are being developed such as plasmid-based gene delivery

using the transposon/transposase systems (14, 15) or CRISPR/Cas9-

based gene editing (16).

Another important area of research is optimizing metabolism at

different stages of CAR−T cell production. A low metabolic activity

during the manufacturing process correlates with a less differentiated

T cell phenotype, longer persistence in vivo and greater antitumoral

activity (17). On the other hand, a high metabolic activity has been

linked to a more differentiated profile (18). To optimize metabolism,

several approaches are being tested during T cell expansion, such as

inhibiting glycolysis to limit differentiation and improve T cell

function or enhancing mitochondrial metabolism (17, 19–21).

Finally, a new area of improvement has been developing for the last

5 years, as few studies are starting to use metabolites of bacterial

origin, commonly found in the human body, to modulate T-cell

phenotypes ex vivo (Table 1).

The human body is a complex ecosystem colonized by trillions of

bacteria, fungi, yeast, protozoa, and viruses. All these together

comprise the commensal microbiota that is developed after birth

through vertical transmission and then shaped by environmental

factors throughout life. The commensal microbiota and the human

host have co-evolved in a mutualistic association, obtaining benefits

such as the acquisition of bioactive compounds (32). These

metabolites can modulate various biological functions in the

immune and nervous systems (33). Beyond the effects on intestinal

and local immune physiology, the gut microbiome has systemic

effects (34) caused by small molecules such as bacterial-derived

metabolites entering the systemic circulation. Several studies have

confirmed that gastrointestinal flora impacts the immune system

predominantly through bacteria-derived metabolites (35, 36). The gut

microbiota has great metabolic capacity, greater than that of the

human host. It generates a complex network of metabolic pathways

that produce an exceptionally diverse pool of metabolites from

modified exogenous dietary components to endogenous compounds

generated by the gut microbiota itself (35, 37, 38). For example, in

vivo short chain fatty acid (SCFA) can regulate host immunity by

facilitating the extrathymic generation of regulatory T (Treg) cells

(39), and the function of the colonic Tregs (40); peptidoglycan, an

essential molecule of the bacterial wall, can prime the systemic innate

immunity by activating neutrophils (41); polysaccharide (PSA) from

B. fragilis, a Gram-negative anaerobe, can boost the systemic T helper

cell type 1 (Th1) CD4+ T cells (42).

The results from an in vivo study with mice, raised under germ-

free conditions, confirmed that the impact of gut microbiota is not

restricted to the gastrointestinal tract. It has systemic effects, as these

mice had significantly impaired host immune responses to pathogens

(43). Moreover, a direct correlation exists between the presence of

specific bacteria in the gut microbiota and T-cell development and

differentiation (44–47). For instance, colonization of germ-free mice

gut with a cocktail of bacteria from Clostridiales clusters IV, XIVa,

and XVIII is sufficient to drive Treg differentiation (45). In the cancer

context, some specific bacteria have been demonstrated to be involved

in the process of initiation and progression of carcinogenesis at

epithelial barriers and within sterile tissue (48, 49). In addition, the

microbiota has also been implicated in modulating the efficacy and
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toxicity of cancer therapy, including chemotherapy, radiotherapy, and

especially immunotherapy (32, 50–52), including checkpoint

blockade approaches targeting the CTLA-4 and PD-1 pathways (53,

54) mainly acting through the local and systemic immune system.

There are several studies that support the link between gut microbiota

(or bacterial-derived metabolites), Th differentiation and T cells

function, and modulation of the antitumor immunity. A high-

dietary fiber diet, which is associated with increased gut microbiota

diversity and decreased risk of chronic inflammatory diseases, can

boost antitumor immunity and increase the infiltration of tumor-

killing T cells on melanoma patients (55). In this observational study,

fiber-fermenting Ruminococcaceae correlated with the abundance of

inducible T cell co-stimulator-expressing TILs on melanoma. In a

study investigating four different murine cancer models, inosine, a

bacterial purine metabolite produced by Bifidobacterium

pseudolongus, promoted Th1 activation and antitumor immunity

which improved the antitumor effects (56). In a mouse model of

colon carcinoma, a SCFA-rich diet with pectin, a fiber that promotes

the growth butyrate-producing bacteria, was associated with

increased CD8+ effector T cell function at the tumor site (57). A

recent study, showed that the natural polyphenol castalagin improved

the intratumoral CD8+/FoxP3+CD4+ ratio in sarcoma tumor-

bearing mice, and improved the efficacy of anti-PD-1

immunotherapy through modulation of the gut microbiota,

enriching the abundance of Ruminococcaceae and Alistipes bacterial
Frontiers in Immunology 03
families (58). Another report investigating the immune-checkpoint

blockade therapy efficacy, showed that Lactobacillus delbrueckii subsp.

bulgaricus produced an extracellular polysaccharide that was able to

induce IFN-g+CCR6+CD8+T cells in Peyer’s patches of tumor-

bearing mice, thus enhancing the efficacy of this therapy (59). A

study from Wang and colleagues, proved that plasma trimethylamine

N-oxide, a microbe-derived metabolite, can activate the endoplasmic

stress kinase PERK, boosting the function of IFN-g+CD8+T cells

mediated immunity in triple-negative breast cancer patients (60).

Besides gut microbiota, intratumoral bacteria also can have a role in

antitumor immunity through T cells. Fusobacterium nucleatum can

attenuate T cell-mediated immune responses in rectal and colon

cancer cases, as higher amount of F. nucleatum in colorectal

carcinoma tissue was associated with lower density of T-cells in

tumor tissue (61). All these studies provide strong evidence of a

highly dynamic and complex microbiome-immune system

interaction that can impact antitumor immunity.
Short Chain Fatty Acids

SCFAs are the main metabolites produced by gut microbiota

through bacterial anaerobic fermentation of non-digestible

carbohydrates, such as dietary fiber (62). They are fatty acids with

fewer than six carbon atoms, the most abundant of which are acetate
TABLE 1 ex vivo acetate, propionate, butyrate and pentanoate impact on diverse T cell subsets.

Acetate Propionate Butyrate Pentanoate

T
cell Low High Low High Low High High

CD4

Tregs = FoxP3 (22) ↑FoxP3 (22, 23) = FoxP3 (23)
↑↑ FoxP3 (22,
24)

= FoxP3 (24)

Th1
↑↑Th1 profile
↑IL10 secretion
(25)

↑↑Th1 profile
↑IL10 secretion
(25)

↑↑Th1 profile
↑IL10 secretion (25)

Th17
↑↑Th17 profile
↑IL10 secretion
(25)

↑ IL10 secretion
(26)

↑↑Th17 profile
(25)
↑ IL10 secretion
(25, 26)

↑↑Th17 profile
↑IL10 secretion (25)

block Th17
polarization (26)
↑ IL10 secretion (26)

Naive
↑Th17 polarization
(25)

↑Th17 polarization
(25)

CD8
= IFNg (27)
= TNFa (27)

↑↑ IFNg (28)

↑↑IFNg (28)
↑↑TNFa (27)
↑↑TNFa/IFNg +
CD8 (27)

↑↑IFNg (28, 29)
↑FoxO1 (30)
↑ Tumor Control
(27)
↑↑TNFa/IFNg (27)
↑ memory
phenotype (27)

TILs ↑↑ IFNg (31)

CARTs
↑↑IFNg (27)
↑TNFa (27)
↑CD25 (27)

↑↑IFNg (27)
↑↑TNFa (27)
↑CD25 (27)
↑IL2 (27)
↑Tumor control (27)
↑Cytolytic activity (27)
↑Proliferation (27)
Acetate, low < 5mM and high ≥ 5mM concentration. Propionate, low < 0.4 mM, and high ≥ 0.8 mM concentration. Butyrate, low < 0.25 mM, and high ≥ 0.5 mM concentration. Pentanoate, high ≥ 0.5
mM concentration.
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(two carbons) and propionate (three), which are mainly produced by

members of the Bacteroidetes phylum, as well as butyrate (four),

predominantly produced by members of the Firmicutes phylum.

Acetate derived from colonic bacterial fermentation can flow into

the blood compartment and together with endogenous acetate can

exert systemic activity upon the immune system. Propionate is a

precursor of glucogenesis and has a direct effect on T cell activity

locally. Butyrate effects are mainly restricted to the gut, where it is

used as energy sourced by the colonocytes and, together with

propionate, is processed in the liver (63). The effect of SCFAs on

the metabolism of T-cells is yet to be understood but there is

abundant data that suggest that SCFAs regulate the adaptive

immune system through the modulation of mTOR activity, glucose

metabolism, histone acetylation and cytokine gene expression (64).

Multiple studies have confirmed that T cells are susceptible to SCFA

exposure in vitro, promoting or inhibiting a specific T cell phenotype,

and therefore supporting their use in ex vivo T cells expansion.

While research on the effect of microbial metabolites on T cells

has primarily been focused on SCFAs, there are also other metabolites

that have been investigated. For instance, the inosine, a purine

metabolite that can be produced by Bifidobacterium pseudolongum,

has been shown to boost the CD4+ Th1 differentiation in the presence

of IFN-g through adenosine A2A receptor (56). Moreover, the

bacterial transformation of host bile acids has been demonstrated to

directly modulate balance of Th17 and Treg cells (65, 66).

Furthermore, tryptophan metabolites are reported to be essential

for intestinal immunity and perform their effect on T cells through

aryl hydrocarbon receptor signaling (67). Although these bacterial-

derived metabolites are promising alternatives to SCFAs, in this

manuscript, we will focus on the new and fast developing research

field of the T and CAR-T cell ex vivo manufacturing optimization

process through the SCFA bacterial derived metabolites. Results

summarized in this review, might appear difficult to interpret as the

effects of SCFAs are clearly dependent on immunological context and

the studies compared often used a wide range of different conditions,

from concentrations to exposure time. This is expected, as the field is

only just starting to investigate the effect of gut microbial-derived

metabolites on immune populations ex vivo. This lack of clarity and

consistency reflects the urgent need for more rigorous and systematic

protocols to better understand and learn from the microbiome-T

cell crosstalk.
The ex vivo effects of SCFAs on T-cells

Naïve CD4+ T cells

The effect of SCFAs in regulating T cell differentiation into

effector and IL-10+ regulatory T cells was studied by Park et al. In

this study T cells were activated in vitro for 5-6 days in the presence or

absence of the SCFAs at different concentrations. The results showed

that naïve CD4+ T cells, isolated from murine spleens and lymph

nodes (LN), treated with acetate and propionate in vitro, led to

differentiation into Th17 cells, which was observed through the

increase in IL-17+ and IL-10+ cells as well as the increase in the

transcription of the associated genes IL-17A, IL-17F, Rorc, RORa, T-
bet, and IFN-g (25) Tables 1, 2.
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Polarized CD4+ T cells

Studies over the last 10 years have shown the ability of SCFAs to

modulate and alter polarized CD4+ T cells via epigenetic and

metabolic processes. Under tolerogenic conditions, naïve CD4+ T

cells supplemented with low or physiogical concentrations of SCFAs

seem to play a role in facilitating the activity of T regulatory cells,

promoting the production of IL-10 and FoxP3+ Treg polarization (22,

39). Furusawa et al. isolated naïve CD4+ T cells from murine spleen

and LNs. After three days of expansion cells were differentiated into

Tregs in the presence or absence of acetate, propionate or butyrate, for

an additional 2 days. Butyrate significantly increased the

concentration of Foxp3+ cells; propionate did so moderately, while

acetate showed no effect. The butyrate effect was in part mediated by

histone H3 acetylation of the Foxp3 locus (22). Another study

provided additional evidence indicating an increase of Foxp3+ CD4

+ T cells for lower concentrations of propionate but not for higher

ones (23). A third independent study, partially confirmed the

enhanced Foxp3 expression in purified murine CD4+ T cells using

a suboptimal concentrations of TGF-b1 and low concentrations of

butyrate. However, the effect was not observed in the absence or

under optimal concentrations of TGF-b1. In any case, higher

concetrations of Butyrate did not enhance the expression of Foxp3

and instead, induced the expression of T-bet and IFN-g via histone

acetylation (HDAC inhibition), which is associated with an inhibition

of Treg differentiation (24).

Luu and colleagues polarized CD4+ T cells towards Th17 for three

days. Supplementation with pentanoate, another SCFA with 5

carbons, during the three-day process, impeded the polarization

and inhibited the production of IL-17A through HDAC-inhibitory

activity. In this case, and contrary to the results for the shorter SCFAs

used in the study from Park et al., pentanoate led to a reduction in the

transcription of the Th17 associated genes IL-17A, Rorc, Il21, Stat3,

and Tgfb3. The treatment did, however, lead to the increase in the

expression of IL-10 in Th17 cells. This increase seems to be due to

pentanoate acting as a precursor of acetyl-CoA and activating the

mTOR pathway, similarly to the mechanism for acetate. Results

showed that Th17 cells treated ex vivo with pentanoate increased

the extracellular acidification rate and enhanced their glycolytic

activity leading to metabolic and epigenetic reprogramming and the

loss of the pathogenic phenotype of Th17 cells in autoimmune

disease (26).

Finally, under Th1 CD4+ polarizing conditions in the presence of

IL-12, acetate and propionate supplementation potentiated the

differentiation into Th1 cells, in a concentration dependent manner

(25) Table 1.
Activated CD8+ T cells

Activated CD8+ T cells cultivated in vitro using a SCFA-enriched

medium have an increased production of IFN-g and Granzyme B.

SCFAs with shorter chain lengths such as acetate (two carbon chain)

require greater concentrations for similar effects to ones with longer

chain lengths such as pentanoate (five carbon chain) (28–31). For

instance, murine CD8+ T cells polarized to CTLs in culture for three

days, were supplemented with acetate for an additional three days at a
frontiersin.org
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TABLE 2 Summary of methods and results from ex vivo SCFA effects on murine T cell studies.

n of Effect Mechanism

ization,
2- or

Butyrate significantly increased the
concentration of Foxp3+ cells, even
under Th1- and Th17-polarizing
conditions

histone H3 acetylation of the
Foxp3 locus

5-6

Enhanced production of IFN-g and
IL-17 in Th1/Tc1 and Th17/Tc17
polarising conditions.
SCFAs promoted differentiation of
CD4+ and CD8+ T cells,
into IL-10 producers in all
polarization conditions

HDAC inhibition and
regulation of the mTOR–S6K
pathway (acetate and
propionate)

Low Butyrate concentration at
enhances the expression of FoxP3
under suboptimal TGF-B1 conditions.
Butyrate and Propionate upregulates
IFN-g in CD4+ T cells at 1 mM.

Hyperacetylation
of pro-inflammatory genes

1 mM Butyrate and 1 mM Propionate
upregulate IFN-g and Granzyme B for
CTLs and Tc17s
1mM Butyrate reduced IL-17
production in Tc17s and switched
Tc17s to CTL phenotype
Effect of butyrate on CTLs was
maintained 5 days after treatment
removal

HDAC inhibition (Butyrate)
AKT/mTOR pathway
(Acetate)
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Article T cell
subset Source Activation Polarization Metabolites Timing and durati

treatment

Furusawa
et al. (22)

CD4+ T
cells

Sp and
LN
C57BL/6
mice

p-c anti-CD3 (10
mg/ml) and soluble
anti-CD28 (1 mg/ml)

Tregs: TGF-b1 (0.2 ng/ml), IL-2
(10 ng/ml)
Th1 cells: IL-12 (10 ng/ml),
anti-IL-4 (10 mg/ml)
Th2 cells: IL-4 (10 ng/ml), anti-
IL12 (10 mg/ml)
Th17: TGF-b1 (0.2 ng/ml), IL-6
(40 ng/ml), anti-IFN-g (10 mg/
ml) and anti-IL-4 (10 mg/ml)

Acetate (0.1 mM)
Propionate (0.1 mM)
Butyrate (0.1 mM)

1-3 days, some
experiments during pola
in someexperimentsafter
3-day culture

Park et al.
(25)

CD4+ T
cells
CD8+ T
cells

Sp and
LN
C57BL/6
mice

p-c anti-CD3 (5 mg/
ml) and soluble
anti-CD28 (2 mg/ml)

Th17/Tc17: rhTGF-b1 (5 ng/
ml), mIL-6 (20 ng/mL), mIL-1b
(10 ng/ml), mIL-23 (10 ng/ml)
mIL-21(10 ng/ml), mTNF-a (20
ng/ml), anti-mIL-4 (10mg/ml),
and anti-mIFN-g (10mg/mL)
Th1/Tc1 cells: hIL-2 (100 U/
ml), mIL-12 (10 ng/ml), and
anti-mIL-4 (10mg/ml)
Non-polarized: hIL-2 (100 U/
ml)

Acetate (1-20 mM)
Propionate (0.1-1 mM)
Butyrate (0.125-0.5 mM)

During differentiation fo
days

Kespohl
et al. (24)

CD4+ T
cells

Sp and
LN
C57BL/6
mice

p-c anti-CD3 (5 mg/
ml), soluble anti-
CD28 (1 mg/ml)
50 U/ml rh IL-2

Th1 cells: rmIL-12 (10 ng/ml),
anti-IL-4
Th2 cells: rmIL-4 (40 ng/ml),
anti-IFN-g (10 mg/ml)
Th17: rhTGF-b1 (0.5 ng/ml),
IL-6 (20 ng/ml), anti-IFN-g (10
mg/ml), and anti-IL-4

Acetate (0.1-1 mM)
Propionate (0.1-1 mM)
Butyrate (0.1-1 mM)

2-3 days treatment
after 3 days of activation

p-c anti-CD3 (5 mg/
ml), soluble anti-
CD28 (0.5 mg/ml)
100 U/ml rhIL-2

Tregs: rhTGF-B1 (0.5, 1 or 2
ng/ml), anti-IFN-g (10 mg/ml)
and anti-IL-4
(anti-IL4 at 10% culture
supernatant)

Luu et al.
(29)

CD8+ T
cells

Sp and
LN
C57BL/6
mice

p-c anti-CD3 (5 mg/
ml), soluble anti-
CD28 (1 mg/ml)

CTLs: rhIL-2 (50 U/ml), anti-
IFN-g (10 mg/ml)
Tc17 cells: rhTGF-b1 (1 ng/ml),
IL-6 (40 ng/ml), anti-IFN-g (5
mg/ml)
Tregs: rhTGF-B1 (2 ng/ml),
rhIL-2 (100 U/ml) and anti-
IFN-g (5 mg/ml)

Acetate (1-25 mM)
Propionate (0.5-2.5 mM)
Butyrate (0.25-1 mM)

3 days treatment
after 3 days of activation

Sp, spleen; LN, Lymph node; p-c, plate-coated; IL, interleukin; CTLs, cytotoxic T Lymphocytes.
o

r

r
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concentration 25 mM. This led to a 125% increase in IFN-g cells in
comparison to untreated cells. Propionate, which contains a three-

carbon chain, seems to require a concentration of approximately 5

mM to achieve similar effects (28). To obtain a comparable effect

using butyrate, a SCFA with a four-carbon chain, a concentration of

only 1 mM was required (29). In line with this hypothesis, murine

CD8+ T expansion under CTL-inducing conditions supplemented

with low concentration of acetate showed no effect over TNF-a or

IFN-g expression (27). SCFAs of shorter chain lengths are found in

the body at greater concentrations (68). This might explain why T

cells may could have evolved to become less sensitive to SCFAs of

shorter chain lengths through a variety of mechanisms. In the

example above, while acetate caused the increase in IFN-g via the

mTOR pathway (rapamycin, an mTOR inhibitor, led to an abrogation

of the effect), butyrate caused it via the inhibition of HDAC activity

(29). CD8+ T expansion under CTL-inducing conditions and

supplemented with pentanoate, butyrate and, to a lesser extent,

propionate showed an increase in the frequencies of TNF-a+ IFN-

g+ CD8+ T cells and secretion of TNF-a by CTLs. The effectiveness of

butyrate and pentanoate treated T cells was further tested in a B16-

OVAmelanoma murine model and showed a better melanoma tumor

control. Moreover, pentanoate-treated CD8+ T cells, showed an

increase in in vivo persistence in a rag1-deficient mouse model,

which was associated to an increase in CD25 expression and

continuous IL-2 secretion (27). Qiu et al. tested CD8+ T cells under

prolonged glucose restriction in vitro and showed that

supplementation of acetate increased the expression of IFN-g,
although Granzyme B levels were not altered. These effects were

mediated through histone acylation (31).

Differences in SCFAs concentration in medium lead to differences

the expression of cytokines, however, the effect on the length of

exposure seems to be less clear. While Luu and colleagues exposed

murine activated CD8+ T cells to 1 mM Butyrate for three days (29),

He and collaborators exposed activated CD8+ T cells to butyrate at

the same concentration for just 12 hours, with the inclusion of IL-12

(28). They both obtained similar results for the proportion of IFN-g
cells, indicating a doubling in relation to untreated cells.

There are other factors to consider beyond concentrations or the

duration of treatment, like whether the effect is long-lasting and leads

to stable phenotypic change or their memory potential. The first one

was explored by treating CTLs with butyrate for two days and then

allowing the cells to grow without it for an additional three days. An

increase in IFN-g was still observed after treatment withdrawal

compared to the control group, in vitro and in vivo, indicating a

phenotypic stable change (29). The relationship between SCFA T cell

ex vivo treatment and their memory potential were studied with

transgenic gBT-I CD8+T cells treated with butyrate for three days

after antigen-specific activation. While butyrate treatment reduced

proliferation, it also led to greater responsiveness to IL-15 and a

higher expression of transcription factor FoxO1 (30). Expression of

FoxO1 is involved in the formation of memory T cells (69–71) while

IL-15 promotes memory CD8+ T-cell survival and proliferation (72,

73), suggesting that butyrate may lead to a greater memory potential

of the activated CD8+ T cells. This was supported by in vivo

experiments that showed that butyrate treated gBT-I CD8+ T cells

had a greater expansion upon antigen encounter. The suggested

mechanism behind butyrate enhancement of the memory potential
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of CD8+ T cells might be its impact over glycolytic metabolism,

uncoupling the TCA cycle from glycolitic input and favouring

oxidative phosphorylation (30) Table 1.
TILs and CAR-T cells

All the studies mentioned above prove that SCFAs can modulate T

cell polarization and memory formation ex vivo. There are few reports

that show better therapy outcomes polarizing CAR-T cells in vitro

before infusion. Interestingly, Th17-polarized human mesothelin-CAR

T cells exhibited superior immunity against mesothelioma compared to

Th1-polarized mesothelin -CAR T cells (74). In the same line of results,

Guedan and colleagues showed that mesothelin-specific CAR Th17/

Tc17 cells (that maintained Th17 function with a Th1 bias) had long-

lived persistence in vivo and eradicated tumors (75). A third report

studying the Th17 polarization effects on CAR-T cells, showed that a

Th/Tc17 CAR-T targeting the proto-oncogene Neu, exhibited an

increase antitumor immunity and improved early tumor control. The

combination of the Th/Tc17 Neu-CAR-T and a STING agonist

increased the trafficking, persistence, and tumor control in a murine

model of breast cancer (76). Supporting the use of Th17 polarizing

conditions for CAR-T cells, Fraietta and colleagues showed that CAR-T

cells from chronic lymphocytic leukemia complete responders to

CD19-CAR T therapy, had an enhanced transcriptomic profile of

STAT3/IL-6 signaling, producing a type-17 signature compared with

non-responders (77). Finally, a human mesothelin-CAR polarized

towards Th9 cells was able to eliminate advanced human ovarian

cancer patient-derived xenograft in humanized NSG mice. Regular

expanded CAR-T or high doses of Th1+Tc1 polarized CAR-T cells

could not achieve the same results (78). The differentiation status of

CART cells plays a crucial role for therapeutic success as well. It is now

well stablished that a less differentiated profile, like naïve or central

memory T cells which have the capacity to persist and proliferate long-

term in vivo lead to a better clinical outcome (77, 79). All the studies

mentioned above highlight the potential of SCFAs over the process of

expanding tumor-specific lymphocytes and CAR-T cell manufacturing

for cancer immunotherapies. In this line, two studies recently published

have explored the use of SCFAs on TILs and CAR-T cells.

Murine tumor-infiltrating lymphocytes (TILs) obtained from B16

melanoma and treated ex vivo with acetate showed a significant

increase in IFN-g secretion. This indicates that acetate can promote

responsiveness in T cells isolated directly from the tumor

microenvironment (31). The effect of butyrate and pentanoate

supplementation during CAR-T cell ex vivo expansion was

investigated under CTL-inducing conditions. Murine and human

CD8+ T cells were used to generate a CAR that recognize receptor

tyrosine kinase-like orphan receptor 1 (ROR1). Murine CAR-T cells

treated with butyrate and pentanoate enhanced expression of CD25,

as well as TNF-a and IFN-g production. Pentanoate treated cells were
further tested in a pancreatic tumor model and showed that tumor

volume and weight were significantly reduced in comparison to non-

treated cells. Later, the authors developed CAR-T cells from healthy

human donor CD8+ T cells using a ROR1-specific CAR. After a two-

step 17-day stimulation process, CAR-T cells were treated for four

days with pentanoate at different concentrations. CAR-T cells

pretreated with pentanoate showed upregulation of CD25
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TABLE 3 Summary of methods and results from ex vivo SCFA effects on murine and human T cell studies.
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expression, IL-2 secretion, and stronger proliferation, as well as

greater cytolytic activity when encountering their target antigen

ROR1, together with an increase in IFN-g and TNF-a production

(27). Table 1.
Conclusion

During the last decade multiple studies have confirmed the

remarkable effect of gut microbiota and its bacterial derived

metabolites upon the immune system. Bacterial T cell polarization

and function modulation are two of the most studied aspects of the

gut microbiota-immune system axis. These are the basis of several

strategies to improve efficacy of immunotherapies or to harness its

side effects in clinical trials. According to NIH clinicaltrial.gov site

there are 50 clinical trials on cancer immunotherapies that include

study or intervention regarding gut microbiota. Nevertheless, the

clinical implementation has proven to be difficult. Multiple variables

are still largely unknown, like the optimal administration route or

how to monitor the evolution once its implemented. Moreover,

dosing and administration schedule will be key as it is envisioned

as a very dynamic therapeutic process. The studies presented in this

review show that microbial metabolites can alter T cell differentiation

in vitro, potentially leading to a phenotype that can increase

persistence, cytotoxic activity and, ultimately, anti-tumor effect,

Tables 2, 3. While some results might appear contradictory,

expansion and polarization T cell ex vivo protocols used up to now

are inconsistent. Multiple factors are not well defined, for instance the

cytokines used in the media culture, the SCFAs concentrations or the

duration of the treatment to name just a few examples. Dosing SCFAs

might be the most crucial variable to account for, as current available

data shows pleiotropic effects of SCFAs upon T cells. Learning from

microbiome-T cell crosstalk can help us to develop a more efficient

cancer immunotherapy. We foresee the ex vivo use of bacterial-
Frontiers in Immunology 08
derived metabolites as a new method to improve T cell expansion and

polarization, directed to cellular immunotherapies with a special

interest on TILs and CAR-T cell production.
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