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Counting is almost all you need

Ofek Akerman1,2, Haim Isakov1, Reut Levi1, Vladimir Psevkin1

and Yoram Louzoun1*

1Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel, 2Department of Computer Science,
Bar-Ilan University, Ramat Gan, Israel
The immunememory repertoire encodes the history of present and past infections

and immunological attributes of the individual. As such, multiple methods were

proposed to use T-cell receptor (TCR) repertoires to detect disease history. We

here show that the countingmethod outperforms two leading algorithms. We then

show that the counting can be further improved using a novel attention model to

weigh the different TCRs. The attention model is based on the projection of TCRs

using a Variational AutoEncoder (VAE). Both counting and attention algorithms

predict better than current leading algorithms whether the host had CMV and its

HLA alleles. As an intermediate solution between the complex attention model and

the very simple counting model, we propose a new Graph Convolutional Network

approach that obtains the accuracy of the attentionmodel and the simplicity of the

counting model. The code for the models used in the paper is provided at: https://

github.com/louzounlab/CountingIsAlmostAllYouNeed.

KEYWORDS

repertoire classification, immune repertoire, machine learning, attention, graphs, T
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1 Introduction

Following recent developments in immune sequencing technology (1–3), large T-Cell

Receptor (TCR) repertoires can be sampled. Given the association of diseases and TCRs, such

repertoires could in theory be used for systemic detection of disease history. However,

methods to decipher the disease history from these repertoires (currently denoted as “reading

the repertoire”) are still limited. Recently, Bayesian approaches and machine learning

methods to read repertoires (4–9) were proposed in this field, with good accuracy.

However, even those do not reach the accuracy required for clinical usage.

From a computational point of view, the repertoire classification problem is a Multiple

Instance Learning (MIL) task. MIL problems arise when the training examples are of varying

sizes. In MIL problems, a set or bag is labeled instead of a single object. In the standard

definition, a bag X={xi} receives a label YX=max{yi}, where yi is the label of xi. Here, yi∈{0,1}.
However, this can be extended to any label. During training, we are unaware of yi. OnlyYX ,

the class of each bag in the training set, is known. Examples of MIL problems are video

classification, where each frame is an instance, text classification, where each word is an

instance, 3D object classification, where each point is an instance, and more (10, 11).
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The standard MIL assumption can be expanded to address tasks

where positive bags cannot be identified by a single instance.

However, the bag can still be classified by the distribution,

interaction, or accumulation of the instances in the bag (10).

To formulate the TCR repertoire classification task as an MIL

task, a repertoire can be viewed as a bag of TCR sequences, of which a

very small fraction is associated with the class of interest. We use the

following notations in the current analysis: T={t1,t2,t3,…,tR} is the

group of all TCRs in all samples (training or test) that may be very

large. Xj={tj1,tj2,tj3,...,tjN} is a specific repertoire and Y(Xj)∈{0,1} is the
binary label of the repertoire Xj. We further assume for the sake of

notation simplicity that a TCR t can either bind or not bind any

peptide p, with some arbitrary binding cutoff. We denote the set of

TCR that binds the peptide p by T(p).

The TCR repertoire classification problem includes unique

difficulties compared with classical MIL problems:
Fron
• Low overlap - The immune repertoire overlap of different

individuals is low [Greiff et al. (12)Elhanati et al. (, 13)]. Given

two repertoires Xj,Xj, |Xj∩Xk| is very small.

• Non-injectivity of TCR-peptide binding - Multiple

sequences can bind to the same pathogen (14). |T(p)|>1 for

most target peptides.

• Large TCR diversity - Recent studies suggest that the human

body can have >1014 unique TCR sequences (15). |T|≥1014.

• An extremely low Witness Rate (WR) - In MIL problems,

the WR is defined by the percentage of discriminating

instances within a bag. A WR of 1-5% is considered low in

MIL tasks (8). We analyze here a large CMV binding dataset,

used by multiple groups (8, 13, 16, 17). Each immune

repertoire in the dataset has an average of 192,515 ( ±

80,630 s.d) unique TCR sequences (4), of which we further

estimate only an order of 100 are associated with CMV (4,

18), i.e., the WR can be lower than 0.0001%. Formally, for

each repertoire Xj and target peptide p jTðpÞj
jXj j is very small.
We here show that counting arguments actually produce better

results than the current SOTA ML or Bayesian methods. We then

further improve on that by including the similarity between different

TCRs using the combination of a Variational AutoEncoder (VAE)

(19), and a novel attention model to include not only the relative

importance of positive samples but also their quantity, named attTCR

(attention TCR). Finally, we propose an intermediate solution

between the counting and attTCR - gTCR that uses a graph of the

TCR repertoire co-occurrences to predict the class of a sample.
2 Related work

In recent years, ML and statistical data analysis tools have been

proposed to solve the repertoire classification problem. Emerson et al.

(4) released a dataset composed of 786 immune repertoires, most of

them with a CMV negative/positive classification as well as low-

resolution class-I HLA typing (for a detailed data description see

section 5.9). They use a Fisher exact test to score TCRs based on their

association with positive and negative repertoires and classify TCR
tiers in Immunology 02
repertoires as either positive or negative to CMV or for a given

HLA allele.

Their work has been enlarged by TCR-L (5) who evaluate the

association between the TCR repertoire and clinical phenotypes.

TCR-L expands on Emerson and also uses information about the

structure of the TCR sequences and other information about

the patient.

Machine learning models, and specifically, attention-based

machine learning models, were also proposed as immune repertoire

classifiers. deepTCR (6) implements multiple deep learning methods,

and a basic form of attention-based averaging. deepTCR encodes each

TCRb chain with a combination of its Vb, Db and Jb genes using a

Convolutional Neural Network (CNN) that extracts sequence motifs.

This information is further encoded using a VAE. Then, an attention

score is given to each TCR using a custom attention function they

designed called AISRU. Finally, a fully connected network (FCN)

classifier determines the immune repertoire’s status.

Another recently developed model (7) uses 4-mers, sub-sequences

of the TCRs CDR3. A logistic regression model is trained on the 4-

mers as inputs. Similarly, MotifBoost (20) uses 3-mers to classify the

repertoire, using GBDT (gradient-boosted decision trees).

Finally, Deep-RC (8) implements an attention model and uses 1D

CNNs in order to embed every TCR to a fixed dimension. Those

embeddings are forwarded to more FCN layers and awarded attention

scores using a Transformer-like (21) attention equation.
3 Novelty

The algorithms presented here present multiple novel aspects to

improve the accuracy of repertoire association studies.

First, we show that a simple counting argument obtains a higher

accuracy than all previous methods.

We then propose a novel attention method that on the one hand

gives a different importance to different components, but on the other

hand, counts them. This is obtained through the sum over the attention

of each TCR, with no softmax, but with sigmoid. We show that in

contrast with classical attention models, the attention scoring with a

non-constant sum improves performance over the simple counting

algorithm. The only normalization performed is on the sum of the

attention scores, to put it in the active range for the loss function.

Finally, we combine the counting and attention in the Graph

Neural Network (GNN) based gTCRmodel. We use a GNN to classify

the repertoire. To the best of our knowledge, this is the first usage of

GNN in TCR repertoire classification. The proposed GNN has two

novel methodological aspects. First, the contribution of self-edges in

the modified adjacency matrix is learned with the weights. Second, we

use vertex identity-aware graph classification. The combination of

these two methods obtains the accuracy of the attention model with

the simplicity of the counting one.

At the technical level, attTCR offers several improvements over

Deep-RC (8) and deepTCR (6). The embedding method of each TCR

using a cyclic variational autoencoder has never been used on TCRs.

The combination of these methods produces three levels of

complexity for the model, where even the simplest model is more

accurate than current state of the art (SOTA) models.
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4 Results

4.1 Positive selection and detection of TCRs
associated with a condition

Although the TCR repertoire is very diverse, with most positions

along the CDR3 highly variable (15, 22), still a large number of TCRs

are shared among multiple patients.

We computed sharing of TCRs between samples in the Emerson

dataset (4) (further denoted ECD), where a TCR is defined as the

combination of Vb, and Jb genes and a CDR3 amino acid sequence

(even with different nucleotide sequence). While most of the TCR

sequences appear in a single repertoire, there are ~105 unique TCRs

that appear in more than 10 different repertoires, and hundreds of

TCRs that appear in more than a 100 repertoires (Figure 1A). As such,

there is enough intersection between different TCRs to perform

classification algorithms.

One can assume that following T cell clonal expansion, TCRs that

bind to specific diseases are more frequent, and as such are likely to

appear in repertoires of people who are or were infected by the disease.

However, while we expect some TCRs to be positively associated with a

disease or a condition, there is no a-priori reason for any TCR to be

negatively associated with a condition (i.e., that its absence is evidence

for a condition). To test the absence of negative selection by pathogen,

we split the data into a training and a test set (see ‘Experimental setup’),

and calculated the c2 score between the expected and observed number
Frontiers in Immunology 03
of CMV-positive patients that carry a TCR for both the train and test

sets (see section 5.3). We then multiplied the score by the sign of the

difference between the expected and observed number of CMV+

patients carrying the TCR (i.e., TCRs less present in positive samples

than expected have a negative sign - Figure 1B).

For the vastmajority of the TCRs, thec2 score is distributed around 0.
However, there are some outliers with high c2 scores in the training set.

Many of those also have a high c2 score in the test set (red points). More

interestingly, the deviation is only on the positive side. In other words,

someTCRsare stronglypositively associatedwith theCMV+patient class.

However, asexpected, therearenoTCRsassociatedwith theCMV-patient

class. We propose to use (only) the TCRs positively associated with the

condition (CMV in this case) in the training set to classify patients.
4.2 No systemic difference between CMV+
and CMV- samples

High c2 score reactive TCRs are obviously more likely to be

shared between more repertoires than the other TCRs (Figure 1C),

since a non-shared receptor per definition has a low c2 score.

Although reactive TCRs go through clonal expansion, checking

which TCRs have a large frequency within the repertoire of each

donor is not a sufficient method to find such reactive TCRs. Figure 1D

demonstrates the lack of correlation between the c2 score of each TCR
and its average frequency in the samples where it is present.
A B

DC

FIGURE 1

(A) TCR number as a function of the number of the patient repertoires that have them in the training set. (B) Distribution of the TCRs’ c2 scores in the
training and test sets. The x-axis value is the c2 score of the TCR on the training set, the y-axis value is the c2 score of the same TCRs on the test set.
TCRs with an absolute c2 score of over 10 in the training set are colored red. Notice that there are only such points on the positive side of the axis.
(C) Distribution of average frequency per sample reactive and general TCRs in the dataset. General TCRs refers to all the TCRs in the dataset included in
at least 7 repertoires, and reactive TCRs refer to the 200 TCRs with the highest c2 score. The distribution of reactive receptors is clearly shifted to the
right. (D) Scatter plot of different TCRs in the dataset. The x-axis represents the c2 score of each TCR, and the y-axis represents its log average frequency
in the repertoires it appears in. No correlation is observed between the two.
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Instead of focusing on a specific TCR, one could propose to use

more generic features of the repertoire to distinguish between CMV+

and CMV- patients [Tickotsky-Moskovitz et al. (23) Gordin et al. (24)

Snir and Efroni (25)]. This may be true for lytic conditions, but not for

latent or historical conditions. We expect no difference in the general

properties of the peripheral repertoire. For events in the distant past,

most of the TCRs that were active during the immune response are no

longer in the blood in high quantities, and when looking at the general

data distribution in the repertoire, there is no difference between

positive and negative repertoires (see the Appendix for comparison

between V, and J gene distributions and the CDR3 compositions of

CMV+ and CMV- patients).
4.3 Counting is all you need

Given the association of specific TCRs with a condition, one could

propose different methods to combine reactive TCRs into a classifier

for disease history. We here argue that counting the number of such

TCRs in a repertoire is a better classifier than existing complex

ML classifiers.

To clarify that, we propose a simplistic model that captures the

essence of the problem. Assume a general, very large set of TCRs,

where each patient has a random subset of these TCRs. Within the

large set of TCRs, there is a small subset associated with the disease,

and patients that had the disease have a higher than random chance of

having these TCRs (see Figure 2 for a description of the model). The

data generation process uses 3 probabilities: p0 - the probability that a

TCR would be selected in any patient, p1,p2 - the probability that a

selected TCR associated with CMV is added to a repertoire in CMV

positive and negative samples (Figure 2).
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In this model, all TCRs are independent (the presence or absence

of different TCRs are not correlated). In such a model,

log(P(CMV + jXj)) = log(P(CMV + )) + log(P(Xj jCMV + )) −

log(P(Xj)) = log(P(Xj jCMV + ÞÞ+C :

(1)

Since the TCRs are independent,

log(P(Xj jCMV + ÞÞ =o
i
log(p(tji jCMV + )) (2)

p(tji|CMV+) are sampled from a binomial distribution. For reactive

TCRs E(p(xji|CMV+))=p0p1 , whereas E(p(xji|CMV−))=p0p2 . Since

p2<<p1, the negative component can be ignored. Since the c2 index

awards a high score to TCRs that appear in more positive repertoires

than negative TCRs, we can expect that by picking a conservative

threshold, most of the TCRs that have a high enough c2 are truly

reactive (as can be observed from the absence of TCRs with parallel

negative scores). However, since general non-reactive TCRs appear in

large amounts in both positive and negative repertoires, some might

still pass the threshold and be falsely classified as reactive TCRs. When

the value of p0*p1 is large enough so that there are many more true

reactive TCRs found than false reactive TCRs, we expect that

classification to be correct.

We calculated the number of false and true reactive TCRs that are

extracted by the c2 scoring for different p0*p1 values, using the

binomial distribution above (Figure 3A). In the specific sample

sizes (see Methods for details of simulations) used here, one can

clearly see that by a value of p0*p1>0.06 there are considerably more

true reactive than false reactive TCRs detected. Below this value,

classification would be impossible, while above this value, it should be

straightforward. To test that, we applied a straightforward algorithm,

where we counted the number of significant TCRs as defined by the
FIGURE 2

(A) The data generation process of the toy model. Each generated repertoire is created using binomial sampling from a collection of positive and
negative TCRs. (B) The data generation process uses 3 probabilities: p0 - the probability that a TCR would be selected in any patient, p1,p2 - the same for
TCRs associated with CMV in CMV+ and CMV- samples. We also tested a model where we replaced p1 with pi~N(p1,s2) for each positive TCR ti.
(C) When classifying the generated repertoires, the reactive TCRs are extracted from each repertoire using the c2 score on the training set, and then
counted in the test set. Repertoires with a large enough number of reactive TCRs are classified as positive.
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training set in each test sample and used the count as a classification

score. One can see that the transition between the points that there are

more false reactive TCRs than true reactive TCRs to there being

orders of magnitude more true reactive TCRs than false reactive TCRs

is sharp, and the AUC transition is expected to be similar. As such,

either classification is trivial and then counting is enough, or it is

impossible and then all other algorithms will also fail. The same holds

for all parameter regimes of p2 and p1.

The test generated data (500 positive repertoires, 500 negative

repertoires) and was split into a test and a training set. Reactive TCRs

were extracted from the training set and counted in each sample in the

test set. Then, an AUC score was calculated using the number of positive

clones present in each repertoire in the test set. We ran the counting

model on the generated datawith different parameters. As expected from

the argument above, when trying to classify the generated datawith a low

value ofp0*p1, the classification is impossible. With a high enough value

of p0*p1, the classification is almost trivial, and a simple counting model

can achieve a perfect AUC (Figure 3B). More importantly, the range

between the two extremities is very narrow, either you can or cannot

classify the repertoires using counting. Since there is no a priori reason to

assume for any disease and sampling level in any given experiment that

they are exactly in this narrow range, one can argue that in general for

any disease, either classification is impossible, or a simple counting

argument can obtain a high accuracy.
Frontiers in Immunology 05
Given this simple argument, one would expect other methods to

simply overfit in the simulation above. To test for that, we compared the

counting with more complex methods (see Methods). Indeed, counting

the relevant TCRs is the best repertoire classification method. The

introduction of machine learning methods often only reduces the

classification accuracy, following over-fitting on the training

set (Figure 3C).

To ensure that the results are not an artifact of the highly simplified

model, where all the positive TCRs have the same probability, we

further enlarged themodel to contain a different a priori probability for

each positive TCR to appear (see Methods). Figure 3D shows that the

conclusion of the sharp transition is true even with looser conditions.

Evenwhen p2 is changing, andwhen the reactive TCRs are sampled in a

non-constant distribution, there is still a clear and sharp “tipping

point” between impossible and easy classification, suggesting that this

argument may apply to real sampled data.
4.4 Application to real data

To show that the counting argumentworks in general evenwhen not

all TCRs are independent, we analyzed the immune repertoire ECD (4).

To test for the CMV classification, we split the data into a training:

validation:test split ratio of 8:1:1, and used 9 cross-validations on the
A B

DC

FIGURE 3

(A) The number of true reactive and false reactive TCRs extracted by the c2 scoring. The number is the average of 5 calculations on the training set over a 5 CV
split. Each line represents a constant p0~U[0.01,0.1] value with different p1 values. The x-axis is the product of p0 and p1. The other parameters are constant:
N=100,000, p2=0.002. (B) The AUC score for data generated with different p0, p1 probabilities (5-CV fold). The classification was obtained using the counting
method. The colors represents differentp0~U[0.01,0.1] values with different p1 values. The x-axis is the product of p0 and p1. The other generation parameters are
as above. (C) Bar plot of the AUC results for different models on the 5 CV above. In all the models, meaningful TCRs are extracted by calculating the c2 score for
each TCR in the test set, and then taking only TCRs above a certain threshold (in this case, 3.84). The counting model counts the relevant TCRs in each test set
sample and classifies it by the number of relevant TCRs in each repertoire. The score sum model sums the c2 score for the relevant TCRs in the test repertoires
and classifies them according to the sum. The FCN model trains a 2-layer FCN over the training repertoires and then makes a prediction on the test repertoires
using the TCR one-hot vectors as input. The parameters used in the generation of the repertoires are N=100,000, p0=0.1, p1=0.08, and p2=0.002. (D) A surface
plot that presents the AUC of the counting model for different p1 and p2 combinations. Here, p1 is not constant for each TCR. Instead, pI is sampled for each
TCR ti (see Figure 2) from a normal distribution. The other generation parameters are constant: p0=0.01,s=0.03,N=100,000.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1031011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Akerman et al. 10.3389/fimmu.2022.1031011
training andvalidation (the test set was either not changed or ever used in

the training). We then applied the counting method:
Fron
1. Calculate the c2 score for each TCR in the training set.

2. Extract the top-k TCRs with the highest c2 score. In this case

k=100. One could alternatively use a p value cutoff with

similar values, but we have here tried to minimize the

hyperparameter optimization to show how generic the

counting algorithm is.

3. Count the number of reactive TCRs in each test sample.

4. Calculate AUC on the test set using the counts above.
Again, the counting model outperformed all published models,

including the Emerson et al. (4) model on the same test set for

different training set sizes (Figure 4). The advantage of the counting

algorithm is further obvious in small training sample sizes. In contrast

with Emerson et al. (4) and deepRC (8), the counting method can

obtain a signal even for 100 training samples.

The current approach has multiple limitations. First, it is based on

the assumption of positive selection. This is probably true in all

infective diseases, but may not be true in other conditions, such as

autoimmunity. Another more significant limitation is the limitation

within batch predictions. The observed repertoire may be affected by

the details of the experiment protocol, which in turn may affect the

frequency of different TCRs. We now plan to test this issue.

4.5 TCRs correlations

In contrast with the simplistic model, TCR usage in real samples

can be correlated. The counting method, as adequate as it is, neglects

the information that may be available in this correlation. As such it

does not reach a perfect AUC in the ECD. To check the co-expression

of reactive TCRs, we computed the Spearman correlation between the

appearance vector of each TCR in each sample (1 if the TCR is in the

sample and 0 otherwise (Figure 5), and clustered the samples based on
tiers in Immunology 06
their correlation). The clusters of related TCRs are very clear. To test

the significance, we used a Mann-Whitney U-test between the

correlation matrix and a correlation matrix of random shuffled

vectors (p<1.e−100).
4.6 Autoencoder projections

To address the similarity between TCRs, one can use either a

sequence similarity (how similar are the TCR CDR3 and V

sequences), or a functional similarity (how often they co-appear in

the same sample). For the sequence similarity, we projected each

sequence using an improvement of the ELATE (Encoder-based LocAl

Tcr dEnsity) TCR autoencoder (19). ELATE was enlarged to become

a cyclic variational autoencoder, and the TCR representation method

was improved (see Methods).

To confirm that the autoencoder projection is associated with the

class of the TCRs, we sampled 100 TCRs out of the 200 TCRs with the

highest c2 score, and 100 random TCRs, and computed the average

nearest neighbor euclidean distance between the projections within each

group (with 30 cross-validations). The distance between reactive TCRs is

significantly lower than randomTCRs (12.95 vs 13.886, T-test p<1.e−10),

suggesting that reactive TCRs are evenly distributed among all TCRs.
4.7 attTCR

In order to combine the projections into a classifier, we propose an

attention model. However, classical attention models sum the positive

attention scores to 1. As such, these models would fail to count the

number of reactive TCRs in a sample. Instead, they would focus on the

relative importance of reactive TCRs. We thus propose a novel attention

model that does not apply a softmax to the score assigned to each reactive

TCR (see Methods for details), but sigmoid. As such it allows us to

estimate the relative importance of reactive TCRs and on the other hand

to count them. The sum is then normalized to be in the active range for

the loss function. We then tested the combination of the projection and

the attention on the ECD, and the results are significantly better than the

counting algorithm (Figure 4, for every training set size, and p values of

differences therein), and much better than the existing leading models

compared in this paper. Many of the parameters here were not optimized

to avoid any overfitting. However, a higher performance could be

obtained through hyperparameter optimization.

4.8 gTCR

attTCR has an impressive precision. However, it is complex and its

training is costly (in GPU time). An alternative method to incorporate

the relation between TCR would be purely based on their co-occurrence

in samples. To address that, we propose a novel GNN formalism that we

denote Graph TCR (gTCR). We define a graph connecting TCRs based

on the correlation between their co-occurrence patterns (two TCRs are

connected if the Spearman correlation coefficient between their co-

occurrence vector is above 0.2). Then the occurrence vector of each

TCR in a given sample is the input of this GNN In parallel, the log

frequency of each TCR is included as the input to an FCN and the last

layers of the two are the input of a final FCN layer that combines the
FIGURE 4

The AUC results of different models on different train sample sizes on
the ECD (4). The results are over a 9 CV split of the training and the
dev sets. The test set is the same for every model. Stars are used to
mark statistically significant results using a t-test (p<0.05). Pink stars
represent the t-test between the Emerson model and the counting
model, and blue stars represent the t-test between attTCR and the
counting model. The results were also compared to the results
reported for deepRC (8) (with a different experimental setup). For
further result comparison to DeepRC and MotifBoost on the ECD,
which have even lower AUC, see (20).
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interaction map with the co-occurrence and the log frequency. The

results of gTCR are close to the results of attTCR, with no significant

difference (Figure 4). Note that similar results can be obtained by

producing a graph using the similarity of the TCRs projection

(denoted in the figure gTCR-p in contrast with gTCR-c).

The difference between the two gTCR models is simply the

interaction matrix, which can be either based on the sequence or the

appearance similarity. The resulting interactionmatrices are very different

(Jaccard index =0.002 ± 0.003 in 10 training/test divisions). Thus,

information seems to be available through both distance definitions.
4.9 HLA allele repertoire classification

The ECD (4) provides the low-resolution A and B HLA-alleles of

most samples. We further tested the algorithms above HLA

prediction accuracy. From a MIL point of view, this is equivalent to

CMV classification. Indeed, the counting model handles this

classification task very well, especially with very frequent HLA

alleles (Figure 6A). The difference between the counting model and

the Emerson model is statistically significant (p=0.017 with Mann-

Whitney U-test). We use the counting model with k=100. We use a
Frontiers in Immunology 07
number cutoff instead of a threshold cutoff to ensure that we find

reactive TCRs for rare HLA alleles. Those TCRs receive a relatively

low c2 score to the reactive TCRs since very few samples have them.

The counting model has a higher accuracy than the Emerson

model on most HLA alleles (Figure 6B). Machine learning models,

specifically attTCR and gTCR-c, have similar results to the counting

model for common HLA alleles (Figure 6C), but over-fit for rare HLA

alleles (Figure 6D). For full results over all the HLA alleles, see the

Supplementary material.

Multiple other comparisons were proposed, such as taking the

MIRA (27) Covid-19 samples as positive repertoires and the ECD as

negative repertoires (since there was no COVID-19 at the sampling

time), and the counting method obtains an AUC of 1 on this

comparison. However, this may be a batch effect, since the two

samples may have differences in the sampling and analysis protocol.
5 Methods

5.1 Machine learning definitions

To clarify the machine learning terminology, we include Table 1.
FIGURE 5

A clustermap of the Spearman correlation between 125 reactive TCRs. For each reactive TCR, we extracted from the ECD (4), and we assigned a one-hot vector
that represents the appearance of the TCR in different repertoires in the data. Then, for each TCR pairing, we calculated the Spearman correlation between their
one-hot vectors.
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5.2 Simulated samples

In order to analyze the performance of the classificationmethods, we

propose a simple simulation that captures the essence of the classification

problem. Assume a general, very large set of TCRs, where each patient

has a random subset of these TCRs.Within the large set of TCRs, there is

a small subset associated with the disease, and patients that had the

disease have a higher than random chance of having these TCRs (see
Frontiers in Immunology 08
Figure 2 for a description of themodel). The data generation process uses

3 probabilities: p0 - the probability that a TCR would be selected in any

patient, p1,p2 - the probability that a chosen TCR is associated with

positive and negative samples.We also tested amodel where we replaced

p1 with pi~N(p1,s2) for each reactive TCR ti. Note that p1 may not follow

a truncated normal distribution. It could for example follow a log-normal

or scale-free distribution. However, this is a toymodel, and we wanted to

propose the simplest model.
A B

D

C

FIGURE 6

(A) F1 score results for the counting model on HLA classification. We performed a leave-one-out split over the entire dataset. (B) A histogram of the F1
score differences between the classification results of the counting model and the Emerson model. The difference between the counting model and the
Emerson model is statistically significant (p=0.017 with Mann-Whitney U-test) (4) on the same HLA alleles. (C) Comparison of AUC results of the
counting model, attTCR, and gTCR-c on the repertoire HLA classification task. A 5-fold CV was used, and the AUC was calculated using prediction
pooling instead of averaging (26). The HLA alleles presented are the most frequent HLA alleles in the dataset. (D) Comparison of AUC results of the
counting model, attTCR, and gTCR-c on the repertoire HLA classification task. The HLA alleles presented are the least frequent in the dataset.
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In the different trials performed in the current analysis, we

generated 1,000 different repertoires (500 positives, 500 negatives)

using differing generation probabilities (p0, p1, p2). All the experiments

were performed using a 4:1 training:test split, using 5 different

data splits.
5.3 c2 Score

To extract reactive TCRs from a repertoire, we use a simple

scoring method. For each TCR ti, the c2 formula uses the

following values:
Fron
• Nposi - The number of positive repertoires that contain ti.

• Ni - The total number or repertoires that contain ti.

• Npos - The total number of positive repertoires in the data.

• N - The total number of repertoires in the data.
The c2 score for TCR ti is calculated using Equation 3.

c2i =
signðNposi − NposNi

N Þ(Nposi − NposNi
N )2

NposNi
N

(3)
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The difference with the regular c2 is simply the sign of the

deviation. Since we do not only want to detect deviations from the

null model, but also whether the number of positive TCRs is higher or

lower than expected since only positive selection is of interest. Also,

note that we assume Npos ∗Ni=N is larger than 1 so that there are at

least a few expected positive TCRs.
5.4 Counting model

The counting model is a simple model that effectively manages to

distinguish between positive and negative repertoires on the test set.

The counting model has the following steps:
1. Calculate the c2 score for each TCR in the training set.

2. Extract all the TCRs with a c2 score over a certain threshold.

The threshold can be either a p-value (i.e. define a threshold

based on the translation of a p-value to a cutoff), or a fixed

number of TCRs k.

3. Count the number of significant reactive TCRs in each file of

the test set.

4. Calculate AUC on the test set using the counts.
TABLE 1 Basic machine learning terms used in this paper and their definitions.

Term Definitions

Training set The set of data points used to optimize our model’s weights.

Validation set The set of data points used to internally evaluate the model’s performance, and optimize the hyper-parameters of the model.

Test set The set of data points used to externally evaluate the model. The model was never exposed to the test set samples until the final test.

AUC (Area
Under Curve)

The ROC curve is created by plotting the true positive rate (TPR =
TP
P
) against the false positive rate (FPR =

FP
N
) for different threshold values. TP, and FP

are the fraction of samples classed aspositive, and are truly positive or negative, respectively; and P and N are the total number of real positives and
negatives, respectively. A positive/negative classification is an above/below threshold score. The AUC is the area under the curve. It is 1 for a perfect classifier
and 0.5 for a random classifier [28]

FCN (Fully
Connected
Network)

A type of machine learning model that is composed of layers, and weights (matrices) connecting these layers. An FCN is usually composed of an input layer,
hidden layers, and an output layer.

Hidden layer An internal layer of an FCN

Loss Function A differentiable function that scores the predicted output of a model in relation to the real label. The function is used in the model parameter training.

MSE (Mean
Squared
Error) Loss

Average squared difference between two vectors.

Activation
Function

A non-linear function used between layers of a network.

ReLU
(Rectified
Linear Unit)

An activation function. f(x)=max(0,x).

Sigmoid An activation function that scores the input between 0 and 1. f (x) =
1

1 + e−x
. Frequently used as an output function of a model.

Softmax A function that receives a vector and normalizes its values to sum to one.

Dropout A regularization tool used on the models’ layers. Each layer zeros some of its values randomly according to the dropout probability

Graph
Convolutional
Network

A Neural network structure where the input of each node in each layer is a combination of its neighbors in a graph.
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5.5 TCR autoencoder

A TCR autoencoder is a model that preserves the information

about input ti V gene and CDR3 sequence, while reducing the

dimension to a low dimension representation zi. The training of the

TCR autoencoder includes several steps of data processing (19). The

first step is representing each of the amino acid per position as well as

the V genes by an embedding vector. There are twenty possible amino

acids and an additional end signal is required. Each instance is then

processed by an autoencoder network and encoded to size R30 (we

have previously checked that adding dimensions beyond 30 had a

very limited contribution to the accuracy).

The autoencoder network contains three layers of 800, 1100, and 30

neurons as the encoder and a mirrored network as the decoder. The

network is trained with a dropout of 0.2 and a ReLU. An MSE loss

function is implemented to compare each input sequence to the

resulting decoded sequence (19). The current version differs from the

ELATE encoder (19), since it includes a variational term. Instead of

encoding an input as a single point, we encode it as a distribution over

the latent space. The model is then trained as follows: First, the input is

encoded as a distribution over the latent space; second, a point from the

latent space is sampled from that distribution, Then the sampled point

is decoded and the reconstruction error can be computed; finally, the

reconstruction error is back-propagated through the network. The VAE

loss function is the same as ELATE with a Kulback-Leibler divergence

between the returned distribution and a standard Gaussian.

The problem with the standard VAE is that the KL term tends to

vanish. A recent work (29) studied scheduling schemes for b, and
showed that KL vanishing is caused by the lack of good latent codes in

training the decoder at the beginning of optimization. To remedy this,

we used a cyclical annealing schedule, which repeats the process of

increasing b multiple times. This new procedure allows the

progressive learning of more meaningful latent codes, by leveraging

the informative representations of previous cycles as a warm restart.
5.6 attTCR

attTCR receives as an input the reactive TCRs of each repertoire,

and as an output a score between 0 and 1 that predicts whether the
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repertoire is positive or negative. Themodel is composed of an encoder

network, an attention scorer, and a normalization layer. For detailed

model, architecture see Figure 7. The encoder was explained above.

5.6.1 Attention network
Each TCR ti is assigned an attention score ai, such that ai∈[0,1].

TCRs that are more important to the classification should receive

higher attention scores. The attention network takes as an input the

embedding of each TCR by the encoder network and is composed of 2

hidden layers of size q. The output of the attention network for each

TCR sequence is a single attention score. Therefore, for the entire

repertoire, the network outputs a vector v of dimension N (the

number of reactive TCRs). A sigmoid function is used to produce

an attention score between 0 and 1 for each reactive TCR in the

repertoire. We have here used the traditional Transformer (Vaswani

et al. (21)) notation. We use the following matrices and vectors to

describe the attention process:
• Q∈RN×q - The queries matrix. In our model, the matrix is

created after the 2 hidden layers of the attention network.

• x∈Rq×1 - The keys vector. The weights of the output layer of
the attention network.
The attention score calculation applied by equation 4, where s is

the sigmoid function:

s (
xTQT

ffiffiffi

q
p ) (4)

Note that unlike traditional attention models, we do not use the

softmax function on the resulting attention vector, nor do we multiply

each attention by the TCR representation. We are not interested in

performing a weighted average. Instead, we want to score each TCR

and still keep the information about the number of reactive TCRs in

the repertoire, i.e., N. Thus the score of an entire repertoire is simply

the sum of the attention values for all the reactive TCRs in

this sample.
5.6.2 Normalization layer
The input of the normalization layer in a vector v∈RN with the

scores of each TCR in the repertoire. The Normalization layer’s goal is
FIGURE 7

AttTCR’s architecture. First, the reactive TCRs are sampled from all the train repertoires using the c2 method. Then, for each repertoire X, the reactive
TCRs contained in X are extracted. Each reactive TCR is projected by the encoder. The projections are then scored by the attention scorer. The scores
are summed and normalized. The output of the model is a number between 0 and 1 that indicates the confidence of the model on whether the
repertoire is positive.
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to convert the sum over the vector v to a number between 0 and 1, so

we can train the model using BCE loss. Just putting S v into a sigmoid

function is not going to work, since the sum of N scores ai∈[0,1] is
very likely to be too large for the sigmoid function. As a result, all the

repertoires would output a number very close to 1, which might hurt

the training process. Therefore, we use 2 learned parameters: g1, g2, to
normalize the sum before the sigmoid function. In conclusion, the

normalization layer performs Equation 5.

s (g1ov + g2) (5)
5.7 gTCR

5.7.1 Graphs
A GCN is a classic machine learning model used in supervised

machine learning with relational data represented as a graph. Kipf

and Welling (30) proposed a classical “Graph Convolution Network”

(GCN) design, in which layer-wise propagation rules are used to

characterize features around each node. For the graph classification

task, a GCNmodel is applied to the graph and vertices' features. Then,

the aggregated information was gathered from the vertices' features as

well as graph structure is fed into the classification machine.

5.7.2 TCR similarity graph
We define here two ways of modeling the TCR graph. Both ways

consist of two stages, a definition of the similarity matrix between the

reactive TCRs followed by a zeroing stage where rows and columns

from the similarity matrix are filled with zero value if the reactive TCR

is absent from the sample’s repertoire.

One way of modeling such a similarity matrix between reactive

TCRs is obtained using the Spearman correlation matrix between the

training samples’ presence vectors. These sample’s presence vectors

contain 0 or 1 according to the presence of each reactive TCR in the

sample’s repertoire. Another way of modeling a similarity matrix

between reactive TCRs is obtained using the inverse of the euclidean

distance between the projection of the reactive TCRs obtained from

the autoencoder.
5.7.3 gTCR
The gTCR (graph TCR) model combines the information from

the frequencies vector as well as the graph represented by the

normalized adjacency matrix as can be seen in Equation 6. An

embedding vector of the log frequencies is obtained from a 2-layer

FCN, each followed by a tanh activation function and dropout layer

(Equation 8). In parallel, one layer of a GCN model is applied

(Equation 9) to the reactive TCR presence vector. Then the outputs

of the two networks are concatenated and serve as the input of a 2-

layer FCN to predict a binary condition (Equation 10).

~A = D−1
2AD−1

2 (6)

D is diagonal matrix such that Dii =o
j
Aij (7)

ev is the frequencies vectors embedding :ev = FCN (f ) (8)
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eg is the graph embedding : eg = (~A + a · I) · sign fð Þ · W (9)

Concatenate(ev, eg) ⇒ FCN (10)

a is a learned scalar regulating the importance given to the

vertex’s feature compared to its neighbors’ features. a is initialized

with 1 plus Gaussian N(0,0.1).

5.8 Comparison to other methods
The counting method was compared to 2 other classification

methods:
• Score Sum - This method is almost entirely similar to the

counting model. The only difference is that instead of

classifying the repertoires based on the number of reactive

TCRs found in the repertoires, we classify them by the sum of

the c2 scores of the reactive TCRs in each repertoire.

• FCN - After extracting the reactive TCRs from the data, each

repertoire is embedded to a vector of the dimension of the

number of reactive TCRs. Each dimension in the vector

represents a different reactive TCR, and its value is set to 1

if the repertoire contains the TCR and 0 otherwise. Then, a 2-

layer FCN is fitted on the vector training set, and tested on the

test set.
5.9 Data

The Emerson dataset contains 786 immune repertoires (4). Each

repertoire contains between 4,371 to 973,081 (avg. 299,319) TCR

sequences with a length of 1 to 27 (avg. 14.5) amino acids. The V and J

genes and the frequency are saved for each TCR. 340 repertoires are

labeled CMV+, 421 are labeled CMV-, and 25 are of unknown status.

We only use the repertoire with a known CMV status, 761 repertoires

in total. In addition 626 of the repertoires have HLA allele

information available.
5.10 Preprocessing

The Emerson dataset (4) is composed of 786 repertoires in total.

However, since the task at hand is a supervised classification task, the

25 repertoires without a CMV classification are not beneficial to the

learning process, so they are removed from the dataset. Then, all the

TCRs that have missing CDR3 amino acid information are discarded.

In the following step, the TCRs are filtered based on prevalence in

different repertoires. Only TCR sequences that appear in 7 different

repertoires or more remain in the repertoires after the filtration.
5.11 Experimental setup

When predicting CMV status of the repertoires, the models are

tested with a test size that contains 10% (77 samples) of the data. For

all the models tested, the test set is the same. attTCR is trained using a

9-fold CV between the training set and the validation set, while gTCR
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is trained over 20 different splits. In the counting model, the

validation set is not used. All the models are evaluated using an

AUC score on the test set (28). The significance of the results is tested

against a p-value threshold of 0.05.

The HLA allele repertoire classification in Figure 6A was

evaluated using an F1 score. In Figures 6C, D, the measure was

changed to AUC over a 5-fold CV with a train:validation:test split of

3:1:1. The AUC was calculated using the pooling method, i.e.,

calculated once over all the predictions (26).
6 Discussion

We have here proposed three novel methods with different levels

of complexity, and shown that even the simplest of these models

outperform the current State of The Art (SOTA) for repertoire

classification. The simplest model is simply counting reactive TCRs,

followed by a novel attention model that combines classical attention

models with counting, and finally a combination of graph-based

machine learning with MIL. All the models presented in the paper

rely on the assumption that TCRs are only positively selected, and that

there are no TCRs negatively associated with a condition. Note that

Emerson et al. (4) used a Fisher exact test to score TCRs based on their

association with positive and negative repertoires. It also classifies each

significant TCR as either a positive or a negative selected TCR.

However, the assumption that there are any negatively selected

TCRs does not make much immunological sense. TCR expansion

occurs when a certain TCR binds to an antigen-peptide. There is no

equivalent process for TCRs that do not bind to antigen-peptides.

Thus, in theory, the abundance of a TCR in a repertoire can only

indicate that the TCR was positively selected.

Some TCRs are highly abundant in different individuals (31), and

have initial production probability (3, 13). Therefore, positively

selected TCRs exist in various frequencies in positive immune

repertoires, some especially common ones might appear randomly

in negative instances as well. Thus, the relative abundance of a TCR in

many repertoires does not automatically make it more indicative than

a TCR that appears in a few repertoires. Once a TCR is proven to be

positively selected, its frequency does not matter much when it comes

to repertoire classification. Hence, the counting model is a good way

to classify the repertoires given the reactive TCRs.

We have shown in the data that TCRs are indeed only positively

selected, and that it improves on existingmodels in both theory and real

data. There are distinctions to be made between the real repertoire data,

and the generated one. The most obvious is that real TCR presence in a

repertoire does not follow a binomial distribution. Real TCRs have a

scale-free distribution. Some TCRs are public TCRs and are very

common (31), and others are very rare. The pool size of positive and

negative TCRs to draw from is also vastly different in size. Statistically,

there are many more possible negative TCRs than TCRs that bind

to an epitope-peptide of a specific disease. In addition, TCRs are

sampled in varying sizes, whereas the repertoires in the generative

model are all around p0N. Despite these differences, we believe that the

conclusions of the toy model are still true on real repertoire data.
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However, these differences do not affect the validity of counting and

its extension.

The current approach is purely based on the observed TCR presence

and absence and on their sequence. It completely ignores the antigen or

MHC properties. However, multiple algorithms were proposed for both

TCR-peptide (6, 13, 32–44) and TCR-MHC binding (45–56). While the

accuracy of such algorithms keeps improving, it is still too, it may be too

early to use such algorithms for repertoire classification.

The ML models presented in the paper, especially attTCR, can

also be used in a large variety of problems. attTCR presents a new

approach to attention scoring, that can be used in every MIL task that

involves counting. Further research has to be done on the quality of

the proposed ML models on other non-related tasks. However, we

propose that these three levels of modeling - counting, counting

attentions models and GNNs on selected shared samples may be a

general approach to all MIL problems.
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SUPPLEMENTARY IMAGE 1

(A) A swarm plot of the different repertoires in the data. Each dot represents a

repertoire. The y-axis represents the average count of a TCR in a repertoire, where
the count of a TCR is defined as the number of clones the TCR has in the

repertoire. It is clear that there is not a big difference in the count distribution
Frontiers in Immunology 13
between positive and negative repertoires. (B) A swarm plot of the different
repertoires in the data. Each dot represents a repertoire. The y-axis represents

the average frequency of a TCR in a repertoire. It is clear that there is not a big
difference in the frequency distribution between positive and negative repertoires.

SUPPLEMENTARY IMAGE 2

(A) A histogram of the different Vb-genes in the data. Each column represents

the average frequency of a Vb-gene in positive and negative repertoires. It is
clear that the v-gene distribution between negative and positive repertoires is

very similar. (B) A histogram of the different Jb-genes in the data. Each column
represents the average frequency of a Jb-gene in positive and negative

repertoires. It is clear that the J-gene distribution between negative and

positive repertoires is very similar.
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Appendix
In the paper, we have shown that repertoires can be classified

using bayesian and machine learning tools on the content of the TCR

repertoire. However, in the Appendix we want to prove that there
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does not exist an easier, more superficial method of distinguishing

between positive and negative repertoires. In Supplementary Images

1, 2, we show that different general attributes of the repertoires are the

same with positive and negative repertoires, and they cannot be

differentiated using this attributes.
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