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Abstract. A proper vertex k-colouring of a graph G is called l-homogeneous if the number
of colours in the neigbourhood of each vertex of G equals l. We explore basic properties
(the existence and the number of used colours) of homogeneous colourings of graphs in
general as well as of some specific graph families, in particular planar graphs.
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1. Introduction

Throughout this paper, we consider connected graphs without loops nor multi-

ple edges. The notation and terminology used here are taken from the book [15].

A proper vertex k-colouring of a graph G is a mapping ϕ : V (G) → {1, . . . , k} such

that, for any pair of adjacent vertices x and y, ϕ(x) 6= ϕ(y) holds. The vertex palette

of a vertex x of G with respect to a colouring ϕ is the set {ϕ(y) : xy ∈ E(G)} and

the colour degree of x with respect to ϕ is the cardinality of its vertex palette.

The properly coloured graphs may show great variability of possible colour de-

grees. For example, it is easy to see that, for each graph and each its proper colour-

ing, there exist two vertices of the same colour degree, and one may construct, for

each positive integer n, an n-vertex graph and its proper colouring such that all

colour degrees, except of two, are different. It is enough to take so called antireg-

ular or quasiperfect graphs defined first in [2], and colour each vertex differently.
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The other end of possible colour degrees spectra consists of graphs which can be

properly coloured so that their vertices have the same colour degree, say l; a graph

with this property is called l-homogeneous. The set of all positive integers l for

which a graph G is l-homogeneous forms the palette of homogeneity of G denoted by

pal(G). If pal(G) 6= ∅, then we set p−(G) = min pal(G) and p+(G) = max pal(G).

The graphs whose palette of homogeneity is an integer interval (possibly degenerate

one) have a full homogeneity palette, and if pal(G) = [1, δ(G)], then G is said to

be completely homogeneous. Furthermore, for l ∈ pal(G), the set of positive inte-

gers k such that there exists a proper l-homogeneous k-colouring of G forms the

scale of l-homogeneity of G, denoted by scall(G), with χ−

l (G) = min scall(G) and

χ+
l (G) = max scall(G).

The properly homogeneously coloured graphs can be viewed as a possible extension

of bipartite graphs, and, also, as special colour-bounded hypergraphs introduced

in [3], where, for each hyperedge, a lower and an upper bound for the number of used

colours is prescribed. Given a graph G and a positive integer l, consider a colour-

bounded hypergraph H = (X, E , s, t) (s, t are positive integer vectors with |E(G)|+

|V (G)| entries) where the vertex set X = V (G), E is the union of E(G) and the

set of all closed neighbourhoods of all vertices of G; for every e ∈ E , |e| = 2, set

se = te = 2 and for every other e ∈ E , set se = te = l + 1. Now, proper l-

homogeneous colourings of G correspond to feasible vertex colourings of H (meaning

that, for every hyperedge e of H, its number of colours equals se = te). It seems,

however, that, despite of ongoing research of colour-bounded hypergraphs (see, for

example, [14] and references therein), the homogeneous colourings of graphs have

not been studied in detail.

The graphs which are not homogeneously colourable are easy to find: it is enough

to take any graph G with ω(G) > δ(G)+1 or an odd wheel with at least six vertices.

On the other hand, if G is a d-regular graph, then (as mentioned in [9]) p+(G) = d

and scald(G) = [χ(2)(G), |V (G)|] where χ(2)(G) is the 2-distance chromatic number

of G (that is, the minimum number of colours such that, in a corresponding proper

colouring of G, any two vertices which are adjacent or have a common neighbour

receive distinct colours; for the survey of results, see [11]). Moreover, for d = 3

and G bipartite, it was proved in [9] that 2 ∈ pal(G) and χ−

2 (G) 6 6 (the upper

bound 6 might be possibly decreased to 4 and the inequality χ−

2 (G) 6 4 holds also

for bipartite G with d > 4), yielding that cubic graphs have a full homogeneity

palette. This does not hold in general for regular graphs of higher degree—the

octahedron graph K2,2,2 is the smallest regular graph whose homogeneity palette is

not full, and the 9-Paley graph is similarly the smallest odd-order regular graph with

this property (this can be checked by a lengthy case analysis, which is omitted here,

or by computer).
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The aim of this paper is to further explore homogeneous graph colourings of graphs

in general as well as graphs of particular families, bringing several estimates on χ−

l

and χ+
l . The results obtained are contained in Section 2. The final section includes

remarks on homogeneous colourings which are not necessarily proper.

2. The results

We start with several observations on homogeneous colourings of particular graphs.

By exploring the 2-distance chromatic number of cycles (see [11]), we conclude that,

for an n-cycle Cn, pal(Cn) = {2} if n is odd and {1, 2} otherwise; in addition,

scal2(Cn) =











{5} if n = 5,

[3, n] if n ≡ 0 (mod 3),

[4, n] otherwise.

Theorem 1. For the complete k-partite graphG∼=Kn1,n2,...,nk
with n1 6 . . .6nk,

pal(G) = {(k − 1)i : i = 1, . . . , n1}

and, for each p ∈ pal(G), scalp(G) = {k/p(k − 1)}.

P r o o f. Let V1, . . . , Vk be parts of G, |Vi| = ni for i = 1, . . . , k, and let ϕ be

a regular t-colouring of G with colour classes U1, . . . , Ut; since G is a complete multi-

partite graph, the partition {U1, . . . , Ut} is a refinement of the partition {V1, . . . , Vk}.

If there exist i 6= j such that the parts Vi, Vj contain r and s sets from {U1, . . . , Ut}

with r 6= s, then the colour degrees of vertices from Vi differ from the colour degrees

of vertices from Vj . Thus, for an l-homogeneous colouring ϕ of G, each part Vi con-

tains the same number of colour classes of ϕ which yields that l = (k − 1)i for some

i = 1, . . . , n1 and scall(G) = {k · i} = {kl/(k − 1)}. �

By this result, the palette of homogeneity of the octahedron graph K2,2,2 is not

full; it can be easily checked that, among homogeneously colourable graphs with this

property, the octahedron graph is the smallest one.

Concerning an n-vertex wheelWn and k > 4, any of its proper k-colourings induces

k−1 > 3 colours on its rim, and a 4-colouring ofWn which induces a 2-homogeneous

3-colouring on the rim is possible only for n ≡ 4 (mod 6). Thus, we obtain

Theorem 2 ([1]). Let Wn be an n-vertex wheel. Then

(a) for n ≡ 0, 2 (mod 6), Wn is not homogeneously colourable,

(b) pal(Wn) = {2}, scal2(Wn) = {3} for n ≡ 3, 5 (mod 6),

(c) pal(Wn) = {3}, scal3(Wn) = {4} for n ≡ 4 (mod 6),

(d) pal(Wn) = {2, 3}, scal2(Wn) = {3}, scal3(Wn) = {4} for n ≡ 1 (mod 6).
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Theorem 3. Let Dn be the graph of an n-sided prism. Then {2, 3} ⊆ pal(Dn)

with Dn being completely homogeneous for even n. In addition,

(a) scal3(D3) = scal3(D6) = {6},

(b) scal3(Dn) = [5, 2n] for n 6≡ 0 (mod 4), n 6= 3, 6,

(c) scal3(Dn) = [4, 2n] for n ≡ 0 (mod 4),

(d) scal2(Dn) = [3, n] for n ≡ 0 (mod 3),

(e) scal2(Dn) = [4, n] for n 6≡ 0 (mod 3).

P r o o f. Let u1 . . . unu1, v1 . . . vnv1 be facial n-cycles of Dn with ui being adja-

cent to vi for i = 1, . . . , n. The results on the scale of 3-homogeneity of Dn follow

from observations on the distance-2-chromatic number of Dn (see, for example, [7],

Section 4). For k ∈ scal2(Cn), a 2-homogeneous k-colouring ofDn can be obtained as

follows: taking a 2-homogeneous k-colouring of u1 . . . unu1, vi+1 (index modulo n) is

coloured with the colour of ui. A 2-homogeneous 4-colouring of D5 assigns colour 1

to u4, v5, colour 2 to v1, u3, u5, colour 3 to u2, v3 and colour 4 to u1, v2, v4.

Consider now a 2-homogeneous 3-colouring of Dn. Observe that all the three

colours are then used on u1, u2, v1, v2. Without loss of generality, let u1, v2 be

coloured by 1, v1 by 2 and u2 by 3. Then u3 has colour 2 and v3 colour 3. By repeating

this argument, we obtain that the restricted colouring of the cycle u1 . . . unu1 obeys

the repeating pattern 132 . . ., implying that n is divisible by 3.

Finally, consider a 2-homogeneous k-colouring of Dn for k > 4. Then, for every

vertex of Dn, exactly two of its neighbours have the same colour. First, consider the

case that, for some i ∈ {1, n}, ui−1 and ui+1 (indices modulo n) have the same colour,

say 1, ui is coloured by 2 and vi by 3. Then a new colour 4 is used on a neighbour—

say vi+1—of vi, and, subsequently, vi−1 is coloured by 2 or 4. This yields that vi+2

is coloured by 1 or 3, ui+2 is coloured by 2 or 4 and vi−2 is coloured by 1 or 3. So,

if ui−1, ui+1 have the same colour, they belong to a set of 9 vertices using just 4

colours. In the other case, the same colour is used for two other neighbours of ui,

that is, vi and, say, ui+1. These observations imply that the number k of the used

colours does not exceed the half of the number of vertices of Dn. �

Following the observation on 2-distance colouring from the introduction, we further

explore relations between homogeneous colourings and other graph colourings. Recall

that, for a positive integer k, a dynamic k-colouring of a graph G is a proper vertex

k-colouring such that the colour degree of every non-pendant vertex is at least two;

the smallest k for which G has a dynamic k-colouring is the dynamic chromatic

number χd(G) (see [12]). Now, if we take a non-bipartite graph G with pal(G) 6= ∅,

we have l > 2 for every l ∈ pal(G). Thus every l-homogeneous colouring of G is also

its dynamic colouring, hence we obtain
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Lemma 4. Let G be a non-bipartite graph with pal(G) 6= ∅. Then, for every

l ∈ pal(G), χd(G) 6 χ−

l (G).

Another connection to recently studied colouring concepts concerns so called

WORM-colourings, defined in [8] in the following way: Given graphs R, M , and G,

an (R,M)-WORM colouring of G is a vertex colouring such that no subgraph of G

isomorphic to R is rainbow (meaning that its vertices are coloured with different

colours) and no subgraph of G isomorphic to M is monochromatic. If G admits at

least one (R,M)-WORM colouring, then W−

R,M (G) denotes the minimum number

of colours in an (R,M)-WORM colouring of G. Now, if G admits an l-homogeneous

colouring, then no star of G with more than l leafs is rainbow; thus, we have

Lemma 5. Let G be a graph and l ∈ pal(G). Then W−(K1,l+1,K2) 6 χ−

l (G).

A necessary condition for the l-homogeneous colourability brings

Lemma 6. If l ∈ pal(G), then, for each vertex v of G, the induced subgraph

G[N(v)] is l-colourable.

The converse is not true, as seen on the non-homogeneous wheel W6 whose local

induced subgraphs (5-cycle and 3-path) are 3-colourable. Another example is the

circulant graph on 12 vertices with the generating set {1, 3, 4}: its local induced

subgraphs are isomorphic to a 6-cycle with an extra edge joining a pair of antipodal

vertices; hence, they are bipartite, but the whole circulant graph is easily checked

not to be 2-homogeneous.

Theorem 7. Let l ∈ pal(G). Then χ+
l (G) 6 ⌊ l

δ(G) |V (G)|⌋.

P r o o f. Consider the sum of colour degrees of vertices of G with respect to an

l-homogeneous k-colouring of G; this sum equals l|V (G)|. On the other hand, for

every j ∈ {1, . . . , k} a fixed vertex v of colour j contributes deg(v) to the sum of

colour degrees; hence this sum is at least kδ(G) and the result follows. �

Given a positive integer t, a set S ⊂ V (G) is distance-t independent in G, if the

distance of every pair of vertices of S in G is at least t.

Lemma 8. Let G be a k-regular graph and l ∈ pal(G). Then

χ+
l (G) 6 max

S⊂V (G)

{

|V (G)| + |S|
(

1−
⌈k

l

⌉)}

where the maximum is taken over all maximal distance-3 independent sets of G.
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P r o o f. Having an l-homogeneous t-colouring of G and a vertex x, at least

⌈k
l
⌉ neighbours of x have the same colour. Using this argument on each vertex of

a maximal distance-3 independent set S, we obtain that t 6 |S| + |S| + ((|V (G)| −

|S| − |S| · ⌈k
l
⌉) = |V (G)| + |S|(1− ⌈k

l
⌉). �

Corollary 9. For a k-regular graph of diameter 2 and l ∈ pal(G), χ+
l (G) 6

|V (G)|+ 1− ⌈k
l
⌉.

Next, we turn our attention to planar graphs and sufficient conditions for their

homogeneous colourability.

Theorem 10. Let G be a connected planar graph of minimum degree at least 2

and girth at least 16. Then 2 ∈ pal(G) and χ−

2 (G) 6 5.

P r o o f. By [10], G contains a path consisting of three 2-valent vertices. We

proceed by induction on the number of vertices. Assume first that G contains a cycle

C = x1x2 . . . xpx1, p > 16, such that x2, . . . , xp are 2-valent and deg(x1) > 3. If

deg(x1) = 3, consider the graph G′ = G − {x2, . . . , xp, x1, y1, . . . , yq}, q > 1 where

P = y1 . . . yq is a path such that deg(yq) > 3 and the other vertices of P are 2-

valent (since G is finite, such a path exists); if deg(x1) > 4, consider the graph

G′ = G − {x2, . . . , xp}. Then G′ ⊂ G is connected planar of minimum degree at

least 2 and girth at least 11, thus, it is 2-homogeneously colourable using at most

five colours. Now, in the second case, a 2-homogeneous 4-colouring of C can be chosen

such that the colour of x1 and its neighbours on C match the colours of x1 and its

neighbours in G′. A similar argument is used also in the first case: we can extend

a 2-homogeneous colouring of G′ to all vertices of P , and then suitably choose a 2-

homogeneous 4-colouring of C to match the colours (the details are left to the reader).

If the above situation does not occur in G, then there exists a path x1x2 . . . xp−1xp

with p > 5 such that x1 and xp are of degree at least 3 and x2, . . . , xp−1 are 2-valent.

Consider the graph G′ = G−{x2, . . . , xp−1}; by induction, every component of G′ is

2-homogeneously colourable using at most five colours. Without loss of generality, we

consider now several possibilities for colours of x1, xp and their vertex palettes in G
′:

Case 1: x1 and xp have colour 1.

Case 1.1: The vertex palette of x1 and xp is {2, 3}.

Case 1.1.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 3, x3i−1

with 2 and x3i+1 with 1.

Case 1.1.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 2 and x3i+1 with 3.

Case 1.1.3: If p = 3k, then colour xp−1 with 3 and, for every i = 1, . . . , k − 1,

colour x3i with 4, x3i−1 with 3 and x3i+1 with 2.
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Case 1.2: The vertex palettes of x1 and xp are {2, 3} and {2, 4}, respectively.

Case 1.2.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 2 and x3i+1 with 1.

Case 1.2.2: If p = 3k + 2, then colour xp−1 with 4 and, for every i = 1, . . . , k,

colour x3i with 3, x3i−1 with 2 and x3i−2 with 1.

Case 1.2.3: If p = 3k, then colour xp−1 with 2 and, for every i = 1, . . . , k − 1,

colour x3i with 3, x3i−1 with 2 and x3i+1 with 4.

Case 1.3: The vertex palettes of x1 and xp are {2, 3} and {4, 5}, respectively.

Case 1.3.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 2 and x3i−2 with 1.

Case 1.3.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 3, x3i−1

with 2 and x3i+1 with 4.

Case 1.3.3: If p = 3k, then colour xp−1 with 4 and, for every i = 1, . . . , k − 1,

colour x3i with 3, x3i−1 with 2 and x3i+1 with 5.

Case 2: x1 is coloured with 1 and xp with 2.

Case 2.1: The vertex palette of x1 and xp is {3, 4}.

Case 2.1.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 3 and x3i+1 with 2.

Case 2.1.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 5, x3i−1

with 3 and x3i+1 with 4.

Case 2.1.3: If p = 3k, then colour xp−1 with 3 and, for every i = 1, . . . , k − 1,

colour x3i with 4, x3i−1 with 3 and x3i+1 with 1.

Case 2.2: The vertex palettes of x1 and xp are {2, 3} and {3, 4}, respectively.

Case 2.2.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 3 and x3i+1 with 2.

Case 2.2.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 3, x3i−1

with 2 and x3i+1 with 4.

Case 2.2.3: If p = 3k, then colour xp−1 with 3 and, for every i = 1, . . . , k − 1,

colour x3i with 2, x3i−1 with 3 and x3i+1 with 4.

Case 2.3: The vertex palettes of x1 and xp are {2, 3} and {1, 3}, respectively.

Case 2.3.1: If p = 3k + 1, then colour xp−1 with 3, xp−2 with 5 and, for every

i = 1, . . . , k − 2, colour x3i with 4, x3i−1 with 2 and x3i+1 with 1.

Case 2.3.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 2 and x3i+1 with 1.

Case 2.3.3: If p = 3k, then colour xp−1 with 3 and, for every i = 1, . . . , k − 1,

colour x3i with 4, x3i−1 with 2 and x3i+1 with 1.

Case 2.4: The vertex palettes of x1 and xp are {2, 3} and {1, 4}, respectively.

Case 2.4.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 3 and x3i+1 with 2.
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Case 2.4.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 3 and x3i+1 with 1.

Case 2.4.3: If p = 3k, then colour xp−1 with 4 and, for every i = 1, . . . , k − 1,

colour x3i with 3, x3i−1 with 2 and x3i+1 with 1.

Case 2.5: The vertex palettes of x1 and xp are {3, 4} and {3, 5}, respectively.

Case 2.5.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 5, x3i−1

with 4 and x3i+1 with 2.

Case 2.5.2: If p = 3k + 2, then, for every i = 1, . . . , k, colour x3i with 3, x3i−1

with 4 and x3i+1 with 5.

Case 2.5.3: If p = 3k, then colour xp−1 with 3 and, for every i = 1, . . . , k,

colour x3i with 2, x3i−1 with 3 and x3i+1 with 4.

Case 2.6: The vertex palettes of x1 and xp are {2, 3} and {4, 5}, respectively.

Case 2.6.1: If p = 3k + 1, then, for every i = 1, . . . , k, colour x3i with 4, x3i−1

with 3 and x3i−2 with 1.

Case 2.6.2: If p = 3k + 2, then colour xp−1 with 4 and, for every i = 1, . . . , k,

colour x3i by 3, x3i−1 by 2 and x3i−2 by 1.

Case 2.6.3: If p = 3k, then colour xp−1 by 4 and, for every i = 1, . . . , k − 1,

colour x3i by 3, x3i−1 by 2 and x3i+1 by 1. �

We conjecture that the upper bound 5 can be decreased to 4; as seen on cycles

of lengths non-divisible by 3, this bound then would be best possible. Also, we

conjecture that 2-homogeneity holds also for planar graphs of girth smaller than 16.

On the other hand, observe that the graph obtained from the graph of 3-cube by

deleting a vertex is triangle-free, but not 2-homogeneous.

Theorem 11. Let G be a connected outerplanar graph with δ(G) = 2 such that

the sizes of all inner faces are divisible by 3. Then 2 ∈ pal(G) and χ−

2 (G) = 3.

P r o o f. By induction on the number f of inner faces of G. The result clearly

holds for cycles C3k, hence assume f > 1. Let xy be a pendant edge in the weak

dual G∗ of G with a pendant vertex x, and let αx = v1v2 . . . vkv1 be a face of G that

corresponds to x (the labelling of vertices of αx is chosen in such a way that the

edge v1v2 of G corresponds to the edge xy in G∗). Then the graph G− {v3, . . . , vk}

is outerplanar and has f − 1 inner faces of proper sizes, thus, by induction, it is

2-homogeneously colourable using three colours; without loss of generality, let v1
and v2 have colours 1 and 2 in G′, respectively. Now, the 3-colouring of G extended

from G′ by colouring v3i with 3, v3i+1 with 1 and v3i−1 with 2 is easily seen to be

2-homogeneous. �
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Note that, among plane graphs which satisfy the assumptions of Theorem 11,

there are so called catacondensed hexagonal systems (for the definition, see [5]).

Note also that the outerplanarity condition in Theorem 11 is essential, as seen from

the following example: for k > 1, take a cycle C9k−6 = v1v2 . . . v9k−6v1 and add

a new vertex v with new edges vv1, vv3k−1, vv6k−3. If the resulting graph would be

2-homogeneous using three colours, then two neighbours of v—say, v1 and v3k−1—

have the same colour 1. Provided that v has colour, say, 3, the colours of v2, . . . , v3k−3

are necessarily 2, 3, 1, . . . , 2, 3, but then v3k−2 cannot be coloured with one of 1, 2, 3.

In the following, by an internally even near-triangulation we mean a plane multi-

graph with exactly one non-triangular face (the outerface) such that all the vertices

which are not incident with the outerface have even degree.

Theorem 12. Let G be a plane triangulation. Then 2 ∈ pal(G) if and only if G

is Eulerian; in addition, scal2(G) = {3}.

P r o o f. If G is Eulerian, then it is 3-colourable by the Heawood Theorem. Every

vertex v of G is the center of an even wheel in G and every 3-colouring of G yields

two colours on the neighbours of v.

Conversely, let G be 2-homogeneous. Take a vertex v ∈ V (G). Then every neigh-

bour of v in G has colour a or b from [1, k], and, since v is a center of a wheel in G,

we obtain that v has even degree. Thus G is Eulerian.

Now, assume that there exists an Eulerian triangulation G with scal2(G) 6= {3}

(without loss of generality, assume that G contains a wheel W with the center

coloured by 3 and other vertices coloured by 1 and 2, respectively).

Let H be a connected subgraph of G induced by vertices of colours 1, 2 and 3 such

thatW ⊆ H . Since G is 2-homogeneously coloured, all inner faces of H are triangles.

Furthermore, there exists a vertex v ∈ V (G) \ V (H) of colour c > 4 adjacent to two

adjacent vertices u,w of H ; but then the neighbours of u, w in G are coloured with

more than two colours, a contradiction. �

Theorem 13. Let G be a plane near-triangulation with a non-triangular face α.

Then 2 ∈ pal(G) if and only if G is internally even.

P r o o f. In a plane near-triangulation G, every vertex is the center of a wheel

or a fan. From the assumption of 2-homogeneity of G we obtain that no vertex of

odd degree is incident only with triangular faces, hence it must be internal.

Now, let G be an internally even plane near-triangulation. By [4], Lemma 1, G is

3-colourable, and since every vertex of G is the center of an even wheel or a fan,

any 3-colouring of G is 2-homogeneous. �
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Note that analogous results do not hold for plane graphs with more than one

non-triangular face, see the graph of 4-gonal pyramid with a new 2-valent vertex

connecting two nonadjacent 3-valent vertices, which has two non-triangular faces

and is not 2-homogeneous.

Theorem 14. Let G be a plane triangulation with all vertices of odd degree.

Then 3 ∈ pal(G) and χ−

3 (G) = 4.

P r o o f. By the Four Colour Theorem and Heawood Theorem, χ(G) = 4. Now,

taking any 4-colouring c of G, the neighbours of any vertex x induce an odd wheel

coloured, under c, in such a way that the neighbours of x have three colours. �

Note that Theorem 14 does not hold for non-triangulations with all vertices of odd

degree, see the odd wheel W6 (which is not homogeneous at all). Also, Theorem 14

does not hold if vertices of even degree are allowed in triangulations: the graph of

a 5-gonal bipyramid is not 3-homogeneous.

3. Concluding remarks

New kinds of questions arise when relaxing the requirement of the homogeneous

colouring to be proper: here trivially, each graph is 1-homogeneous, but, to decide

whether a graph is 2-homogeneous using just two colours is NP-complete, as proved

in [13] (the corresponding colouring is known as role R6-colouring, see also [6] for

the applications in social network analysis). Various differences between general and

regular homogeneous colourings are illustrated at the graph G on Figure 1: it has no

role R6-colouring (the central vertex and one of its neighbours have the same colour,

then the contradiction comes after colouring the neighbours of gray vertices), but

is 2-homogeneous using three colours; however, 2-homogeneity cannot be achieved

by a regular 3-colouring (two neighbours of the central vertex must have the same

colour, which is then assigned also to the middle vertex of the outerpath), albeit four

colours suffice.

1 1 1
1 1

2 1 4

3 2
1 2 2 3

1
1, 3

2

1 2! 1

3

1, 3

4

1! 2 2 2

1 1 1
2 1 3 4

2 2 2

1 3 1 3

Figure 1. Homogeneous 2-colourings of G.
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