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Background: Coronavirus disease 2019 (COVID-19) is an infectious disease

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Infected individuals display a wide spectrum of disease severity, as defined by

the World Health Organization (WHO). One of the main factors underlying this

heterogeneity is the host immune response, with severe COVID-19 often

associated with a hyperinflammatory state.

Aim: Our current study aimed to pinpoint the specific genes and pathways

underlying differences in the disease spectrum and outcomes observed,
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through in-depth analyses of whole blood transcriptomics in a large cohort of

COVID-19 participants.

Results: All WHO severity levels were well represented and mild and severe

disease displaying distinct gene expression profiles. WHO severity levels 1-4

were grouped as mild disease, and signatures from these participants were

different from those with WHO severity levels 6-9 classified as severe disease.

Severity level 5 (moderate cases) presented a unique transitional gene signature

between severity levels 2-4 (mild/moderate) and 6-9 (severe) and hence might

represent the turning point for better or worse disease outcome. Gene

expression changes are very distinct when comparing mild/moderate or

severe cases to healthy controls. In particular, we demonstrated the hallmark

down-regulation of adaptive immune response pathways and activation of

neutrophil pathways in severe compared to mild/moderate cases, as well as

activation of blood coagulation pathways.

Conclusions: Our data revealed discrete gene signatures associated with mild,

moderate, and severe COVID-19 identifying valuable candidates for future

biomarker discovery.
KEYWORDS
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Introduction

Since December 2019, COVID-19 has become a major

global health concern with 6.3 million deaths recorded globally

as of 11 July 2022 (https://covid19.who.int). Infected patients

have various disease manifestations and trajectories, which poses

a challenge to patient management and resource planning.

Initial findings from 44,672 confirmed COVID-19 cases

published by the Chinese Center for Disease Control and

Prevention in early 2020, identified 3 groups of patients: 1)

81% patients had only mild symptoms (e.g., fever, cough, fatigue,
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muscle pain, etc.) with no or mild pneumonia; 2) 14% patients

had severe symptoms with dyspnea and hypoxia (blood oxygen

saturation ≤ 93%); 3) 5% patients had critical symptoms with

respiratory failure, septic shock, and/or multiple organ

dysfunction (1). Later in June 2020, WHO published a more

refined ordinal scale for grading patient severity, clinical

progression and recovery based on the level of care required

and the need for supportive measures (2). The scale consists of

11 levels: 0 (uninfected) to 10 (death), with levels 1-3 classified as

mild disease without the need of hospitalization, levels 4-5 as

hospitalized moderate disease with or without non-invasive

supplemental oxygen administration, and levels 6-9 as

hospitalized severe disease requiring mechanical ventilation

and/or intubation. Mild disease tends to be self-limiting. For

patients with moderate or severe disease requiring medical care,

accurate diagnostic and prognostic tools are crucial for resource

planning and management.

Numerous studies have uncovered the underlying

immunological characteristics associated with the mild,

moderate, and severe diseases at both transcriptomic and

proteomic levels, which provide basis for better patient triage,

monitoring patients’ response to treatment and designing new

treatments. Compared to the mild or moderate category,

immune dysregulation is evident in the severe category with

elevated serum levels of proinflammatory cytokines (in

particularly, interleukin-6 (IL6) and tumor necrosis factor
frontiersin.org
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alpha (TNF)), C-reactive protein (CRP), and higher neutrophil/

lymphocyte ratio (3–5). Further evidence reveals that immune

dysregulation in severe COVID-19 is characterized by: 1)

impaired or delayed type I interferon (IFN-I) response (6–10);

2) aberrant activation and enrichment of neutrophils (11–13)

and; 3) lymphopenia (14–16). As a result, severe COVID-19 is

associated with a hyperinflammatory state with diminished anti-

viral response. As compared to the patients with mild to

moderate diseases, main effectors of the IFN-I mediated anti-

viral response, interferon-stimulated genes (ISGs) (e.g., IFI44L,

IFI27, RSAD2, SIGLEC1, IFIT1, ISG15) are downregulated

in the critical patients (6). IFN-I, on the other hand,

triggers production of proinflammatory cytokines through

nuclear factor-kB (NF- kB) signaling, contributing to the

hyperinflammatory state in severe COVID-19 (9). Neutrophil

activation cytokines such as IL-8 and granulocyte colony-

stimulating factor (G-CSF), together with neutrophil-derived

effectors such as resistin (RETN), lipocalin-2 (LCN2), and

hepatocyte growth factor (HGF), are elevated in the plasma

from the severe COVID-19 patients compared to the mild/

moderate patients (11, 12). Transcriptomic analyses also reveal

significant upregulation of genes involved in neutrophil

activation in the severe patients compared to the mild ones,

including CD177, matrix metalloproteinases 8 and 9 (MMP8 and

MMP9), neutrophil elastase (ELANE), olfactomedin 4 (OLFM4),

myeloperoxidase (MPO), and alarmins (S100A8, 9, and 12) (13).

Lymphopenia with blood lymphocyte count < 1 x 109/L, is

observed in most patients with severe COVID-19. Decreased

blood lymphocyte percentage over time is associated with poor

prognosis and recovery of patients from COVID-19 has been

associated with restored blood lymphocyte percentage (14, 16,

17). Lymphopenia in COVID-19 is particularly related to the

loss of CD4+ and CD8+ T cells (18), which can be caused by 1)

overproduction of proinflammatory cytokines IL-6 (3); 2)

overexpression of T cell exhaustion markers programmed cell

death protein 1 (PD-1) and T cell immunoglobulin and mucin

domain 3 (TIM-3) (19); 3) presence of a suppressive neutrophil

subset known as granulocytic myeloid-derived suppressor cells

(G-MDSC) and its production of alarmin S100A8 and A9 (20).

These studies provide important evidence about the

association of host immune responses with disease severity

and outcome. However, how each severity level within the

category differs from the others at transcriptomic level is not

well studied. Here, we analyzed the whole blood transcriptomics

by RNA sequencing (RNASeq), from COVID-19 patients with

disease severity levels ranging from 0-9. In-depth DEG,

deconvolution, correlation and WGCNA analyses of the

RNASeq data were performed to compare between individual

severity level and between severity categories. Our results

corroborate findings from previous studies as above. Most

importantly, we discovered a transitional level between severity

levels 2-4 (mild/moderate) and 6-9 (severe). Further dissection

of this transitional group might unravel the mechanism
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underlying disease progression of COVID-19 from moderate

to severe.
Materials and methods

Study design and participants of
human cohorts

In this study, participants were recruited from multiple

centers from Sydney, Melbourne, and Perth in Australia and a

single center in Czech Republic between February 2020 and

February 2021. Eligibility criteria included (1) age equal or

greater than 18 years, (2) World Health Organization

definition of influenza-like illness (fever of 38 C° or higher,

cough, sore throat, nasal congestion, and illness onset within the

last ten days), and (3) Participants with SARS-CoV-2 infection

confirmed by virological testing- respiratory samples (nasal/

throat swab/sputum/bronchoalveolar lavage) collected from

participants and tested for SARS-CoV-2 virus. All eligible

participants were assessed by an admitting physician for

likelihood of infection. Participants with a high likelihood of

infection, based on history and clinical features, were also

enrolled into the study. Seventy-one healthy volunteer’s

samples included in this study were all collected prior 2018.

Study data were collected and managed using REDCap

electronic data capture tools (21, 22) hosted at the University

of Sydney.
Blood sample collection and
RNA isolation

Two and half millilitres of blood was collected into PAXgene

Blood RNA tubes (Qiagen) from participants according to the

manufacturer’s supplied protocol, resulting in a total of 203

samples (multiple samples were taken from some participants).

Collected samples were invert 8–10 times gently, immediately

after blood collection, kept for ~2h at room temperature,

followed by incubation at -20°C for 24h. Thereafter tubes were

transferred to -80°C prior to processing. Total RNA was isolated

from whole blood samples stored and stabilized in PAXgene

RNA tubes according to the manufacturer’s guidelines

(PreAnalytiX). The quality and quantity of extracted RNA was

evaluated by visualization of 28S and 18S band integrity on a

Tapestation 4200 system (Agilent) and stored at -80°C.
Library preparation and RNASeq

Libraries were prepared with 300ng of total RNA per sample

using the Illumina Stranded Total RNA Prep with Ribo-Zero

Plus (RZP) as per manufacturer instructions (Illumina, CA,
frontiersin.org
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USA). Final libraries were cleaned using beads (Beckman

Coulter, IN, USA), quantified, and normalised with qPCR

using NEBNext Library Quant Kit for Illumina. All libraries

were pooled with 32 samples per lane and sequenced with 150 bp

paired-end (PE) reads using an Illumina NovaSeq 6000 with v1.5

chemistry and S4-300 flow cell. A minimum sequencing depth of

48.3 million (M) read pairs were generated from each library.

Base calling and FASTQ conversion were complete with

NovaSeq Control Software (NCS) v1.7.5, Real Time Analysis

(RTA) v3.4.4 and Illumina DRAGEN BCL Convert 07.021.

624.3.10.8. FASTQ files were uploaded into Partek Flow

software (Partek Inc., MO, USA), and primary QC

was performed.
Bioinformatic analysis of RNASeq data

FASTQ files containing raw sequencing data were quality

controlled and pre-processed into analysis ready count data

using the highly scalable RNASeq-DE workflow, available

online at https://github.com/Sydney-Informatics-Hub/

RNASeq-DE (v1.0.0) (23). Default settings were applied unless

otherwise described here. Briefly, 3’ adapter and polyA tails were

trimmed from raw sequence reads with BBDuk (v37.89) (24). An

average of 89.2 million trimmed reads per sample were

remaining. FastQC (v0.11.7) (25) was used to confirm that

median sequence and base qualities scored Phred > 20. Quality

checked, trimmed reads were aligned as pairs to the human

reference genome, GRCh38 primary assembly and gene set

release 106 (obtained from Ensembl) with STAR, setting –

sjdbOverhand to 149. Sequencing batch level binary alignment

(BAM) files were merged and indexed with SAMtools (v1.10)

(26) to obtain sample level BAMs. HTSeq-count (v0.12.4) (27)

with -s reverse was used to obtain feature level raw counts. Raw

counts were annotated using package biomart (version 2.42.1

(28), using function:

u s e E n s e m b l ( b i o m a r t = “ e n s e m b l ” ,

dataset=“hsapiens_gene_ensembl”, GRCh=38). Entries with no

gene symbol were deleted. Then raw counts were normalized

and log2 transformed using function rlogTransformation from

the DESeq2 package [version 1.16.1 (29)]. An increment was

added to the normalized values to make all values positive. For

identification of differentially expressed genes (DEGs), package

LIMMA [version limma_3.42.2 (30, 31)] was used with function

model.matrix(~ 0 + group). Volcano plots were generated with

the package EnhancedVolcano, version 1.8.0 (32). Pathway

analyses of DEGs were performed using the R software

package cluster Profiler [version 3.14.3 (33)]. For beeswarm

graphs of expression levels, package beeswarm (version 0.2.3)

(34). was used. Heatmaps were generated with the function

heatmap2 of package gplots (version 3.1.1; https://github.com/

talgalili/gplots). VENN diagrams were generated with the

function vennPlot (http://faculty.ucr.edu/~tgirke/Documents/
Frontiers in Immunology 04
R_BioCond/My_R_Scripts/overLapper.R). Deconvolution

analysis was performed with the package immunedeconv

[version 2.0.4 (35)] and the method mcp_counter (36). We

used the R package WGCNA (weighed gene correlation

network analysis, version 1.69) for cluster network construction

(37) including all genes in the analysis. Hierarchical average

linkage clustering was used to construct a dendrogram and

identify gene co-expression modules that contain the maximal

sets of inter-connected genes. In this study, the following

parameters were used for WCGNA: TOMType: unsigned

network, minModuleSize: 30, reassignThreshold: 0, power: 10,

mergeCutHeight = 0.25.
Statistical analyses

Analysis and visualization of expression data was performed

using the R software package (version 3.4.0) (38). For

identification of differentially expressed genes (DEGs), package

LIMMA (30, 31) was used with function model.matrix(~ 0 +

group) with an adjusted p-value of < 0.05 and an absolute 0.58-

fold ([log2] > 1.5) difference in expression levels. For dotplots

and cnetplots of pathways, the top 20 pathways, ordered by

adjusted p-value as calculated by the package clusterProfiler (33)

were selected for presentations in the figures.
Results

Description of human cohort

Demographic and clinical characteristics of 88 COVID-19

participants are summarized in Table 1. Based on WHO severity

levels, participants were divided into 3 groups: mild (WHO

severity levels 2-4), moderate (WHO severity level 5) and severe

(WHO severity levels 6-9). Gender proportion for the three

groups were: 18 (58%) males for the mild group; 18 (72%) males

for the moderate group, and 20 (62%) males for the severe

group. Median age for the three groups were: 55 years (IQR:

43.0-72.5, range 31-89yr) for the mild group; 69 years (IQR:

56.0-80.0, range 40-89yr) for the moderate group, and 59 years

(IQR: 51.5-69.0, range 24-82yr) for the severe group. All subjects

across the 3 groups (n=88) were hospitalized. Mean length of

hospital stay was 15 days for the mild, 14 days for the moderate

and 31 days for the severe group. Four (12%) subjects from the

mild group and 5 (20%) subjects from the moderate group were

admitted to ICU. Twenty (56%) subjects from the severe group

were admitted to ICU with a longer length of stay (mean of 21

days). Mortality rate was higher in the severe group (40%)

compared to the mild (32%) and moderate (24%). Seventy-one

healthy volunteers were included as healthy controls. Median

age of the healthy controls was 50 years (IQR: 44.25-54, range

25-61yr with 50:50 gender ratio).
frontiersin.org
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TABLE 1 Demographics and clinical characteristics of participants.
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Differentially expressed genes correlate
with the levels of severity with WHO
severity level 5 representing a
transitional state between mild/moderate
and severe disease states

First, we examined the overall variance in sample

transcriptomes by principal component analysis (PCA). The

PCA showed an excellent separation between healthy controls

and infected participants (Figure 1A). In addition, the levels of

severity showed a clear trend from less to more severe

(Figure 1B). No obvious separation was observed for sex or

sampling site (data not shown).

We then compared the responses at the different severity

levels (levels 2-9) to healthy controls (level 0). Only severity

levels 0, 4, 5, 7, 9 had reasonably high numbers of samples to

perform a contrast to healthy controls (n for level 0: 71, n for

level 2: 6, n for level 3: 2; n for level 4: 93; n for level 5: 38; n for

level 6: 12; n for level 7: 32; n for level 8: 0; n for level 9: 20). For

each severity level against healthy controls, a large number of

differentially expressed genes (DEGs) could be identified (Figure

S1A). The number of DEGs was lowest for severity level 4 (306

up- and 90 down-regulated DEGs), it increased to level 5 (811

up- and 301 down-regulated DEGs), to level 7 (1583 up- and

1089 down-regulated DEGs), to level 9 (1768 up- and 1118

down-regulated DEGs). A strong increase in the number of

DEGs was observed between level 5 and lower versus level 7 and

higher. The overlaps between the individual comparisons

showed that severity level 7 and 9 shared many DEGs (Figure

S1B). Severity level 5 overlapped to some degree with these two

levels, and severity level 4 showed the least number of

overlapping DEGs (Figure S1B). These results revealed a

qualitative and quantitative difference between severity levels 7

and higher compared to severity levels 5 and lower. Complete

lists of differentially expressed genes are provided in

Supplementary Datasheets S2-S6.
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We then contrasted the combined responses from severity

level 4 and 5 against the combined responses from severity level

7 and 9 to identify DEGs that were differentially expressed

between mild/moderate and severe infections, and we then

examined the individual expression levels for all severity levels

for the 4 most strongly up- and 4 most strongly down-regulated

genes. The corresponding boxplots (Figures S1C, D) showed that

responses from severity levels 2 to 5 exhibited similar gene

expression levels, indicating mild/moderate host responses.

However, the expression levels of these genes were strongly

up- or down-regulated in severity levels 6 to 9, indicating a

strong host response at severity levels 6 and higher. The heatmap

for these DEGs (Figure 2A) confirmed the conclusions from the

8 DEGs boxplots. It is worth noting that severity level 5 gene

expression levels in the heatmap (Figure 2A) as well as for the

top 20 up-regulated DEGs (Figure 2B) were ‘between’ the 1-4

and the gene expression levels of 6-9 severity levels (Figures 2A,

B) indicating a ‘transitional state’ from mild to severe at this

level. Most interestingly, the WHO classification grouped levels

1 to 5 into mild/moderate and 6 to 9 into severe disease

categories. Thus, our results from the molecular studies

correlate well with these clinical classifications and further

relate molecular quantitative measurements to these

severity levels.
Differentially expressed genes correlate
with the WHO severity levels and show
trends of disease progression

We then sought to identify genes that were correlated with

WHO severity levels. These genes may best represent suitable

biomarkers to classify severity levels and potentially predict

progression from mild/moderate to severe disease. For this

approach, we used the DEGs that were identified in the

comparison of severe cases versus healthy controls (see below)
BA

FIGURE 1

Principal Component Analysis (PCA) of all samples. PCA plot of PC1 and PC2. (A) Representing infected participants (COVID) and healthy
controls (Healthy) by different colors. (B) Representing infected (COVID) participants by WHO severity (levels 2 to 9) and healthy controls (level
0) by different intensities of red. Abbreviations: 0, 2, 3, 4, 5, 6, 7, and 9 stand for WHO severity level 0, 2, 3, 4, 5, 6, 7, and 9, respectively. Note
that our cohort did not have participants at levels 1 and 8.
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and correlated them to severity levels using a linear regression

model. Applying a threshold of abs (> 0.5) for the correlation

coefficient and a multiple testing adjusted p-value of < 0.05, 1885

genes were significantly correlated with these severity levels.

Figures 3A, B show the top four genes among the positively or

negatively correlated genes, which are PKMYT1, HIST1H2BO,

FOXM1, and HJURP. Supplementary Datasheet S7 lists all

correlated genes. These highly correlated genes showed a clear

linear correlation with severity levels and might be suitable as

biomarkers. However, we could not perform biomarker

classification/prediction with this cohort, because there were
Frontiers in Immunology 07
too few participants with multiple time points. Nevertheless, we

could visualize the changes of expression in these genes for ten

selected participants, who displayed different disease trajectories

over the period of sample collection. Three of these participants

progressed frommild to severe (WHO severity levels 4 to 9), and

three progressed from mild to moderate (WHO severity levels 4

to 5). In both groups, there was a positive correlation between

the disease scores and expression of the top four positively

correlated DEGs (Figure 3C). It was also true for two of those

participants whose severity score reduced from 7 to 5 or 4 to 2,

correlating with the decrease in the gene expression.
B

A

FIGURE 2

DEGs from comparisons of WHO severity level groups. (A) Heatmap of expression levels for top 500 DEGs from the comparison of WHO
severity levels 7 + 9 versus 4 + 5. Values were scaled by row. red: up-regulated DEGs, blue: down-regulated DEGS, sev0 to sev9: severity levels
0 to 9, respectively. (B) Mean gene expression differences for all severity levels compared to healthy controls for top 20 up-regulated DEGs
from the comparison of WHO severity scores 7 + 9 versus 4 + 5. Y-axis: gene expression differences as log fold change, X-axis: severity level
groups. Note that our cohort did not have participants at levels 1 and 8. Abbreviations: sev0, 2, 3, 4, 5, 6, 7, and 9 stand for WHO severity level
0, 2, 3, 4, 5, 6, 7, and 9, respectively. These results demonstrate the intermediate (moderate severity) of levels 5 versus mild severity levels (1-4)
and severe levels (6-9).
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Weight gene correlation network
analysis reveals pathways that are
associated with the severity levels

Next, we performed WGCNA which applies an

unsupervised clustering method to group genes into modules

of co-regulated genes. This analysis revealed 21 modules, which

were grouped into two main branches (Figure 4A). The top five

pathways associated with each module (with adjusted p-vale <

0.05), are shown in Figures 4B, C. Clusters greenyellow

(neutrophil activation and degranulation, antimicrobial

humoral response, Figures 4D, E) and yellow (cell cycle and

replication, Figures 4F, G) grouped together with severity levels

in the dendrogram (Figure 4A). For 17 modules, we identified
Frontiers in Immunology 08
associated GO term enrichment pathways (Figures S2A–V). An

overview of these clusters with number of genes, major GO

pathway annotations and significant correlation to severity

categories are listed in Supplementary Datasheet S8.
Differentially expressed genes reveal
strong differences in molecular pathway
regulation related to mild/moderate and
severe disease categories

The above analyses of WHO severity levels revealed two main

severity categories: mild/moderate including WHO severity levels

1-5 and severe including WHO severity levels 6-9. Figure 5
B

C

A

FIGURE 3

Correlation of gene expression levels with WHO severity levels. (A) Scatter plot for the four most strongly positively correlated DEGs with WHO
severity levels. Y-axis: gene expression levels for indicated genes, X-axis: WHO severity levels 0 to 9. (B) Scatter plot for four most strongly
negatively correlated DEGs with severity levels. Y-axis: gene expression levels for indicated genes, X-axis: WHO severity levels 0 to 9. (C)
Expression levels over time for ten paarticipants for correlated genes PKMYT1, HIST1H2BO, FOXM1 and HJURP. Y-axis: gene expression levels
for indicated genes, X-axis: day of sample collection after hospital admission of individual patient. Numbers on the line graphs stand for WHO
severity levels at the time of sample collection. Note that not all participants were sampled at all the time points.
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demonstrates clear separation of these groups in a PCA. Using

these newly defined severity categories, we then performed

differential gene expression (DEG) analyses between these groups

and the healthy controls. The comparison of the healthy controls to
Frontiers in Immunology 09
the mild/moderate cases revealed 487 DEGs (380 up- and 107

down-regulated genes, Figures 6A, B)) and between the healthy

controls and the severe cases identified 2580 DEGs (1558 up- and

1022 down-regulated genes, Figures 7A, B). The comparison of the
B C

D E

F G

A

FIGURE 4

Modules from Weighed Gene Correlation Analysis (WGCNA). (A) Dendrogram showing clustering of modules identified by WGCNA. WHO
severity levels are correlated with yellow and greenyellow modules. (B)& (C) Bar diagram showing the top 5 (by adjusted p-value) pathways
associated with each of the 17 modules as identified by WGCNA. The significance level is indicated as -Log10(adjusted p-value). (D) Functional
analysis using GO term enrichment for genes in yellow module showing the 30 most significant pathway annotations. (E) cnetplot illustrating
relationship of genes from yellow module to pathways. (F) Functional analysis using GO term enrichment for genes in greenyellow module
showing the 30 most significant pathway annotations. (G) cnetplot illustrating relationship of genes from greenyellow cluster to pathways.
Nodes in cnetplots represent pathways significantly associated with the genes from the respective module. Genes from the module are
connected to these nodes with color-coded log-fold changes from the contrast between severe cases versus healthy controls. Abbreviations:
sev_lev stands for WHO severity levels.
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mild/moderate cases to the severe cases identified 1448 DEGs

(1013 up- and 435 down-regulated genes, Figures 8A, B). Thus, the

severe cases exhibited a much stronger change in gene expression

in the peripheral blood compared to the healthy controls than did

the mild/moderate cases. Furthermore, there was a large overlap

between the comparison of the healthy controls with the severe

cases and the comparison of the mild/moderate cases to the severe

cases (data not shown). This observation indicates a strong jump of

the host response in the peripheral blood from the mild/moderate

to the severe cases. Complete lists of differentially expressed genes

are provided in Supplementary Datasheets S9-S11.

Functional analysis of the up-regulated DEGs from the

comparison of the mild/moderate cases versus the healthy

controls identified pathways associated with host response to

viral infections and activation of interferon responses

(Figures 6C, D; Table 2). No pathway association was found

for the down-regulated genes. Analysis of the up-regulated

DEGs from the comparison of the severe cases versus the

healthy controls identified pathways associated with

inflammatory and innate immune cell responses and pathways
FIGURE 5

Principal Component Analysis (PCA) of all samples. PCA plot of
PC1 and PC2 representing different severity categories (mild,
moderate, severe, and healthy) by colors. Abbreviations: HC
stands for healthy controls; mld_mod stands for mild and
moderate; svre stands for severe.
B

C D

A

FIGURE 6

Differential genes expression analysis contrasting mild/moderate cases to healthy controls. (A) Volcano plot of results of the contrast from the
linear regression analysis. y-axis: -log10 BH multiple testing adjusted p-values, x-axis: log2 fold change. DEGs (absolute log-fold change > 1.5,
corresponding to a log2-fold change > 0.58; multiple testing adjusted p-value < 0.05) are colored red and the top 20 up- and down-regulated
(by log-fold change) DEGs are labeled. Blue: genes with adjusted p-value < 0.05. (B) Heatmap of expression levels for DEGs. Values were scaled
by row. red: up-regulated DEGs, blue: down-regulated DEGS. HC: healthy controls, mld_mod: mild/moderate pateints. (C) Functional analysis
using GO term enrichment for up-regulated DEGs showing 30 most significant pathway annotations. No significant pathways could be
identified for the down-regulated genes (D) cnetplot illustrating relationship of DEGs to pathway annotations. Nodes in cnetplots represent
pathways significantly associated with the differentially expressed genes. The differentially expressed genes are connected to these nodes with
color-coded log-fold changes from the contrast between mild/moderate cases versus healthy controls. Abbreviations: HC stands for healthy
controls; mld_mod stands for mild and moderate.
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related to blood coagulation and neutrophil degranulation

(Figures 7C–E; Table 2). The latter responses have been

described as the hallmark clinical symptoms in severe

COVID-19 participants. Pathway associations for the DEGs

from the comparison of the severe versus the mild/moderate

cases were similar to the comparison of the severe cases versus

the healthy controls (Figures 8C–E; Table 2).

We then correlated all WGCNA modules with severity

categories using ANOVA. Applying an adjusted p-value of
Frontiers in Immunology 11
0.01, we identified 20 modules that were significantly

correlated with severity categories using their eigengene values

for each patient (Supplementary Datasheet S12). Gene

expression levels from the eigengenes of 14 modules were

significantly different between severe and moderate cases, and

also between severe cases and healthy controls (Supplementary

Datasheet S12). Modules blue (Figure S2B) and greenyellow

(Figure S2L) included neutrophil activation pathways, the pink

module included platelet responses and coagulation (Figure
frontiersin.org
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FIGURE 7

Differential genes expression analysis contrasting severe cases to healthy controls. (A) Volcano plot of results of the contrast from the linear
regression analysis. y-axis: -log10 BH multiple testing adjusted p-values, x-axis: log2 fold change. DEGs (absolute log-fold change > 1.5,
corresponding to a log2-fold change > 0.58; multiple testing adjusted p-value < 0.05) are colored red and the top 20 up- and down-regulated
(by log-fold change) DEGs are labeled. Blue: genes with adjusted p-value < 0.05. (B) Heatmap of expression levels of top 500 (by log fold
change) regulated DEGs. Values were scaled by row. red: up-regulated DEGs, blue: down-regulated DEGS. HC: healthy controls, mld/mod:
mild/moderate pateints. (C) Functional analysis using GO term enrichment for up- and down-regulated DEGs showing 20 most significant
pathway annotations for both groups. (D) cnetplot illustrating relationship of up-regulated DEGs to pathway annotations. (E) cnetplot illustrating
relationship of down-regulated DEGs to pathway annotations. Nodes in cnetplots represent pathways significantly associated with the
differentially expressed genes. The differentially expressed genes are connected to these nodes with color-coded log-fold changes with color-
coded log-fold changes from the contrast between severe cases versus healthy controls. Abbreviations: HC stands for healthy controls; svre
stands for severe.
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S2H), and the salmon module (Figure S2N) included adaptive

immune response pathways. The cluster memberships and

eigengene values are listed in Supplementary Datasheet S13.
Deconvolution analysis reveals changes
in the immune cell composition
associated with the severity categories

We then performed a deconvolution analysis, which uses

known cell-type specific gene sets to estimate the relative

abundance of different immune cell subpopulations. This

deconvolution analysis revealed a slight increase in endothelial

cell and neutrophil in the mild/moderate cases compared to the

healthy controls. However, a much stronger increase was

observed in the severe cases (Figure 9). Conversely, for B, T,

and dendritic cells, a slight decrease was observed for the mild/

moderate cases compared to healthy controls whereas a strong

decrease was evident in the severe cases compared to either

healthy controls or mild/moderate cases (Figure 9). For

macrophage/monocyte and NK cells, an increase in their

relative abundance was observed in the mild/moderate cases

compared to the healthy controls. There was a significant

reduction in the severe cases compared to both the health

controls and the mild/moderate cases (Figure 9).
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Discussion

Current classification of COVID-19 severity by WHO places

patients under 3 broad categories (mild, moderate, and severe)

and each category is subdivided into 2-3 severity levels based on

location and supportive measures, e.g., mild = levels 1-3,

moderate = levels 4-5, and severe = 6-9 (2). Each level, though

under the same category, represents a different level of medical

support. For example, under the “moderate” category, severity

level 5 requires oxygen by mask or nasal prongs whereas level 4

does not require any oxygen therapy. Most of the previous

studies have compared host response between patients from

different WHO severity categories or with different clinical

symptoms (6, 13, 18), yet the differences among individual

levels of the severity are not well understood. Our current

study was designed to address this gap and aimed to provide

deeper understanding of the role of each severity level during

disease progression by including information on changes and

differences in whole blood gene expression profiles.

Here, we analyzed the transcriptomic signature associated

with severity levels 0, 2-7, and 9 and observed 4 distinct groups

based on similarity in their transcriptomes: 1) level 0; 2) levels 2-

4; 3) level 5; 4) levels 6/7/9. Overall, our grouping based on

transcriptomics had a very good match withWHO categories for

the uninfected (level 0) and the severe (5–8) categories.
TABLE 2 Pathway associations of DEGs regulated in different severity categories.

Infection Direction Figure Associated Pathways

Mild/moderate versus healthy controls UP 6C, D • response to virus & regulation of viral life cycle
• response to interferon
• chromatin assembly & DNA packaging
• nuclear division

Mild/moderate versus healthy controls DOWN NA • None

Severe versus healthy controls UP 7C, D • neutrophil response & neutrophil degranulation
• platelet degranulation
• inflammatory response
• defense response
• blood coagulation
• myeloid cell differentiation
• chromatin assembly & nucleosome assembly

Severe versus healthy controls DOWN 7C, E • antigen receptor pathway
• lymphocyte differentiation & T cell differentiation & T cell activation
• adaptive immune response

Severe versus Mild/moderate UP 8C, D • neutrophil response & neutrophil degranulation
• antimicrobial response
• intracellular structure organization & extracellular matrix organization
• blood coagulation
• platelet degranulation
• erythrocyte differentiation & myeloid cell differentiation

Severe versus Mild/moderate DOWN 8C, E • lymphocyte differentiation & T cell differentiation
• T cell activation & regulation of T cell activation
• adaptive immune response

NA, Not Applicable.
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However, for the “mild” and “moderate” cases, we observed

some discordance between our grouping and WHO severity

category. Data-driven re-grouping of COVID-19 patients

has also been observed previously in another study by

Aschenbrenner et al. (13). Our data showed that severity level

5 did not group with level 4 though both levels are classified as

“moderate” under WHO category. The transcriptome of severity

level 5 stands out as a transitional stage between the levels 2-4

and the levels 6/7/9. This finding not reported elsewhere,

correlates with the different levels of medical support as

observed for level 4 and 5, i.e., oxygen support is required for

level 5 but not level 4. Hence transcriptomic grouping may better

predict or discern disease progression compared to one solely
Frontiers in Immunology 13
based only on clinical manifestation. To explore further, we looked

at the expression of four genes over time in ten participants who

displayed very different disease courses: 6 with progressive severity

(WHO4 to 9 orWHO4-5), and 2with regressive severity (WHO7

to 5 or WHO 4 to 2), and 2 with unchanged severity (WHO 5).

PKMYT1, HIST1H2B0, FOXM1, HJURP are the top four genes

among those that positively correlatedwith severity levels.Our data

showed that for the participants with either progressive or

regressive severity over time, expression profile of these four

genes fit well with the changes of disease severity levels. However,

in the two participants with unchanged severity at WHO 5,

expression profile of these four genes presented a rather

concerning disease progression which however had not been
B

C

D E

A

FIGURE 8

Differential genes expression analysis contrasting mild/moderate to severe cases. (A) Volcano plot of results of the contrast from the linear
regression analysis. Y-axis: -log10 BH multiple testing adjusted p-values, x-axis: log2 fold change. DEGs (absolute log-fold change > 1.5,
corresponding to a log2-fold change > 0.58; multiple testing adjusted p-value < 0.05) are colored red and the top 20 up- and down-regulated
(by log-fold change) DEGs are labeled. Blue: genes with adjusted p-value < 0.05. (B) Heatmap of expression levels of top 500 (by log fold
change) regulated DEGs. Values were scaled by row. Red: up-regulated DEGs, blue: down-regulated DEGS. HC: healthy controls, mld/mod:
mild/moderate pateints. (C) Functional analysis using GO term enrichment for up- and down-regulated DEGs showing 20 most significant
pathway annotations for both groups. (D) cnetplot illustrating relationship of up-regulated DEGs to pathway annotations. (E) cnetplot illustrating
relationship of down-regulated DEGs to pathway annotations. Nodes in cnetplots represent pathways significantly associated with the
differentially expressed genes. The differentially expressed genes are connected to these nodes with color-coded log-fold changes from the
contrast between severe versus mild/moderate cases. Abbreviations: mld_mod stands for mild and moderate; svre stands for severe.
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reflected in the clinical manifestation. Though we cannot not draw

any general conclusion based on just ten participants, our data did

demonstrate the need of future prospective studies to validate these

genes in predicting disease progression. A particular focus on the

host response in the moderate group (WHO 5) could lead to

potential therapeutic targets forcing a regressive rather than a

progressive course.

Currently, host response biomarkers used for predicting

COVID-19 severity include proinflammatory cytokines (IL6,

TNF, IL8, etc.), inflammatory markers (CRP, procalcitonin, and

ferritin, etc.), neutrophil/lymphocyte ratio, and lymphopenia (39).

These biomarkers are useful indicators of severe COVID-19 but do

not have the power todiscernpatientswho are yet todevelop severe

disease. Genes identified in our data, showed strong correlation

withdisease severity levels, andwould contribute towardsdiscovery

of novel genomic biomarkers that would help address the issues

with currently available biomarkers.

To gain further insight into the pathways and cellular processes

that are crucial for regulating disease outcome, we performed

WGCNA analysis to identify modules co-regulated with disease

severity. Among the 21 modules identified, the yellow and

greenyellow clusters were the closest neighbors of the severity

levels. Yellow module is consisted of pathways involved in cell

cycle regulation and chromatin assembly/disassembly.

Manipulation of host cell cycle has been commonly observed in

many types of viruses including SARS-CoV-1 as a mechanism to

facilitate their own replication. Virus do so by inducing cell cycle

arrest at a certain phase by inhibiting the activation of cyclins and

cyclin-dependent kinases (CDKs), the major regulators of

mammalian cell cycle (40–43). Our data suggests that SARS-
Frontiers in Immunology 14
CoV-2 is also able to regulate host cell cycle through similar

mechanism. The identification of chromatin assembly/

disassembly in the yellow module indicates possible epigenetic

alterations of the host genome induced by SARS-CoV-2 infection

as it is known that epigenetic modification such as histone

acetylation can regulate gene expression via chromatin

remodeling (44). It has been reported that expression of

angiotensin-converting enzyme 2 (ACE2) gene, encoding the

membrane receptor essential for viral entry, is regulated by

histone modifications and its expression is upregulated in the

lung of severe COVID-19 patients (45–47). Our data suggests

that epigenetic alteration of host genome in the blood in response

to SARS-CoV-2 infection also plays a role in regulating disease

severity. The greenyellow module consists of pathways involved in

neutrophil activation/degranulation and immune response towards

bacteria/fungus. Aberrant activation and enrichment of neutrophil

has been well studied as one of the hallmarks for severe COVID-19

(11–13) and our data also supported this observation. The first line

of host response towards bacteria/fungus or other pathogens is

mediated by toll-like receptors (TLRs), which induce downstream

signaling pathways for induction of proinflammatory cytokine

production, immune cell activation and interferon production

(48). It has been shown that TLR4, one of the TLRs important

for recognizing bacterial or fungal pathogens, also recognizes the

spike glycoprotein of SARS-CoV-2 leading to increased ACE2

expression and overproduction of inflammatory cytokines (49,

50). Overproduction of inflammatory cytokines (so-called

cytokine storm) is observed in the severe COVID-19 patients, as

evidenced by elevated serum levels of proinflammatory cytokines

(in particularly, interleukin-6 (IL6) and tumor necrosis factor alpha
FIGURE 9

Deconvolution analysis. Mean values for mild/moderate, severe and healthy control groups were calculated and subjected to deconvolution
analysis. Y-axis: severity categories, X-axis: scores from mcp_counter analysis for the different cell populations. Abbreviations: HC stands for
healthy controls; mld_mod stands for mild and moderate; svre stands for severe.
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(TNF)), and C-reactive protein (CRP) (3–5). Hence, our WGCNA

analyses highlight the important role of cell cycle manipulation,

epigenetic regulation of host genome by SARS-CoV-2 infection,

neutrophil activation, and innate immune response via TLRs, in

determining the disease severity.

Transcriptomic signatures associated with COVID-19

severity as identified in the current study corroborate findings

from previous studies and a recently published multi-omic blood

atlas (51). Firstly, our deconvolution analyses revealed the

hallmark lymphopenia (14–16, 51) and neutrophil enrichment

(11–13, 51) in the severe group (WHO 6/7/9) compared to mild/

moderate group (WHO 2-5). Secondly, genes involved in

neutrophil activation were highly upregulated in the severe

group compared to HC, including CD177, MMP8, ELANE,

OLFM4, and MPO, which have also been identified in another

study (13). WGCNA analyses also confirmed that pathways

involved in neutrophil activation/degranulation, together with

antimicrobial response and activation of blood coagulation, were

significantly correlated with COVID-19 severity, in keeping with

findings from the blood atlas paper (51). Thirdly, IFN-I

responses were found to be enriched in the less severe

COVID-19 cases, consistent with previous findings (6, 51).
Limitations of the study

We are aware of some limitations of the current study. All

healthy controls (WHO level 0) were recruited from a single center

in Australia, whereas the COVID-19 participants were recruited

from multiple sites across Australia and Czech Republic. However,

our PCA did not indicate any site-specific differences. Furthermore,

multiple samples were collected from some participants whereas for

most participants, only a single sample was collected. These

differences in collection sites and number of data points per

patient could potentially create confounding bias in our findings.

The fact that our data reproduces many findings from previous

studies gives us confidence to assume that there is no strong

confounder related to either the collection sites or number of data

points per patient. The second limitation of the current study is that

we could not perform correlation analyses between the

transcriptome of each WHO severity level with clinical

inflammatory biomarkers (e.g., CRP, procalcitonin, ferritin,

neutrophil/lymphocyte ratio, and lymphopenia, etc.) or clinical

severity scores (e.g., APACHE II or SOFA scores). This was due

to limited availability of the clinical data. Future prospective studies

would be beneficial to assess the correlation between the clinical

inflammatory biomarkers or clinical severity scores with the

transcriptomic markers as identified in this study. The third

limitation is that we were not able to keep the sampling time

constant due to the different availability of the staff and the

participants, which might have some unforeseen impact on the

number and function of the blood cells. The fourth limitation is that

few participants of our study cohort were undergoing
Frontiers in Immunology 15
immunosuppressive therapy at the time of sample collection,

however most of our participants were not. Due to our

study design, we were not able to assess the impact of the

immunosuppressive agents on the blood transcriptomes. A future

prospective study would be necessary to investigate this impact.

Finally, we do not have molecular identification of the SARS-CoV2

variants infecting the individual participant. Since most samples

were collected before 2021, we assume that most were derived from

the pre-Delta period.

Overall, our data demonstrated the presence of a transitional

level between the mild/moderate and the severe groups. Genes

and pathways associated with disease severity, which could

potentially be used as prognostic biomarkers or therapeutic

targets, were identified.
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