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How teleosts take up Na+ from the surrounding freshwater (FW) as well as the

underlying mechanisms associated with this process have received considerable

attention over the past 85 years. Owing to an enormous ion gradient between

hypotonic FW and fish body fluids, teleosts gills have to actively absorb Na+ (via

ionocytes) to compensate for the passive loss of Na+. To date, three models have

been proposed for Na+ uptake in teleost ionocytes, including Na+/H+ exchanger

(NHE)-mediated, acid-sensing ion channel (ASIC)-mediated, Na+-Cl- co-

transporter (NCC)-mediated pathways. However, some debates regarding these

models and unclear mechanisms still remain. To better understand how teleosts

take up Na+ from FW, this mini-review summarizes the main progress and related

regulatory mechanisms of Na+ uptake, and discusses some of the challenges to the

current models.
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Introduction

Body fluid Na+ homeostasis is pivotal for maintaining proper cell activities and

physiological processes. In teleosts, the principal organs for ion exchange are the gills (and

larval skin), which function via the large surface of the epithelium that is directly exposed to

water. Regulation of ion transport functions and the epithelial permeability is key for

precisely controlling internal osmolality and ion concentrations within a narrow range. In

hypotonic freshwater (FW), teleosts actively take up Na+ via ionocytes and reduce passive

Na+ loss by regulating epithelial permeability (Evans et al., 2005). To date, Na+ uptake

mechanisms have become a highly discussed issue in osmoregulatory and evolutionary

physiology (Wichmann and Althaus, 2020; Tseng et al., 2022). Although they have been

widely studied in different species, several unclear mechanisms and controversial models still

need to be clarified in FW teleosts.

Compared to salt excreting pathways in seawater (SW) teleosts, Na+ uptake mechanisms

in FW ones are more diverse and sophisticated in terms of ionocyte subtypes and related

transporters (Evans et al., 2005; Yan and Hwang, 2019). Currently, there are three proposed

pathways for Na+ uptake in FW teleosts, including Na+/H+ exchanger (NHE)-mediated, acid-
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sensing ion channel (ASIC)-mediated, and Na+-Cl- co-transporter

(NCC)-mediated Na+ absorption models. Among these, the NHE and

NCC models were established with solid and convincing molecular/

physiological evidence in FW teleosts, and therefore have become

widely accepted concepts about Na+ uptake (Evans, 2011; Guh and

Hwang, 2017; Lewis and Kwong, 2018). However, these models were

recently challenged, and an alternative pathway was proposed

(Zimmer and Perry, 2020; Zimmer et al., 2020; Clifford et al.,

2022). To better understand how teleosts absorb Na+, this mini-

review not only summarizes the major progress in the studies of the

three models and the related regulatory mechanisms, but also

describes and clarifies the debates on the current models.
Main progress in the studies of Na+

uptake pathways

Krogh’s pioneering Na+=NH+
4 exchange idea was the first concept

proposed for fish Na+ uptake and was based on the correlation of

decreasing Na+ and increasing NH+
4 in the water containing fish

(Krogh, 1938). Several decades later, it was indicated that Na+ is

actually exchanged for H+, not NH+
4 , via Na+/H+ exchangers (NHEs)

(Kerstetter et al., 1970; Kirschner et al., 1973). Thus, until 2009, an idea of

metabolonwas proposed that apical Rhcg andNHE in ionocytes function

together toachieveNa+=NH+
4 (Wright andWood,2009). In zebrafishand

medaka, knockdown/pharmacological experiments and in situproximity

ligation assays demonstrated a coupling function of apical Na+/H+

exchange (via NHE3) and NH3 excretion (via Rhcg2) in ionocytes (Wu

et al., 2010; Shih et al., 2012; Ito et al., 2013). Intracellular H+ and NH3 (

NH+
4 deprotonated by Rhcg2) respectively facilitate apical Na+/H+

exchange and NH3 excretion, and excreted H+ and NH3 further

convert into NH+
4 in the external water. Soon after these experiments,

zebrafish NHE3b was surprisingly reported to exhibit Na+=NH+
4 activity
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(even under ion-poor conditions). NHE3b-expressing Xenopus oocytes

exposed to NH3=NH
+
4-containing medium showed decreased

intracellular Na+ and increased intracellular NH+
4 activities (Ito et al.,

2014). Together, in the current model of NHE3-expressing ionocytes

(Figure 1), basolateral Rhbg transports NH3=NH
+
4 (and NKA probably

transports NH+
4 ) from the interstitial fluid to the cytosol (Nakada et al.,

2007; Wu et al., 2010). The NH+
4 could either be deprotonated by apical

Rhcg for the Na+/H+ activity, or directly provide a chemical gradient for

the Na+=NH+
4 activity of apical NHE3. In addition, carbonic anhydrases

(CAs) are involved in extracellular regeneration and intracellular

deprotonation of CO2, which also elevates Na+/H+ activity of NHE3

(Ito et al., 2013; Ito et al., 2014; Yan and Hwang, 2019).

On the other hand, a model focusing on the epithelial Na+

channel (ENaC) coupled vacuolar-type H+-ATPase (VHA), derived

from the model in frog skin (Harvey, 1992), was proposed as an

alternative pathway for fish Na+ uptake (Avella and Bornancin, 1989;

Bury andWood, 1999). In fact, teleosts have lost ENaC genes and thus

lack the trait of VHA-driven ENaC that is needed to absorb Na+

(Waldmann and Lazdunski, 1998). However, several studies have

provided functional evidence that bafilomycin (a VHA inhibitor)

decreased Na+ uptake in FW tilapia, carp, zebrafish, and trout

(Fenwick et al., 1999; Reid et al., 2003; Esaki et al., 2007), raising

the possibility of other VHA-driven Na+ channels. The long-sought

after candidate turned out to be the acid-sensing ion channel (ASIC,

belonging to ENaC/degenerin superfamily) which was found in

teleost genomes (Paukert et al., 2004; Holzer, 2009). ASIC4b was

found to be expressed in trout ionocytes and zebrafish H+-ATPase-

rich (HR) ionocytes (Dymowska et al., 2014; Dymowska et al., 2015).

Unfortunately, the ASIC model may not fit all FW teleosts. Medaka

express VHA in the basolateral membrane of ionocytes, and tilapia

did not show VHA expressed in ionocytes at all (Hiroi et al., 1998;

Hsu et al., 2014). Actually, only zebrafish and very limited stenohaline

FW species were reported to show apical VHA in gill ionocytes
FIGURE 1

General model of ionocytes for teleost Na+ uptake. Details refer to the text. AE1, anion exchanger 1; ASIC, acid-sensing ion channel; CA15, membrane-
bound carbonic anhydrase 15; CA2, cytosolic carbonic anhydrase 2; CLC, Cl- channel; NBC, Na+-HCO3

- co-transporter; NCC, Na+-Cl- co-transporter;
NCC cell, NCC-expressing ionocyte; NHE3, Na+/H+ exchanger 3; NHE cell, NHE3-expressing ionocyte; NKA, Na+/K+-ATPase; Rhbg, rhesus B
glycoprotein; Rhcg, rhesus C glycoprotein; VHA, vacuolar-type H+-ATPase; question mark (?), uptake function with controversial evidence; triangle mark
(△), apical localization only in zebrafish and limited species; cross mark (✝), unclear driving force for NCC. Rhombus mark (⋄), transporter expressed in
ionocytes or in pavement cells/keratinocytes (Nakada et al., 2007; Wu et al., 2010; Shih et al., 2013). Model size does not represent a relative cell size for
NHE and NCC cells.
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(Tseng et al., 2020). Functionally, it does not seem possible to take up

Na+ from FW via ASIC, owing to its gating kinetics. ASIC is

constitutively inactivated and only opens transiently when

encountering external acidification, but prolonged acidification

desensitizes ASIC and makes it closed (Gründer and Pusch, 2015;

Yoder et al., 2018; Wichmann and Althaus, 2020). Altogether, it

seems that ASIC may not play a role in Na+ uptake of ionocytes. This

is probably the reason why ASIC inhibitor treatments or knockdown

of ASIC4b did not decrease Na+ influxes in zebrafish larvae (Zimmer

et al., 2018). Overall, whether the ASIC model is applicable to teleost

ionocytes remains controversial.

An early concept that stood for almost 70 years suggested that the

Na+ uptake pathway was uncoupled with Cl- transport in fish (Krogh,

1937; Maetz and Garcia Romeu, 1964). However, a direct linkage

between Na+ and Cl- uptake was functionally observed in tilapia and

goldfish (Chang et al., 2003; Preest et al., 2005). Subsequently, the

Na+-Cl- co-transporter (NCC) was discovered to apically localize in

gill ionocytes of FW tilapia (Hiroi et al., 2005; Hiroi et al., 2008). Na+

and Cl- uptake functions of NCC-expressing ionocytes were also

examined using metolazone (a NCC inhibitor) or specific morpholino

knockdown in the larvae of tilapia and zebrafish (Horng et al., 2009;

Wang et al., 2009). In the current model of NCC-expressing ionocytes

(Figure 1), apical uptake of Na+ and Cl- is achieved through NCC, and

basolateral absorptions of Na+ and Cl- are considered to be achieved

through the Na+ −HCO−
3 co-transporter (NBC)/NKA and Cl-

channel (CLC), respectively (Evans, 2011; Wang et al., 2015; Yan

and Hwang, 2019).
Thermodynamic considerations
and driving forces underlying Na+

uptake mechanisms

Thermodynamic principles and the driving force behind Na+

uptake are the pressing issues yet to be addressed in membrane ion

transport. In the NHE model, NHE3, an electroneutral transporter,

extrudes H+=NH+
4 to bring Na+ into ionocytes across the apical

membrane down the chemical gradient between the environment

and the cytosol. The Na+ concentration (< 1 mM) in FW is much

lower than the intracellular concentration of Na+ in gill ionocytes

(6.4-15 mM, data from opercular ionocytes in tilapia), suggesting that

NHE must rely on H+ and/or NH+
4 gradients against unfavorable Na+

gradients. Indeed, the intracellular NH+
4 concentration in teleost gill

cells (626-963 mM) is much higher than that in FW (<0.6 mM) (Li et al.,

1997; Tseng et al., 2022). High intracellular NH+
4 could provide a great

chemical gradient of NH+
4 (or H+, dissociated from NH+

4) to inwardly

drive Na+ transport. Although short-term acid (pH< 5) or low-Na+

(Na+< 0.1 mM) exposure may suddenly increase the thermodynamic

constraint (Parks et al., 2008), most FW teleosts are able to increase

NHE3/Rhcg/Rhbg expression and the number of NHE3-expressing

ionocytes after long-term acclimation, as well as elevate NH+
4 excretion

(Hirata et al., 2003; Wu et al., 2010; Furukawa et al., 2011; Lin et al.,

2012; Tseng et al., 2020). Taken together, the contribution of

intracellular NH+
4 and apical NHE-mediated Na+=NH+

4 exchange are

key factors to be reckoned with. Interestingly, during the evolution of

FW adaptation, the NHE model may have developed as the dominant

way for teleosts to take up Na+ (see our next section).
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On the other hand, in the NCCmodel, basolateral NBC, CLC, and

NKA of ionocytes do not seem capable of inwardly driving Na+ and

Cl- uptake via apical NCC, owing to high Na+ and Cl- concentrations

in teleost blood (130 mM and 125mM respectively) (Evans et al.,

2005). Although the transport function of NCC has been examined in

vivo using morpholinos and inhibitors (Horng et al., 2009; Wang

et al., 2009), the driving force for apical uptake via NCC is still an

open question.
Reliance on NHE-mediated Na+/NH4
+

exchange for Na+ uptake

As ammonotelic animals, teleosts mainly produce ammonia as

nitrogen wastes and directly excrete ammonia (including ~2% NH3

and ~98% NH+
4 under normal physiological pH) into the surrounding

water, which saves more energy than further converting ammonia

into urea or uric acid before excretion. It is physiologically reasonable

that NHE-mediated Na+=NH+
4 exchange would be an efficient and

energy-saving pathway for excreting acid (H+) and nitrogen wastes

(ammonia), as well as taking up Na+ from FW. Because most FW

teleosts show a high NHE3 expression in a specific subtype of gill/skin

ionocytes (NHE3-expressing ionocytes), an evolutionary hypothesis

has been recently proposed. During the evolution of FW adaptation,

teleosts likely relied on NHE-mediated Na+=NH+
4 exchange for a large

amount of Na+ uptake (Tseng et al., 2020; Tseng et al., 2022). Of note,

teleosts generally exhibit a relative high NH+
4 excretion rate up to

almost 2500 µmole/kg/h in FW, compared to that of non-teleost

fishes such as stenohaline lamprey (Cyclostomata) (50-100 µmole/kg/

h in FW), skate (Chondrichthyes) (~130 µmole/kg/h in SW), and

sturgeon (Condrostei) (208-724 µmole/kg/h in FW) (Gershanovich

and Pototskij, 1995; Altinok and Grizzle, 2004; Steele et al., 2005;

Tseng et al., 2022). Moreover, convincing physiological evidence was

also found in two model species of teleosts, euryhaline medaka and

stenohaline zebrafish. Acute exposure to high ammonia FW

decreased Na+ uptake in skin ionocytes of larval medaka by around

70%; a treatment of NHE inhibitor (5-ethylisopropyl amiloride,

EIPA) caused similar declines (65-70%) in Na+ uptake and NH+
4

excretion (Tseng et al., 2022). Similarly in larval skin of zebrafish

acclimated to low-Na+ FW, both high ammonia exposure and

knockdown of NHE3b impaired over 50% of Na+ uptake and NH+
4

excretion (Shih et al., 2012). In the gills of zebrafish and medaka,

NHE3 expression was also stimulated by Na+-deficient FW (Shih

et al., 2012; Tseng et al., 2022). These findings reinforce the notion of a

considerable reliance on NHE-mediated Na+=NH+
4 exchange by

FW teleosts.
Functional regulation of Na+ uptake

Differentially expressed in two subtypes of ionocyte, NHE3 and

NCC work in collaboration to take up Na+ (Yan and Hwang, 2019;

Inokuchi et al., 2022). It is widely accepted that NHE3 is a major

transporter and NCC is a minor transporter for Na+ uptake in FW

teleosts, based on the evidence that Na+ is mainly accumulated in

zebrafish HR ionocytes (NHE3b-expressing cells), and the density of

NHE3-expressing ionocytes is higher than that of NCC-expressing
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ionocytes in larval skin (Esaki et al., 2007; Hiroi et al., 2008; Shih et al.,

2021). Besides, compensatory regulation on Na+ uptake by NHE3b

and NCC was also revealed in larval zebrafish (Chang et al., 2013).

Several reviews have comprehensively summarized how

hormones act on Na+ uptake regulation in teleosts (Guh and

Hwang, 2017; Lewis and Kwong, 2018; Yan and Hwang, 2019).

Here, we focused on describing the cases in which the regulation of

Na+ uptake is also dependent on water chemistry. Acidic or low-Na+

FW results in the alteration of transporter expression and ionocyte

number. Long-term exposure to acidic FW triggers the expression of

NHE3 (and Rhcg) in most FW teleosts such as dace, tilapia, medaka,

carp, and goldfish (Hirata et al., 2003; Tseng et al., 2020). They adopt

NHE3 to excrete more H+=NH+
4 against acidic environments and

simultaneously absorb Na+. Meanwhile, very few teleosts (zebrafish,

for example) mainly up-regulate apical VHA instead of NHE3 for the

enhancement of acid excretion (Yan et al., 2007; Tseng et al., 2020).

Zebrafish gills showed a down-regulated NHE3b expression with an

increased number of NCC2b-expressing ionocytes after acid

acclimation for 7 days (Chang et al., 2013). That is, zebrafish utilize

NCC2b as a backup transporter for maintaining Na+ homeostasis

under acidic FW, although this fact still cannot exclude the possibility

that other NHE isoforms may compensate for the loss of NHE3b.

Long-term exposure to Na+-deficient FW stimulates mRNA

expression of NHE3 (and Rhcg) and the number of NHE3-

expressing ionocytes in FW teleosts (Inokuchi et al., 2009; Wu

et al., 2010; Shih et al., 2012; Tseng et al., 2022). However, studies

from zebrafish and medaka revealed that branchial mRNA expression

of NCC was down-regulated in low-Na+ FW (with low-Cl-) (Wang

et al., 2009; Hsu et al., 2014). In tilapia gills, low-Na+ FW (with

normal- or low-Cl-) did not affect the mRNA expression of NCC,

while low-Cl- FW (with normal Na+) increased the mRNA expression

of NCC and the density of NCC-expressing ionocytes (Inokuchi et al.,

2009). These findings suggest that up-regulation of NHE3 is the major

pathway for functional enhancement of Na+ uptake under Na+-

deficient situations, but the regulation of NCC is depending on

both Na+/Cl- levels in FW and probably varies in different species.
Debates on the roles of NHE and NCC
in Na+ uptake

Debates on the current models of Na+ uptake pathways originated

from the thermodynamic considerations for NHE and NCC. Some

studies have proposed that the Na+ uptake function of NHEs is only

favored when a ratio of intracellular and FW concentration of Na+ is

smaller than that of a ratio of H+, which is not feasible under acidic or

Na+-poor situations (Dymowska et al., 2014; Dymowska et al., 2015;

Clifford et al., 2022). Obviously, their concern probably neglected the

Na+=NH+
4 activity of NHEs. As we described above, apical Na+=NH+

4

exchange of NHEs could be driven down the NH+
4 gradients in

ionocytes. But for NCC, how to drive Na+/Cl- into ionocytes against

the thermodynamic limitations indeed remains a mystery. Based on

these debates, recent studies generated nhe3b- and rhcg2-knockout

zebrafish (using CRISPR/Cas9) to reassess the contribution of NHE3b,

Rhcg2, and NCC to Na+ uptake in larvae (Zimmer and Perry, 2020;

Zimmer et al., 2020). They found that knockout of nhe3b or rhcg2 did

not reduce whole-body Na+ uptake and Na+ content, and Na+ or Cl-
Frontiers in Marine Science 04
influxes were not respectively affected by Cl–-free or low-Na+ FW in

NHE3b mutants, thereby concluding that larval zebrafish do not

require NHE3b and Rhcg2 to sustain whole-body Na+ uptake, nor do

they adopt an NCC-mediated pathway to compensate for the loss of

NHE3b function. The finding that zebrafish could survive even lacking

the major transporter (NHE3b) for Na+ uptake is unexpected and does

suggest the possibility of unknown back-up pathways for Na+

compensatory regulation in teleosts. However, the knockout results

are not necessary to overrule the previous knockdown/pharmacological

evidence that supported the crucial role of NHE3b and NCC in Na+

uptake (Esaki et al., 2007; Wang et al., 2009; Shih et al., 2012; Chang

et al., 2013; Ito et al., 2014). In fact, it is quite reasonable to observe

different results among gene knockout and knockdown experiments.

Knockdown and knockout probably induced distinct compensatory

mechanisms and thereby resulted in inconsistent phenotypes (Rossi

et al., 2015). That said, further andmore comprehensive explorations of

the compensatory mechanisms activated in those knockout mutants

(Zimmer and Perry, 2020; Zimmer et al., 2020) are awaited. Loss- (or

gain-) of-function experiments using pharmacology, knockdown, or

knockout approaches are powerful, but could link misleading

information to related issues without the appropriate and careful

characterizations of the methodology effectiveness and related

compensatory mechanisms.

A new pathway for Na+ uptake, derived from the same debates

around thermodynamics, was recently proposed in adult zebrafish.

Clifford and his colleagues found that Na+ uptake was constitutively

lower at 0 h of acid exposure but recovered after 8-10 h of acid

exposure. They considered this recovery of Na+ uptake to be linked to

the environmental K+ concentration, not the NHE- and NCC-

mediated pathways (Clifford et al., 2022), and thus proposed an

alternative pathway for zebrafish coping with short-term acidification.

However, inconsistent results in a previous study reported that acute

acid exposure (0 h) did not reduce Na+ uptake in adult zebrafish

(Kumai et al., 2011), which implies further confirmation of the

methodology or a detailed description of experimental designs

would be necessary in advance. Furthermore, Na+ uptake did not

change during the initial 96 h acid exposure, and instead, a great

degree of increase in Na+ uptake was observed after 120 h acid

exposure (Kumai et al., 2011). These results highlight the variable

physiological responses that could be observed during the acclimation

period. A reasonable comparison of mechanisms or hypothetical

differences between studies should base on a similar or comparable

experimental time period. On the other hand, Clifford proposed K+-

dependent Na+/Ca2+ exchangers (NCKXs) to be the candidates that

mediate the K+-associated Na+ uptake function (Clifford et al., 2022).

It has been noted that NCKX3 was found to localize to the basolateral

layer of mice DCT and involved in Ca2+ transport (Lee et al., 2009),

but how NCKXs work and even cellular localization of NCKXs in

teleost gills are unknown. Further characterization of the molecular

identity of the newly-proposed transport pathway is needed.
Concluding remarks

FW teleosts absorb Na+ via NHE-mediated and NCC-mediated

Na+ uptake pathways in gill/skin ionocytes, and they rely on NHE for

a majority of Na+ uptake probably due to a powerful force ( NH+
4
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gradient) that efficiently drives NHE (Figure 1). Although some

unclear mechanisms still remain, powerful techniques (e.g., single

cell transcriptome analysis and a scanning ion-selective electrode

technique) have been developed and recently applied to fish gills (Pan

et al., 2022; Shih et al., 2022), which may shed some light on fish

osmoregulation and the transport mechanisms of Na+ and other ions.
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