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The Kochen–Specker (KS) theorem
reveals the nonclassicality of single
quantum systems. In contrast, Bell’s
theorem and entanglement concern the
nonclassicality of composite quantum
systems. Accordingly, unlike incom-
patibility, entanglement and Bell non-
locality are not necessary to demon-
strate KS-contextuality. However, here
we find that for multiqubit systems, en-
tanglement and non-locality are both es-
sential to proofs of the Kochen–Specker
theorem. Firstly, we show that unen-
tangled measurements (a strict super-
set of local measurements) can never
yield a logical (state-independent) proof
of the KS theorem for multiqubit
systems. In particular, unentan-
gled but nonlocal measurements—
whose eigenstates exhibit “nonlocal-
ity without entanglement”—are insuf-
ficient for such proofs. This also im-
plies that proving Gleason’s theorem
on a multiqubit system necessarily re-
quires entangled projections, as shown
by Wallach [Contemp Math, 305: 291-
298 (2002)]. Secondly, we show that
a multiqubit state admits a statistical
(state-dependent) proof of the KS the-
orem if and only if it can violate a
Bell inequality with projective measure-
ments. We also establish the relation-
ship between entanglement and the the-
orems of Kochen–Specker and Gleason
more generally in multiqudit systems
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by constructing new examples of KS
sets. Finally, we discuss how our results
shed new light on the role of multiqubit
contextuality as a resource within the
paradigm of quantum computation with
state injection.

1 Introduction

Quantum theory’s ‘departure from classical
lines of thought’ [1] is today a driving force
behind the promise of quantum technologies.
Quantum theory abandons assumptions im-
plicit in classical physical theories, such as
the assumptions that physics must be fun-
damentally deterministic or that all observ-
ables are jointly measurable. This allows
for an array of typically quantum phenomena
such as entanglement, uncertainty relations,
Bell nonlocality, contextuality, etc. We gener-
ically refer to the possibility of these previ-
ously forbidden properties as the nonclassi-
cality of quantum theory. Such nonclassical
properties of quantum theory are key to the
many advantages quantum information pro-
cessing and quantum computation hold over
their classical counterparts. However, the ex-
act relationship between different notions of
nonclassicality and such advantages is often
unclear and remains an active area of research
[2, 3, 4, 5, 6, 7, 8, 9].

The case of multiqubit systems is of partic-
ular importance given their ubiquity through-
out quantum technologies, particularly noisy
intermediate-scale quantum (NISQ) technolo-
gies [10, 11]. However, the nonclassicality of
qubit systems remains an anomalous case. In-
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dividually, for example, a qubit cannot dis-
play Kochen–Specker (KS) contextuality [12]
while, collectively, multiqubit systems (which
exhibit KS-contextuality) derail the neat nar-
rative of such contextuality powering quan-
tum computational advantage [5, 13]. Fur-
thermore, entanglement is often considered a
key indicator of nonclassicality in these sys-
tems but the sense in which it relates to fun-
damental notions of nonclassicality witnessed
by the theorems of Bell [14, 15], Kochen–
Specker [12], and Gleason [16] needs clar-
ification. Since the question of nonclassi-
cality is essentially a foundational one [17],
we approach the study of multiqubit systems
through this lens.

Entanglement is an intrinsically composi-
tional property and is, therefore, only rele-
vant to the study of nonclassicality in compos-
ite (i.e. multipartite) systems. Schrödinger
claimed the entanglement of quantum states
to be ‘the characteristic trait of quantum me-
chanics, the one that enforces its entire de-
parture from classical lines of thought’ [1].
Bell’s theorem [14, 15] exemplifies this point
by revealing the nonclassicality of correlations
arising from local measurements on compos-
ite quantum systems in entangled states, the
simplest case being a two-qubit system.

The Kochen–Specker theorem [12], on the
other hand, can reveal the nonclassicality
of correlations between measurements imple-
mented on an indivisible quantum system, the
simplest case being a qutrit. For quantum
systems of dimension at least three, the the-
orem states that there cannot exist an un-
derlying ontological model—known as a KS-
noncontextual ontological model—that repro-
duces the predictions of quantum theory. In
such a model the outcomes of projective mea-
surements are fully determined by the ontic
state of the system. Furthermore, the out-
comes are independent of context1 and respect
the functional relationships between commut-

1The context of a projective measurement here
refers to other projective measurements with which
it is jointly performed.

ing measurements.2

The key insight of Kochen and Specker
was that one can witness the impossibility of
such models with a finite set of rank-1 pro-
jections (a KS set) on a three-dimensional
Hilbert space. A KS set thus constitutes a
logical proof of the KS theorem [18], exem-
plified by the original result of Kochen and
Specker [12]. It is also possible to demon-
strate the inadequacy (rather than impossibil-
ity) of KS-noncontextual ontological models
in a (weaker) statistical sense. Such statistical
proofs of the KS theorem [19] are exemplified
by the proof due to Klyachko et al. [20].

Prior to the Bell and Kochen–Specker the-
orems, Gleason’s theorem [16] demonstrated
that, for any quantum system of dimension
at least three, the unique way to assign prob-
abilities to the outcomes of projective mea-
surements is via the Born rule. In particular,
Gleason’s theorem excludes any determinis-
tic probability rule given by a {0, 1}-valued
assignment of probabilities to all the self-
adjoint projections on the system’s Hilbert
space. This exclusion thus implies the KS the-
orem, but, unlike the proof of Kochen and
Specker [12], it requires an uncountably infi-
nite KS set.

A single qubit does not support any of the
three theorems (Bell, KS, or Gleason) and is,
by that token, rather “classical”.3 A single
qutrit can support the Gleason and KS the-
orems but not Bell’s theorem. Hence, the
smallest quantum system on which one can
meaningfully study the interplay of Gleason,
Bell, and KS theorems is a two-qubit sys-

2For example, the outcome of measuring an ob-
servable with operator A2 should be the square of the
outcome of measuring A.

3This assumes a restriction to pure states and pro-
jective measurements on a qubit, as is traditionally the
case in these theorems. Such a ‘pure’ qubit can exhibit
nonclassicality in other (weaker) respects like the exis-
tence of incompatible measurements, something repro-
ducible in classical theories with an epistemic restric-
tion [17]. However, once mixed states and generalised
measurements are included, a single qubit can support
proofs of generalised contextuality [21, 22, 23]. Allow-
ing generalised measurements also permits Gleason-
type theorems for the qubit case [24, 25, 26].
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tem. The nonclassicality witnessed by Bell’s
theorem in qubit pairs (and more generally)
clearly depends on entanglement, since Bell
inequality violations can only be observed
when the quantum systems used are described
by an entangled state. Is entanglement, how-
ever, also necessary for the theorems of KS
and Gleason in a two-qubit system, and more
generally, in multiqubit systems? Since both
theorems appeal to the structure of quantum
measurements, we need to go beyond states
and consider the role of entanglement in mea-
surements as well.

The question of entanglement and Glea-
son’s theorem is already resolved. A result
by Wallach [27] showed that the set of unen-
tangled multiqudit projections yields a proof
of Gleason’s theorem if and only if each qudit
has a Hilbert space dimension three or more.
In particular, the set of unentangled multi-
qubit projections cannot yield Gleason’s the-
orem.

This work will largely consider rank-one
projective measurements that are unentan-
gled, i.e. measurements in bases comprising
only product vectors. Unlike quantum states,
measurements can be “nonlocal” without be-
ing entangled, that is, there exist measure-
ments which cannot be implemented via lo-
cal operations and classical communication
(LOCC) but nevertheless only involve projec-
tions onto unentangled subspaces.4 For ex-
ample, one cannot perform a measurement in
the unentangled three qubit basis

{ |000〉 , |+10〉 , |0 + 1〉 , |10+〉 ,
|111〉 , |−10〉 , |0− 1〉 , |10−〉} ,

(1)

via LOCC. It could in principle be that “non-
locality” of unentangled measurements is suf-
ficient to recover a logical proof of the KS the-
orem [12, 18]. However, in the first main re-
sult of this work, Theorem 3, we show that
this is not the case: the unentangled rays of
a multiqubit system are KS-colourable and,

4The eigenstates for such a measurement exhibit
a phenomenon called ‘nonlocality without entangle-
ment’, i.e. they form a set of mutually orthogo-
nal states that cannot be distinguished perfectly via
LOCC [28].

X ⊗ I I ⊗X X ⊗X
I ⊗ Y Y ⊗ I Y ⊗ Y
X ⊗ Y Y ⊗X Z ⊗ Z

Figure 1: The Peres-Mermin square [29] consisting
of two-qubit Pauli matrices together with the
contextuality scenario defined by the orthogonality
relations between Peres’s 24 rays [30]. Each row or
column of the Peres-Mermin square is associated to
a two-qubit orthonormal basis in which all the
operators in that row or column are diagonal. In the
contextuality scenario, the six dashed hyperedges
denote the six orthonormal bases corresponding to
the rows and columns of the Peres-Mermin square.
In particular, the basis that diagonalises the third
column, {XX,Y Y,ZZ}, is the Bell basis.

thus, no unentangled form of nonclassicality
suffices for a logical proof of KS-contextuality
in this setting.

The well-known proof of the KS theorem
via the Peres-Mermin square [31, 30, 29] at
first appears to not involve entanglement (see
Fig. 1). However, the joint measurement
of the Pauli observables {XX,Y Y,ZZ}, for
example, necessitates a measurement in the
Bell basis. In this sense, our result shows
that this entanglement is not accidental but,
rather, unavoidable; any logical (hence, state-
independent) [18] proof of the KS theorem for
multiqubit systems necessarily requires entan-
gled measurements.

We also construct a KS-noncontextual on-
tological model for the fragment of multi-
qubit quantum theory containing unentan-
gled measurements and product states. The
model can be viewed as a generalization of
the single-qubit model of Kochen and Specker
[12], but the proof of its validity relies on
our result—Lemma 2—to show that the on-
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tic states are indeed valid KS-noncontextual
ontic states. The model admits a simple ex-
tension to the case of separable states which
renders it preparation contextual [21], but still
KS-noncontextual.

The existence of this model implies that for
a proof of the KS theorem on a multiqubit sys-
tem, one requires either (i) entanglement in
the measurements, in which case one can pro-
vide a logical (and state-independent) proof,
or (ii) entanglement in the state, in which
case the violation of Bell inequalities, for ex-
ample, provides a state-dependent proof with-
out any entangled measurements [32]. In the
second main result of this paper, we demon-
strate that such Bell inequality violations are
the only way to prove the KS theorem in this
setting. We show that an entangled state en-
ables a (finite) statistical proof of the KS the-
orem with unentangled measurements if and
only if it also violates a Bell inequality with
local projective measurements.

Thus, we must conclude that, just as in
the case of Bell’s and Gleason’s theorems, the
nonclassicality of multiqubit systems is un-
derpinned by entanglement in the case of the
Kochen–Specker theorem. This discovery is in
surprising contrast to the usual intuition that
takes the KS theorem as witnessing nonclas-
sicality that is independent of entanglement
because it applies, for example, to a single
qutrit [12]. Hence, in the simplest case where
all three theorems apply, i.e. a two-qubit sys-
tem, entanglement is necessary for all of them.

Exploring the relationship between the KS
theorem and entanglement in multiqudit sys-
tems further, we provide two new construc-
tions of KS sets on multiqudit systems that
allow us to obtain an overall picture of this re-
lationship (Fig. 2). As displayed in Fig. 2, our
results recover the result of Wallach [27] in the
multiqubit case as a corollary, namely, that
entangled projections are necessary to obtain
Gleason’s theorem.

Finally, we discuss implications of our re-
sults for the role of contextuality in multiqubit
quantum computation with state injection.
In particular, we highlight how the choice of
measurements in the schemes of Ref. [13] ap-

Figure 2: The existence of logical proofs of the KS
theorem and proofs of Gleason’s theorem without
entanglement on a Hilbert space H1 ⊗ · · · ⊗ Hn,
where 1 ≤ j ≤ n. The implication arrows show
which results follow from each other. The addition
of +direct signifies the result also holds for the
subset of unentangled measurements given by
direct products bases, see Sec. 7. The results in
bold and purple are introduced in the present work.

pear natural in view of our results.

The structure of the paper is as follows. In
Sec. 2, we provide preliminary notions that we
will need in the rest of the paper. In Sec. 3,
we prove our first main result, i.e. the neces-
sity of entanglement for multiqubit KS sets.
Sec. 4 presents a KS-noncontextual ontologi-
cal model for product states and unentangled
measurements of multiqubit systems. Sec. 5
establishes our second main result: an en-
tangled state yields a statistical proof of the
KS theorem if and only if it yields a proof
of Bell’s theorem. In Sec. 6, we construct a
two-qubit KS set without any fully entangled
bases. Sec. 7 proves the existence of unentan-
gled KS sets on any multiqudit system that
contains at least one qudit of Hilbert space di-
mension three or more. Sec. 8 discusses impli-
cations of our results for the role of contextu-
ality in multiqubit schemes for quantum com-
putation with state injection (QCSI). Sec. 9
concludes with a discussion of our results.

2 Preliminaries

Given a separable Hilbert space, H, a self-
adjoint projection on H is a linear operator
Π satisfying Π2 = Π† = Π, where Π† de-
notes the adjoint of Π. We will denote the
set of self-adjoint projections on H by P(H).
In this work, we will consider projective mea-
surements on quantum systems, which we de-
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scribe by sets {Π1,Π2, . . .} of self-adjoint, mu-
tually orthogonal projections Πj ∈ P(H) on
a separable Hilbert space, H, that sum to the
identity operator.

Rank-one projections are generally suffi-
cient for our purposes so we equivalently con-
sider rays in the projective Hilbert space
R(H). The projective Hilbert space R(H) is
given by the set of equivalence classes, or rays,
of non-zero vectors in H, under the equiva-
lence relation ψ ∼ χ if and only if ψ = αχ for
some non-zero α ∈ C. We represent each ray
with one of its unit vectors, which we denote
by a “ket”, such as |ψ〉. For brevity, we will
often refer to this vector as the ray it repre-
sents.

There is a bijection between the sets of rays
and rank-one projections on a Hilbert space.
A rank-one projective measurement is there-
fore uniquely defined by a complete set of rays,
i.e. a set of d mutually orthogonal rays, where
d is the (possibly infinite) dimension of the
Hilbert space. A complete set is represented
by an orthonormal basis {|ψ1〉 , |ψ2〉 , . . .} of
H, and thus we say we are performing a mea-
surement in a basis and often refer to a com-
plete set of rays as simply a basis.

The KS theorem states the impossibility of
an outcome-deterministic and measurement
noncontextual ontological model [21] (briefly,
a KS-noncontextual ontological model) for
quantum theory. We will refer to this fact as
the KS-contextuality of quantum theory. The
original result due to Kochen and Specker [12]
provides a logical proof of the KS theorem [18]
and we state it below in a formulation most
relevant to the present work:

Theorem 1 (Kochen–Specker [12]). Given a
separable Hilbert space H of dimension at least
three, there does not exist a map

c : R → {0, 1} (2)

such that for any complete set of rays
{|ψ1〉 , |ψ2〉 , . . .}, we have c(|ψj〉) = 1 for ex-
actly one value of j ∈ {1, 2, . . .}.

This formulation of the result implies the
traditional statement of the Kochen–Specker
theorem in terms of valuation functions on

self-adjoint operators (see Appendix A). The
KS theorem also admits statistical proofs,
whereby it is shown that the statistics pro-
duced by a collection of measurements per-
formed on a fixed quantum state cannot be
derived from a KS-noncontextual ontological
model [20, 19].5 We will discuss these proofs
of the KS theorem, and how they differ from
logical proofs, more extensively in Sec. 5.

A set of rays in a Hilbert space can be repre-
sented by a hypergraph in which there is a ver-
tex for each ray and each complete set of rays
constitutes a hyperedge. Such a hypergraph
is an example of a contextuality scenario [32].
The map c in Theorem 1 then defines a special
type of 2-colouring of this hypergraph, which
we will call a KS-colouring.6 A set of rays for
which there does not exist a KS-colouring is
known as a KS set.

A KS-colouring of a set of rays is more than
simply a mathematical tool: KS-colourings
define the ontic states in a KS-noncontextual
ontological model. The ontic state determines
the outcome of any measurement with cer-
tainty, and this choice of one deterministic
outcome from each measurement is exactly a
KS-colouring. The existence of a KS set in
any Hilbert space of dimension greater than
two then proves the KS theorem (via Theorem
1)

The fact that all the rays in a Hilbert space,
H, of dimension three or more form a KS set
(i.e., a proof of the KS theorem) follows from
Gleason’s theorem. Kochen and Specker [12],

5The notion of contextuality was extended beyond
the Kochen–Specker notion to a generalised notion
of contextuality in Ref. [21]. KS-noncontextuality,
within this generalised framework, is recovered as a
conjunction of two assumptions on ontological models
of any operational theory: measurement noncontex-
tuality and outcome determinism for projective mea-
surements. As we will not use much of the machinery
of generalised contextuality in this paper (and since
we are focusing on quantum theory rather than op-
erational theories in general), we refer the interested
reader to Refs. [21, 18, 23, 19, 33, 34] for discussions
of generalised contextuality and its connection with
KS-contextuality.

6Here “0” and “1” stand in for two possible
“colours” that could be assigned to vertices according
to the rule specified in Theorem 1.
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however, gave an explicit construction of a
finite KS set in a three-dimensional Hilbert
space, arguably providing a much simpler
proof of the KS theorem than relying on Glea-
son’s theorem.7

Theorem 2 (Gleason [16]). Let H be a sepa-
rable Hilbert space of dimension at least three.
Any map f : P(H)→ [0, 1] satisfying

f(Π1) + f(Π2) + · · · = f(Π1 + Π2 + · · · ) , (3)

for any set of mutually orthogonal projections
{Π1,Π2, . . .}, and f(IH) = 1 where IH is the
identity operator on H, admits an expression

f(Π) = Tr(Πρ) , (4)

for some density operator ρ on H.

The maps f in Gleason’s theorem are
known as frame functions. Any KS-colouring,
c, on the rays (and equivalently the rank-
one projections) of a Hilbert space H would
extend to a {0, 1}-valued frame function on
P(H) via c(Π1+Π2+· · · ) ≡ c(Π1)+c(Π2)+· · ·
for mutually orthogonal sets of rank-one pro-
jections {Π1,Π2, . . .}. In dimensions greater
than two, however, Gleason’s theorem shows
that such a frame function does not exist,
hence the set of all rays is not KS-colourable.

Neither the KS theorem nor Gleason’s the-
orem hold for a single two-level system, i.e. a
qubit. The theorems do, however, hold for
systems of multiple qubits. We will exam-
ine whether the onset of the applicability of
these theorems is due to the presence entan-
glement in the rays of the measurements or
if it is due to a weaker notion of nonlocal-
ity (without entanglement) [28]. Specifically,
if we describe a projective measurement on a
composite Hilbert space H1 ⊗ · · · ⊗ Hn by a
sequence of projections Π1,Π2, . . ., we say the
measurement is unentangled if the support of
Πk admits a basis of product vectors, i.e. vec-
tors ψ = ψ1⊗· · ·⊗ψn ∈ H, where ψj ∈ Hj for

7Hrushovski and Pitowsky [35], however, showed
that Gleason’s theorem, when combined with the com-
pactness theorem of first-order logic, implies the exis-
tence of a finite KS set. Hence, Gleason’s theorem im-
plies not only the KS theorem but something stronger,
i.e., the existence of finite KS sets.

all j. Rank-one unentangled measurements
are sufficient for our argument. Each such
measurement can be described by a complete
set of product rays, that is, rays consisting of
product vectors.

In the case of Gleason’s theorem, Wallach
[27] showed that for a multiqudit system in
which each subsystem has dimension at least
three, Gleason’s theorem can be proved us-
ing only rank-one unentangled projections.
Specifically, frame functions on rank-one un-
entangled measurements can always be de-
scribed by the Born rule, as in Eq. (4). How-
ever, if even one subsystem has dimension
two, the result fails to hold, i.e. there exist
frame functions on unentangled projections
which cannot be described as in Eq. (4).

To address the case of the KS theorem, we
will be interested in rays in C2, or qubit rays,
and rays in C2⊗n, or n-qubit rays. Given a
pair of orthogonal unit vectors {|0〉 , |1〉} in
C2 a generic qubit ray can be expressed as

|ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 , (5)

for some 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The pa-
rameters θ and φ define a point on the Bloch
sphere (see Fig. 3). The pairs of orthogonal
rays in C2 are given exactly by the pairs of an-
tipodal points of the Bloch sphere. The prod-
uct rays in C2⊗n are then rays admitting an
expression |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 where |ψj〉
are qubit rays for all 1 ≤ j ≤ n.

3 Kochen–Specker theorem for mul-
tiqubit systems
In this section, we will show that any logical
proof of the KS theorem on a multiqubit sys-
tem requires entangled measurements, i.e.

Theorem 3. Any multiqubit Kochen–Specker
set necessarily contains entangled rays.

We consider a KS-colouring cn on prod-
uct rays of C2⊗n defined in terms of a KS-
colouring c1 on the rays of C2. Specifically,
cn(|ψ1〉 ⊗ · · · ⊗ |ψn〉) =

∏n
j=1 c1(|ψj〉). We

choose c1 to be particularly easy to visualise
KS-colouring but the argument follows for any

6



Figure 3: The Bloch sphere with the qubit north
rays depicted by the hatched grey hemisphere
including the solid point at |+〉 and the solid black
half of the equator but not the open point at |−〉 or
the dashed half of the equator.

choice. To specify our KS-colouring, we first
define a north qubit ray:

Definition 1. A north qubit ray is of the
form

|ψ〉 = cos(θ/2) |0〉+ eiφ sin θ/2 |1〉 (6)

where 0 ≤ θ < π/2 and 0 ≤ φ < 2π or θ = π/2
and π < φ ≤ 2π. We denote the set of north
rays, depicted on the Bloch sphere in Fig. 3,
by N .

Note that, for any north qubit ray |ψ〉, the
ray |ψ⊥〉 satisfying 〈ψ|ψ⊥〉 = 0 is not a north
ray, and vice versa, i.e. every pair of orthogo-
nal qubit rays contains exactly one north ray.
This definition naturally extends to the case
of n-qubit rays:

Definition 2. An all-north n-qubit ray is
a product ray |ψ〉 = |ψ1〉 · · · |ψn〉 such that
|ψj〉 ∈ N for all j ∈ {1, . . . , n}. We denote
the set of all-north n-qubit rays by N n.

We need the following two lemmas in order
to prove our first main result:

Lemma 1. Any complete set of two-qubit
product rays contains exactly one all-north
ray.

Proof. A generic two-qubit product basis
takes the form{
|ψ1〉 |ψ2〉 , |ψ1〉 |ψ⊥2 〉 , |ψ⊥1 〉 |ψ3〉 , |ψ⊥1 〉 |ψ⊥3 〉

}
,

(7)
for |ψ1〉 , |ψ2〉 , |ψ3〉 ∈ C2, noting that the sys-
tems may be swapped. By inspection, one can
see that exactly one of the rays in Eq. (7) is
all-north.

The proof of the following lemma is based
on that of Prop. 1 in [36].

Lemma 2. Any complete set of n-qubit prod-
uct rays contains exactly one all-north ray.

Proof. We will prove this statement by induc-
tion on the number of qubits.

Firstly, an n-qubit complete set can contain
at most one all-north ray since no two all-
north rays are orthogonal.

Now, assume the result holds for m qubits
and consider a complete set of (m + 1)-qubit
product rays

P = {|Ψ1〉 |ψ1〉 , . . . , |Ψ2m+1〉 |ψ2m+1〉} , (8)

where |Ψj〉 ∈ C2⊗m and |ψj〉 ∈ C2 for j ∈{
1, . . . , 2m+1}. Let B denote the set of dis-

tinct rays of the final qubit, i.e.

B =
{
|ψ〉 ∈ C2

∣∣∣ |Ψ〉 |ψ〉 ∈ P
for some |Ψ〉 ∈ C2⊗m

}
, (9)

noting that we may have |ψj〉 = |ψk〉 for
j 6= k, and let E be a maximal set of non-
orthogonal rays from B, i.e. each ray in B\E
is orthogonal to some ray in E. Denote by J
the subset of

{
1, . . . , 2m+1} such that |ψj〉 ∈ E

for all j ∈ J .
Define the map µ to count the number of

rays in the (m + 1)-qubit basis, P , for which
the final qubit is associated to a given ray, i.e.

µ(|ψ〉) =
∣∣∣{|Ψ〉 |ψ〉∣∣∣|Ψ〉 ∈ C2⊗m, |Ψ〉 |ψ〉 ∈ P

}∣∣∣.
(10)

We may assume (without loss of generality)
that the set E is chosen such that

µ(|ψ〉) ≥ µ(|ψ⊥〉), (11)

7



for all |ψ〉 ∈ E, since if µ(|ψ〉) < µ(|ψ⊥〉) then
|ψ〉 could be replaced by |ψ⊥〉 in E without
violating the requirements on the set E.

The maximality of E implies that for ev-
ery |ψ〉 ∈ B\E we have |ψ⊥〉 ∈ E. Let
µ(E) =

∑
|ψ〉∈E µ(|ψ〉) = |J | and µ⊥(E) =∑

|ψ〉∈E µ(|ψ⊥〉). Note that

µ(E) + µ⊥(E) =
∑
|ψ〉∈B

µ(|ψ〉) = 2m+1 (12)

and µ(E) ≥ µ⊥(E) by the assumption in Eq.
(11).

If |ψj〉 , |ψk〉 ∈ E for j 6= k then 〈Ψj |Ψk〉 =
0, since 〈ψj |ψk〉 6= 0. Hence the set

{|Ψj〉 |j ∈ J} , (13)

comprises µ(E) mutually orthogonal rays of
C2⊗m. It follows that µ(E) ≤ 2m which gives

2µ(E) ≤ 2m+1 = µ(E) + µ⊥(E), (14)

and µ(E) ≤ µ⊥(E). Therefore, we find

µ(E) = µ⊥(E). (15)

Furthermore, it then follows from Eq. (11)
that

µ(|ψ〉) = µ(|ψ⊥〉), (16)

for all |ψ〉 ∈ E and hence for all |ψ〉 ∈ B
(since, by the maximality of E, if |ψ〉 ∈ B
is not contained in E then |ψ⊥〉 ∈ E). The
definition of µ is independent of E, and we
find that assumption (11) holds with equality
for any choice of E. We may now choose E
to consist entirely of north rays: given any
maximal set E′ of non-orthogonal rays from
B we have by Eq. (16) that |ψ⊥〉 is in B for
any |ψ〉 ∈ E′ and therefore all |ψ〉 ∈ E′ that
are not north rays can be exchanged with the
north rays |ψ⊥〉 to produce the all-north set
E.

We also find from Eq. (15) that µ(E) =
2m = |J | so that the set of Eq. (13) is a com-
plete set of product rays in C2⊗m. By our
assumption (for the proof by induction), this
m-qubit complete set contains exactly one all-
north ray, say |Ψk〉. The ray |Ψk〉 |ψk〉 ∈ P is
then an all-north ray since k ∈ J implies that

|ψk〉 ∈ E, which is an all-north set of rays.
Since P can contain at most one all-north ray,
it contains exactly one all-north ray.

By Lemma 1, since the statement of Lemma
2 holds for n = 2, it holds for all n ∈ N by
induction.

We can now prove Theorem 3.

Theorem 3. Any multiqubit Kochen–Specker
set necessarily contains entangled rays.

Proof. We will show the contrapositive: the
contextuality scenario generated by all n-
qubit product rays is KS-colourable. Define
cn : Σ

(
C2⊗n

)
→ {0, 1} as follows.

cn (|ψ〉) =
{

1 if |ψ〉 ∈ N n,

0 otherwise.
(17)

By Lemma 2, every complete set of n-qubit
product rays contains exactly one all-north
ray, hence cn defines a KS-colouring on the
contextuality scenario generated by all n-
qubit product rays.

4 A Kochen–Specker noncontextual
ontological model for unentangled n-
qubit systems
In the previous section we demonstrated the
existence of KS-colourings of the unentangled
rays of n-qubit systems. Such colourings de-
fine ontic states in a KS-noncontextual onto-
logical model. However, the existence of such
ontic states alone is insufficient to conclude
that some quantum statistics can be repro-
duced by such a model.

In this section we will show how these ontic
states can, indeed, yield a KS-noncontextual
ontological model for the fragment of quan-
tum theory consisting of n-qubit product
states and n-qubit unentangled measure-
ments. We do so via an extension of the single
qubit model of Kochen and Specker [12] using
the formulation of Leifer [37].

Before we proceed further, we note that
if we were to restrict our analysis to mea-
surements that can be performed locally on
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each qubit—either only measurements in di-
rect product bases (see Eq. (42) or Ref. [47])
or, more generally, those that can be im-
plemented via LOCC—construction of a KS-
noncontextual model would not require the
results from the previous section. How-
ever, we are considering the strictly larger
class of all unentangled measurements (see
Sec. 2) including those that cannot be im-
plemented via LOCC, for example, a mea-
surement in the basis of Eq. (1). Thus, our
KS-noncontextual ontological model requires
KS-colourings of all unentangled multiqubit
measurement bases and not only those imple-
mentable via LOCC. With these clarifications
out of the way, we can now proceed to detail
our construction.

Given a unit vector |ψ〉 in Hilbert space
we will denote by [ψ] the rank-one projection
onto the subspace spanned by |ψ〉. The on-
tic state space for the model is given by Λ =
S2

1 × · · · × S2
n, where S2

j is a two-dimensional
sphere representing the ontic state space of
the jth qubit (j = 1, 2, . . . , n) and × is the
Cartesian product. We represent each n-qubit
ontic state λ = (λ1, λ2, . . . , λn) ∈ Λ by a sin-
gle vector ~λ in a real vector space R3n:

~λ =~λ1 + ~λ2 + · · ·

=



sin θ1 cosϕ1
sin θ1 sinϕ1

cos θ1
0
0
0
0
...

0



+



0
0
0

sin θ2 cosϕ2
sin θ2 sinϕ2

cos θ2
0
...

0



+ · · ·

(18)

where 0 ≤ θj ≤ π and −π < ϕj ≤ π are the
coordinates of λ in the jth copy of S2. Sim-
ilarly, we may describe an unentangled rank-

one projection [ψ] = [ψ1⊗· · ·⊗ψn] by a vector

~ψ =~ψ1 + ~ψ2 + · · ·

=



sin θψ1 cosϕψ1
sin θψ1 sinϕψ1

cos θψ1
0
0
0
0
...

0



+



0
0
0

sin θψ2 cosϕψ2
sin θψ2 sinϕψ2

cos θψ2
0
...

0



+ · · ·

(19)

where 0 ≤ θψj ≤ π and −π < ϕψj ≤ π are the

spherical coordinates of ~ψj on the jth sphere
S2.

We will now define a deterministic response
function whereby, essentially, an outcome [ψ]
occurs with probability one in a state λ ex-
actly when ~ψj is in the hemisphere centred

around ~λj for all j ∈ {1, 2, . . . , n}. First,
we make the following definitions. Let |λj〉
denote the Hilbert space vector with spher-
ical coordinates (θj , ϕj) on the jth qubit,
i.e. |λj〉 = cos(θj/2) |0〉 + eiϕj sin(θj/2) |1〉.
Then we define a unitary that maps |λj〉 to the
north pole |0〉, i.e. Uλj = |0〉 〈λj |+ |1〉 〈λ⊥j |.

Now, explicitly, given an unentangled pro-
jection [ψ] = [ψ1⊗· · ·⊗ψn], the probability of
observing an outcome associated with [ψ] of a
measurement M on a system in ontic state λ
is given by

Pr ([ψ]|M,λ) =
{

1 if
⊗n

j=1 Uλj |ψ〉 ∈ N n,

0 otherwise .

(20)
Lemma 2 shows that Eq. (20) defines a valid
response function for n-qubit product projec-
tions.

The following inequalities will be useful in
proving that our ontological model reproduces
quantum theory:

n∏
j=1

H0(~ψj ·~λ) ≤ Pr ([ψ]|M,λ) ≤
n∏
j=1

H1(~ψj ·~λ)

(21)
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for all unentangled n-qubit projections [ψ]
and λ ∈ Λ, where H0,1 : R → {0, 1} are two
conventions for the Heaviside step function,

Hy(x) =


1 if x > 0
y if x = 0
0 if x < 0 .

(22)

We now define the epistemic states of the
model. Given that a product state [χ] = [χ1⊗
χ2 ⊗ · · · ⊗ χn] (which can be described by a
vector as in Eq. (19) with parameters 0 ≤
θχj ≤ π and −π < ϕχj ≤ π) is prepared, the
probability measure over the ontic states of
the system is given by

µχ(Ω) =
∫

Ω

n∏
j=1

p~χj (~λ) sin θjdθjdϕj , (23)

for Ω ⊆ Λ, where

p~χj (~λ) = 1
π
H0(~χj · ~λ)~χj · ~λ . (24)

Thus the probability of observing outcome
[ψ] of a measurement M performed on a sys-
tem prepared in quantum state [χ] is given
by

Pr ([ψ]|M, [χ])

=
∫

Λ
Pr ([ψ]|M,λ) dµχ(λ)

=
∫

Λ
Pr ([ψ]|M,λ)

n∏
j=1

p~χj (~λ) sin θjdθjdϕj

(25)

Since the terms of the integrand are all non-
negative, it follows from Eq. (21) that

∫
Λ

n∏
j=1

H0(~ψj · ~λ)
n∏
j=1

p~χj (~λ) sin θjdθjdϕj

(26)
≤Pr ([ψ]|M, [χ]) (27)

≤
∫

Λ

n∏
j=1

H1(~ψj · ~λ)
n∏
j=1

p~χj (~λ) sin θjdθjdϕj

(28)

For both of these bounds (y ∈ {0, 1}) we
find

∫
Λ

n∏
j=1

Hy(~ψj · ~λ)
n∏
j=1

p~χj (~λ) sin θjdθjdϕj

(29)

=
∫

Λ

n∏
j=1

1
π
Hy(~ψj · ~λ)H0(~χj · ~λ)~χj · ~λ

sin θjdθjdϕj (30)

=
n∏
j=1

∫ π

0

∫ π

−π

1
π
Hy(~ψj · ~λ)H0(~χj · ~λ)~χj · ~λ

sin θjdθjdϕj . (31)

We can now evaluate each term in this
product for both cases y = 0 and 1, follow-
ing the method of Ref. [37] (where the y = 0
case is considered), to find

∫ π

0

∫ π

−π

1
π
Hy(~ψj · ~λ)H0(~χj · ~λ)~χj · ~λ

sin θjdθjdϕj
= |〈ψj , χj〉|2, (32)

for both y = 0, 1. The argument goes as fol-
lows. Firstly, we choose our coordinates θj
and ϕj such that ~χj = (1, 0, 0) and ~ψj =
(cosφ, sinφ, 0) for some −π < φ ≤ π. Then
since ~λj = (sin θj cosϕj , sin θj sinϕj , cos θj),
we find

~χj · ~λj = sin θj cosϕj , (33)
~ψj · ~λj = sin θj cos(ϕj − φ). (34)

The integrand of Eq. (32) is non-zero when
~χj · ~λj is positive and when ~ψj · ~λj is positive
(non-negative) for the case y = 0 (y = 1).
These conditions are achieved for y = 0 when
−π/2 < ϕj < π/2 and −π/2+φ < ϕj < π/2+
φ and similarly for y = 1 but when the latter
inequalities are no longer strict, i.e. −π/2 +
φ ≤ ϕj ≤ π/2 + φ. Since the integrals over
a closed or open interval are equal, in both

10



cases y = 0, or 1, if φ is non-negative we find∫ π

0

∫ π

−π

1
π
Hy(~ψj ·~λ)H0(~χj · ~λ)

~χj · ~λ sin θjdθjdϕj

= 1
π

∫ π

0
sin2 θjdθj

∫ π
2

−π2 +φ
cosϕjdϕj (35)

=1
2 (1 + cosφ) = |〈ψj , χj〉|2 .

We find the same value if φ is negative. Fi-
nally, we have shown

Pr ([ψ]|M, [χ]) =
n∏
j=1
|〈ψj , χj〉|2

= |〈ψ, χ〉|2 .
(36)

The model is easily extended
to higher rank projections via

Pr
(∑

j [ψj ]|M,λ
)

=
∑
j Pr

(
[ψj ]|M,λ

)
giving

Pr
(∑

j [ψj ]|M, [χ]
)

=
∑
j Pr

(
[ψj ]|M, [χ]

)
for

any mutually orthogonal projections [ψj ].
The fact that this extension is well-defined
follows from Lemma 2. Thus the model re-
produces the predictions of quantum theory
for n-qubit product states and unentangled
measurements.

Note that for the case n = 1, this ontologi-
cal model is equivalent to the Kochen–Specker
model for projective measurements and pure
states of a single qubit [12, 37]. Our general-
ization, however, is nontrivial because it cru-
cially relies on Lemma 2 to define the n-qubit
response function of Eq. (20). For a single
qubit, on the other hand, Lemma 2 is trivial
because every qubit state appears in exactly
one basis which already implies that each ba-
sis contains exactly one north state.

The model can be extended to include mix-
tures of product states, e.g.

∑N
i=1 qi[χi], for

product states |χi〉 by simply defining the
probability measure for such a mixture as
the same mixture of probability measures,
i.e.

∑N
i=1 qiµχi . However, note that such an

extension is preparation contextual, in the
sense that there is no fixed probability mea-
sure for a given separable density operator
since different decompositions of the same
density operator as a mixture of product

states result in different probability measures.
Indeed, there exists no preparation noncon-
textual extension to mixed states, as follows
from the impossibility of a preparation non-
contextual ontological model for single qubit
mixed states [21].

An immediate consequence of the existence
of this KS-noncontextual ontological model
is that it allows us to obtain a tight state-
ment on the relationship between entangle-
ment and KS-contextuality in multiqubit sys-
tems. Namely, entanglement is necessary for
any proof of the KS theorem, whether logi-
cal [12, 18] or statistical [20, 19]. Theorem
3 showed that multiqubit entangled measure-
ments are necessary for logical proofs of the
KS theorem. Our construction of the KS-
noncontextual ontological model implies that
even for statistical proofs of the KS theorem
on multiqubit systems, one requires entangle-
ment, either in the state or in the measure-
ments. A well-known instance of such a sta-
tistical proof is the violation of Bell inequali-
ties by implementing local (hence, unentan-
gled) measurements on an entangled multi-
qubit state. One can also construct statis-
tical proofs of the KS theorem (where there
exist KS-colourings of the measurements in-
volved) in which the quantum state is a prod-
uct state and there is entanglement in the
measurements. For example, given a multi-
qubit entangled state that violates a Bell in-
equality, one can apply a global unitary to
the state making it a product state and then
apply the same unitary to all the measure-
ments involved in the violation. This trans-
formation preserves the probabilities, the or-
thogonality relations, and hence, the statis-
tical proof, whilst inevitably making some of
the measurements entangled.

5 Bell and Kochen–Specker coin-
cide for multiqubit systems with un-
entangled measurements

In the previous section we found a KS-
noncontextual ontological model for unen-
tangled projective measurements and prod-
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uct pure states of multiqubit systems. The
model straightforwardly extends to separa-
ble states, allbeit in a preparation contex-
tual way. It follows that to obtain a multi-
qubit statistical proof of the Kochen–Specker
theorem from unentangled measurements one
must employ an entangled multiqubit state.8

Is entanglement of the multiqubit state, how-
ever, sufficient to yield such a statistical
proof? In this section, we find the an-
swer to be negative, i.e. there must exist
an KS-noncontextual ontological model that
includes—besides separable states and un-
entangled projective measurements—certain
entangled states. Specifically, we find that
the multiqubit states that can demonstrate
KS-contextuality with unentangled measure-
ments (in a finite contextuality scenario) are
exactly those that can violate a Bell inequal-
ity with local projective measurements.

The fact that there exist entangled multi-
qubit states yielding a statistical proof of the
KS theorem with only unentangled measure-
ments follows from the existence of entangled
multiqubit states that violate Bell inequali-
ties with only local projective measurements.
This implication can be seen from both the
more traditional observable-based perspective
[39], as well as the event-based perspective
[32, 40].

In the observable-based perspective we con-
sider the local observables of each party in
a Bell experiment. The set of local observ-
ables corresponding to one choice of setting
for each party commute pairwise and, thus,
form a context. We may then consider the
KS-noncontextual ontological models respect-
ing all such contexts. The mathematical con-
straints defining these models in this situa-
tion are equivalent to the constraints imposed

8Note the contrast between preparation contextu-
ality and KS-contextuality for multiqubit systems: the
former requires no entanglement but for the latter, en-
tanglement is necessary. It is known that any prepara-
tion noncontextual ontological model of a fragment of
quantum theory is also necessarily KS-noncontextual
but not conversely [38, 23]. We can thus conclude that
in any ontological model of multiqubit systems, KS-
contextuality implies both, entanglement and prepa-
ration contextuality.

by Bell’s assumption of local causality in the
original Bell scenario.9 Hence, a quantum vi-
olation of a Bell inequality using projective
measurements also provides a set of quantum
statistics deriving from local, and hence unen-
tangled, measurements that are incompatible
with a KS-noncontextual ontological model.

To prove our result the event-based per-
spective will be more convenient. In order
the see the connection between Bell scenarios
and KS-contextuality in this perspective one
needs to go beyond the idea of KS-colourings
of contextuality scenarios to that of probabilis-
tic models on contextuality scenarios follow-
ing the framework of Ref. [32].

In the following subsection, we define prob-
abilistic models on contextuality scenarios
and related notions, then show how a proof
of Bell’s theorem yields a statistical proof
of the KS theorem (a known connection).
In the next subsection, we then show that
the converse relationship also holds for mul-
tiqubit systems and unentangled measure-
ments. Thus, we arrive at the second main
contribution of this work: a multiqubit entan-
gled state can yield a statistical proof of the
KS theorem with unentangled measurements
if and only if it violates a Bell inequality with
local projective measurements.

5.1 Bell implies KS

A probabilistic model is a probability assign-
ment to the vertices of a contextuality sce-
nario (i.e. a hypergraph) such that the prob-
abilities assigned in each hyperedge sum to
one. Explicitly, given a contextuality scenario
H with vertices V (H) and hyperedges E(H),
a probabilistic model on the contextuality sce-
nario is a map p : V (H) → [0, 1] such that∑
v∈e p(v) = 1 for all e ∈ E(H). A KS-

colouring is a probabilistic model that only
takes values 0 and 1. A classical model is a
probabilistic model that can be decomposed
into a convex combination of KS-colourings,
where a convex combination, q, of probabilis-

9Both sets of constraints can be viewed as instances
of the marginal problem for classical probability dis-
tributions via Fine’s theorem [41, 42, 44, 43, 39].

12



tic models p and p′ is the probabilistic model
q(v) = ωp(v)+(1−ω)p′(v) for some ω ∈ [0, 1]
and all v ∈ V (H).

A probabilistic model p is quantum if and
only if for some separable Hilbert space H
there exists (i) a projection Πv for every
v ∈ V (H) such that

∑
v∈e Πv = IH for all

e ∈ E(H), and (ii) a density operator ρ on H,
such that p(v) = Tr(Πvρ).

A quantum model that is not classical is
said to provide a statistical proof of the KS
theorem [20, 19]. Such nonclassicality can be
witnessed by the violation of a Bell-KS in-
equality that bounds the polytope of classical
models, e.g. the KCBS inequality [20]. On
the other hand, if a contextuality scenario
admits no classical models (hence no KS-
colourings) but it admits a quantum model,
we have a logical proof of the KS theorem
[12, 18] which demonstrates a stronger form
of KS-contextuality: not only does there exist
a quantum model outside the set of classical
models, the set of classical models is, in fact,
empty, i.e. no KS inequalities exist and ev-
ery probabilistic model (hence every quantum
model) on the contextuality scenario fails to
be classical.

A Bell scenario is an experiment in which
n parties each perform a measurement xr and
observe an output ar for 1 ≤ r ≤ n on some
system such that the parties’ individual ex-
periments are space-like separated. We call a
measurement on the entire system performed
by all n parties a global measurement. Each
global measurement is specified by a list of the
local measurement settings x = x1x2 . . . xn
and has a set of possible outcomes a|x, where
a = a1a2 . . . an. We consider the case in which
each local measurement has two possible out-
comes, i.e. ar ∈ {0, 1} for all 1 ≤ r ≤ n. This
is the natural setting for a multiqubit Bell ex-
periment where the parties implement local
projective measurements.

A behaviour in a Bell scenario is a prob-
ability distribution, p(a|x), on the mea-
surement outcomes. A local behaviour is
a behaviour that can be decomposed into
a convex combination of local determinis-
tic behaviours, i.e. of behaviours p(a|x) =

p1(a1|x1) · · · pn(an|xn), where pr(ar|xr) ∈
{0, 1} denotes the probability of party r ob-
serving ar given they performed measurement
xr for all 1 ≤ r ≤ n.

A behaviour that can be realised by each
party performing a projective measurement
on some subsystem of a quantum system is
called a projective quantum behaviour. For a
projective quantum behaviour, p(a|x), there
exists a separable Hilbert space, H = H1 ⊗
· · · ⊗Hn, a projective measurement {Πr,xr

ar }ar
on Hr for each measurement setting xr of
the r-th party for all 1 ≤ r ≤ n, and a
density operator ρ on H such that p(a|x) =
Tr(
⊗n

r=1 Πr,xr
ar ρ).

A Bell scenario can be mapped to a con-
textuality scenario which has (i) a vertex
for every possible global measurement out-
come a|x for all a and x, (ii) a hyper-
edge consisting of all the possible outcomes
a|x of fixed global measurement x, i.e. each
set {(a|x)|ar ∈ {0, 1} for all 1 ≤ r ≤ n} is a
hyperedge, and (iii) a hyperedge deriving
from each no-signalling condition. The non-
signalling hyperedges consist of sets of possi-
ble outcomes of (hypothetical) adaptive mea-
surements in which one party performs a mea-
surement first and depending on their out-
come a second party selects a measurement
setting and so on [32]. For example, the hy-
peredge {00|00, 01|00, 10|01, 11|01} features in
the hypergraph of the two party Bell scenario
with binary inputs and outputs. This hyper-
edge can be thought of as the outcomes of an
adaptive measurement protocol in which the
first party always chooses measurement set-
ting 0, and the second party chooses the mea-
surement setting 0 if the first party obtains
outcome 0 and 1 if they obtain 1.10

There is a bijection between local be-
haviours in the Bell scenario and classical
models in the corresponding contextuality

10Note that the global measurements from the Bell
scenario are also examples of adaptive measurements
in which each party’s measurement setting does not
actually change based on the outcome of any other
party. Thus all the hyperedges in a contextuality sce-
nario representing a Bell experiment can be thought
of as adaptive measurements.
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scenario. Furthermore, each quantum be-
haviour deriving from projective measure-
ments in the Bell scenario defines a quantum
model in the contextuality scenario. A col-
lection of multiqubit projective measurements
and a density operator that violate a Bell in-
equality then generate a quantum model on
the corresponding contextuality scenario that
is not a classical model and thus yields a sta-
tistical proof of the KS theorem. For a de-
tailed account, see Ref. [32].

5.2 KS implies Bell
We have seen that states that can violate Bell
inequalities also yield statistical proofs of the
KS theorem with unentangled measurements.
We now show that the converse relationship
also holds. Namely, for any collection of prod-
uct multiqubit rays and an entangled state
which yield a statistical proof of the KS the-
orem, the entangled state necessarily violates
a Bell inequality.

The proof will proceed along the following
lines. Consider a hypergraph H with a non-
classical quantum model given by some multi-
qubit product rays, S, and a density operator
ρ. We will expand the set of multiqubit rays
S to a set of rays S ′ that correspond to all the
outcomes of a quantum measurement strategy
in some Bell scenario, B(S). For example, if
S consisted of {|00〉 , |+1〉 , |0+〉} it would be
expanded to

S ′ = { |00〉 , |01〉 , |10〉 , |11〉 ,
|+0〉 , |+1〉 , |−0〉 , |−1〉 ,
|0+〉 , |0−〉 , |1+〉 , |1−〉 ,
|++〉 , |+−〉 , |−+〉 , |−−〉},

(37)

which contains all the rays corresponding to
the outcomes of measurements in a two-party
Bell scenario where each party has two possi-
ble measurement settings given by {|0〉 , |1〉}
and {|+〉 , |−〉}. We can then extend the hy-
pergraph, H, to the hypergraph G ⊇ H gen-
erated by this extended set of rays and their
orthogonality relations. We can also extend
the quantum model on H given by S and ρ
to a quantum model on G given by S ′ and
ρ; this quantum model on G continues to be

non-classical. Let H ′ be the hypergraph cor-
responding to the Bell scenario B(S). The
hypergraph G will contain all the vertices and
hyperedges of the hypergraph H ′ but possibly
with additional hyperedges deriving from non-
local bases in S ′ such as the basis in Eq. (1).
The set S ′ and state ρ also give a quantum
model on the Bell hypergraph H ′, since every
hyperedge of H ′ is contained in G. Finally,
we will show, following [45], that the sets of
classical models on G and H ′ are identical de-
spite the difference in hyperedges. Thus, the
non-classical model on G is also non-classical
on H ′, meaning ρ yields a non-local, projec-
tive quantum behaviour in B(S). This leads
us to the following theorem:

Theorem 4. Any multiqubit density opera-
tor, ρ, that can yield a statistical proof of the
KS theorem with a finite set of unentangled
projective measurements can violate a Bell in-
equality with local projective measurements.

A full proof of Theorem 4 is given in Ap-
pendix B.

It follows that it must be possible to extend
our KS-noncontextual ontological model to
include, besides separable states, multiqubit
entangled states (e.g. Werner states) that
cannot yield Bell violations when subjected
to local projective measurements. We leave
the construction of such a multiqubit KS-
noncontextual ontological model as an open
problem for future work.

6 Do we need fully entangled bases?
Our initial question concerning the neces-
sity of entanglement in any multiqubit log-
ical proof of the KS theorem [12] was mo-
tivated by the presence of entanglement in
the Peres-Mermin magic square (Fig. 1). An-
other curious feature of the Peres-Mermin ar-
gument is the appearance of bases that are not
merely entangled but, in fact, fully entangled,
i.e. these bases contain no product projec-
tions. Is there, then, an even stronger require-
ment on the entanglement needed for a mul-
tiqubit KS theorem, i.e. just as the presence
of entangled projections in a KS set is generic
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and not particular to the Peres-Mermin case,
must a multiqubit KS set always contain fully
entangled bases? Here we rule out this pos-
sibility by explicitly constructing a two-qubit
KS set that does not require fully entangled
bases, i.e. every basis contains at least one
product ray.

Our construction makes use of Peres’ 33-ray
proof of the KS theorem in C3 which, when
represented as a contextuality scenario, actu-
ally requires 57 rays (since the proof makes
use of the orthogonality of certain pairs of the
33 rays for which the final orthogonal ray is
missing). We construct a KS set by embed-
ding two copies of the 57 Peres rays in two dif-
ferent three dimensional subspaces of C2⊗C2.

Denote by |φj〉, for integers 1 ≤ j ≤ 57,
the rays in the Peres 57-ray contextuality sce-
nario. The rays can be carved up into 40 dis-
tinct orthonormal bases.

We will now embed Peres’ three-
dimensional rays in the three-dimensional
subspace of the two-qubit Hilbert space
orthogonal to the ray |00〉. Given a ray
|v〉 = α |0〉 + β |1〉 + γ |2〉 ∈ R(C3), denote
|v00〉 = α |01〉+ β |10〉+ γ |11〉 ∈ R(C2 ⊗ C2).
For each of the 40 bases {|φa〉 , |φb〉 , |φc〉}
among the Peres rays, we add the basis{

|00〉 , |φ00
a 〉 , |φ00

b 〉 , |φ00
c 〉
}
, (38)

to our hypergraph.
We now perform the analogous operation in

the subspace orthogonal to |01〉, but we first
transform Peres’ rays by a unitary matrix

U = 1
3

 1 +
√

2 τ− τ+
τ+ 1 +

√
2 τ−

τ− τ+ 1 +
√

2

 , (39)

where τ± =
(
2−
√

2±
√

6
)
/2, and denote

the new set of rays |Uφj〉. Note that the
orthogonality relations between the rays are
preserved under this transformation. Explic-
itly, we add the basis{

|01〉 , |Uφ01
a 〉 , |Uφ01

b 〉 , |Uφ01
c 〉
}
, (40)

to our hypergraph for every basis
{|φa〉 , |φb〉 , |φc〉}, where analogously

|v01〉 = α |00〉 + β |10〉 + γ |11〉 ∈ R(C2 ⊗ C2)
for any |v〉 = α |0〉+ β |1〉+ γ |2〉 ∈ R(C3).

The unitary U has been chosen such that
〈φ00
j |Uφ01

k 〉 6= 0 for all entangled |φ00
j 〉 and

|Uφ01
k 〉. It follows that the entangled rays of

the hypergraph cannot be formed into a ba-
sis, i.e. there are no fully entangled bases in
our construction. This fact can be verified by
consulting the Mathematica notebook avail-
able at Ref. [46].

The contextuality scenario can now be seen
to be KS-uncolourable as follows. Any KS-
colouring, c, of our hypergraph should as-
sign zero to at least one of the rays |00〉 and
|01〉, since they appear in a hyperedge—the
hyperedge consisting of {|00〉 , |01〉 , |10〉 , |11〉}
which is one of the bases given by Eq. (38).
If |00〉 is assigned zero by the colouring, c,
then the assignments to the rays |φ00

j 〉 would
constitute a KS-colouring of the Peres hy-
pergraph, which does not exist. Similarly, if
|01〉 is assigned zero in the colouring, c, then
the assignments to the rays |Uφ01

j 〉 would also
constitute a KS-colouring of the Peres hyper-
graph. Hence such a colouring, c, cannot ex-
ist.

7 Unentangled Kochen–Specker
sets

Between the case of multiqubit systems
(wherein each subsystem has dimension two)
and the case of multiqudit systems, wherein
each subsystem has dimension at least three,
we have the possibility of multiqudit sys-
tems consisting of both qubits and higher-
dimensional qudits. For these systems, Wal-
lach showed that unentangled projections are
still insufficient to yield Gleason’s theorem
[27]. Is it, however, possible to obtain the
KS theorem with unentangled projections in
this case, unlike the multiqubit case? In this
section, we show that this is indeed possible.
In fact, the presence of just one qutrit in an
otherwise multiqubit system is enough to al-
low constructions of KS sets with unentangled
projections. Our argument, not surprisingly,
relies on the fact that a single qutrit admits
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KS sets on its own [12].

Theorem 5. There exists a KS set consist-
ing entirely of product rays in any separable
Hilbert space H1⊗· · ·⊗Hn where dim(Hj) ≥ 3
for some 1 ≤ j ≤ n.

Here we give an idea of the proof with an
example and give the general proof in Ap-
pendix C. We will show that if there were no
KS set consisting of product rays in H1⊗· · ·⊗
Hn, i.e. if there existed a KS-colouring c on
the product rays in H1 ⊗ · · · ⊗ Hn, then we
would be able to use c to define a KS-colouring
c′ on any set of bases of Hj , contradicting the
KS theorem. For example, assume c is a KS-
colouring of the product rays in C2⊗C3. Now
take any set of bases {B1, . . . , BN} in C3, for
example the bases from the Peres 33-vector
proof (57 vectors in 40 bases), and take the
element-wise tensor product of each basis Bk
with the basis {|0〉 , |1〉} of C2. The resulting
set of bases, {{|0〉 , |1〉} ⊗Bk}k, of C2 ⊗ C3

would be KS-colourable by the definition of c.
Now given a basis Bk we define a map c′ on
Bk by

c′(|ψ〉) =
{

1 if c(|0〉 |ψ〉) = 1 or c(|1〉 |ψ〉) = 1
0 otherwise.

(41)
For example, given the basis {|0〉 , |1〉 , |2〉}, if
c(|02〉) = 1 then c′(|2〉) = 1 and c′(|0〉) =
c′(|1〉) = 0. By this definition and the fact
that c assigns one to exactly one element of
{|0〉 , |1〉}⊗Bk we find that, likewise, c′ assigns
one to exactly one element of Bk. Then we see
that c′ is well-defined across all the elements of
the bases Bk since it is defined independently
from the basisBk. The map c′ would therefore
be a KS-colouring of the bases {B1, . . . , BN},
contradicting the result of Peres.

Note that the proof of Theorem 5 in Ap-
pendix C actually shows the stronger re-
sult that the hypergraph of product rays of
H1 ⊗ · · · ⊗ Hn with only the hyperedges de-
riving from direct product bases is also KS-
uncolourable. A direct product basis [47] is a
basis formed by taking the elementwise ten-
sor product of a basis for each subsystem Hj ,

i.e. a basis

{|ψ1
1〉 |ψ2

1〉 · · · |ψn1 〉 , |ψ1
2〉 |ψ2

1〉 · · · |ψn1 〉 ,
. . . , |ψ1

N1〉 |ψ
2
N2〉 · · · |ψ

n
N2〉} (42)

where {|ψj1〉 , . . . , |ψ
j
Nj
〉} is a basis for each Hj

for 1 ≤ j ≤ n.

The contrast between the impossibility of
Gleason’s theorem and the possibility of KS
theorem with unentangled measurements in
the case of composite systems that contain
both qubits and higher-dimensional qudits
may seem surprising at first glance. To gain
some intuition for this contrast, consider two
important facts: first, very simply, Gleason’s
theorem implies the KS theorem, but not con-
versely. Second, in more depth, the existence
of a KS theorem but the lack of a correspond-
ing Gleason’s theorem reflects the fact that
the former is a no-go theorem (ruling out cer-
tain types of probabilistic assignments) while
the latter is a “go theorem” (specifying the
allowed probabilistic assignments).

Consider, for example, a qubit-qutrit sys-
tem. A single qubit does not permit a proof
of Gleason’s theorem because the structure of
projective measurements on a qubit allows for
many more probabilistic assignments than are
dictated by the Born rule. Composing the
qubit with a qutrit and considering unentan-
gled measurements on the pair does not rule
out these non-quantum assignments on the
qubit, so Gleason’s theorem continues to fail.
On the other hand, a single qutrit admits a
proof of the KS theorem and this no-go state-
ment goes through even if we compose it with
a qubit.

8 Implications for the role of con-
textuality in quantum computation

The role of contextuality within the paradigm
of quantum computation with state injection
(QCSI) has been a subject of active research
in recent years [5, 13].11 This approach to

11Although we focus on KS-contextuality in this pa-
per, recent results [48] have shown connections be-
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quantum computation relies on lifting sta-
biliser quantum circuits, which cannot im-
plement universal quantum computation, to
universality via the injection of non-stabiliser
states called magic states. It has been shown
that, in the case of odd-prime dimensional qu-
dit (or, quopit [13]) circuits, contextuality is
a necessary resource for quantum computa-
tion, i.e. the magic states needed for univer-
sality must exhibit contextuality with respect
to stabiliser measurements [5]. Thus, if a state
admits a KS-noncontextual ontological model
with the stabiliser measurements, it cannot
promote the circuit to universality. The con-
verse claim, that (KS-)contextuality is suffi-
cient for universal quantum computation, is
conjectured but unproven [5].

The multiqubit case (i.e. the even-prime di-
mensional case) has, however, been a hurdle in
interpreting contextuality of magic states as
a resource for quantum computation [5]. The
multiqubit stabiliser subtheory is classically
efficiently simulable [49, 50] despite the pres-
ence of (state-independent) KS-contextuality
in its observables (e.g. see Fig. 1). The fact
that any state, stabiliser or not, exhibits con-
textuality with respect to such observables
means that there is nothing special about
the contextuality of magic states that renders
contextuality a necessary resource for uni-
versal quantum computation. While magic
states are still a necessary resource, their con-
textuality does not single them out (unlike
the quopit case) since all states can exhibit
contextuality.12 To overcome this hurdle, re-
stricted QCSI schemes have been proposed
[13] which restore the status of contextuality
as a resource for quantum computation.

In Ref. [13], such a restricted QCSI scheme
MO is required to satisfy:

(C1) Resource character. There exists a quan-
tum state that does not exhibit contextu-

tween QCSI and generalised contextuality [21], anal-
ogous to the conclusions of Ref. [5] with respect to
KS-contextuality.

12This also means that, unlike the quopit case, con-
textuality cannot even be conjectured as a sufficient
condition for universality in this case.

ality with respect to measurements avail-
able in MO.

(C2) Tomographic completeness. For any state
ρ, the expectation value of any Pauli ob-
servable can be inferred via the allowed
operations of the scheme.

The requirement (C1) means that the mea-
surements in the scheme cannot exhibit state-
independent contextuality. It follows from
Theorem 3 of the present manuscript that a
sufficient condition for satisfying requirement
(C1) is that every measurement in the scheme
be unentangled. Specifically, the scheme
MO prescribes the sets of observables in the
scheme that are jointly measurable. If none
of these joint measurements requires a mea-
surement in an entangled basis then (C1) is
satisfied.

The schemes proposed in Ref. [13] satisfy
exactly this condition; they contain no entan-
gled measurements. Thus, all the contextu-
ality in these schemes derives from entangle-
ment of the injected state. Furthermore, it
follows from Theorem 4 that in order for the
injected state to promote such a scheme to
universality it must be capable of violating
a Bell inequality with some local projective
measurements.

9 Conclusions

In this work we have demonstrated the ne-
cessity of entanglement in proofs of the KS
theorem for systems of multiple qubits, i.e.,
KS-contextuality necessitates not only incom-
patibility but also entanglement in multiqubit
systems.

On the one hand, we showed KS sets for
multiqubit systems must contain entangled
rays/projections. It follows that any logical
proof of the KS theorem for multiqubit sys-
tems relies upon entanglement in the mea-
surements, just like in the case of the Peres-
Mermin square (Fig. 1). However, unlike
the Peres-Mermin square, multiqubit proofs
of KS-contextuality do not, in general, require
measurements in fully entangled bases.
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On the other hand, the KS-noncontextual
ontological model defined in Sec. 4 allows us
to go further and also make statements about
statistical (and state-dependent) proofs of the
KS theorem, i.e. those proofs that are in the
style of Klyachko et al. [20]. Specifically, this
model can be easily extended to include un-
entangled projective measurements and sep-
arable states of a multiqubit system. Thus,
any statistical proof of the KS theorem for
such a system must employ entanglement, ei-
ther in the state or in the measurements (or
both). For example, proofs of Bell’s theorem
give rise to statistical proofs of the KS the-
orem in which the measurements are unen-
tangled but the state is necessarily entangled
[51, 33].

Our results also allow us to make the fol-
lowing comparisons with other forms of non-
classicality.

Firstly, it follows from our results that the
nonclassicality present in unentangled mea-
surements in the form of ‘nonlocality without
entanglement’ [28] is insufficient to witness
the (KS-)contextuality of multiqubit systems.

Secondly, Bell’s theorem follows from un-
entangled measurements and requires an en-
tangled state (although entanglement is not
sufficient [52]). Similarly, it follows from the
model in Sec. 4 that statistical proofs of the
KS theorem employing unentangled measure-
ments also require entangled states for multi-
qubit systems. Moreover, in Theorem 4, we
have shown that the subset of entangled sets
that violate a Bell inequality with local pro-
jective measurements are exactly those which
can yield a finite statistical proof of the KS
theorem, where by ‘finite’ we mean that the
proof uses a finite set of measurements.

Finally, our results clarify the connection
between Gleason’s theorem and the KS the-
orem with respect to entanglement. While
both theorems hold in dimensions greater
than two and fail to hold in dimension two,
their behaviour with respect to entanglement
differs in multiqudit systems. In any multi-
qudit system that contains both, a subsystem
of dimension two and another of dimension at
least three, the two theorems diverge. Un-

entangled measurements are sufficient for a
proof of the KS theorem but not Gleason’s
theorem for such multiqudit systems (Fig. 2).

We have also discussed the implications of
our results for the program of understanding
the role of contextuality in quantum compu-
tation. We find that the assumptions underly-
ing some previously proposed QCSI schemes
with qubits [13] become more intuitive in view
of our results.

The questions we have raised and addressed
in this paper have implications for both funda-
mental and applied aspects of quantum the-
ory. Further development of the applied as-
pects, particularly with respect to quantum
computation, will be taken up in future work.
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A Traditional KS

A traditional proof of the KS theorem com-
prises a set of self-adjoint operators on a
Hilbert space that lead to a contradiction
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when one attempts to find a valuation (see
Def. 3 below) on all such self-adjoint opera-
tors [12, 53]. A subset of these operators that
commute pairwise is known as a context, since
all the observables in the subset are jointly
measurable. In finite dimensions, and in par-
ticular for multiqubit systems, the operators
in a context have a simultaneous orthonormal
eigenbasis, i.e. an orthonormal basis in which
every vector is an eigenvector of every opera-
tor in the context. In this appendix we will de-
scribe the relationship between the existence
of valuations and KS-colourings. Thus, we
demonstrate how Theorem 3 implies that for
multiqubit systems a set of operators leading
to a traditional proof of the KS theorem must
contain a context for which the simultaneous
orthogonal eigenbasis contains entangled vec-
tors.

Let Lsa(H) denote the self adjoint operators
of a separable Hilbert space H.

Definition 3. A valuation is a map v :
Lsa(H)→ R satisfying:

(SPEC) v(A) ∈ σ(A), where σ(A) denotes
the spectrum of A

(FUNC) v(g(A)) = g(v(A)) for any Borel
function g.

The requirement (FUNC) implies, for ex-
ample, that for commuting operators A and B
we have v(AB) = v(A)v(B) and v(aA+bB) =
av(A)+bv(B) for a, b ∈ R. Therefore, if there
did exist a valuation, v, on Lsa(H) it would
assign values zero or one to each rank-one pro-
jection and satisfy v(Π1) + v(Π2) + . . . = 1
for sets of orthogonal projections {Π1,Π2, . . .}
summing to the identity. In other words, the
valuation would define a KS-colouring when
restricted to the rank-one projections of the
Hilbert space. The non-existence of such a
colouring, stated in Theorem 1, therefore im-
plies the non-existence of a valuation.

In the case of multiqubit product rays we
have found that KS-colourings do, however,
exist. We may use these colourings to define
valuations on certain subsets of self-adjoint
operators.

We define a traditional proof of the KS the-
orem as a set A of self-adjoint operators such
that there does not exist a map v on A satis-
fying (SPEC) and (FUNC), where (FUNC) is
limited to Borel functions g such that g(A) ∈
A.13 We find that such a set A must contain
contexts for which the simultaneous orthog-
onal eigenbasis contains entangled vectors in
multiqubit systems.

Lemma 3. Consider a set of self-adjoint op-
erators A on C2⊗n such that the simultane-
ous eigenbases for each context in A consist
entirely of product vectors. Then A does not
form a traditional proof of the KS theorem.

Proof. By Theorem 3, there exists a KS-
colouring, c, on the hypergraph H generated
by the simultaneous eigenbases of the contexts
in A. As in the treatment of Gleason’s the-
orem in Sec. 2, this colouring can be equiv-
alently defined on the rank-one projections
corresponding to each ray and extended to
higher rank projections via c(Π1 +Π2 + · · · ) ≡
c(Π1) + c(Π2) + · · · for mutually orthogo-
nal sets of projections {Π1,Π2, . . .}. Given
A ∈ A, let A =

∑
j λjΠj be its spectral de-

composition, where Πj are orthogonal projec-
tions and λj are the eigenvalues of A. We will
show the map

v(A) =
∑
j

λjc (Πj) , (43)

satisfies SPEC and FUNC for all A ∈ A.
For a given operator A ∈ A, the colouring

c takes value one on exactly one of the pro-
jections Πj and zero on the rest. It follows
that v satisfies the (SPEC) principle. For any

13Note that under this definition the set of nine op-
erators in the Peres-Mermin square does not produce
a KS contradiction, however, if one adds the identity
and negative identity to the set then the standard con-
tradiction can be found.
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Borel function g such that g(A) ∈ A, we have

v (g(A)) = v

g
∑

j

λjΠj

 (44)

= v

∑
j

g(λj)Πj

 (45)

=
∑
j

g(λj)c(Πj) = g(λk), (46)

for some λk ∈ σ(A). And further

g(v(A)) = g

 d∑
j=1

λjc(Πj)

 = g(λk). (47)

Therefore, v also satisfies the (FUNC) princi-
ple.

B Proof of Theorem 4
Theorem 4. Any multiqubit density opera-
tor, ρ, that can yield a statistical proof of the
KS theorem with a finite set of unentangled
projective measurements can violate a Bell in-
equality with local projective measurements.

Proof. Let

S =
{
|ψj〉 = |ψ1

j 〉 |ψ2
j 〉 . . . |ψnj 〉 |1 ≤ j ≤ m

}
,

(48)
be a set of m product rays in C2⊗n , and let
ρ be a density operator on C2⊗n that yields a
statistical proof of the KS theorem with the
hypergraph, H, generated by S and all the
bases contained in S. Explicitly, the hyper-
graph H has m vertices, vj for 1 ≤ j ≤ m,
such that {vj |j ∈ J} ∈ E(H) if and only if
{|ψj〉 |j ∈ J} is an orthonormal basis, where
J ⊂ {1, . . . ,m} is some indexing set. The
non-classical quantum model on H is given
by pSρ (vj) = 〈ψj |ρ|ψj〉. We will show that ρ
necessarily violates a Bell inequality.

Consider the set Sr of distinct local rays
of the r-th system that are pairwise non-
orthogonal. Explicitly,

Sr =
{
|ψrj 〉 |j ∈ Jr

}
, (49)

where j ∈ Jr ⊆ {1, . . . ,m} if and only if
|ψrj 〉 6= |ψrk〉 and 〈ψrj |ψrk〉 6= 0 for all k < j.

Now we will relabel the states in Sr as follows

Sre
r = {|0rk〉 |1 ≤ k ≤ |Sr|} .

Let B (S) be the n party Bell scenario in
which the r-th party has |Sr| binary measure-
ment settings. Consider the quantum strategy
in this scenario in which the r-th party’s k-th
measurement is given by

xr = k : {|0rk〉 , |1rk〉} , (50)

where |1rk〉 ∈ C2 is the ray orthogonal to |0rk〉.
For ar ∈ {0, 1}, we denote the n-qubit ray⊗n
r=1 |(ar)rxr〉 by |(a|x)〉—in correspondence

with its outcome in the Bell scenario. Note
that the global measurements, {|(a|x)〉}a, in
this Bell experiment contain all the rays in S.
Let S ′ denote the extended set (compared to
S) of rays {|(a|x)〉}a,x.

Denote by H ′ the contextuality scenario
corresponding to the Bell scenario B(S). Re-
call that each hyperedge of H ′ is given by
the outcomes of an adaptive measurement.
Equivalently, under the assignment of the rays
from S ′ to each vertex, each hyperedge corre-
sponds to a projective measurement measure-
ment that can be performed via LOCC. In
other words, the hypergraph H ′ is generated
by S ′ and those orthonormal bases that can be
implemented via LOCC rather than all pos-
sible orthonormal bases. It follows that, al-
though the vertices of H ′ are a superset of
those of the original contextuality scenario,
H, there could be hyperedges in H which
are not contained in E(H ′) since they arise
from “non-local” bases in H, such as the ba-
sis in Eq. (1). Denote by G the contextu-
ality scenario generated by rays S ′ and all
the bases, which gives V (G) = V (H ′) and
E(G) ⊇ E(H ′) ∪ E(H).

The entangled state ρ combined with the
assignment of the ray |(a|x)〉 to each vertex
a|x gives a quantum model pρ on both the hy-
pergraphs, G and H ′. Further, we have that
pρ is a non-classical model on G since it is a
non-classical model on a subset of G, namely,
H14. Now, we will show that the classical

14The G can only add further constraints on the
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models on G and H ′ coincide exactly, mean-
ing that pρ is also a non-classical model on H ′.
Given the bijection between classical models
on H ′ and local behaviours in the Bell sce-
nario B(S), it follows that ρ violates a Bell
inequality.

Clearly, a classical model on G is a classical
model on H ′ since there are fewer constraints
on the classical models on H ′ due to the re-
duced set of hyperedges. We now show the
converse, using an argument from [45, The-
orem 2]. Given an edge e = {(aj |xj) |1 ≤
j ≤ 2n} of G we have that for any pair of
distinct vertices, aj |xj and ak|xk, in the edge
the corresponding pair of rays, |(aj |xj)〉 and
|(ak|xk)〉, are orthogonal by the definition of
G. Since these rays are n-qubit product rays,
we find that for at least one of the single-qubit
subsystems, the qubit ray in |aj |xj〉 must the
orthogonal to qubit ray of the same subsystem
of |ak|xk〉. By construction, for each qubit ray
that occurs in a given subsystem the orthog-
onal ray only occurs as the other outcome of
the same measurement setting, cf. Eq. (50).
If this orthogonality occurs in the r-th sub-
system, explicitly, we find (xr)j = (xr)k and
(ar)j 6= (ar)k. Thus, we find in the two
events aj |xj and ak|xk of the Bell scenario,
party r has the same measurement setting
(xr)j = (xr)k but observes a different out-
come, either (ar)j or (ar)k, i.e. the two events
are locally orthogonal in the terminology of
Ref. [54].

It follows that for any local deterministic
behaviour in the Bell scenario (i.e. classical
model on H ′), at most one of the events aj |xj
or ak|xk occurs with probability one, whilst
the other must occur with probability zero.
Since this relationship holds between any pair
of events in the edge e ∈ E(G) ⊇ E(H ′), we
find that a local deterministic behaviour on
H ′ assigns one to at most one of these out-
comes. Hence, for each e ∈ E(G)\E(H ′), we

classical models achievable on H, so any non-classical
model on H will necessarily be non-classical on G.
Or, to take the contrapositive, if a model is classical
on G then it must be classical on H because every
deterministic model on G will also be a deterministic
model on H.

have the following Bell inequality for B(S) (or,
equivalently, a KS-noncontextuality inequal-
ity on the contextuality scenario H ′)∑

a|x∈e
pL(a|x) ≤ 1, (51)

where pL is a local behaviour (or, equivalently,
a classical model on H ′).

Finally, we show that the Bell inequality of
Eq. (51) is saturated by all local behaviours in
B(S). We do so by showing that an internal
point of the polytope of local behaviours satu-
rates the inequality and therefore the inequal-
ity is trivial, in the sense that it is exactly
saturated by all models in the affine span of
the local polytope. Observe that the uniform
behaviour pU (v) = 1/2n for all v ∈ V (H ′)
is an internal point of the local polytope and
saturates the inequality (51).

Any internal behaviour pI(a|x) of the local
polytope may be expressed as a convex com-
bination

pI(a|x) = ωpD(a|x) + (1− ω)pδ(a|x), (52)

of any local deterministic behaviour pD(a|x)
(a vertex of the local polytope) and some
other behaviour on the boundary of the lo-
cal polytope pδ(a|x), where 0 ≤ ω ≤ 1. Thus,
we have
2n∑
j=1

pI(aj |xj)

= ω

 2n∑
j=1

pD(aj |xj)

+ (1− ω)

 2n∑
j=1

pδ(aj |xj)


= 1,

(53)
and, therefore, by the inequality (51) we find

2n∑
j=1

pD
(
aj |xj

)
= 1. (54)

Note that any affine combination of lo-
cal deterministic behaviours, thus any non-
signalling behaviour [55, Corollary 2], also ob-
tains the value one for this Bell expression. In
particular, we have

2n∑
j=1

pL
(
aj |xj

)
= 1, (55)
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for any local behaviour pL in B(S).
We have shown that any local behaviour in
B(S), and thus classical model, pC , on H ′,
satisfies

∑
v∈e pC(v) = 1 for all hyperedges

e ∈ E(G). Thus, the classical models on H ′

are exactly the classical models on G. It fol-
lows that pρ is a non-classical quantum model
on H ′ and therefore violates a Bell inequal-
ity.

C Proof of Theorem 5

Theorem 5. There exists a KS set consist-
ing entirely of product rays in any separable
Hilbert space H1⊗· · ·⊗Hn where dim(Hj) ≥ 3
for some 1 ≤ j ≤ n.

Proof. Let H = H1 ⊗ . . . ⊗ Hn−1 be some
separable Hilbert space for which there ex-
ists a KS set of bases V k for 1 ≤ k ≤ K
consisting entirely of product vectors vl for
1 ≤ l ≤ L (including the case n = 2 where
we consider all vectors to be product). Let
W = {wj |1 ≤ j ≤ J} be a basis of a separa-
ble Hilbert space Hn and consider the prod-
uct bases W k = {wj ⊗ vl|wj ∈ W, vl ∈ V k}
of Hn ⊗ H for each 1 ≤ k ≤ K. Now as-
sume there is no unentangled KS theorem in
Hn ⊗ H and, therefore, there exists a KS-
colouring c of the bases W k. Consider the
map c′(vl) =

∑
j c(wj ⊗ vl) on the elements

of the bases V k. We will show this map is
a KS-colouring of the bases V k and thus the
assumption that there is no unentangled KS
theorem in Hn ⊗H must be false.

Firstly, we have that c assigns one to at
most one of the vectors in {wj⊗vl|1 ≤ j ≤ J}
and assigns zero to the rest, since c is a KS-
colouring and the vectors are mutually or-
thogonal. Therefore c′(vl) ∈ {0, 1} for all
1 ≤ l ≤ L. Secondly, if 〈vl, vl′〉 = 0 then
the vectors {wj ⊗ vl, wj ⊗ vl′ |1 ≤ j ≤ J}
are mutually orthogonal and c assigns one to
at most one of the vectors. It follows that
c′(vl)+c′(vl′) ≤ 1. Finally, for all W k we have
c(w ⊗ v) = 1 for some w ∈ W and v ∈ V k.
Therefore, c′(v) =

∑
j c(wj ⊗ v) = 1 for some

v ∈ V k for all 1 ≤ k ≤ K.
Since there exists a KS set in any separable

Hilbert space of dimension at least three, the
desired result follows by induction (and the
irrelevance of the order of the Hilbert spaces
in the tensor product).
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