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Abstract

A set W is called a local resolving set of G if the distance of u and v to some elements of W
are distinct for every two adjacent vertices u, v in G. The local metric dimension of G is the
minimum cardinality of a local resolving set of G. A connected graph G is called a split graph
if V (G) can be partitioned into two subsets V1 and V2 where an induced subgraph of G by V1 and
V2 is a complete graph and an independent set, respectively. We also consider a graph, namely
the unicyclic graph which is a connected graph containing exactly one cycle. In this paper, we
provide a general sharp bounds of local metric dimension of split graph. We also determine an
exact value of local metric dimension of any unicyclic graphs.
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1. Introduction

All graphs in this paper are finite, simple, and connected. Let G = (V (G), E(G)) be a graph
with V (G) and E(G) are vertex and edge set of G, respectively. The distance between two vertices
u and v in a graph G is the length of a shortest path from u to v in G, denoted by d(u, v). Let
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W = {w1, w2, ..., wk} be a subset of V (G). The representation of v with respect to W is defined
as the k-tuple r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk)). The set W then is called as a resolving
set of G if r(u|W ) 6= r(v|W ) for every two distinct vertices u and v in G. A basis of G is a
resolving set of G with minimum cardinality and we call its cardinality by the metric dimension of
G, denoted by dim(G).

The metric dimension was first introduced by Slater in 1975 [27] and independently by Harary
and Melter in 1976 [12]. Generally, determining the metric dimension of any graphs is an NP-
complete problem. However, the metric dimension of certain particular graphs have been deter-
mined, such as cycles [6], trees [6, 12, 14], wheels [3, 4, 26], fans [4], complete n-partite graphs
[6], unicyclic graphs [18], honeycomb networks [16], regular graph [23], Cayley graphs [10], Ja-
hangir graphs [28], and Sierpiński graphs [15]. Moreover, Chartrand et al. [6] have characterized
all graphs of order n ≥ 3 with metric dimension 1, n − 1, and n − 2. The metric dimension
of graph obtained from a graph operation also has been studied such as Cartesian product graphs
[5, 8, 14], join product graphs [3, 4, 26], corona product graphs [13, 29], strong product graphs
[21], lexicographic product graphs [25], and comb product graphs [24]. This concept also has an
application in many diverse areas, including robotic navigation [7, 14], chemistry [6], strategy in
mastermind [11], and network discovery and verification [2].

Another version on metric dimension is the local metric dimension. In this concept, a subset
W of V (G) is called as a local resolving set of G if r(u|W ) 6= r(v|W ) for every two adjacent
vertices u, v of G. A local basis of G is a local resolving set of G with minimum cardinality and
we call its cardinality by the local metric dimension of G, denoted by lmd(G).

The local metric dimension problems were first studied by Okamoto et al. [17]. They have
characterized all graphs of order n with local metric dimension 1, n− 2, and n− 1, which can be
seen in the following theorem.

Theorem 1.1. [17]Let G be a connected graph of order n ≥ 2. Then

1. lmd (G) = 1 if and only if G is bipartite.
2. lmd (G) = n− 1 if and only if G = Kn.
3. lmd (G) = n− 2 if and only if ω(G) = n− 2 where ω(G) is the order of the biggest clique

in G.

Determining a local metric dimensions between a graph obtained by a graph operation with the
original graphs is also an interesting problem. Okamoto et al. also have determined the local metric
dimension of Cartesian product graphs. The local metric dimension of corona product graphs,
rooted product graphs, block graphs, bouquet graphs, and chain of graphs have been investigated
by Rodríguez-Velázquez et al. [19, 20]. Meanwhile, some results for certain class of graphs can
be seen in [1, 9, 22]

In this paper, we obtain two main results. The first result is related to split graph. We provide
sharp lower and upper bound for the local metric dimension of any split graphs. We also give an
existence of a split graph whose local metric dimension is in between those bounds. The second
result is related to unicyclic graph. In this paper, we determine the local metric dimension of any
unicyclic graphs.
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2. Split Graph

In this section, we define Sp(m,n) as a split graph where V1 = {ai|1 ≤ i ≤ m} and V2 =
{bj|1 ≤ j ≤ n}. For 1 ≤ i ≤ m, let Ai = {b ∈ V2|aib ∈ E(Sp(m,n))}.

We obtain the general bound for the local metric dimension of any split graphs, which can be
seen in the following theorem.

Theorem 2.1. For n,m ∈ N, let Sp(m,n) be a split graph. Then

dlog2me ≤ lmd(Sp(m,n)) ≤ m.

Proof. For the upper bound, let W = V1. So, it is clear that V (Sp(m,n)) \W = V2. If every
vertex in V2 has different representation with respect to W , then W is a local resolving set of
Sp(m,n). Otherwise, let bi and bj be two distinct vertices in V2 satisfying r(bi|W ) = r(bj|W ).
Note that bibj /∈ E(Sp(m,n)) for i 6= j. It implies that W is still a local resolving set of Sp(m,n).
Since |W | = m, we obtain lmd(Sp(m,n)) ≤ m.

Now, suppose that W is a local basis of Sp(m,n) satisfying |W | ≤ dlog2me − 1. Note that
for m ∈ {1, 2}, we have a contradiction since dlog2me − 1 = 0. Now, we assume that m ≥ 3.

First, we will show that dlog2me − 1 ≤ m − 2 by mathematical induction. In the other
hand, dlog2me ≤ m − 1. For m = 3, it is true that dlog2me = 2 ≤ m − 1. We assume
that dlog2 ke ≤ k − 1 for a natural number k ≥ 3. For m = k + 1, we obtain dlog2me =
dlog2(k + 1)e ≤ dlog2 ke + 1 ≤ k − 1 + 1 = k = m − 1. Therefore, dlog2me ≤ m − 1 which
implies dlog2me − 1 ≤ m− 2.

Since we have |W | ≤ dlog2me − 1 ≤ m − 2 and |V1| = m, there exist two distinct vertices
ai and aj in V1 such that W does not contain {ai, aj} ∪ Ai ∪ Aj . Note that every vertex x ∈
E(Sp(m,n))\({ai, aj}∪Ai∪Aj) satisfies d(x, ai) = d(x, aj). It implies that r(ai|W ) = r(aj|W ).
Since aiaj ∈ E(Sp(m,n)), it follows that we have a contradiction.

In the next two theorems, we give an existence of split graph whose local metric dimension
satisfies either the lower bound or the upper bound in Theorem 2.1.

Theorem 2.2. For n,m ∈ N, there exists a split graph Sp(m,n) where lmd(Sp(m,n)) = dlog2me.

Proof. Let m ≥ 3 and n = dlog2me. Let us consider a split graph Sp(m,n) when the edge set of
the split graph is constructed as follows:

1. An induced subgraph of Sp(m,n) by V1 = {ai|1 ≤ i ≤ m} is a complete graph.
2. Let ai be represented by a binary number of i− 1 with length dlog2me.
3. If the j-th position of binary number of ai is 1, then connect ai to bj . Otherwise, ai and bj

are not adjacent.

Now, we will show that the split graph Sp(m,n) defined above has lmd(Sp(m,n)) = dlog2me =
n. By Theorem 2.1, we only need to show that lmd(Sp(m,n)) ≤ dlog2me. We define W = V2.
Note that V (Sp(m,n)) \ W = V1. Since two distinct vertices ai and aj have different binary
number, there exists a vertex b in V2 such that bai ∈ E(Sp(m,n)) but baj /∈ E(Sp(m,n)). It
follows that r(ai|W ) 6= r(aj|W ), which implies W is a local resolving set of Sp(m,n).
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An illustration of the split graph Sp(m,n) as defined on proof of Theorem 2.2 can be seen in
figure below. In Figure 1, we have a split graph Sp(7, 3). The binary number of every vertex
v ∈ V1 represents the connection of vertex v to some vertices in V2. However, in figure below,
the connection between two distinct vertices in V1 is not given since it is clear that an induced
subgraph of Sp(7, 3) by V1 is a complete graph.

Figure 1. Graph Sp(7, 3) as defined on proof of Theorem 2.2

Theorem 2.3. For n,m ∈ N, there exists a split graph Sp(m,n) where lmd(Sp(m,n)) = m.

Proof. For n,m ∈ N, let Sp(m,n) be a split graph where aibj ∈ E(Sp(m,n)) for 1 ≤ i ≤ m and
1 ≤ j ≤ n. We will show that lmd(Sp(m,n)) = m. By Theorem 2.1, we only need to show that
lmd(Sp(m,n)) ≥ m.

Suppose that lmd(Sp(m,n)) ≤ m − 1 and W be a local basis of Sp(m,n). We distinguish
two cases.

1. W ⊂ V1

Since |V1| = m, there exists ai ∈ V1 where i ∈ {1, 2, . . . ,m} such that ai /∈ W . We also
consider a vertex b1 of V2. Note that ai and b1 are adjacent to every vertex of V1 \{ai} = W .
Therefore, r(ai|W ) = (1, 1, . . . , 1) = r(b1|W ). Since ai and b1 are adjacent in Sp(m,n),
we obtain a contradiction.

2. W ∩ V2 6= ∅
Then |W ∩ V1| ≤ m − 2. So, there exist two distinct vertices ai and aj in V1 such that W
does not contain {ai, aj} ∪ Ai ∪ Aj . Since ai and aj are adjacent to every other vertices in
Sp(m,n), we obtain that r(ai|W ) = (1, 1, . . . , 1) = r(aj|W ), a contradiction.
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In the theorem below, we give an existence of a split graph whose local metric dimension is in
between the lower and upper bound in Theorem 2.1.

Theorem 2.4. There exist c, n,m ∈ N with m ≥ 3 and c ∈ {dlog2me+1, dlog2me+2, . . . ,m−1},
such that lmd(Sp(m,n)) = c.

Proof. For m ≥ 4 and n ≥ 3, let Sp(m,n) be a split graph where the degree of every vertex in V2

is 1. We will show that lmd(Sp(m,n)) = m− 1. Note that dlog2me < m− 1 < m.
For the lower bound, suppose that lmd(Sp(m,n)) ≤ m−2 and W is a local basis of Sp(m,n).

We define Q = {a ∈ V1 | a ∈ W or (b ∈ V2 ∩W and ab ∈ E(Sp(m,n)))}. So, |Q| ≤ |W | ≤
m−2. Therefore, there exist two distinct vertices ai and aj in V1 \Q such that r(ai|Q) = r(aj|Q).
It follows that r(ai|W ) = r(aj|W ), a contradiction.

For the upper bound, we define W = {ai|1 ≤ i ≤ m − 1}. Therefore, we obtain r(an|W ) =
(1, 1, . . . , 1). Now, we consider the representation of vertex bj of V2 for 1 ≤ j ≤ n. Since
bj is adjacent to only one vertex of V1, there exists a ∈ V1 ∩ W such that abj /∈ E(Sp(m,n)).
Therefore, we obtain d(a, bj) = 2 6= 1 = d(a, an) which implies r(bj|W ) 6= r(an|W ). So, W is a
local resolving set of Sp(m,n).

3. Unicyclic Graph

In this section, let G be an unicyclic graph. Note that, the graph G can be obtained from a tree
T by adding an edge e = xy to two non-adjacent vertices x, y ∈ V (T ). Now, let us consider the
cycle of G. If the cycle is even, then G is bipartite graph, which implies lmd(G) = 1 [17]. In
lemma below, we investigate a property if G contains an odd cycle.

Lemma 3.1. Let G be a unicyclic graph containing odd cycle C. For any vertex v ∈ V (G), there
exists exactly one pair of adjacent vertices x and y of G satisfying d(x, v) = d(y, v). Moreover, x
and y must be in C.

Proof. Let G be a unicyclic graph containing odd cycle Cn where n ≥ 3. Let V (Cn) =
{c0, c1, . . . , cn−1} with E(Cn) = {c0c1, c1c2, . . . , cn−2cn−1, cn−1c0} and n = 2k + 1 where k ≥ 1.
Let G′ is a subgraph of G such that G′ = G \E(Cn). So, G′ is a disconnected graph containing n
components where every component is a tree. For i ∈ {1, 2, . . . , n}, we define Ti as a component
of G′ containing vertex ci.

Let v be a vertex of G. So, there exists i ∈ {1, 2, . . . , n} such that v ∈ V (Ti). Let x and
y be an adjacent vertices in G. If there exists j ∈ {1, 2, . . . , n} such that x, y ∈ V (Tj), then we
have d(v, z) = d(v, ci) + d(ci, cj) + d(cj, z) for z ∈ {x, y}. Since Tj is a tree and every two
distinct vertices in a tree has a unique path between them, we obtain that either d(cj, x) < d(cj, y)
or d(cj, x) > d(cj, y), which implies d(v, x) 6= d(v, y). Therefore, x and y must be from two
different components of G′. It follows that x and y must be in Cn.

Now, let x and y be two adjacent vertices in Cn and v ∈ V (Ti). If d(ci, x) < diam(Cn) = k,
then we have either d(ci, x) < d(ci, y) or d(ci, x) > d(ci, y), which implies d(v, x) 6= d(v, y). So,
it must be d(ci, x) = k = d(ci, y). Since n is odd, we obtain the two adjacent vertices are x = ci+k

and y = ci+k+1 where both indexes are on modulo n.
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Now, suppose that there are two distinct pairs of adjacent vertices x1, y1 and x2, y2 of G such
that for any vertex v ∈ V (G), d(x1, v) = d(y1, v) and d(x2, v) = d(y2, v). By the similar argument
above, we will obtain that x1, y1 and x2, y2 are from different cycle of G. Therefore, G contains
at least two cycles, a contradiction.

Now, we are ready to prove the local metric dimension of unicyclic graph.

Theorem 3.1. Let G be a unicyclic graph of order at least three. If G contains a cycle with p
vertices, then

lmd(G) =

{
1, if p is even;
2, if p is odd.

Proof. We distinguish two cases.

Case 1. p is even.
Then the unicyclic graph G is a bipartite graph. According to [17], we have lmd(G) = 1.

Case 2. p is odd.
Then the unicyclic graph G is not bipartite graph. Consequently, lmd(G) ≥ 2. Now we will
prove that lmd(G) ≤ 2 by construct a local resolving set of G. Let C be a cycle contained
in G. By Lemma 3.1, for vertex v ∈ V (G), there exist exactly one pair of adjacent vertices
x and y in C such that d(x, v) = d(y, v). Now, we define W = {v, x}. Since there is no
two adjacent vertices having the same representation with respect to W , we obtain that W is
a local resolving set of G. Therefore lmd(G) ≤ 2.
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