INDONESIAN JOURNAL
OF COMBINATORICS

The local metric dimension of split and unicyclic graphs

D. Fitriani, A. Rarasati, S.W. Saputro, E.T. Baskoro
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung
Jl. Ganesha 10 Bandung 40132, Indonesia
\{dinny.fitriani,anisararasati\}@gmail.com, \{suhadi,ebaskoro\}@math.itb.ac.id

Abstract

A set W is called a local resolving set of G if the distance of u and v to some elements of W are distinct for every two adjacent vertices u, v in G. The local metric dimension of G is the minimum cardinality of a local resolving set of G. A connected graph G is called a split graph if $V(G)$ can be partitioned into two subsets V_{1} and V_{2} where an induced subgraph of G by V_{1} and V_{2} is a complete graph and an independent set, respectively. We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle. In this paper, we provide a general sharp bounds of local metric dimension of split graph. We also determine an exact value of local metric dimension of any unicyclic graphs.

Keywords: local basis, local metric dimension, local resolving set, split graph, unicyclic graph Mathematics Subject Classification : 05C12
DOI: 10.19184/ijc.2022.6.1.3

1. Introduction

All graphs in this paper are finite, simple, and connected. Let $G=(V(G), E(G))$ be a graph with $V(G)$ and $E(G)$ are vertex and edge set of G, respectively. The distance between two vertices u and v in a graph G is the length of a shortest path from u to v in G, denoted by $d(u, v)$. Let

[^0]$W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a subset of $V(G)$. The representation of v with respect to W is defined as the k-tuple $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. The set W then is called as a resolving set of G if $r(u \mid W) \neq r(v \mid W)$ for every two distinct vertices u and v in G. A basis of G is a resolving set of G with minimum cardinality and we call its cardinality by the metric dimension of G, denoted by $\operatorname{dim}(G)$.

The metric dimension was first introduced by Slater in 1975 [27] and independently by Harary and Melter in 1976 [12]. Generally, determining the metric dimension of any graphs is an NPcomplete problem. However, the metric dimension of certain particular graphs have been determined, such as cycles [6], trees [6, 12, 14], wheels [3, 4, 26], fans [4], complete n-partite graphs [6], unicyclic graphs [18], honeycomb networks [16], regular graph [23], Cayley graphs [10], Jahangir graphs [28], and Sierpiński graphs [15]. Moreover, Chartrand et al. [6] have characterized all graphs of order $n \geq 3$ with metric dimension 1 , $n-1$, and $n-2$. The metric dimension of graph obtained from a graph operation also has been studied such as Cartesian product graphs [5, 8, 14], join product graphs [3, 4, 26], corona product graphs [13, 29], strong product graphs [21], lexicographic product graphs [25], and comb product graphs [24]. This concept also has an application in many diverse areas, including robotic navigation [7, 14], chemistry [6], strategy in mastermind [11], and network discovery and verification [2].

Another version on metric dimension is the local metric dimension. In this concept, a subset W of $V(G)$ is called as a local resolving set of G if $r(u \mid W) \neq r(v \mid W)$ for every two adjacent vertices u, v of G. A local basis of G is a local resolving set of G with minimum cardinality and we call its cardinality by the local metric dimension of G, denoted by $\operatorname{lmd}(G)$.

The local metric dimension problems were first studied by Okamoto et al. [17]. They have characterized all graphs of order n with local metric dimension 1 , $n-2$, and $n-1$, which can be seen in the following theorem.

Theorem 1.1. [17]Let G be a connected graph of order $n \geq 2$. Then

1. $\operatorname{lmd}(G)=1$ if and only if G is bipartite.
2. $\operatorname{lmd}(G)=n-1$ if and only if $G=K_{n}$.
3. $\operatorname{lmd}(G)=n-2$ if and only if $\omega(G)=n-2$ where $\omega(G)$ is the order of the biggest clique in G.

Determining a local metric dimensions between a graph obtained by a graph operation with the original graphs is also an interesting problem. Okamoto et al. also have determined the local metric dimension of Cartesian product graphs. The local metric dimension of corona product graphs, rooted product graphs, block graphs, bouquet graphs, and chain of graphs have been investigated by Rodríguez-Velázquez et al. [19, 20]. Meanwhile, some results for certain class of graphs can be seen in [1, 9, 22]

In this paper, we obtain two main results. The first result is related to split graph. We provide sharp lower and upper bound for the local metric dimension of any split graphs. We also give an existence of a split graph whose local metric dimension is in between those bounds. The second result is related to unicyclic graph. In this paper, we determine the local metric dimension of any unicyclic graphs.

2. Split Graph

In this section, we define $S p(m, n)$ as a split graph where $V_{1}=\left\{a_{i} \mid 1 \leq i \leq m\right\}$ and $V_{2}=$ $\left\{b_{j} \mid 1 \leq j \leq n\right\}$. For $1 \leq i \leq m$, let $A_{i}=\left\{b \in V_{2} \mid a_{i} b \in E(S p(m, n))\right\}$.

We obtain the general bound for the local metric dimension of any split graphs, which can be seen in the following theorem.

Theorem 2.1. For $n, m \in \mathbb{N}$, let $S p(m, n)$ be a split graph. Then

$$
\left\lceil\log _{2} m\right\rceil \leq \operatorname{lmd}(S p(m, n)) \leq m .
$$

Proof. For the upper bound, let $W=V_{1}$. So, it is clear that $V(S p(m, n)) \backslash W=V_{2}$. If every vertex in V_{2} has different representation with respect to W, then W is a local resolving set of $S p(m, n)$. Otherwise, let b_{i} and b_{j} be two distinct vertices in V_{2} satisfying $r\left(b_{i} \mid W\right)=r\left(b_{j} \mid W\right)$. Note that $b_{i} b_{j} \notin E(S p(m, n))$ for $i \neq j$. It implies that W is still a local resolving set of $S p(m, n)$. Since $|W|=m$, we obtain $\operatorname{lmd}(\operatorname{Sp}(m, n)) \leq m$.

Now, suppose that W is a local basis of $S p(m, n)$ satisfying $|W| \leq\left\lceil\log _{2} m\right\rceil-1$. Note that for $m \in\{1,2\}$, we have a contradiction since $\left\lceil\log _{2} m\right\rceil-1=0$. Now, we assume that $m \geq 3$.

First, we will show that $\left\lceil\log _{2} m\right\rceil-1 \leq m-2$ by mathematical induction. In the other hand, $\left\lceil\log _{2} m\right\rceil \leq m-1$. For $m=3$, it is true that $\left\lceil\log _{2} m\right\rceil=2 \leq m-1$. We assume that $\left\lceil\log _{2} k\right\rceil \leq k-1$ for a natural number $k \geq 3$. For $m=k+1$, we obtain $\left\lceil\log _{2} m\right\rceil=$ $\left\lceil\log _{2}(k+1)\right\rceil \leq\left\lceil\log _{2} k\right\rceil+1 \leq k-1+1=k=m-1$. Therefore, $\left\lceil\log _{2} m\right\rceil \leq m-1$ which implies $\left\lceil\log _{2} m\right\rceil-1 \leq m-2$.

Since we have $|W| \leq\left\lceil\log _{2} m\right\rceil-1 \leq m-2$ and $\left|V_{1}\right|=m$, there exist two distinct vertices a_{i} and a_{j} in V_{1} such that W does not contain $\left\{a_{i}, a_{j}\right\} \cup A_{i} \cup A_{j}$. Note that every vertex $x \in$ $E(S p(m, n)) \backslash\left(\left\{a_{i}, a_{j}\right\} \cup A_{i} \cup A_{j}\right)$ satisfies $d\left(x, a_{i}\right)=d\left(x, a_{j}\right)$. It implies that $r\left(a_{i} \mid W\right)=r\left(a_{j} \mid W\right)$. Since $a_{i} a_{j} \in E(S p(m, n))$, it follows that we have a contradiction.

In the next two theorems, we give an existence of split graph whose local metric dimension satisfies either the lower bound or the upper bound in Theorem 2.1.

Theorem 2.2. For $n, m \in \mathbb{N}$, there exists a split graph $S p(m, n)$ where $\operatorname{lmd}(S p(m, n))=\left\lceil\log _{2} m\right\rceil$.
Proof. Let $m \geq 3$ and $n=\left\lceil\log _{2} m\right\rceil$. Let us consider a split graph $\operatorname{Sp}(m, n)$ when the edge set of the split graph is constructed as follows:

1. An induced subgraph of $S p(m, n)$ by $V_{1}=\left\{a_{i} \mid 1 \leq i \leq m\right\}$ is a complete graph.
2. Let a_{i} be represented by a binary number of $i-1$ with length $\left\lceil\log _{2} m\right\rceil$.
3. If the j-th position of binary number of a_{i} is 1 , then connect a_{i} to b_{j}. Otherwise, a_{i} and b_{j} are not adjacent.

Now, we will show that the split graph $S p(m, n)$ defined above has $\operatorname{lmd}(S p(m, n))=\left\lceil\log _{2} m\right\rceil=$ n. By Theorem 2.1, we only need to show that $\operatorname{lmd}(S p(m, n)) \leq\left\lceil\log _{2} m\right\rceil$. We define $W=V_{2}$. Note that $V(S p(m, n)) \backslash W=V_{1}$. Since two distinct vertices a_{i} and a_{j} have different binary number, there exists a vertex b in V_{2} such that $b a_{i} \in E(S p(m, n))$ but $b a_{j} \notin E(S p(m, n))$. It follows that $r\left(a_{i} \mid W\right) \neq r\left(a_{j} \mid W\right)$, which implies W is a local resolving set of $S p(m, n)$.

An illustration of the split graph $S p(m, n)$ as defined on proof of Theorem 2.2 can be seen in figure below. In Figure 1, we have a split graph $S p(7,3)$. The binary number of every vertex $v \in V_{1}$ represents the connection of vertex v to some vertices in V_{2}. However, in figure below, the connection between two distinct vertices in V_{1} is not given since it is clear that an induced subgraph of $S p(7,3)$ by V_{1} is a complete graph.

Figure 1. Graph $S p(7,3)$ as defined on proof of Theorem 2.2

Theorem 2.3. For $n, m \in \mathbb{N}$, there exists a split graph $S p(m, n)$ where $\operatorname{lmd}(S p(m, n))=m$.
Proof. For $n, m \in \mathbb{N}$, let $S p(m, n)$ be a split graph where $a_{i} b_{j} \in E(S p(m, n))$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. We will show that $\operatorname{lmd}(S p(m, n))=m$. By Theorem 2.1 , we only need to show that $\operatorname{lmd}(S p(m, n)) \geq m$.

Suppose that $\operatorname{lmd}(S p(m, n)) \leq m-1$ and W be a local basis of $\operatorname{Sp}(m, n)$. We distinguish two cases.

1. $W \subset V_{1}$

Since $\left|V_{1}\right|=m$, there exists $a_{i} \in V_{1}$ where $i \in\{1,2, \ldots, m\}$ such that $a_{i} \notin W$. We also consider a vertex b_{1} of V_{2}. Note that a_{i} and b_{1} are adjacent to every vertex of $V_{1} \backslash\left\{a_{i}\right\}=W$. Therefore, $r\left(a_{i} \mid W\right)=(1,1, \ldots, 1)=r\left(b_{1} \mid W\right)$. Since a_{i} and b_{1} are adjacent in $S p(m, n)$, we obtain a contradiction.
2. $W \cap V_{2} \neq \emptyset$

Then $\left|W \cap V_{1}\right| \leq m-2$. So, there exist two distinct vertices a_{i} and a_{j} in V_{1} such that W does not contain $\left\{a_{i}, a_{j}\right\} \cup A_{i} \cup A_{j}$. Since a_{i} and a_{j} are adjacent to every other vertices in $S p(m, n)$, we obtain that $r\left(a_{i} \mid W\right)=(1,1, \ldots, 1)=r\left(a_{j} \mid W\right)$, a contradiction.

In the theorem below, we give an existence of a split graph whose local metric dimension is in between the lower and upper bound in Theorem 2.1.

Theorem 2.4. There exist $c, n, m \in \mathbb{N}$ with $m \geq 3$ and $c \in\left\{\left\lceil\log _{2} m\right\rceil+1,\left\lceil\log _{2} m\right\rceil+2, \ldots, m-1\right\}$, such that $\operatorname{lmd}(S p(m, n))=c$.

Proof. For $m \geq 4$ and $n \geq 3$, let $S p(m, n)$ be a split graph where the degree of every vertex in V_{2} is 1 . We will show that $\operatorname{lmd}(S p(m, n))=m-1$. Note that $\left\lceil\log _{2} m\right\rceil<m-1<m$.

For the lower bound, suppose that $\operatorname{lmd}(S p(m, n)) \leq m-2$ and W is a local basis of $S p(m, n)$. We define $Q=\left\{a \in V_{1} \mid a \in W\right.$ or $\left(b \in V_{2} \cap W\right.$ and $\left.\left.a b \in E(\operatorname{Sp}(m, n))\right)\right\}$. So, $|Q| \leq|W| \leq$ $m-2$. Therefore, there exist two distinct vertices a_{i} and a_{j} in $V_{1} \backslash Q$ such that $r\left(a_{i} \mid Q\right)=r\left(a_{j} \mid Q\right)$. It follows that $r\left(a_{i} \mid W\right)=r\left(a_{j} \mid W\right)$, a contradiction.

For the upper bound, we define $W=\left\{a_{i} \mid 1 \leq i \leq m-1\right\}$. Therefore, we obtain $r\left(a_{n} \mid W\right)=$ $(1,1, \ldots, 1)$. Now, we consider the representation of vertex b_{j} of V_{2} for $1 \leq j \leq n$. Since b_{j} is adjacent to only one vertex of V_{1}, there exists $a \in V_{1} \cap W$ such that $a b_{j} \notin E(S p(m, n))$. Therefore, we obtain $d\left(a, b_{j}\right)=2 \neq 1=d\left(a, a_{n}\right)$ which implies $r\left(b_{j} \mid W\right) \neq r\left(a_{n} \mid W\right)$. So, W is a local resolving set of $S p(m, n)$.

3. Unicyclic Graph

In this section, let G be an unicyclic graph. Note that, the graph G can be obtained from a tree T by adding an edge $e=x y$ to two non-adjacent vertices $x, y \in V(T)$. Now, let us consider the cycle of G. If the cycle is even, then G is bipartite graph, which implies $\operatorname{lmd}(G)=1$ [17]. In lemma below, we investigate a property if G contains an odd cycle.

Lemma 3.1. Let G be a unicyclic graph containing odd cycle C. For any vertex $v \in V(G)$, there exists exactly one pair of adjacent vertices x and y of G satisfying $d(x, v)=d(y, v)$. Moreover, x and y must be in C.

Proof. Let G be a unicyclic graph containing odd cycle C_{n} where $n \geq 3$. Let $V\left(C_{n}\right)=$ $\left\{c_{0}, c_{1}, \ldots, c_{n-1}\right\}$ with $E\left(C_{n}\right)=\left\{c_{0} c_{1}, c_{1} c_{2}, \ldots, c_{n-2} c_{n-1}, c_{n-1} c_{0}\right\}$ and $n=2 k+1$ where $k \geq 1$. Let G^{\prime} is a subgraph of G such that $G^{\prime}=G \backslash E\left(C_{n}\right)$. So, G^{\prime} is a disconnected graph containing n components where every component is a tree. For $i \in\{1,2, \ldots, n\}$, we define T_{i} as a component of G^{\prime} containing vertex c_{i}.

Let v be a vertex of G. So, there exists $i \in\{1,2, \ldots, n\}$ such that $v \in V\left(T_{i}\right)$. Let x and y be an adjacent vertices in G. If there exists $j \in\{1,2, \ldots, n\}$ such that $x, y \in V\left(T_{j}\right)$, then we have $d(v, z)=d\left(v, c_{i}\right)+d\left(c_{i}, c_{j}\right)+d\left(c_{j}, z\right)$ for $z \in\{x, y\}$. Since T_{j} is a tree and every two distinct vertices in a tree has a unique path between them, we obtain that either $d\left(c_{j}, x\right)<d\left(c_{j}, y\right)$ or $d\left(c_{j}, x\right)>d\left(c_{j}, y\right)$, which implies $d(v, x) \neq d(v, y)$. Therefore, x and y must be from two different components of G^{\prime}. It follows that x and y must be in C_{n}.

Now, let x and y be two adjacent vertices in C_{n} and $v \in V\left(T_{i}\right)$. If $d\left(c_{i}, x\right)<\operatorname{diam}\left(C_{n}\right)=k$, then we have either $d\left(c_{i}, x\right)<d\left(c_{i}, y\right)$ or $d\left(c_{i}, x\right)>d\left(c_{i}, y\right)$, which implies $d(v, x) \neq d(v, y)$. So, it must be $d\left(c_{i}, x\right)=k=d\left(c_{i}, y\right)$. Since n is odd, we obtain the two adjacent vertices are $x=c_{i+k}$ and $y=c_{i+k+1}$ where both indexes are on modulo n.

Now, suppose that there are two distinct pairs of adjacent vertices x_{1}, y_{1} and x_{2}, y_{2} of G such that for any vertex $v \in V(G), d\left(x_{1}, v\right)=d\left(y_{1}, v\right)$ and $d\left(x_{2}, v\right)=d\left(y_{2}, v\right)$. By the similar argument above, we will obtain that x_{1}, y_{1} and x_{2}, y_{2} are from different cycle of G. Therefore, G contains at least two cycles, a contradiction.

Now, we are ready to prove the local metric dimension of unicyclic graph.
Theorem 3.1. Let G be a unicyclic graph of order at least three. If G contains a cycle with p vertices, then

$$
\operatorname{lmd}(G)= \begin{cases}1, & \text { if } p \text { is even } \\ 2, & \text { if } p \text { is odd } .\end{cases}
$$

Proof. We distinguish two cases.
Case 1. p is even.
Then the unicyclic graph G is a bipartite graph. According to [17], we have $\operatorname{lmd}(G)=1$.
Case 2. p is odd.
Then the unicyclic graph G is not bipartite graph. Consequently, $\operatorname{lmd}(G) \geq 2$. Now we will prove that $\operatorname{lmd}(G) \leq 2$ by construct a local resolving set of G. Let C be a cycle contained in G. By Lemma 3.1, for vertex $v \in V(G)$, there exist exactly one pair of adjacent vertices x and y in C such that $d(x, v)=d(y, v)$. Now, we define $W=\{v, x\}$. Since there is no two adjacent vertices having the same representation with respect to W, we obtain that W is a local resolving set of G. Therefore $\operatorname{lmd}(G) \leq 2$.

Acknowledgement

The authors are thankful to the anonymous referee for some comments that helped to improve the presentation of the manuscript.

References

[1] G. Abrishami, M.A. Henning, M. Tavakoli, Local metric dimension for graphs with small clique numbers, Discrete Math. 345 (2022), 112763.
[2] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák and L.S. Ram, Network discovery and verification, IEEE J. on Selected Areas in Communications 24 (12) (2006), 2168-2181.
[3] P.S. Buszkowski, G. Chartrand, C. Poisson, and P. Zhang, On k-dimensional graphs and their bases, Per. Math. Hung. 46:1 (2003), 9-15.
[4] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, C. Seara, and D.R. Wood, On the metric dimension of some families of graphs, Electron. Notes in Discrete Math. 22 (2005), 129-133.
[5] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, C. Seara, and D.R. Wood, On the metric dimension of Cartesian product of graphs, SIAM J. Discrete Math. 21 (2) (2007), 423-441.
[6] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graphs, Discrete. Appl. Math. 105 (2000), 99-113.
[7] G. Chartrand and P. Zhang, The theory and application of resolvability in graphs, Comput. Math. Appl. 39 (2000), 19-28.
[8] K. Chau and S. Gosselin, The metric dimension of circulant graphs and their Cartesian products, Opuscula Math. 37 (4) (2017), 509-534.
[9] J.A. Cynthia and Ramya, The local metric dimension of torus network, Int. J. Pure App. Math. 120 (7) (2018), 225-233.
[10] M. Fehr, S.Gosselin, and O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006), 31-40.
[11] W. Goodard, Mastermind revisited, J. Combin. Math. Combin. Comput. 51 (2003), 215-220.
[12] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars. Combin. 2 (1976), 191-195.
[13] H. Iswadi, E.T. Baskoro and R. Simanjuntak, On the metric dimension of corona product of graphs, Far. East J. Math. Sci. 52 (2) (2011), 155-170.
[14] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete. Appl. Math. 70 (3) (1996), 217-229.
[15] S. Klavzar and S. Zemljic, On distances in Sierpiński graphs : Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013), 72-82.
[16] P. Manuel, B. Rajan, I. Rajasingh, and C. Monica M., On minimum metric dimension of honeycomb networks, J. Discrete Algorithms. 6 (2008), 20-27.
[17] F. Okamoto, B. Phinezy, and P. Zhang, The local metric dimension of a graph, Math. Bohem. 135 (2010), 239-255.
[18] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Combin. Math. Combin. Comput. 40 (2002), 17-32.
[19] J.A. Rodríguez-Velázquez, G.A. Barragán-Ramírez, and C.G. Gómez, On the local metric dimension of corona product graphs, Bull. Malays. Math. Sci. Soc. 39 (2013), 157-173.
[20] J.A. Rodríguez-Velázquez, C.G. Gómez, and G.A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs, Comput. Math. 92 (4) (2015), 686-693.
[21] J.A. Rodríguez-Velázquez, D. Kuziak, I.G. Yero and J.M. Sigarreta, The metric dimension of strong product graphs, Carpathian J. Math. 31 (2) (2015), 261-268.
[22] S.W. Saputro, On local metric dimension of $(n-3)$-regular graph, J. Combin. Math. Combin. Comput. 98 (2016), 43-54.
[23] S.W. Saputro, On the metric dimension of biregular graph, J. Inform. Process. 25 (2017), 634-638.
[24] S.W. Saputro, N. Mardiana, and I.A. Purwasih, The metric dimenison of comb product graphs, Math. Vesnik 69 (2017), 248-258.
[25] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, and E.T. Baskoro, The metric dimension of the lexicographic product of graphs, Discrete Math. 313 (2013), 1045-1051.
[26] B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of wheels, Far East J. Appl. Math. 8 (3) (2002), 217-229.
[27] P.J. Slater, Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Congr. Numer. 14 (1975), 549-559.
[28] I. Tomescu and I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie 4 (2007), 371-376.
[29] I.G. Yero, D. Kuziak, and J.A. Rodríguez-Velázquez, On the metric dimension of corona products graphs, Comput. Math. Appl. 61 (9) (2011), 2793-2798.

[^0]: Received: 15 April 2022, Revised: 21 June 2022, Accepted: 27 June 2022.

