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Solar energy is one of the main renewable energy sources and has rapidly

developed inmany countries. However, the photovoltaic (PV) output power will

be different under various meteorological and geographical conditions.

Therefore, this paper presents an optimization method for the deployment

of PV panels in a centralized PV power plant consideringmultiple factors. Firstly,

the whole planning area is divided into a certain amount of sub-areas according

to a given area, and fuzzy C-means algorithm is used for terrain clustering

according to the geographical characteristics of the sub-areas. Secondly, the

correlation analysis between each meteorological factor and PV output power

is carried out separately to select the main factors affecting PV output power,

and then the expected annual PV output power under the joint action of several

mainmeteorological factors in each terrain is calculated by dual-stage attention

mechanism based long short-termmemory algorithm. Finally, according to the

expected annual PV output of each terrain, considering the constraints

including cost, area and so on, the deployment optimization of PV panels is

obtained to maximize the annual PV output of the whole PV power plant and

minimize the construction cost. The results of case studies show that the

proposedmethods effectively improve the expected PV output power of the PV

power plant and reduce the construction cost.
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1 Introduction

Rapid development of renewable energy technologies such as solar is required due to

climate change mitigation strategies worldwide (Dong et al., 2021). Moreover, the

development of photovoltaic (PV) power technologies plays an important role in

achieving the goals of emission peak and carbon neutrality (Zhang et al., 2021), and

poverty alleviation (Zhang et al., 2020). However, the performance of PV systems is

generally affected by the meteorological conditions (Hachicha et al., 2019; Li et al., 2021),
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and geographical location (Al-Rousan et al., 2018; Cotfas and

Cotfas, 2019). Furthermore, the centralized PV power plant

covers a large area, and its continuous expansion also causes

the problem of insufficient land. Therefore, it is necessary to

make full use of the meteorological and geographical conditions

in different regions to develop PV.

Different meteorological factors effect on PV output power to

different extent. Therefore, the first step of centralized PV plant

planning is to start with the effect caused by meteorological

factors. Mekhilef et al. (2012) studied the effect of dust

deposition, wind speed and relative humidity on the efficiency

of solar cells. Li et al. (2020) analyzed the impacts of wind speed,

wind direction, ambient temperature and solar radiation on PV

considering dynamic line parameters. The main factors in the PV

power calculation are the solar insolation. Ambient temperature

and wind speed have transitive relation with PV power through

irradiance, and the humidity and the atmospheric pressure have a

negative correlation with PV output (Ziane et al., 2021). Dust is a

cause of PV output power reduction, and models of dust

deposition on PV modules using local meteorological events

were developed in (Sengupta et al., 2021). Gowid and Massoud

(2020) developed a PV maximum power point identification tool

considering temperature and solar insolation. Mayer (2021)

revealed the effects of the meteorological data resolution on

the of simulation and optimization reliability of PV power

plants. Those studies points out what and how meteorological

factors affect PV output power, but most of them did not

consider enough kinds of meteorological factors.

After confirming what and how meteorological factors affect

the PV output power, PV output power calculation or prediction

based on multiple meteorological factors has become a hot topic

in recent years. Correlation analysis and regression analysis are

basic methods to calculate PV power. A model of PV output

power was obtained through regression analysis by selecting

main factors that affect PV power in (Kim et al., 2019).

Agoua et al. (2018) proposed a statistical spatio-temporal

model based on correlation analysis to improve short-term

forecasting of PV production. However, the methods

mentioned above have relatively low efficiency and accuracy.

To overcome this problem, a widely-used kind of method for PV

calculation or prediction is deep learning. Considering solar

radiation, sunlight, wind speed, temperature, cloud cover, and

humidity, a modified long short-termmemory (LSTM) is used to

predict PV power in medium and long term (Son and Jung,

2020). There are also many other deep learning based methods

such as methods based on convolutional neural network (Yan

et al., 2021), spatiotemporal feedforward neural network

(Rodríguez et al., 2022) and so on. Besides, graph modeling

method is a novel method for PV power prediction. The graph

modeling method is used to describe the relationship between

various meteorological factors and PV power and predict the PV

power, but the graph modeling method is more complex (Cheng

et al., 2021). There are already various practical PV calculation

methods taking meteorological factors into account, but there are

few studies considering geographical conditions which also affect

PV output power. To sum up, the method for PV output power

calculation still needs to develop.

As mentioned above, the performance of PV is also

affected by geographical conditions. For example, according

to a study in a water pumping system with PV installation in

Brazil, when the ratio between flow and radiation was taken

into account, the monocrystalline PV system was more

efficient (Nogueira et al., 2015). Polycrystalline solar

module showed a better performance in semi-arid Region

(Ettah et al., 2021). Ingenhoven et al. (2019) analyzed the

performance loss rate of six different PV module types in five

locations in Italy. Huld (2017) promoted a set of tool and data

named PVMAPS, which could calculate PV performance in

any region covered by the data. Due to the relationship

between geographical conditions and PV performance, site

selection became an important factor of PV power plant

execution. To find the best location, many researches

presented methods based on geographical information

system (Hashemizadeh et al., 2019; Mensour et al., 2019).

Although some literature dealt with the site selection of PV

power plant, there were not many literature focus on the

deployment of PV panels in centralized PV power plant.

In summary, the existing works lack an optimization method

for the deployment of PV panels in a centralized PV power plant

considering not only the geographical difference but the

meteorological difference. To solve the above problems, this

paper proposes an optimization method for the deployment of

PV panels in a centralized PV power plant considering multiple

factors. By optimizing the deployment position and quantity of

PV panels, the method aims at higher PV output power and

lower cost under certain capacity and approximate planning area

FIGURE 1
Three steps of the method for deployment of PV panels.
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for a centralized PV power plant. It also provides possibility for

more efficient application of PV.

The remainder of the paper is organized as follows. Section 2

introduces terrain clustering, quantification of the relationship

between meteorological factors and PV output, and optimization

model. Section 3 shows the result of case studies. Section 4 makes

a conclusion for this paper.

2 Methodologies

As shown in Figure 1, the method for optimizing the

deployment of PV panels in a centralized PV power plant

under multiple factors is divided into three steps: dividing

different terrains in the PV power plant according to

geographical characteristics, modeling and quantifying the

relationship between meteorological factors and PV output

power in each terrain (including single meteorological factor

and multiple meteorological factor analysis), optimizing the

deployment of PV panels in the centralized PV power plant.

2.1 Terrain clustering

Before studying meteorological factors, we should first

explore the influence of geographical factors. This is because

the meteorological conditions in different locations are obviously

different. Thus, to carefully study the relationship among PV

output power, meteorological factors and geographical factors, it

is necessary to combine the sub-areas with similar geographical

locations to a terrain first. Moreover, the installation of PV panels

is also affected by geographical factors. For example, according to

the different slope direction and gradient, the installation area of

unit PV panels varies, and the unit installation area will affect the

subsequent optimal deployment of PV panels. Therefore, based

on the above considerations, this section first divides the

surrounding area of a planned centralized PV power station

into several terrains according to the geographical characteristics.

Noted that the PV panels in a centralized PV power plant are

often orderly concentrated in a certain area, the distance and

direction between the terrain center and the gathering station

(GS) are included in the geographical characteristics, so as to

make each sub-area within the divided terrain roughly similar in

location and more accord with the actual situation of the

centralized PV power plant construction. Firstly, PV power

plant are divided into several sub-areas from west to east and

from north to south according to a rectangular area with the

same area of AN (determined according to the actual cases). Then

the annual sunshine durations, average altitude, slope direction,

slope, distance between the terrain center and the GS, the

direction of the terrain center relative to the GS are used as

the geographical features for dividing different terrains. Define

the geographical feature of the ith sub-area as Xterrain
i and

establish the dataset Xterrain
i � xterrain

i1 , xterrain
i2 ,/, xterrain

i6{ }.
Subscripts i1 to i6 represent the annual sunshine durations,

average altitude, slope direction, slope, distance between the

terrain center and the GS, the direction of the terrain center

relative to the GS in the ith sub-area, respectively.

As one of the main unsupervised machine learning

technologies, fuzzy clustering analysis is a method of

analyzing and modeling important data using fuzzy theory,

which establishes the uncertainty description of sample

categories. The vector of fuzzy clustering algorithm can belong

to multiple clusters at the same time, which can objectively reflect

the real world. It has been effectively applied in many fields such

as large-scale data analysis, data mining, vector quantization and

so on, which is proved to have important theoretical and practical

application value. With the further development of application,

the research of fuzzy clustering algorithm is constantly enriched.

In this section, we have chosen fuzzy c-means (FCM) algorithms

due to its good performance (Benmouiza et al., 2016), and the

FCM algorithm introduced by Dunn and improved by Bezdek

(Nayak et al., 2015).

Using the FCM algorithm, a total of K sub-areas in the whole

planning area of the PV power plant are classified intoN terrains.

The idea of FCM algorithm is to calculate the membership matrix

U � [uij]N×K and the cluster centersV � v1, v2,/, vN{ } from the

terrain geographic feature dataset Xterrain �
Xterrain

1 , Xterrain
2 ,/, Xterrain

K{ } through continuous iteration, and

to minimize the function value in Eq. 1.

J U,V( ) � ∑K

i�1∑N

j�1u
m
ijd

2
ij (1)

dij � Xterrain
i − vj

���� ���� (2)

In Eq. 1, uij is the membership degree of the ith sub-area

belonging to the jth terrain;m is the membership factor; dij is the

Euclidean distance from the ith sub-area to the jth cluster center,

which is calculated by Eq. 2.

The calculation steps of the FCM algorithm are as follows:

Step 1. N cluster centers are randomly selected and the initial

membership matrix U(0) is calculated. Let l = 1 and start the first

iteration.

Step 2. Calculate the cluster center V(l) and membership matrix

U(l) of the lth iteration, and calculate the function value of J(l), as

shown in follows.

v l( )
j � ∑K

i�1 u l−1( )
ij( )mXterrain

i∑K
i�1 u l−1( )

ij( )m , j � 1, 2,/, N (3)

u l( )
ij � 1

∑K
i�1

d l( )
ij

d l( )
ik

( ) 2
m−1
, i � 1, 2,/K; j � 1, 2,/, N (4)

J l( ) U l( ), V l( )( ) � ∑K

i�1∑N

j�1 u( ) l( )
ij( )m d( ) l( )

ij( )2 (5)
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d l( )
ij � Xterrain

i − v l( )
j

���� ���� (6)

Step 3. Set the termination value. Membership termination

value εu > 0 or function termination value εJ > 0 can be used.

If max |u(l)ij − u(l−1)ij |{ }< εu or |J(l) − J(l−1)|< εJ, the iteration

stops, otherwise, increase l and go to step 2.

When uij � max1≤ j≤N uij{ }, the ith sub-area belongs to the

jth terrain and can be expressed as follows:

Xterrain
i ∈ Dj (7)

2.2 Single meteorological factor analysis

Quantification the relationships between meteorological

factors and PV output power in each terrain includes single

meteorological factor and multiple meteorological factor

analysis. There are many kinds of meteorological factors, and

the impact of various meteorological factors on PV output power

may be significantly different. Therefore, in order to accurately

measure the relationship between meteorological factors and PV

output power, and simplify the calculation complexity and time

of subsequent multiple meteorological factors analysis without

losing accuracy, a single meteorological factor analysis of PV

output power is conducted first. The single meteorological factor

analysis is to select the daily output data of an existing PV power

plant near the planning area and various meteorological data

collected by the corresponding meteorological station as

historical data, preliminarily analyze the relationships between

PV output power and various meteorological factors through

Pearson correlation coefficient, and select several major

meteorological factors that have a great impact on the PV output.

r � ∑n
i�1 xi − �x( ) yi − �y( )�����������������������∑n

i�1 xi − �x( )2 · ∑n
i�1 yi − �y( )2√ (8)

�x � 1
n
∑n
i�1
xi (9)

�y � 1
n
∑n
i�1
yi (10)

Where xi is the ith time component of the meteorological factor

x, yi is the ith time component of PV output y, r is the correlation

coefficient, r∈[−1,1], and the closer the absolute value is to 1, the

stronger the correlation between the meteorological factor x and

PV output.

According to the value of correlation coefficient, k

meteorological factors with the strongest correlation with PV

output are selected for further mining the relationship between

meteorological factors and PV output. Considering that the

dimensions of various meteorological factors and PV output

are not uniform, the MinMaxScaler method is used to normalize

the data to improve the convergence speed of the subsequent

deep learning model and reduce the error. MinMaxScaler

method is shown in Eq. 11:

x′ � x − x min

x max − x min
(11)

where, x′ is the normalized data, x is the original data, xmin and

xmax are the minimum and maximum of the original data.

After normalizing the k main meteorological factors and PV

output data, sequential feature

Xme � (xme
1 , xme

2 ,/, xme
T ) � (xme1, xme2,/, xmek)T, containing

k main meteorological factors, is constructed. It can be

expressed by the following matrix:

Xme �
xme1
1 xme2

1

xme1
2 xme2

2

..

. ..
.

xme1
T xme2

T

/ xmek
1

/ xmek
2

1 ..
.

/ xmek
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where, xme
t � (xme1

t , xme2
t ,/, xmek

t ) is expressed as the above k

meteorological feature sets at time t, and xmep �
(xmep

1 , xmep
2 ,/, xmep

T ) is expressed as the each value of the pth

relevant meteorological variable for the whole period T.

2.3 Multiple meteorological factor analysis

The multiple meteorological factor analysis uses the dual-

stage attention mechanism based LSTM (DA-LSTM). LSTM is

an improved recurrent neural network. Each hidden layer is no

longer a single neural network, but consists of four

interconnected neural networks (forget gate, input gate,

update gate and output gate). It compares the memory

information with the current information and learns through

self-evaluation and selectively forgetting mechanism, which can

alleviate the problem of gradient vanishing and exploding in

general recurrent neural network (Greff et al., 2017; Shewalkar,

2019).

2.3.1 Overview of long short-term memory
In the general LSTM networks, the long-term memory

information at time t is defined as the cell state Ct. The LSTM

cell receives the meteorological feature set xme
t at time t and the

short-term memory information ht-1 of cells at the previous time,

and inputs the cell state Ct-1 at the previous time into each gate as

internal information. Through the forget gate ft, the input gate it
and the output gate ot, the cell information is read and modified

as follows:

ft � σ Wf · ht−1, xme
t[ ] + bf( ) (13)

it � σ Wi · ht−1, xme
t[ ] + bi( ) (14)

C′
t � tanh WC · ht−1, xme

t[ ] + bC( ) (15)
ot � σ Wo · ht−1, xme

t[ ] + bo( ) (16)
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where, Wf, Wi and Wo are the weight matrices of forget gate,

input gate and output gate respectively, and bf, bi and bo are the

corresponding biases. WC is the input cell state weight matrix,

and bC is the bias of the input cell state. σ is the sigmoid activation

function, which transforms the output into [0,1] interval, tanh is

a hyperbolic tangent activation function, which transforms the

output into the [−1,1] interval. Eq. 13 represents a forget gate for

judging whether the previous information is retained. Eq. 14

represents an input gate that determines whether the current

information is written to the cell state at time t; Eq. 15 creates a

new vector containing all possible values through the tanh

activation function and adds it to the cell state; Eq. 16

represents an output gate that determines the information to

be included in the output content. Input the hidden layer output

ht to obtain the PV output yt, and the calculation is as shown in

Eqs. 17–19.

Ct � ft *Ct−1 + it *C
′
t (17)

ht � ot * tanh Ct( ) (18)
yt � Wdht + bd (19)

where, * denotes the multiplication of matrix elements. Wd and

Bd are the adjustable weight matrix and the bias of the output

layer, respectively.

2.3.2 Dual-stage attention
The performance of only using ordinary LSTM under sudden

weather and extreme weather conditions is often poor, so the

attention mechanism is introduced. The attention mechanism

imitates how the human brain processes information, which

improves the performance of the neural network (Qu et al.,

2021). In this paper, the feature attention mechanism is

introduced at the encoder side, and the time attention

mechanism is introduced at the decoder side to build a dual-

stage attention mechanism, so as to obtain a more accurate

relationship between PV output power and meteorological

factors and historical information. The dual-stage attention

structure can be shown in Figure 2.

Feature attention models the importance of each feature and

assigns different attention to each dimension of the input (Zeng

et al., 2022). In order to obtain the contribution rate of each

meteorological feature to the PV output at the current time, the

relevant meteorological features at time t are input into the

feature attention mechanism to obtain the attention weight

vector et:

et � VT
e tanh We ht−1, Ct−1[ ] + Uex

mep + be( ) (20)

where, et � (e1t , e2t ,/, ekt ) is the combination of attention weight

coefficients corresponding to each meteorological feature at time

t; Ve, We and Ue are the weight matrix of attention mechanism,

and be is the bias. Normalization is performed according to Eq.

21, using the Softmax function so that the sum of the feature

attention weights is 1. The normalized feature attention weight is

expressed as αt � (α1t , α2t ,/, αpt ,/, αkt ), where αpt is the feature

attention weight value of the pth relevant meteorological feature

at time t.

αpt � exp ept( )∑k
i�1exp eit( ) (21)

Multiplying the feature attention weight value αpt with the

corresponding meteorological feature value xmep
t to obtain the

correlation feature ~xmep
t considering the contribution rate of

different meteorological features:

~xt � α1t x
me1
t , α2t x

me2
t ,/, αkt x

mek
t( ) (22)

By introducing the feature attention mechanism, the input to

the LSTM network is no longer the original meteorological

feature value, but the correlation feature weighted by the

contribution rate. It adaptively strengthens the key factors

affecting the PV output, weakens the less relevant

meteorological factors, and improves the modeling accuracy.

Temporal attention mechanism is introduced for finding the

characters of trend and cycle and determining the key node for

the current PV output power adaptively (Zhu et al., 2022). In

order to obtain the contribution rate of the sequential state in a

period of time on the PV output at the current time, obtain the

weight of the hidden state of the corresponding time sequence,

and extract the historical key node, introduce the temporal

attention mechanism at the decoding output side. The

temporal attention weightof the hidden layer state at the

current time depends on the hidden layer state ht �
(h1t , h2t ,/, hTt ) of the selected historical time sequence of

LSTM, T is the time length of the input sequence. Taking it

as an input, the temporal attention weight coefficient lt �
(l1t , l2t ,/, lτt ,/, lTt ) at the current time t is obtained, as shown

in the Eq. 23:

FIGURE 2
The structure of DA-LSTM.
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lτt � VT
dtanh Wd[ht−1′ , Ct−1′ ] + Udh

τ
t( ) (23)

where, Vd andWd are the corresponding weights of the temporal

attention, and Ud is the bias. The temporal attention weight is

also obtained by normalizing with the Softmax function, and the

comprehensive information st, related to the sequential state

characteristics, at time t is obtained by considering the

contribution rate of the information at each time in the input

sequence.

βτt �
exp lτt( )∑T
j�1exp ljt( ) (24)

st � ∑T
τ�1

βτt h
τ
t (25)

Combine comprehensive information st with original

output yt:

y′
t � ~W yt, st[ ] + ~b (26)

where, ~W and ~b are the weights and bias input by the front-end

fusion of the LSTM network. Considering the contribution rate

of historical information, the hidden layer state at time t is

obtained:

h′t � f1(ht−1′ , yt−1′ ) (27)

where, f1 is the LSTM network. The PV output at time T+1 can be

expressed as:

ŷT+1 � VT
y Wy h′T, sT[ ] + bw( ) + by (28)

where,Wy and bw are the weights and bias of the LSTM network.

Vy and by are the weights and bias of the whole network before

dimensional transformation.

2.4 Optimization of photovoltaic panel
deployment in the power plant

2.4.1 Objective function
The optimization of PV panel deployment in the power plant

takes the actual output power of the whole PV power plant and

the lowest cost of PV panel deployment as the optimization

objective, takes the whole year as the time scale, and makes full

use of the meteorological advantages of each terrain to improve

the efficiency and economy of the whole power plant.

F1 � max∑N
j�1
njyj,year (29)

yj,year � ∑365
d

yj,d (30)

Eq. 29 is the objective function that maximizes total of the

annual PV output power in each terrain, that is, the annual

expected output of the whole planning PV power plant, where nj
represents the number of PV panels installed in the jth terrain. yj,

year is the annual expected output power of a single PV panel in

the jth terrain. The LSTM model is trained using historical data,

and then the annual expected output of the unit PV panel in each

terrain is calculated separately based on the actual meteorological

conditions of each terrain and on the time scale of day. The

annual output in the jth terrain can be expressed by Eq. 30, where

yj, d represents the expected output of a single PV panel in the jth

terrain on day d.

F2 � min∑N
j�1
Cj (31)

Cj � njCsj + Clj (32)

Eq. 31 is the objective function to minimize the deployment

cost of all PV panels in the whole PV power plant, where Cj

represents the total cost of installing PV panels in the jth terrain.

Eq. 32 represents the installation cost of a single PV panel.

Because the purchase cost of each PV panel is the same, the

purchase cost can be ignored. Csj represents the cost of occupying

land for the installation of a single PV panel in the jth terrain, and

Clj represents the cost required for the line routing between the

PV field in the jth terrain and the GS.

2.4.2 Constraint conditions
Since the total amount of PV panels is unchanged, only the

cost required for the line routing from each terrain to the GS is

considered when calculating the total line routing cost. It is

assumed that the jth terrain contains J sub-areas, that is,

Dj � Xterrain
1 , Xterrain

2 ,/, Xterrain
J{ }.The line routing cost can

be calculated as follows:

Clj � Cline,jDj5 (33)

Cline,j � ∑L
u�1

zuCline,j,u (34)

∑L
u�2

nu−1,limitzu ≤ nj ≤∑L
u�1

nu,limitzu (35)

∑L
u�1

zu ≤ 1 (36)

Dj5 � 1
J
∑J
i�1
xterrain
i5 (37)

Csj � Cspace,jAj (38)

Eq. 33 shows that the line routing cost Clj is related to the

distance from each terrain to the GS and the unit cost of the line,

and Cline, j is the unit cost of line routing per kilometer of the jth

terrain. Eq. 34 is the calculation method of line routing cost per

kilometer for the jth terrain. When the number of PV panels

installed in a terrain exceeds a certain limit, the voltage level of

the line needs to be increased to meet its maximum transmission

power, and then the unit cost of the line will increase accordingly.
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After the preliminary evaluation, it is assumed that there may be

L voltage levels in the whole planning area. nu,limit represents the

maximum number of PV panels that can be accessed with the uth

voltage level. By introducing a set of 0–1 variables zu, the range to

which nj belongs can be defined, as shown in Eqs. 35, 36.Dj5 is the

distance from the jth terrain to the GS, which is the average of the

distance from the J sub-areas included in the jth terrain to the GS,

as shown in Eq. 37. Eq. 38 calculates the cost of land

consumption, where Aj is the actual area occupied by a unit

of PV panel installed in the jth terrain.

The deployment of PV panels is also constrained by certain

geographical conditions as follows:

njAj ≤Aj, sum (39)
Aj � APVAslope (40)
Aj, sum � JAN (41)
Dj4 ≤Dj4,limit (42)

Eq. 39 is the area constraint. The actual area of PV panel

installation is related to the gradient and slope direction of the

installation site, as shown in Eq. 40, where APV is the area of a PV

panel itself, and Aslope is the area coefficient affected by the

gradient and slope direction. Aj,sum is the total area of the jth

terrain, which is calculated by Eq. 41, and is the sum of the total J

sub-areas included in the jth terrain. Also, when the gradient of a

terrain is too steep, it is not proper to install a PV panel there, as

shown in Eq. 42.

According to the planned capacity of PV power plant, the

number of PV panels installed in the power plant can be obtained

as follows:

nsum � ∑N
j�1
nj (43)

3 Case studies

3.1 Parameter setting and dataset
description

The case studied in this paper is the planning area of a large-

scale centralized PV power plant in Southwest China, and the

estimated installed capacity of the whole PV power plant is

210MW. Obtain the PV output power data of an existing PV

power plant near the planning area in 2021 and the meteorological

data during the same period and at the same place. The temporal

resolution of the data is 1 day. The meteorological data of each

terrain in the planning area are obtained through interpolation due

to the lack of actual weather station. The geographical data are

obtained through SRTM data released by NASA (Jarvis et al., 2008).

The parameters of the selected PV panel are: the power is 600Wand

the size is 2172 mm × 1303 mm.

3.2 Terrain division

The terrain in the planning area is divided by FCM

algorithm. The annual sunshine durations, average altitude,

slope direction, slope, the distance between the terrain center

and the GS, and the direction of the terrain center relative to the

GS in each sub-area are used to complete the terrain clustering.

The result is shown in Figure 3.

After the terrain division, the geographic conditions of each

terrain are collected and counted in Table 1. From the Table 1, it

can be seen that there are great differences in geographical

conditions among the terrains in the planning area. After the

terrain is divided, the relationship betweenmeteorological factors

and PV output power can be analyzed more accurately, and then

more accurate PV expected annual output power can be

obtained.

3.3 Main meteorological factors selection

The first step of meteorological analysis is single factor

analysis which is aimed to select main meteorological factors.

Table 2 presents the results of single meteorological factor

analyzed by Pearson correlation. As mentioned in Section 2.2,

the Pearson correlation coefficient is a value between −1 and 1.

The closer the absolute value of Pearson correlation coefficient is

to 1, the stronger the correlation between this meteorological

factor and PV output power is. If the value is positive, the

meteorological factor is positively related to the PV output

power, otherwise, it is negatively related.

FIGURE 3
The results of terrain division.
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Five main meteorological factors are selected depending on

the Pearson correlation coefficient. In this case, the total radiation

intensity, average temperature, relative humidity, wind speed and

total cloud cover are selected as the main meteorological factors.

Among them, the total sunshine intensity, average temperature

and wind speed are positively correlated with PV output power,

and the relative humidity and total cloud cover are negatively

correlated with PV output power. Moreover, the total sunshine

intensity is the most important factors.

3.4 Photovoltaic output power calculation

The PV output power and five main meteorological factors

data are analyzed by using the DA-LSTM model, and then

compared with the ordinary LSTM model. The accuracy of

the model is verified by using the root mean square error

(RMSE) eRMSE and the mean absolute error (MAE) eMAE. In

order to analyze the performance of the DA-LSTM model, this

paper firstly calculates the output power of the existing PV power

plant. This paper compares the calculation results of the DA-

LSTM model for PV output power 1 day in advance with the

calculation results of the LSTM model without attention

mechanism, as shown in Figure 4. It is obvious from Figure 4

that the calculation results of the DA-LSTM model are closer to

the real value. Table 3 presents the RMSE and the MAE eMAE of

two different models. The RMSE and MAE produced by DA-

LSTM model is smaller than ordinary LSTM, which means the

DA-LSTM model performs better in PV output power

calculation considering multiple meteorological factors.

After verifying the accuracy of the DA-LSTM model, the

annual expected output power of a single PV panel in each

TABLE 1 The geographic conditions of each terrain.

Terrain N/° E/° Total Area/km2 Distance to GS/km Gradient/° Slope direction Average altitude/m

1 28.851 99.394 4.66 2.487 10.3 North 4565

2 28.851 99.417 5.00 2.493 22.6 South 4349

3 28.834 99.394 1.06 2.071 35.1 North 4401

4 28.830 99.399 4.34 0.875 6.9 North 4584

5 28.835 99.417 4.50 1.320 7.4 North 4321

6 28.817 99.394 4.95 1.810 32.4 South 4213

7 28.817 99.417 4.04 1.391 7.8 South 4477

8 28.817 99.434 1.75 2.578 37.8 South 4248

TABLE 2 The Pearson correlation coefficient of each meteorological
factor.

Meteorological factors Pearson
correlation coefficient

Total radiation intensity 0.821

Average temperature 0.311

Relative humidity −0.691

Wind speed 0.410

Total cloud cover −0.526

Sea level pressure −0.108

Precipitation −0.165

Snowfall −0.215

Surface pressure −0.087

FIGURE 4
The actual value and the results of different models.

TABLE 3 The performances of different models.

Model eRMSE eMAE

DA-LSTM 0.896 0.697

LSTM 1.316 1.025
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terrain in the planning area is calculated, as shown in Figure 5.

It can be seen that there is a certain difference in the output

power of PV panels in different terrain. Considering the

annual total sunshine intensity and annual sunshine

durations of each terrain, it can be found that places with

good solar resources are not necessarily the regions with the

largest PV output power. That is because other meteorological

factors do have a visible impact on PV output. In addition,

terrain 7 has the highest PV output power. Moreover, since

there are a large number of PV panels in a PV power plant, the

priority of the installation site has a great impact on the output

power of the final PV power plant.

3.5 Results of photovoltaic panel
deployment

The deployment method proposed in this paper also

considers conventional capacity constraints, area

constraints and so on. However, its characteristic is that its

objective function considers the maximum actual PV output

power. To analyze the benefits of the method proposed in this

paper, scheme B and C are set as comparison, and the

proposed method is scheme A. The difference between the

comparison methods is mainly in the objective function,

which considers the maximum total sunshine intensity and

the maximum total sunshine durations respectively. The PV

resource parameters required by the three different methods

are shown in Table 4. The parameters required by the two

methods for comparison are easy to obtain.

Figure 6 shows the deployment results of three different

methods. Obviously, the installation location and

quantity of PV panels are different under three methods.

Also, it is not difficult to understand that, considering the

minimum cost, all deployment method will prefer to select

the terrain nearest to the collection station. Terrain 4, 5,

7 are the nearest, therefore, these terrains are given

high priority to install PV panels. But the actual

deployment of each terrain depends on constraints and

different objective functions. It is worth noting that all

three methods choose to install a certain number of PV

panels on terrain 4, which also proves that terrain four is the

best comprehensively.

Figure 7 shows the deployment performance of three

different methods. Obviously, the installation location and

quantity results of three different methods are different.

When the estimated PV installed capacity is given, it can

be seen that the PV expected output of the purposed method

is higher than that of the methods for comparison. The

proposed method increases the expected output power by

0.71% and 1.71% compared with scheme B and scheme C

respectively. Scheme A also lower the cost, which reduces the

cost by 0.89% and 2.32% compared with scheme B and

scheme C, respectively. Comparing the effects of the three

deployment schemes, we can see that the method proposed in

this paper improves the annual PV output power and reduces

the total construction cost. In other words, the proposed

method effectively improves the efficiency of solar energy

FIGURE 5
The annual expected output power of a single PV panel in
each terrain.

TABLE 4 The PV resource parameters of each terrain.

Terrain Annual output/kW·h Annual
solar irradiation/MJ·m−2

Annual sunshine duration/h

1 1659.67 6594 2655

2 1673.71 6586 2646

3 1639.78 6632 2622

4 1691.86 6635 2642

5 1679.02 6635 2672

6 1687.65 6628 2635

7 1708.06 6622 2605

8 1673.07 6632 2600
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utilization and creates higher economic and environmental

value.

4 Conclusion

An optimization method for the deployment of PV

panels in a centralized PV power plant under multiple

meteorological and geographical factors is proposed.

When deploying PV panels, the geographical and

meteorological condition differences in various terrains of

the planning area are fully considered, so as to obtain the

maximum PV output power. Taking a planning area and an

nearby existing PV power plant as examples, the data of

interest are collected for case studies and the results of case

studies are analyzed.

Considering that the PV panels in the centralized PV

power plant are densely arranged during installation, the

connectivity between the sub-areas is taken into

account when dividing the different terrain in the PV

power plant, so that the sub-areas in each terrain are not

only similar in geographical characteristics, but also

adjacent in geographical locations. The proposed terrain

division method meets the needs of the PV power plant

planning.

Then, Pearson correlation analysis succeeds in main

meteorological selection. Moreover, DA-LSTM model has

shown acceptable results in PV output power calculation, and

successfully calculates the annual PV output power of various

terrains in the planning area.

Finally, the advantages of the optimization method

based on terrain division and PV output power calculated

by DA-LSTM are proved. Compared with the

comparison method, the proposed method has higher

output power and less construction cost. The

application of this method can improve the efficiency of

PV resources utilization and create economic and

environmental benefits, which promotes the use of PV

technology.

FIGURE 6
The deployment results of three different methods.

FIGURE 7
The deployment performance of three different methods.
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