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The characteristics of seismic temporal distribution represent an important

basis for earthquake prediction and seismic hazard analysis. In this paper, based

on the seismic catalogs in Taiwan, and using Poisson (exponential distribution),

Gamma, Lognormal, Weibull, and Brownian passage time distributions as target

models, we adopt the maximum likelihood method for estimating model

parameters. The optimal model for describing the temporal distribution of

earthquakes in Taiwan is determined according to the Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), K-S test, Chi-square

test, and coefficient of determination R2 results. The results show that for

moderate-strong earthquakes events (MW < 7.0), the Gammadistributionmodel

canwell describe the temporal distribution characteristics of earthquakes, while

large earthquakes (MW ≥ 7.0) can be described entirely by exponential

distribution. In addition, the temporal correlation between earthquakes is

also examined through diffusion entropy analysis. The results show that

seismic activity features temporal correlation, and earthquakes with relatively

small magnitude (MW < 7) are affected by larger events (MW ≥ 7.0), thus

suggesting long-term memory in time. In this study, the probability of the

occurrence of amajor earthquake in Taiwan is also calculated. The results show

that the probability of an MW ≥ 7.0 earthquake in Taiwan in the next 10 years

reaches 91.3%. The results may be used to inform the selection of seismic time

distribution models and the calculation of seismic activity parameters in

earthquake prediction and seismic hazard calculation, and hold scientific

significance for understanding the mechanism of earthquake genesis.
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1 Introduction

The temporal distribution models of earthquakes represent an important theoretical

basis for earthquake prediction and seismic hazard analysis. Currently, it is widely

assumed in probabilistic seismic hazard analysis and earthquake prediction that the

temporal occurrence of earthquakes follows Poisson distribution. This means that

earthquake occurrences are mutually unrelated overtime, that is, they will neither be

affected by previous events nor affect subsequent events. Time-independent models
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include Poisson, double Poisson, piecewise Poisson, and renewal

models (Cornell, 1968; Gardner, 1974; Schwartz and

Coppersmith, 1984; Hu, 1990; Console et al., 2003), among

which the Poisson model is widely used in seismology and

engineering seismology. A lot of statistical tests have been

conducted on whether the temporal distribution of

earthquakes conforms to the Poisson model (Gardner, 1974;

Bufe and Perkins, 2005; Michael, 2011; Parsons and Geist, 2012;

Shearer and Stark 2012). In many countries, the Poisson model is

currently used in seismic hazard mapping and analysis (such as

Cornell, 1968; Petersen et al., 2014).

In contrast to time-independent models, time-dependent

models are used to describe the temporal distribution of

earthquakes. In recent decades, scientists have used

earthquake catalogs in different regions to empirically

investigate the temporal dependence of earthquakes, and

found that in many cases, the temporal occurrences of

earthquakes do not follow the Poisson distribution, while

time-dependent models are able to describe their temporal

distribution more accurately (Utsu, 1984; Nishenko and

Buland, 1987; Ogata, 1998; Tripathi, 2006; Sharma and

Kumar, 2010). Scientists have proposed to describe the

temporal distribution of earthquakes by using Gamma,

Lognormal, Weibull and Brownian passage time functions

(Utsu, 1984; Matthews et al., 2002; Tripathi, 2006; Pasari and

Dikshit, 2015; Pasari and Dikshit, 2018; Bajaj and Sharma, 2019),

which have provided important theoretical ground for

earthquake prediction and seismic hazard analysis.

In addition, the Epidemic Type Aftershock Sequence (ETAS)

model has also been widely used to study the temporal and spatial

distribution of earthquakes in recent years (Ogata, 1998; Zhuang

et al., 2005; Ogata and Zhuang, 2006). The ETAS model has

achieved considerable success in describing earthquakes and

their aftershocks, and in aftershock prediction. However, for

seismic hazard analysis, scientists have paid more attention to the

temporal distribution characteristics of main shocks (Michael,

2011; Beroza, 2012; Daub et al., 2012; Shearer and Stark, 2012). In

fact, in the ETAS model, background earthquakes are sometimes

still regarded as following the Poisson distribution (Zhuang et al.,

2005; Lombardi and Marzocchi, 2007). When applying the ETAS

model to probabilistic seismic hazard analysis, Šipčić et al. (2022)

identified the characteristics of the temporal changes of

background seismicity in the ETAS model as a key area for

future research, which suggests that studying the temporal

distribution of main shocks will also contribute to the

effective use of the ETAS model.

In the present study, based on the earthquake catalogs

recorded by relatively dense earthquake networks in Taiwan,

and using Poisson (exponential distribution), Gamma,

Lognormal, Weibull and Brownian passage time as target

models, we regressed the parameters of each model and

selected the optimal model for describing the temporal

distribution of seismicity using the Akaike information

criterion (AIC), the Bayesian information criterion (BIC) and

the Kolmogorov-Smirnov test (K-S test). Based on the above

models, we calculated the occurrence probability of large

earthquakes in Taiwan. The temporal correlation of

earthquakes in Taiwan and its surrounding areas was also

studied using Diffusion Entropy Analysis (DEA). The results

of this paper may provide theoretical basis for the selection of

temporal distribution models and the calculation of seismicity

parameters in seismic hazard analysis in the Taiwan area.

2 Data and methods

2.1 Earthquake catalogs

The earthquake catalogs used in this study are obtained from

the weather bureau of the Taiwan area (Figure 1). The earthquake

catalogs contain over 14,700 seismic events with ≤40 km depth

and M ≥ 4.0 magnitude from 1900 to 2020. With the average

crustal depth in Taiwan being about 40 km (Yeh and Tsai 1981),

the catalogs represent a record of shallow earthquakes in Taiwan.

Taiwan scholars have revised local earthquake catalogs in

seismicity analysis and seismic hazard calculations (e.g.,

Cheng et al., 2010; Chen et al., 2013; Chen and Chang, 2017),

ensuring that important parameters such as time, location and

magnitude in the earthquake catalogs are reliable and can be used

for analysis in the present study. In the study, we also used the

ANSS Comprehensive Earthquake Catalog (ComCat) of the US

Geological Survey, which contains the major events in the world

with moment magnitude. We usedWerner and Sornette (2008)’s

method to determine whether the seismic events recorded by the

weather bureau of the Taiwan area are the same as those in the

ANSS ComCat catalogs, and determined their moment

magnitudes. For events that are not listed in ANSS ComCat

catalog and have no moment magnitude, the conversion

relationship established by Chen and Tsai (2008) was used to

turn the magnitude into moment magnitude.

In this study, it is necessary to remove the aftershocks from

the earthquake catalogs to analyze the temporal statistics of main

shocks, for which many methods are currently available. Among

them, the traditional space-time window (Gardner, 1974) gives a

certain window of time and distances according to main shock

magnitude, and events within the window are regarded as

aftershocks. Though it is a simple method for aftershock

identification, the space-time window requires the provision of

corresponding space-time window parameters according to the

tectonic features of different regions. Zhuang et al. (2002)

proposed a stochastic declustering approach based on the

ETAS model. Despite its high efficiency in declustering, it

requires estimating the parameters in the ETAS model in

advance, which may be difficult in areas with relatively few or

incomplete catalogs. In addition, the method requires massive

calculations. Moreover, some scholars put forward the nearest

Frontiers in Earth Science frontiersin.org02

Xu et al. 10.3389/feart.2022.930468

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.930468


neighbor distance method for aftershock deletion (Baiesi and

Paczuski, 2004). In this paper, we used the space-time window of

Gardner (1974), which is widely used in seismicity analysis and

seismic hazard analysis at present (Daub et al., 2012; Shearer and

Stark, 2012; Petersen et al., 2014), to remove aftershocks from the

catalogs in Taiwan. The time-space window parameters used by

Chen et al. (2013) and Obi et al. (2017) were adopted. Figure 1 is

the spatial distribution map (Figures 1A, B) and magnitude-time

distribution map (Figures 1C, D) of earthquakes before and after

removing aftershocks, which shows greatly reduced seismic data

after removal. As different aftershock declustering methods will

lead to biases in model parameters estimation (Taroni & Akinci,

2021), we also used Reasenberg (1985)’s method to decluster the

catalogs to ensure the robustness of the results. As Table 1 shows,

Reasenberg (1985)’s declustering method retained more seismic

events.

FIGURE 1
Temporal and spatial distribution of earthquakes in Taiwan. (A,B) are the seismic spatial distribution maps before and after declustering,
respectively. (C,D) are the magnitude—time distribution before and after declustering, respectively.
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The completeness of catalogs, which refers to complete records

of earthquakes with a certain magnitude or above starting from a

certain year, might also affect results in significant ways. In this

paper, we considered the analysis results of Chen et al. (2013),Wang

et al. (2016), and Chen and Chang (2017) on the completeness of

earthquake catalogs in Taiwan (Table 1), amongwhich the complete

records of earthquakes ofM4 or above started from 1973, and that of

M7.0 or above started from 1900.

2.2 Statistical model of time intervals of
earthquake occurrence and goodness-of-
fit (GOF) test

In this paper, we analyzed the statistical characteristics of

earthquake recurrence intervals, which is defined as the time

intervals between successive events. In engineering seismology,

earthquake recurrence interval is also called return period, with

its reciprocal being the frequency of earthquake occurrence per

unit of time, which is a crucial parameter for probabilistic seismic

hazard calculation and earthquake prediction (Cornell, 1968;

Gardner, 1974; Console et al., 2003; Parsons and Geist, 2012;

Shearer and Stark, 2012; Petersen et al., 2014).

At present, the commonly used models in statistical

seismology include exponential (Poisson), Gamma,

Lognormal, Weibull, and Brownian passage time (Matthews

et al., 2002; Utsu, 2002; Bajaj and Sharma, 2019). In this

study, we used the above five models to analyze the statistical

characteristics of recurrence intervals in Taiwan (Table 2).

The maximum likelihood method (Fisher, 1922) was used to

estimate the parameters in the above statistical models. The five

models all have probability density functions, and the likelihood

function is the joint probability density function of random

variable x, which can be written as:

L θ( ) � ∏N
i�1

f xi|θ( ) (1)

where θ represents one or more parameters in the model,N is the

sample length of the random variable, and f is the probability

density function of the statistical model. The coefficients are

obtained by maximizing the likelihood function. We first take the

natural logarithm of the likelihood function, and then

differentiate the coefficients respectively and set them to 0 to

obtain the equations about the coefficients, and solve the

equations to obtain the maximum likelihood estimate of the

coefficients.

In this study, the distribution of earthquake recurrence

intervals is unknown. To know whether the recurrence

intervals conform to a statistical model, we applied the K-S

test to the difference between the observed values of

TABLE 1 Time periods of complete earthquake records in Taiwan area.

Magnitude M ≥ 4.0 M ≥ 5.0 M ≥ 6.0 M ≥ 7.0

Record period 1973–2020 1950–2020 1920–2020 1900–2020

Number (by Gardner (1974)’s declustering method) 1,054 360 103 26

Number (by Reasenberg (1985)’s declustering method) 1,219 391 106 26

TABLE 2 Interval of recurrence models.

Model name Probability density function and cumulative distribution function of statistical models and their
parameters

Exponential model f(x) � 1
μe

−x
μ , F(x) � 1 − e

−x
μ
, where μ is the mean value

Weibull model f(x) � β
](x/])β−1e−(x/])

β

, F(x) � 1 − e−(x/])
β

, In the equation, ] is the scale parameter and β is the shape parameter

Gamma model f(x) � x(λ−1)exp(−x/λ)

λkΓk , F(x) � 1
Γk ∫x/λ

0
uk−1exp−u du, where Γk � ∫∞

0
tk−1exp−t dt is Gamma function, k and λ are shape and scale

parameters respectively

Lognormal model
f(x) � 1

σx
��
2π

√ exp
−(ln(x)−μ)2

2σ2 , F(x) � Φ(ln(x)−μσ ), where Φ is the cumulative probability distribution function of normal distribution, μ

and σ are the mean and standard deviation of logarithmic values of x respectively

Brownian passage time (BPT) model fBPT(t) �
�����

μ
2πα2t3

√
exp(−(t−μ)2

2α2μt ), F(t) � P(T≤ t) � ∫t

0
fBPT(τ)dτ � Φ[u1(t)] + e

2
α2Φ[−u2(t)], where µ is the mean of recurrence

interval, α=σ/μ, and σ is the standard deviation of recurrence interval. u1(t) � α−1(t1/2μ−1/2 − t−1/2μ1/2),
u2(t) � α−1(t1/2μ−1/2 + t−1/2μ1/2)Φ(t) � 1��

2π
√ ∫t

−∞ e−x2/2dx, Φ is the cumulative probability function of standard normal

distribution
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recurrence intervals and theoretical distributions. The statistic of

the K-S test represents the biggest difference between the

cumulative distribution probability of observed values and the

cumulative distribution probability of the theoretical model:

DN � max Oi − Ei| | (2)

where Oi is the cumulative probability of observed values, and Ei

is the cumulative probability of the theoretical model. Smaller

DN results in better goodness-of-fit.

In order to select the optimal model, we used AIC and BIC to

determine the goodness-of-fit of the model. AIC and BIC are

respectively defined as:

AIC � 2k − 2 ln L( ) (3)
BIC � k ln N( ) − 2 ln L( ) (4)

where k is the number of model parameters; L is the likelihood

function; N is the sample size. In the training of the model,

increasing the number of parameters leads to higher model

complexity, which will increase the value of the likelihood

function and cause over-fitting. To solve this problem, AIC

and BIC both introduced penalty terms related to the number

of model parameters, with larger penalty term of the latter, so as

to effectively prevent over complexity in an overly large sample.

Usually, the model with the smallest AIC or BIC is chosen as the

best model from available alternatives.

In addition, the p-value of the Chi-square test and the

coefficient of determination R2 were used to characterize the

goodness-of-fit between the observed data and the theoretical

distribution models.

AIC determines the best performingmodel for the purpose of

prediction, while BIC chooses a model that fits the best existing

data. The penalty term of BIC is larger than that of AIC. When

the number of samples is considered, a larger sample size can

prevent the model from being too complex due to overly high

precision. K-S test may be used to determine whether a sample is

subject to a certain distribution by comparing the difference

between a sample’s cumulative probability distribution and

specific theoretical distributions (such as normal and Poisson

distributions). Chi-square test can be used to investigate the

degree of consistency between the actual and theoretical

frequencies of observation data per unit time. The main

purpose of using various statistical test methods is to avoid

the uncertainty of results caused by a single method. See

Gibbons and Chakraborti (2003) for a detailed description of

relevant test methods.

2.3 The diffusion entropy analysis method

Diffusion entropy analysis (DEA) was also used to study

the temporal correlation of earthquakes in Taiwan. Scafetta

and West (2004) first used the DEA method to calculate

adolescent fertility. They found that this method can obtain

correct scale parameters regardless of whether it is a Gaussian

process or when the variance is infinitely great. Since then, this

method has been widely used to analyze temporal distribution

of earthquakes in different regions (Jiménez et al., 2006; Zhou

et al., 2016). Mega et al. (2003) applied DEA to explaining the

temporal distribution of different earthquake clusters in

California from 1976 to 2002, and identified a correlation

between earthquake clusters and subsequent clusters in

California on a large temporal scale. Tsai and Shieh (2008)

used this method to analyze the correlation between

earthquakes in Taiwan (without removing aftershocks), and

found that the scale values of temporal probability density

function of earthquakes in Taiwan is 0.83, with strong

correlations between events.

The DEAmethod is briefly described as follows: set unit time

Δt, divide the earthquake sequence into m unit time series ξi; set

threshold value k, when the number of earthquakes in the i-th

unit time is greater than k, ξi � 1, otherwise ξi � 0. With t as the

window width, the window is moved one unit time at a time,

starting from n � 0 to n � m − t, generating a total of m − t + 1

tracks. In the n-th track, the sum of all ξi in the window is

written as:

xn t( ) � ∫nΔt+t

nΔt
ξ t′( )dt′ (5)

Thus we can transform the single-trajectory time series

composed of ξi into the relationship between the auxiliary

space of another variable x and the diffusion time t of

different trajectories. For the interval ε, (ε � 1 in the present

study), x is divided into multiple segments and the number of

trajectories Nj(t) appearing in the j-th segment is calculated,

then the probability of trajectories falling in the j-th segment at

time t may be derived as follows:

pj t( ) � Nj t( )
m − t + 1

(6)

The Shannon entropy (Shannon and Weaver, 1948) is

calculated with the following equation:

S t( ) � −∫+∞

−∞
pj x, t( ) ln pj x, t( )[ ]dx (7)

Scale invariance is an essential property of many complex

systems, and is widely used in the analysis of many time series

(Mandelbrot, 1982). After asymptotic time transformation of the

probability density function of x, the scaling relation can be

obtained:

p x, t( ) � 1
tδ
F

x

tδ
( ) (8)

where δ is the scale parameter of the probability density function

and F(x
tδ) is the statistical distribution function.

Equation 8 is substituted into Eq. 7 to obtain:
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TABLE 3 Model parameters and AIC, BIC, K-S test, chi-square test and coefficient of determination results for earthquakes in Taiwan and adjacent areas (declustering by Gardner (1974) method).

M Model Model parameters -lnL AIC BIC K-S test (DN) K-S test p-value Chi-square test p-value R2

M ≥ 4 Exponential μ = 16.0 [15.1, 17.1] 3,974.9 7,951.8 7,956.7 0.04 0.24 0.43 0.9948

Weibull ν = 15.3 (14.2, 16.4) β = 0.90 (.86, .95) 3,964.9 7,933.9 7,943.8 0.02 0.53 0.51 0.9991

Lognormal μ = 2.08 (2.00, 2.17) σ = 1.46 (1.41, 1.53) 4,091.3 8,186.7 8,196.6 0.10 <0.01 <0.01 0.9676

Gamma λ = 18.8 (17.6, 20.1) k = 0.85 (.79, .90) 3,964.6 7,933.3 7,943.2 0.01 0.84 0.62 0.9993

BPT μ = 16.0 (10.6, 21.5) α = 0.68 (.46, .54) 5,149.8 10,303.6 10,313.5 0.11 <0.01 <0.01 0.6102

M ≥ 5 Exponential μ = 70.3 (63.6, 78.2) 1,886.0 3,773.9 3,777.8 0.04 0.88 0.31 0.9949

Weibull ν = 67.1 (59.5, 75.7) β = 0.91 (.84, .92) 1,882.9 3,769.9 3,777.6 0.03 0.92 0.38 0.9990

Lognormal μ = 3.56 (3.41, 3.71) σ = 1.46 (1.36, 1.57) 1,923.5 3,851.0 3,858.7 0.10 0.01 <0.01 0.9664

Gamma λ = 82.4 (73.1, 93.8) k = 0.85 (.77, .94) 1,882.8 3,769.7 3,777.4 0.03 0.98 0.69 0.9991

BPT μ = 70.3 (43.2, 97.4) α = 3.72 (3.16, 4.09) 2,137.1 4,278.1 4,285.9 0.13 <0.01 <0.01 0.2382

M ≥ 6 Exponential μ = 354.0 (294.2, 434.2) 700.7 1,403.4 1,406.0 0.08 0.72 0.11 0.9933

Weibull ν = 334.3 (265.4, 421.1) β = 0.88 (.75, 1.03) 699.4 1,402.7 1,408.0 0.09 0.71 0.09 0.9806

Lognormal μ = 5.13 (4.82, 5.44) σ = 1.57 (1.39, 1.83) 713.6 1,431.1 1,436.4 0.10 0.41 <0.01 0.9633

Gamma λ = 443.3 (361.5, 600.3) k = 0.80 (.68, .91) 698.8 1,401.7 1,406.9 0.08 0.75 0.26 0.9943

BPT μ = 354.0 (84.6, 623.4) α = 3.92 (2.25, 4.61) 769.1 1,542.1 1,547.4 0.17 0.02 <0.01 0.2563

M ≥ 7 Exponential μ = 1,497.7 (1,055.2, 2,292.8) 216.1 434.2 435.5 0.10 0.93 0.14 0.9855

Weibull ν = 1,448.7 (937.5, 2,238.7) β = 0.93 (.69, 1.26) 216.0 436.0 438.5 0.11 0.85 0.13 0.9792

Lognormal μ = 6.66 (6.11, 7.21) σ = 1.32 (1.06, 1.86) 217.4 438.7 441.2 0.12 0.32 0.06 0.9580

Gamma λ = 1,665.2 (892.4, 3,107.1) k = 0.90 (.56, 1.45) 216.0 436.0 438.5 0.11 0.87 0.14 0.9783

BPT μ = 1,497.7 (323.6, 2,671.9) α = 2.04 (1.40, 2.19) 220.2 444.4 446.9 0.12 0.23 0.11 0.9541

The best model using bold type.
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S t( ) � A + δ ln t( ) (9)

where A � −∫+∞
−∞ dyF(y) ln[F(y)], δ varies from .5 to 1. If δ is

.5, then the time series has normal diffusion, with no correlation

between events in time.

3 Result

3.1 Temporal distribution model analysis

We adopted the earthquake catalogs of the Taiwan area as

basic inputs, with aftershocks eliminated using the Gardner

(1974) algorithm. The parameters of the five models were

regressed by maximum likelihood estimation, and the

goodness-of-fit (GOF) test was conducted for each model.

Table 3 shows the parameter values of each model and the

parameter values of GOF measures. As can be seen from the

GOF parameter values in Table 2, the AIC, BIC and K-S test

statistic DN values of Gamma distribution are the smallest for

MW ≥ 4 and MW ≥ 5 earthquakes, suggesting that Gamma

distribution is the best model to describe the temporal

distribution of these events. Furthermore, the p-values of the

K-S and Chi-square tests of Gamma distribution and the

coefficient of determination R2 (columns 9–11 in Table 2)

between observed and theoretical values are the largest among

the five models, again suggesting Gamma distribution as the best

model for describing the distribution of MW ≥ 4 events. At the

same time, Weibull distribution also yields relatively good

goodness-of-fit results. The cumulative probability curves in

Figures 2A, B also show that the curves of Gamma,

exponential and Weibull distributions can describe the

temporal distribution of earthquakes relatively well. For MW ≥
6.0 earthquakes, the AIC and K-S test DN values of Gamma

distribution are the smallest. Moreover, the p-value of the K-S

and Chi-square tests of Gamma distribution and the coefficient

of determination R2 are the largest. These results all suggest that

Gamma distribution performs best in describing the temporal

FIGURE 2
Cumulative probability distribution curves of time interval for five models for (A) M ≥ 4.0 earthquakes, (B) M ≥ 5.0 earthquakes, (C) M ≥ 6.0
earthquakes and (D) M ≥ 7.0 earthquakes.
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TABLE 4 Model parameters and AIC, BIC, K-S test, chi-square test and coefficient of determination results for earthquakes in Taiwan and adjacent areas (declustering by Reasenberg (1985)’s method).

M Model Model parameters -lnL AIC BIC K-S test (DN) K-S test p-value Chi-square test p-value R2

M ≥ 4 Exponential μ = 13.9 (13.2, 14.7) 4,425.1 8,852.3 8,857.4 0.029 0.26 0.29 0.9978

Weibull ν = 13.5 (12.7, 14.4) β = 0.94 (.90, .98) 4,422.4 8,848.7 8,858.9 0.022 0.61 0.57 0.9994

Lognormal μ = 2.00 (1.92, 2.08) σ = 1.35 (1.30, 1.40) 4,527.6 9,059.2 9,069.4 0.084 <0.01 <0.01 0.9751

Gamma λ = 15.1 (13.8, 16.6) k = 0.92 (.86, .99) 4,421.3 8,846.6 8,856.8 0.017 0.87 0.61 0.9995

BPT μ = 13.9 (11.6, 16.2) α = 2.98 (2.83, 3.10) 5,108.1 10,220.1 10,230.3 0.331 <0.01 <0.01 0.4539

M ≥ 5 Exponential μ = 64.8 (58.8, 71.7) 2,016.6 4,035.1 4,039.1 0.035 0.72 0.34 0.9971

Weibull ν = 63.2 (56.6, 70.6) β = 0.95 (.88, 1.02) 2,015.6 4,035.2 4,043.2 0.029 0.89 0.10 0.9985

Lognormal μ = 3.54 (3.40, 3.67) σ = 1.39 (1.30, 1.49) 2,060.4 4,124.9 4,132.8 0.094 0.01 0.02 0.9724

Gamma λ = 70.44 (60.0, 82.7) k = 0.92 (.81, 1.04) 2,015.6 4,035.3 4,043.2 0.027 0.92 0.12 0.9985

BPT μ = 64.8 (35.9, 93.7) α = 4.49 (3.61, 5.06) 2,395.1 4,794.2 4,802.2 0.454 <0.01 <0.01 0.1021

M ≥ 6 Exponential μ = 350.6 (291.6, 429.5) 706.5 1,415.1 1,417.7 0.067 0.72 0.11 0.9912

Weibull ν = 346.4 (281.0, 427.1) β = 0.97 (.84, 1.13) 706.5 1,417.0 1,422.2 0.066 0.73 0.15 0.9878

Lognormal μ = 5.26 (5.01, 5.50) σ = 1.26 (1.11, 1.47) 711.5 1,426.9 1,432.2 0.086 0.41 0.05 0.9862

Gamma λ = 364.4 (297.2, 436.9) k = 0.96 (.79, 1.12) 706.5 1,417.0 1,422.2 0.065 0.75 0.25 0.9917

BPT μ = 350.6 (220.8, 480.4) α = 1.92 (1.78, 1.99) 723.6 1,451.3 1,456.5 0.178 0.01 0.02 0.8720

M ≥ 7 Exponential μ = 1,497.7 (1,055.2, 2,292.8) 216.1 434.2 435.5 0.10 0.93 0.14 0.9855

Weibull ν = 1,448.7 (937.5, 2,238.7) β = 0.93 (.69, 1.26) 216.0 436.0 438.5 0.11 0.85 0.13 0.9792

Lognormal μ = 6.66 (6.11 7.21) σ = 1.32 [1.06, 1.86] 217.4 438.7 441.2 0.12 0.32 0.06 0.9580

Gamma λ = 1,665.2 (892.4, 3,107.1) k=0.90 [.56, 1.45] 216.0 436.0 438.5 0.11 0.87 0.14 0.9783

BPT μ = 1,497.7 (323.6, 2,671.9) α=2.04 [1.40, 2.19] 220.2 444.4 446.9 0.12 0.23 0.11 0.9541

The best model using bold type.
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distribution of these events. At the same time, exponential

distribution also yields relatively good goodness-of-fit results.

This can also be observed from the probability curves in

Figure 2C. For MW ≥ 7.0 earthquakes, the values of AIC, BIC,

and K-S tests DN suggest similar goodness-of-fit of the five

distributions (see Figure 2D), but the p-values of K-S and

Chi-square tests and the coefficient of determination R2

suggest better performance of the exponential distribution.

The above analysis shows that the larger the earthquake

magnitude, the stronger the time independence.

This study also shows that for catalogs with any initial

magnitudes, the K-S test does not reject its temporal

distribution as exponential distribution in most circumstances,

meaning that we can choose the statistical model able to yield the

best description of temporal distribution of earthquakes by GOF

measures, but we cannot reject that earthquake time series also

follows other statistical models. This also means that in the

current probabilistic seismic hazard analysis, it is reasonable

to assume that the main shocks follow exponential

distribution in time. However, when calculating occurrence

rates, it would be more reasonable to adopt the optimal

statistical model.

To ensure the robustness of the conclusions, the same

analysis was conducted using earthquake catalogs with

aftershocks eliminated based on Reasenberg (1985)’s method.

The model parameters and goodness-of-fit test values are given

in Table 4. As can be seen, the goodness-of-fit test values of each

model in Table 4 are very similar to those in Table 3, and the

same conclusions can be made, which suggests that the results

obtained in this paper are robust. Tables 3, 4 provide the

recurrence intervals and 95% confidence intervals of events of

various magnitudes, which has important reference value for

computing seismic hazard in the Taiwan area.

3.2 Earthquake temporal correlation
analysis

The temporal correlation of earthquakes is relative to the

completely random distribution (exponential distribution) of

events in time, which means that earthquakes occur in groups

within a period of time and the occurrence of a large

earthquake triggers more events. Earthquake temporal

correlation has always been an issue of concern among

seismologists, with important affect on earthquake

prediction and seismic hazard analysis.

We used the DEA method to analyze the temporal

correlation of earthquakes, with a scale parameter of d. When

δ = .5, random variables conform to the Poisson distribution with

no correlation between them. When δ > .5, the variables have

correlation and long-term memory, that is, the occurrence of one

event triggers the next. When the scale parameter is less than .5,

there is negative interaction between earthquakes, that is, the

occurrence of one earthquake delays the next event. In practice,

when the sample size is small, the calculated scale value is less

than .5 even if the time sequence follows the theoretical Poisson

distribution (Tsai and Shieh, 2008).

FIGURE 3
Variation of diffusion entropy of earthquakes with time and its
scale value in Taiwan region. The dots in the figure represent
entropy based on actual data, and the lines are the fitted Shannon
entropy function based on time.

FIGURE 4
Kernel density estimation of earthquake sequences with
different initial magnitudes on time axis. Subgraphs (A–D) in the
figure are the time-varying curves of seismic rate with magnitudes
M ≥ 7, M ≥ 6, M ≥ 5 and M ≥ 4, respectively.
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As can be seen from Figure 3, a diagram of DEA results of

earthquakes in Taiwan, the scale parameter δ forMW ≥ 4,MW ≥
5, and MW ≥ 6 earthquakes is greater than .5 and the maximum

can reach .61, indicating correlations between earthquakes above

MW 4 in Taiwan. ForMW ≥ 7 earthquakes, the scale parameter δ

is .48, very close to .5, showing complete randomness and

suggesting no correlation. In particular, the scale parameter δ

of MW 4–6 earthquakes was calculated separately by removing

the earthquakes of above MW 7.0 from the earthquake catalogs,

and it was found that the scale parameter δ decreased

significantly to about .53, slightly higher than .5, which means

that the time correlation of earthquakes below magnitude 7 is

relatively weak. The purpose of this analysis is to show that the

strong time correlation of earthquake sequences above

magnitude 4 is caused by the influence of large earthquakes

(M7 + events) on moderate and strong earthquakes (M4 +

events).

Then we used the kernel density estimation method of Geist

and Parsons (2011) to smooth the earthquake catalogs with

MW ≥ 4, MW ≥ 5, MW ≥ 6, and MW ≥ 7 events in the

periods with complete catalogs on the time axis (Figure 4). In

this paper, the smoothing kernel function is a Gaussian function,

and the bandwidth is based on Silverman (1998)’s optimal

bandwidth of h � 0.9A
N1/5 , where N is the sample size of the

variable x, A � min( ��������
variancex

√
, interquartile rangex1.349 ). Then the

smoothing bandwidth of earthquake sequences of M4, M5,

M6, and M7+ events is 1.1 years, 2.5 years, 4.2 years, and

8.1 years respectively.

After the active period of MW ≥ 7.0 earthquakes, the activity

of earthquakes of or above MW 4–6 is obviously strengthened

(Figure 4), which shows that the occurrence ofMW ≥ 7 events can

trigger subsequent moderate-strong earthquakes of or aboveMW

4–6, which is consistent with the aforementioned results of DEA

analysis. As can be seen from Figures 4A, B, the trend of the rates

shows that earthquakes of or aboveMW 7.0 were relatively active

before 1920, and the frequency of seismicity above

M6.0 increased obviously from 1920 to 1940. From 1960 to

1975,MW ≥ 7 events started to become active, and then seismicity

of MW≥6 events began to increase, while MW ≥ 4 and MW ≥
5 events were relatively active in the same period. The above

analysis suggests that the occurrence of large earthquakes

triggered subsequent moderate-strong earthquakes, which

coincides with the accumulation of tectonic stress on the fault

of large earthquakes. When tectonic stress accumulated to a

certain extent, large earthquakes occurred again.

3.3 Occurrence probability of large
earthquakes

As large earthquakes often cause serious casualties and

damage to buildings, the probability of their future occurrence

is an issue of great concern among scientists. We have already

identified exponential distribution as the best model to

describe the temporal distribution of MW ≥ 7.0 earthquakes,

while Gamma, Weibull, lognorma, and Brownian passage time

distributions also demonstrate good goodness-of-fit. To fully

understand the occurrence probability of large earthquakes in

Taiwan, we calculated the occurrence probability of future

FIGURE 5
Variation of occurrence probability of M ≥ 7.0 earthquakes in
Taiwan with time calculated based on five statistical distribution
models.

TABLE 5 Occurrence probability and seismic rate of M ≥ 7.0 earthquakes in Taiwan in the future.

Model Te Earthquake probability in the future (%) Seismic rate

1 year 5 years 10 years 20 years 1 year 5 years 10 years 20 years

Exponential 15 21.6 70.4 91.3 99.2 0.244 0.244 0.244 0.244

Weibull 15 19.2 65.2 87.7 98.4 0.213 0.211 0.209 0.206

Gamma 15 20.1 67.4 89.3 98.8 0.224 0.224 0.223 0.223

Lognormal 15 11.0 41.9 63.4 83.0 0.132 0.123 0.114 0.101

BPT 15 21.0 68.2 89.3 98.6 0.239 0.233 0.227 0.219
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earthquakes of or above MW 7.0 based on the five distribution

models.

Future probability may be calculated when the elapse time

and recurrence intervals of large earthquakes and their

uncertainties are known. Let Te (Escape time) be the time

before the last earthquake occurred, then the conditional

probability of at least one earthquake occurring in the future

ΔT time is (Matthews et al., 2002):

P ΔT|Te( ) �
∫Te+ΔT
Te

f t( )dt
∫∞
Te
f t( )dt � F Te + ΔT( ) − F Te( )

1 − F Te( ) (10)

where F(Te) � ∫Te

0
f(t)dt is the cumulative distribution

function of recurrence intervals. f(t) is the probability density

function of the temporal distribution models introduced above.

According to the parameter values of each model calculated

in Table 3, the occurrence probability of earthquakes of MW

7.0 or above in Taiwan in the next 1–50 years is calculated using

Eq. 6 (Figure 5). The probability of occurrence calculated based

on different models differs (Table 5), with the value calculated

based on the exponential distribution model being the largest and

that based on the Lognormal distribution the smallest. In the next

1 year, 5 years, 10 years, and 20 years, the maximum probability

of MW ≥ 7.0 earthquakes in Taiwan is 21.6%, 70.4%, 91.3%, and

99.2%, respectively. Figure 5 shows the variation of the

occurrence probability of MW ≥ 7.0 earthquakes in Taiwan

with time calculated based on the five statistical distribution

models. In the next 20 years, the probability of MW ≥
7.0 earthquakes in Taiwan would reach almost 100% (Figure 5).

While earthquake occurrence rate is used in probabilistic

seismic hazard analysis, thus it is necessary to convert the

probability of earthquake occurrence into effective occurrence

rate. We used the formula r � −ln(1 − P)/ΔT (Petersen et al.,

2007) to convert the probability of earthquake occurrence into

the effective seismic rate, which can be used to calculate seismic

hazards. This has important reference significance for

probabilistic seismic hazard analysis in Taiwan area. The

conversion formula used in this paper can convert the

occurrence probability calculated based on any model into the

effective occurrence rate. Because the Poisson model is a time

independent model, the calculated effective occurrence rate is

constant at any time, while the other four models are time-

dependent models with an occurrence rate that varies with time.

These can be seen from Table 5.

4 Conclusion and discussions

The present study provides a reliable and effective method for

determining the optimal model of earthquake recurrence

intervals. We adopt exponential, Gamma, Weibull, Lognormal,

and Brownian passage time distributions as target models. Model

parameters were regressed by the maximum likelihood method,

and the goodness-of-fit was evaluated based on K-S test, AIC, and

BIC values. The results show that Gamma distribution is the best

model to describe the temporal distribution of MW 4-

6 earthquakes in Taiwan, which is consistent with Chen et al.

(2013)’s findings. For MW ≥ 7.0 earthquakes, exponential

distribution yields the most accurate description of their

distribution characteristics, which is consistent with the results

of Shearer and Stark (2012) and Michael (2011) regarding the

temporal distribution model ofMW ≥ 7.0 earthquakes around the

world. Through an analysis of the temporal distribution models,

we found that events of or above MW 4–6 in Taiwan show time-

dependence characteristics, suggesting that moderate-strong

earthquakes are more susceptible to other earthquakes.

Earthquakes of or above MW 7.0 show time independence.

Sample size is an important factor affecting parameter

estimation. In this study, only 26 events (M7+) were

available, which may have some influence on the test

results. Therefore, in this paper, we used multiple methods

to analyze the time distribution of M7+ events, and all of them

showed that they were time independent, ensuring the

reliability of the conclusion.

To further validate the conclusions in the previous

paragraph, we used the DEA method to study the correlation

between earthquakes. The results show thatMW 4–6 earthquakes

in Taiwan are more susceptible to earthquakes of or above MW

7.0, and there is a time correlation between large and moderate-

strong earthquakes. Furthermore, the kernel density estimation

method was used to obtain the variation of seismicity frequency

with time, with results showing that moderate-strong seismicity

increased significantly after large events as well. This may be due

to the long time of stress diffusion and adjustment following a

large earthquake, which is manifested in the occurrence of a large

number of moderate-strong earthquakes (Chéry et al., 2001;

Shearer and Stark, 2012), and by long-term memory in

statistical characteristics. Therefore, the influence of the latest

strong earthquake on future moderate-strong earthquakes

should be fully considered in the analysis of seismic hazards

of a certain area. In previous studies, most scientists only paid

attention to the temporal correlation between large earthquakes

(Bufe and Perkins, 2005; Michael, 2011; Shearer and Stark, 2012;

Daub et al., 2012; Kulkarni et al., 2013; Salditch, 2020), while our

findings show that even after declustering, temporal correlation

between large earthquakes and small and medium earthquakes

still exists in the earthquake catalogs, which means that the

occurrence of large earthquakes will trigger small and medium

earthquakes, resulting in long-term memory in seismicity

statistics.

We also calculated the occurrence probability of MW ≥
7.0 earthquakes in Taiwan in the future based on the five

models, and found that it may reach 70.4% and 91.3% in the

next 5 and 10 years, respectively. In Chen et al. (2013)’s

calculations, the probability of MW ≥ 7.0 earthquakes in

Taiwan in the next 10 years is about 78.8%, which is lower
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than our result. This is due to the longer elapse time adopted in

this study. In fact, the occurrence probability of MW ≥
7.0 earthquakes calculated by Chen et al. (2013) in the next

20 years (94.9%) is equivalent of our results for the next 10 years

(91.3%), showing relatively good consistency.

The findings in this study may provide reference for seismic

hazard analysis and earthquake prediction in Taiwan.
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