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The rapid growth of distributed generation (DG) and load has highlighted the

necessity of optimizing their ways of integration, as their siting and sizing

significantly impact distribution networks. However, little attention has been

paid to the siting and sizing of new substations which are to be installed. This

paper proposes deep learning-aided joint DG-substation siting and sizing in

distribution network stochastic expansion planning. First, as themodel depends

on an accurate forecast, Long Short-TermMemory (LSTM) deep neural network

is used to forecast DG output and load, where electricity growth rate, bidding

capacity of the electric expansion, and industrial difference are all considered.

Then, a two-stage stochastic mixed integer bilinear programming model was

established for joint DG-substation siting and sizing under uncertainties, where

multiple objective functions are comprehensively addressed. By using the

Fortuny-Amat McCarl Linearization, the resultant bilinear model is

equivalently transformed into a mixed integer linear program, which can be

efficiently solved. Finally, stochastic power flow calculation in the IEEE 69-node

system is conducted to analyze the influence of electric expansion and DG

integration on the node voltage and power flow distribution of the power

system. The effectiveness of the proposed method is also verified by simulation

tests.
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1 Introduction

With the forthcoming shortage of fossil fuels, the accommodation of renewable

energy is a critical topic in power systems. Although large-scale integration of DGs is

favorable to promoting the development of the economy, environment, and society (Singh

and Sharma, 2017), curtailment of renewable energy is still significant and remains a

critical issue to date (Zheng et al., 2021; Zheng et al., 2022). On the other hand, the

expansion capacity of different industries will also impact the demand side of the system.
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It is left open how to reasonably plan the location and capacity of

the renewables and the expanded industrial load to be integrated

into the system, as the planning scheme has a huge impact on the

operation of the power system.

Load forecasting and DG forecasting are important basis for

power system decision-making and planning. In terms of load

forecasting, due to the volatility of DG and load, how to

accurately forecast the load in the presence of electric

expansion is the focus of this research. The existing load

forecasting research is mainly divided into statistics-based and

learning-based methods, and the latter is the current mainstream

method. Statistical methods mainly include multiple linear

regression, autoregression, autoregressive moving average, and

so on (Kim et al., 2018; Ahmad and Chen, 2019), but they can

hardly deal with load data with random and dynamic

development. (Yang et al., 2019). establishes a hybrid power

load forecasting model by combining the autocorrelation

function and least squares support vector machine in short-

term power load forecasting. Compared with the benchmark

model, experimental results show that this method can

significantly improve forecasting accuracy. (Gul et al., 2021).

adopts CNN-Bi-LSTM to process time series data sets for

medium-term electricity prediction. However, the industrial

difference in electricity consumption needs to be studied,

while the quantitative relationship between industrial

expansion capacity and the growth of load needs to be

revealed. In this paper, the influence of industrial expansion

will be considered in load forecasting, while the influence of

direct irradiance and diffuse irradiance will be considered in DG

sizing forecasting.

Although pioneering studies have investigated the siting

and sizing of DG in the distribution network, little attention

has been paid to installing new substations for industrial

expansion. (Ho et al., 2016). proposes an optimal energy

storage scheduling of DG distributed power generation

system, which was formulated as a mixed integer linear

program (MILP). (Vale et al., 2010). adopts the artificial

neural network method to carry out distributed energy

scheduling in isolated grids, and the construction of virtual

power participants (VPP) can aggregate large-scale

integration of DG and other distributed energy resources.

(Daud et al., 2016). studies how to deploy the optimal location

capacity of distributed photovoltaics. This paper considers

multiple objectives such as power loss, voltage deviation,

average voltage total harmonic distortion, and system

average voltage decline to construct a multi-objective

optimization problem, and the multi-objective optimization

problem is converted into a single-objective optimization

problem in a weighted way. In the research on industrial

expansion, (Chen and Hsu, 1989). establishes an expert

system for load allocation in the industrial expansion

planning of the distribution network. The artificial

language PROLOG is used to integrate the heuristic rules

followed by the load allocation planner into the knowledge

base, generating several appropriate load distribution

schemes. (Aghaei et al., 2014). proposes a multi-stage

distribution network expansion planning algorithm based

on improved particle swarm optimization to ensure energy

reliability and security, and realize the integration of

distributed generation units into the distribution network.

(Fan et al., 2020). considers the uncertainties of DG and

electric vehicles and develops a comprehensive extended

programming framework based on multi-objective mixed

integer non-linear programming, where the Chebyshev

decomposition is employed to solve the problem. However,

heuristic algorithms can barely consider the uncertainty of

DG and load, and their computational efficiency is generally

low, which cannot satisfy the need for real-time dispatch.

Compared with the existing research on the siting and sizing

of DGs, this paper tackles the scenario with industrial expansion

by using the research framework in Figure 1. Utility companies

process customers’ applications for new substation installation

and additional electricity capacity, referred to as industrial

expansion and installation. Meanwhile, the main ways to

achieve capacity growth include the installation of DG and

substation. Therefore, this paper further explores the problem

of joint DG-substation siting and sizing. The contributions are

three-fold:

1) Industrial expansion data are fully employed in the LSTM

network to forecast the increment load brought by the

expansion.

FIGURE 1
The research framework of this paper.
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2) A two-stage stochastic optimization model for joint DG-

substation siting and sizing is established, which is

reformulated into a mixed-integer linear program for an

efficient solution.

3) Simulation tests are conducted on an IEEE system to prove

the effectiveness of the research. Stochastic power flow is

carried out to evaluate the impact of DG/substation

integration on the system states, highlighting the merits of

joint DG-substation siting and sizing.

Deep learning-based load forecasting
and DG capacity forecasting

Load forecasting considering industrial
expansion

As the industrial load is affected by industrial expansion

and seasonal fluctuations, this paper improves the traditional

LSTM load forecasting network, and applies the data of

industrial expansion and electricity growth of different

industries to the neural network, to more accurately forecast

the load level under the influence of industrial expansion

(Zheng et al., 2020).

In this section, the monthly load data of the pharmaceutical

manufacturing industry, rubber and plastic products industry,

and transportation, electrical and electronic equipment

manufacturing industry in a province under the influence of

industrial expansion are used to build an LSTM network,

providing a basis for the load growth generated by industry

expansion business.

The constructed model consists of the following steps:

1) Data selection

A large number of industrial expansion data are screened to

eliminate the data caused by fault maintenance and line change

and to ensure that the analyzed industrial expansion capacity

generates actual load.

2) Data pre-processing

Assuming that the current time period is t, we select the

industry monthly load data, annual load growth rate, and

industrial expansion capacity of the past d time period for

normalization and use them as the input of LSTM.

3) LSTM network structure

As shown in Figure 2, the network consists of an input layer,

H sequence blocks, and an output layer. Firstly, the input layer is

used to preprocess the load data, then the sequence blocks

constructed by H custom LSTMs are used to extract the

features of the input sequence, and finally, the output layer

generates the load forecast for the industry.

Each sequence block has the same structure, including an

LSTM layer, a fully connected layer, and a dropout layer. LSTM

network is a recurrent neural network that can establish the

temporal correlation between previous information and the

current environment, so LSTM is used as a basic component

of sequence blocks. Each LSTM layer L1 has multiple units, each

of which has a memory unit sτ ∈ RL1 and an input node gτ ∈ RL1 ,

an input gate iτ ∈ RL1 , a forgetting gate f τ ∈ RL1 , and an output

gate oτ ∈ RL1 , where L1 is a hyperparameter, and the output of

each unit + is in a hidden state. Taking the input sequence χt �
xt−d+1, ..., xt{ } as an example, the structure of LSTM is

represented by (1)-(6) (Hochreiter and Schmidhuber, 1997),

for the time period τ � t − Δ + 1, t − Δ + 2, ..., t:

gτ � tanh Wgyxτ +Wghhτ−1 + bg( ) (1)
iτ � σ Wiyxτ +Wihhτ−1 + bi( ) (2)
f τ � σ Wfyxτ +Wfhhτ−1 + bf( ) (3)
oτ � σ Woyxτ +Wohhτ−1 + bo( ) (4)

sτ � gτ+iτ + sτ−1+f τ (5)
hτ � tanh sτ( )+oτ (6)

Where hτ−1 ∈ RL1 is the LSTM layer output of the historical time

period τ − 1, matrix Wgy ∈ RL1×n, Wgh ∈ RL1×n, Wiy ∈ RL1×n,

FIGURE 2
LSTM network structure diagram.
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Wih ∈ RL1×n, Wfy ∈ RL1×n, Wfh ∈ RL1×n, Woy ∈ RL1×n and

Woh ∈ RL1×n is the weight of the network activation function

input, bg ∈ RL1 , bi ∈ RL1 , bf ∈ RL1 and bo ∈ RL1 is the bias vector,

σ is the sigmoid activation function, and + represents Hadamard

product. In deep learning, the sigmoid function is often used as

the activation function of neural networks due to its

monotonically increasing nature and the monotonically

increasing inverse function, which maps variables between

[0,1] and normalizes the output of each neuron. Since the

probabilities range from 0 to 1, the sigmoid function is a

good fit for models that take predicted probabilities as output.

Hadamard product is a kind of matrix operation. IfA � (aij) and
B � (bij) are twomatrices of the same order, and if cij � aij × bij,

then the matrix C � (cij) is the Hadamard product of A and B,

i.e. C � A+B.

The input node, input gate, forgetting gate, and output gate

are shown in Eq. 1–4. Different activation functions are used to

calculate the activation of the weighted sum of input xτ and

LSTM hidden output hτ−1. These three doors regulate the flow of

information to and from the storage unit sτ . As shown in Eq. 5,

the storage unit sτ is the Hadamard product of gτ and iτ plus the
Hadamard product of sτ−1 and f τ . It remembers values in any

time period, which are controlled by input nodes gτ , input gates
sτ , and forget gates f τ , to determine which elements in the LSTM

cell should be updated, maintained, or deleted. The hidden LSTM

output hτ is shown in Eq. 6, which is obtained by the memory

unit sτ and the output gate oτ . Finally, in order to improve the

generalization ability of LSTM, the fully connected layer and

dropout layer are added after the LSTM layer. The main purpose

of the dropout layer is to prevent the overfitting of the neural

network. In the forward propagation process of training, the

neural network is sampled and the activation value of neurons is

randomly set to 0, while the dropout layer is not used in the test

process.

4) The setting of training parameters

In the above network structure, each Bernoulli random

variable has probability ρ � 1. The fully connected layer in Eq.

6 is used to capture useful features in the target domain (Zhang

et al., 2018). Meanwhile, in order to prevent overfitting, the

output of the fully connected layer is randomly set to zero in the

dropout layer with probability ρ.

Finally, in the training of the network, the time algorithm is

used for back-propagation (Gers et al., 1999) to minimize the loss

between the predicted output of the neural network ~yτ and the

corresponding output label yτ . During network initialization, set
s0 � 0 and h0 � 0 (Shi et al., 2015), the weight matrix is initialized

by Glorot initializer (Glorot and Bengio, 2010), the deviation of

the forgetting gate is initialized to 1, and other deviations are

initialized to 0.

The historical data of training is input into the above

network, and the predicted load value of the current time

period t is obtained through forward propagation. Then the

loss of the predicted load and the true value of the label is

backpropagated through the network, and then the Adam

optimizer is used to update the weight and deviation of the

network. The detailed training process can be found in (Gers

et al., 1999).

DG capacity forecasting

Given that the output of DG is affected by some

factors, such as environment, time, and so on, this

section similarly uses the LSTM network to learn the

historical data output by DG to predict the output capacity

of DG more accurately. Therefore, as shown in Figure 2, the

DG capacity data, direct irradiance, and diffuse irradiance of

the same period in the province are selected for

normalization and used as the input of LSTM. The network

structure and training process are the same as in the previous

section, and finally, the DG output data at this moment is

obtained.

A multi-objective two-stage
stochastic optimization model for
joint DG-substation siting and sizing

The previous section forecasts the load yielded by industrial

expansion and DG output, which provides the data basis for the

modeling in this section. This section will use multi-objective

two-stage stochastic programming to deal with the uncertainties

of DGs and loads, which will be reformulated into anMILP for an

efficient solution.

Objective function

A multi-objective two-stage stochastic optimization model

is established. The system voltage stability and generator cost

are considered in the objective function. The location and

capacity of new DGs and substations are formulated as the

first-stage variables, and the other variables are the second-

stage variables:

minf1 � ∑Ns

s�1
ϖs∑Nbus

i�1
Ui,s − 1
∣∣∣∣ ∣∣∣∣ (7)

min f2 � ∑Ns

s�1
ϖs∑Ng

i�1
CGiPGi,s (8)

min f3 � ∑Nbus

i�1
∑Next

k�1
∑Ns

s�1
Cext

ki αkiPextk,s

+ ∑Nbus

i�1
∑NDG

k�1
∑Ns

s�1
CDG

ki βki PDGk,s + QDGk,s( ) (9)
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min f4 � − ∑Ns

s�1
∑Next

k�1
αkiPextk,s +∑Ns

s�1
∑NDG

k�1
βki PDGk,s + QDGk,s( )⎛⎝ ⎞⎠

(10)
where s is the number of scenarios, ωs is the probability of

scenario s, and Nbus is the number of nodes in the system, Ns is

the number of scenarios. Ui,s is the square of the voltage

amplitude of node i in scenario s. Ng is the number of

generators in the system, PGi,s is the output of the ith

generator in scenario s, CGi is the cost coefficient of the ith

generator. Next is the number of substation installation, Cext
ki is

the cost of the kth substation installation task at node i, αki is a

binary variable, αki is 1 if the kth substation installation task is

installed at node i, otherwise, αki is 0. NDG is the number of DGs

to be integrated,CDG
ki is the cost of the kth DG siting task at node

i, βki is a binary variable, if the kth DG siting task is at node i, βki
is 1, otherwise it is 0. Pextk,s is the expected load supplied by the

kth new substation under scenario s, and PDGk,s, QDGk,s is the

active/reactive power flowing from kth DG in node i to other

adjacent nodes under scenario s. In the above objective

function, f1 reflects the voltage stability level of the system, f2
is the generator cost, f3 is the joint DG-substation siting and

sizing cost, and f4 is the DG-substation capacity.

The original problem can be transformed into a single-

objective optimization problem by weighting the multi-

objective, which can be directly solved by the mainstream

solver. Therefore, this paper converts the above multi-

objective optimization problem into the following single-

objective optimization problem:

min F � ∑4
i�1
γifi (11)

In Eq. 11, γi is the corresponding weight of the ith objective

function, ∑4
i�1γi � 1 and the weight coefficient of each objective

function can be set according to the actual demand of the project.

Network constraint

Since the joint DG-substation siting and sizing are usually in

the distribution network, considering the distribution network is

a radial network, LinDistFlow model is used to describe the

power flow (Šulc et al., 2014):

Pji,s + PDG,i,s − Pdi − Pext
di,s + PGi,s −∑

w

Piw,s � 0 (12)

Qji,s + QDG,i,s − Qdi + QGi,s −∑
w

Qiw,s � 0 (13)

Ui,s � Uj,s − 2RijPji,s − 2XijQji,s (14)
Pji ≤Pji,s ≤ �Pji (15)
Qji ≤Qji,s ≤ �Qji (16)
Ui ≤Ui,s ≤ �Ui (17)

0≤PDG,i,s ≤ �PDG,i (18)
0≤QDG,i,s ≤ �QDG,i (19)
0≤Pext

di,s ≤ �P
ext
di (20)

Among them, Equations 12, 13 are the active and reactive power

balance constraints of node i, Pji,s/Qji,s is the active and reactive power

flowbetween nodes j and i in scenario s,PDG,i,s/QDG,i,s is the active and

reactive power capacity of DG integration at node i in scenario s. Pdi/

Qdi is the active/reactive power load of node i, Pext
di,s is the expected

load supplied by the new substation at node i, and Piw,s/Qiw,s is the

active/reactive power flowing from node i to other adjacent nodes

under scenario s, wherew is the set of downstreamnodeswith respect

to node i. Equation 14 is the voltage relationship between nodes j and

i. Equations 15, 16 line power flow upper and lower bound

constraints, �Pji/Pji is the upper/lower bound of active power

between nodes j and i, and �Qji/Qji is the upper/lower bound of

reactive power between nodes j and i. Eq. 17 is the voltage constraint

of node, and �Ui/Ui is the upper/lower bound of the square voltage

amplitude of node i. Equations 18, 19 are the constraints on the active

and reactive power capacity of the DG of node i integrated in the

system, and �PDG,i/ �QDG,i are the upper bound of the capacity of DG at

node i. Eq. 20 is the constraint on the capacity of the substation at

node i, and �Pext
di is the corresponding upper bound.

In scenario s, the additional load at node i is shown in Eqs

21, 22.

Pext
di,s � ∑Next

k�1
αkiPextk,s

αki � 0, substation installation task k is not at node i
1, substation installation task k is not at node i

{ (21)

∑Nbus

i�1
αki � 1 (22)

In scenario s, the capacity of DG integrated at node i is shown

in Eqs 23, 24.

SDG,i,s � ∑NDG

k�1
βki PDGk,s + QDGk,s( )

βki � 0, DG integration task k is not at node i
1, DG integration task k is at node i

{ (23)

∑Nbus

i�1
βki � 1 (24)

Among all variables, αki, βki are the first-stage variables, Ui,s,

PGi,s, Pji,s/Qji,s, Pdi/Qdi, PDG,i,s/QDG,i,s, Pextk,s are the second-stage

variables. Since αki/βki are binary variables, while

Pextk,s, PDGk,s, QDGk,s are continuous variables, and the

multiplication of the two is non-linear, this paper introduces

auxiliary variables Wext
ks ,W

DG
ks and uses Fortuny-Amat McCarl

Linearization (Fortuny-Amat and McCarl, 1981) to deal with the

problem. Wext
ks � αkiPext

dl.s is an auxiliary variable, which

represents the substation capacity of scenario s integrating the

system, and WDG
ks � βki(PDG,i,s + QDGi,s) is an auxiliary variable,
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which represents the active and reactive power capacity of DG

integrating the system at scenario s.

0≤Wext
ks ≤M (25)

0≤WDG
ks ≤M (26)

Wext
ks ≤Mαki (27)

WDG
ks ≤Mβki (28)

Wext
ks ≤Pextk,s (29)

WDG
ks ≤ SDG,i,s (30)

Wext
ks ≥Pextk,s −M 1 − αki( ) (31)

WDG
ks ≥ SDG,i,s −M 1 − βki( ) (32)

Among them, constraints (25), (27), (29) and (31) are to deal

with the non-linearity arising from the multiplication of binary

variables and continuous variables in Eq. 21, and constraints

(26), (28), (30) and (32) are to deal with the non-linear problem

in Eq. 23, and the parameter M is set to a large number.

Finally, our final model using Fortuny-Amat McCarl

Linearization is as follows:

min F � ∑4
i�1
γifi (33)

f1 � ∑Ns

s�1
ϖs∑Nbus

i�1
Ui,s − 1
∣∣∣∣ ∣∣∣∣

f2 � ∑Ns

s�1
ϖs∑Ng

i�1
CGiPGi,s

f3 � ∑Nbus

i�1
∑Next

k�1
∑Ns

s�1
Cext

ki W
ext
ks + ∑Nbus

i�1
∑NDG

k�1
∑Ns

s�1
CDG

ki W
DG
ks

f4 � − ∑Ns

s�1
∑Next

k�1
Wext

ks +∑Ns

s�1
∑NDG

k�1
WDG

ks
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Constraints include Eqs. 12-32. The reformulated problem is

an MILP.

Case study

Case studies are conducted on the IEEE 69-node system. The

deep learning part is implemented by using tensorflow 1.14.0.

The MILP model is established by Yalmip, and solved by the

commercial solver Gurobi. In this section, firstly, stochastic

power flow is used to measure the impact of DG-substation

siting and sizing on the distribution network, highlighting the

merits of this research. Then, the accuracy of the load forecast

under industrial expansion is tested. Finally, based on two-stage

stochastic programming, the optimization results of joint DG-

substation siting and sizing are analyzed.

FIGURE 3
Voltage probability distribution of four typical nodes: (A) the
DG is connected to node 3, (B) the DG is connected to node 25, (C)
the DG is connected to node 52, (D) the DG is connected to
node 67.
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FIGURE 4
The input of LSTM: (A) monthly load curves for three industries, (B) Annual load growth curves for three industries.

FIGURE 5
The result of pharmaceutical manufacturing industry load forecasting: (A) loss function curve, (B) comparison curve between the predicted
value and the label value.
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Impact of DG-substation siting on the
distribution network under uncertainties

In this paper, the Monte Carlo method is used to measure the

impact of DG integration on the distribution system. Firstly, it

generated several groups of data through the probability

distribution of DG integration to reflect the uncertainty of

DG, then used these data to carry out Monte Carlo stochastic

power flow simulation respectively. Finally, it statistically

analyzed the voltage probability distribution of four typical

nodes, node 2, node 26, node 53, and node 68, and analyzed

the results. The sample size of the Monte Carlo simulation is set

FIGURE 6
Monthly DG capacity data curve.

FIGURE 7
The result of DG capacity data forecasting: (A) loss function curve, (B) comparison curve between the predicted value and the label value.

TABLE 1 Multi-objective optimization of joint DG-substation siting and sizing.

Integration point Hosting capacity (p.u.) Maximum capacity (p.u.)

Substation 1 Node 30 1.6478 3.0000

Substation 2 Node 32 3.0000 3.0000

Substation 3 Node 36 0.0500 0.0500

DG1 Node 47 0.3000 0.3000

DG2 Node 56 0.2000 0.2000
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to 1000, the fluctuation of DG integration is set to the Gaussian

distribution of mathematical expectation is μ � 0, and the

standard deviation is σ � 0.3. Figures 3A–D respectively set

the DG integration locations at node 3, node 25, node 52, and

node 67, and the branch impedance of node 67 is significantly

smaller than that of other branches.

FIGURE 8
Optimal sites of DG and substation based on multiple objective optimization.

FIGURE 9
Squared node voltage in scenario one based on multiple objective optimization.
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The simulation results are shown in Figures 3A–D, whose

scenarios are explained as follows. Figure 3A: When DG is

connected to node 3, there is no voltage fluctuation

everywhere. Figure 3B: When DG is connected to node 25,

the voltage fluctuation of node 26 is relatively obvious, the

voltage of node 53 fluctuates slightly, and the voltage of the

other two places has no fluctuation. Figure 3C: When DG is

connected to node 52, the voltage fluctuation of node 53 is

relatively significant, the voltage of node 26 fluctuates slightly,

and the voltage of the other two places has no fluctuation.

Figure 3D: When DG is connected to node 67, the voltage at

node 68 fluctuates slightly, while the voltage at other places does

not fluctuate.

The sensitivity of each node to DG integration is different.

Because the location of node 2 is very close to the root node, the

voltage of node 2 is almost not affected by the location of DG. The

locations of nodes 26, 53, and 68 are all at the end of their

branches, and their voltages are greatly affected by the location

of DG.

Different locations of DG integration have different effects

on the voltage of each node in the system. It can be seen from

Figures 3B–D that when the DG integration causes the

voltage fluctuation of a node, the voltage of the node closer

to the node will be more affected by it. Therefore, the DG is

connected to a location far away from the important load,

which can reduce the adverse impact on the voltage of the

important load.

The amplitude of node voltage fluctuation is significantly

affected by the branch impedance sum of the branch where the

node is located. Due to the small sum of branch impedances of

node 68, the voltage in Figures 3A–C is not affected by the

integration to DG basically, and it is also less affected by the

integration to DG in Figure 3D. The voltage of node 26 and node

53 have obvious fluctuations when the DG is connected to node

25 (Figure 3B) and node 52 (Figure 3C), respectively. Therefore,

TABLE 2 Comparison of objective function values between the
proposed joint DG-substation optimization and other methods.

Obj Joint DG-substation Method 1 Method 2

f1 0.1190 0.1099 0.2417

f2 0.1452 0.1292 0.1022

f3 2.2020 2.3584 15.4204

f4 −5.8166 −3.9607 −3.3087

F −3.3503 −1.3632 12.3372

TABLE 3 Correlation analysis of the objective function in
weight γ � (0.25,0.25,0.4,0.1).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.883 −0.876 0.904

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.883 1 −0.973 0.979

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.876 −0.973 1 −0.991

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.904 0.979 −0.991 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300

TABLE 4 Correlation analysis of the objective function in
weight γ � (0.3,0.3,0.3,0.1).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.855 −0.861 0.871

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.855 1 −0.980 0.986

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.861 −0.980 1 −0.988

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.871 0.986 −0.988 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300

TABLE 5 Correlation analysis of the objective function in
weight γ � (0.2,0.2,0.3,0.3).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.872 −0.852 0.895

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.872 1 −0.952 0.955

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.852 −0.952 1 −0.972

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.895 0.955 −0.972 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300
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DG is connected to the branch impedance and the small branch,

which can maximize the absorption of DG.

Load forecasting and DG capacity forecasting
results

In load forecasting, this paper chooses a province

pharmaceutical manufacturing industry, rubber and plastic

products industry, and transportation, electrical and

electronic equipment manufacturing industry for 3 months

in load data, load growth, industry reporting for expanding

capacity, and load time series as input of LSTM, as shown in

Figure 4. The detailed data are available in (Han et al., 2022).

Taking the pharmaceutical manufacturing industry as an

example, the training loss function curve is shown in Figure 5A. It

can be seen that the loss value of the training set is reduced from

0.20 to 0.00045, the loss value of the validation set is reduced

from 0.175 to 0.00032, and the iteration can converge.

Further, the model is used to generate the predicted value of

the test set and compare it with the actual label value, as shown in

Figure 5B. The average absolute error of the statistical data is

782.2870.

Finally, the average relative percentage error of the predicted

value of the three industry loads is no more than 2.9820%, and

the error value is no more than 10%, which means the accuracy

meets the system’s requirements.

In the prediction of DG capacity, the historical DG capacity

data, direct irradiance, and diffuse irradiance of the same

period are selected for normalization and used as the input

of LSTM as shown in Figure 6. Since the historical data of the

DG capacity, direct irradiance and diffuse irradiance in the

IEEE 69-node system are not available, we use the real data

from the platform Open Power System Data (Open Power

System). The data in France in a period of 96 months from Jan.

2007 to Dec. 2014 are used, for their data integrity is relatively

better. The loss function curve of DG capacity data forecasting

is shown in Figure 7A, while the comparison curve between the

predicted value and the label value is shown in Figure 7B. Their

average relative error does not exceed 0.5451%, which is

acceptable.

Analysis of joint DG-substation siting and sizing
The load forecasting and DG capacity forecasting results

obtained in the previous section under different scenarios are

normalized. In order to consider the error of the forecasting

results, Gaussian distribution error is added to the forecasting

results, and k-means algorithm is used to generate the load

and DG capacity of three groups of typical scenarios and the

probability of the scenario. The load and DG capacity of the

three sets of scenarios are taken as the input of the substation

and DG integration model and are denoted as the maximum

value of the system. It can be known that there are three joint

DG-substation siting and sizing tasks, and at the same time,

two DG integration tasks are set with the same probability to

optimize the joint DG-substation siting and sizing.

In order to test the effect of comprehensive consideration of

the multi-objective of the proposed method, γ1 ~ γ4 in the

objective functions are set to 0.25, 0.25, 0.4, and 0.1,

respectively. Table 1 shows the integration points of

substation and DG obtained by solving (33). The

corresponding objective function values f1, f2, f3 and f4 are

0.1190, 0.1452, 2.2020 and −5.8166, respectively. Due to the

comprehensive consideration of various factors, its joint DG-

substation siting and sizing, DG integration locations are shown

in Table 1 and Figure 8, and the solution time is 0.4533 s. It can be

seen that the running time of this method is short, which can

meet the real-time application in engineering.

Figure 9 shows the influence of whether the objective

function f1 is considered on the voltage of each node in the

system in scenario 1. It can be seen that when f1 is not considered,

many nodes deviate from the rated voltage significantly.

However, after considering the objective function f1, the node

voltage level of the system is significantly improved.

To verify the effectiveness of joint DG-substation siting and

sizing, we set the control group which only considers DG siting

and sizing, a total of three groups are compared, and the obtained

optimization results are shown in Table 2.

1) Joint DG-substation: joint DG-substation siting and sizing are

optimized.

2) Method 1: The location of the substation is fixed and the

capacity is optimized, and DG siting and sizing are optimized.

3) Method 2: The location of the substation is fixed and the

capacity is fixed, and DG siting and sizing are optimized.

It can be found that the voltage stability level of the system f1
and the generator cost f2 are not far apart in method 1 and joint

DG-substation, but in method 2, the voltage stability level of the

TABLE 6 Correlation analysis of the objective function in
weight γ � (0.25,0.25,0.25,0.25).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.843 −0.855 0.861

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.843 1 −0.960 0.970

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.855 −0.960 1 −0.974

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.861 0.970 −0.974 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300
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system f1 is relatively worse. However, the integration cost f3 is

less in the case of joint DG-substation, and the expansion

capacity f4 is larger, so the total objective function value is

smaller in the end.

Further, 300 scenarios under four different weights

γ � (0.25, 0.25, 0.4, 0.1), γ � (0.3, 0.3, 0.3, 0.1), γ � (0.2, 0.2,
0.3, 0.3), and γ � (0.25, 0.25, 0.25, 0.25) are selected; that is,

the load fluctuated randomly at 90%–110%, and the objective

function value is obtained. The correlation of each objective

function value f1 − f4 under four different weights is shown in

Tables 3–6. It can be found from the table that f1, f2 and f4 are

significantly positively correlated with each other, while f3 is

significantly negatively correlated with f1, f2 and f4.

Therefore, the scheme of joint DG-substation siting and

sizing determined by this method can make the power flow

distribution of the distribution network reasonable and the

voltage level close to the rated voltage by optimizing the

integration location, and also reduce the system operation

cost and the joint DG-substation siting and sizing cost to

some extent.

Conclusion

To answer the call of industrial expansion, this paper

proposes deep learning-aided joint DG-substation siting and

sizing in distribution network stochastic expansion planning.

Industrial expansion data are fully employed in the LSTM

network to forecast the increment load brought by the

expansion. A two-stage stochastic optimization model for

joint DG-substation siting and sizing is established, which is

reformulated into a mixed-integer linear program for an

efficient solution. Simulation tests are conducted on an

IEEE system to prove the effectiveness of the research.

Stochastic power flow is carried out to evaluate the impact

of DG/substation integration on the system states,

highlighting the merits of joint DG-substation siting and

sizing. Case studies show that the forecasting results meet the

accuracy requirements, and the proposed siting and sizing

method is computationally efficient. It can reduce the total

cost of system operation as well as alleviate the system

voltage fluctuation. In future work, we will investigate an

objective manner to determine the weights for multiple

objective functions.
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