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Background: Diffuse large B-cell lymphoma (DLBCL) is the most common type of
lymphoma which that highly aggressive and heterogeneous. Glycolysis has been
implicated in the regulation of tumor microenvironment (TME) and development. In
this study, we aimed to establish a glycolysis-related prognostic model for the risk
stratification, prognosis prediction, and immune landscape evaluation in patients
with DLBCL.

Methods: Three independent datasets GSE181063, GSE10846, and
GSE53786 containing gene expression profiles and clinical data were downloaded
from the Gene Expression Omnibus (GEO) database. The glycolysis-related
prognostic model was developed with Cox and Least Absolute Shrinkage and
Selector Operation (LASSO) regression and validated. A nomogram integrating
clinical factors and glycolytic risk scores was constructed. The composition of
the TME was analyzed with the ESTIMATE algorithm and single-sample gene set
enrichment analysis (ssGSEA).

Results: A glycolytic risk model containing eight genes was developed. The area
under the receiver operating characteristic (ROC) curve (AUC) for the 1-, 3-, and 5-
year was 0.718, 0.695, and 0.688, respectively. Patients in the high-risk group had
significantly lower immune scores, elevated tumor purity, and poorer survival
compared with those in the low-risk group. The nomogram constructed based
on glycolytic risk score, age, Eastern Cooperative Oncology Group performance
status (ECOG-PS), use of rituximab, and cell of origin (COO) displayed better
prediction performance compared with the International Prognostic Index (IPI) in
DLBCL. The glycolytic risk scorewas negatively correlatedwith the infiltration level of
activated CD8 T cells, activated dendritic cells, natural killer cells, and macrophages
and immune checkpoint molecules including PD-L2, CTLA4, TIM-3, TIGIT, and
B7-H3.

Conclusion: These results suggested that the glycolytic risk model could accurately
and stably predict the prognosis of patients with DLBCL and might unearth the
possible explanation for the glycolysis-related poor prognosis.
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common
histological subtype of lymphoma worldwide, accounting for
approximately 25%–30% of all non-Hodgkin lymphoma (Sehn and
Salles, 2021). Currently, RCHOP (rituximab, cyclophosphamide,
adriamycin, vincristine, and prednisone) regimen is considered the
standard first-line chemotherapy (Coiffier et al., 2010). The prognosis
of DLBCL patients is often prospectively predicted using the
International Prognostic Index (IPI) based on the clinical features
before treatment (International Non-Hodgkin’s Lymphoma
Prognostic Factors, P, 1993). However, approximately 40% of
patients with DLBCL have a poor response to treatment and
develop relapsed/refractory disease after first-line therapy (Coiffier
et al., 2010). Furthermore, even patients with DLBCL in the same IPI
risk category exhibit different clinical outcomes owing to the high
tumor heterogeneity (Ruppert et al., 2020). Hence, there is an urgent
need to explore novel molecular biomarkers for accurate prediction of
prognosis and reveal ideas for developing specific therapeutic targets.

Metabolic reprogramming is one of the most important features of
malignant tumors. By altering metabolism and energy production ways,
neoplastic cells satisfy the needs of sustainable proliferation, invasion, and
metastasis (Faubert et al., 2020). Aerobic glycolysis is among the key
features of metabolic reprogramming and is common among cancer cells.
In 1924, Otto Heinrich Warburg first demonstrated that tumor cells
preferentially converted glucose into lactate via glycolysis even with
sufficient oxygen, which differed from normal cells in which glucose is
metabolized via oxidative phosphorylation in the mitochondria. This
phenomenon is referred to Warburg effect (DeBerardinis and Chandel,
2020). The glucose will not be metabolized to lactate through glycolysis in
normal tissues when oxygen is available. Normal tissues convert glucose
into lactic acid only under oxygen deprivation. By contrast, tumor tissues
metabolize and convert about 66% of ingested glucose to lactate even in
the presence of oxygen (Kalyanaraman, 2017; San-Millan and Brooks,
2017). Therefore, through glycolysis, lactate levels in cancer tissue are
remarkably increased by 40-fold and are highly related to cancer
aggressiveness and poor prognosis. By upregulating VEGF and TGF-
β2 expression, inhibiting monocyte migration, suppressing T-cell
activation, and promoting the release of IL-6, glycolysis promotes
angiogenesis, cell migration, cell metastasis, and immune escape in the
tumor microenvironment (San-Millan and Brooks, 2017). Glycolysis
contributes about 50%–60% of the total ATP in cancer cells at most
(Zheng, 2012). Although glycolysis is less efficient in producing ATP
compared to mitochondrial oxidative phosphorylation (OXPHOS), the
rate of ATP generation by glycolysis is approximately 100 times faster
than that of OXPHOS, which sufficiently meets the energy demand of the
rapid tumor proliferation (Ganapathy-Kanniappan and Geschwind,
2013). This demonstrates the advantages of glycolysis over OXPHOS
in cancer metabolism. Besides, accumulating evidence has revealed that
the tumor immune microenvironment (TIME) influences the efficacy of
immunotherapy and prognosis of cancer patients (Karube, 2021;
Watanabe, 2021). Apart from the metabolic function, glycolysis-
induced hypoxia and lactate accumulation affect the TIME and the
function of immune cells. It regulates the antitumor immune response
by suppressing lymphocyte proliferation and cytotoxic activity, thereby
indirectly promoting cancer progression (Wu et al., 2020). For example,
metabolites of glycolysis were reported to attenuate the infiltration level of
CD8+ T cells and natural killer cells and facilitate infiltration of
immunosuppressive T cells.

By providing energy and synthesizing key molecules and enzymes,
glycolysis actively regulates the proliferation, metastasis, gene
expression regulation, and biosynthesis processes in cancer cells
(Faubert et al., 2020). Oslund et al. found that one of the biological
functions of bisphosphoglycerate mutase (BPGM) is to regulate serine
synthesis by controlling the levels of intermediate glycolytic products
(Oslund et al., 2017). Upregulated BPGM has been associated with the
poor prognosis of hepatocellular carcinoma patients (Cai et al., 2020).
Peptidylglycine alpha-amidating monooxygenase (PAM), a copper-
and ascorbate-dependent enzyme, coordinates tissue-specific
responses to hypoxia (Rao et al., 2021). Increased expression of
PAM has been proven to be an independent predictor of favorable
prognosis in patients with neuroendocrine neoplasms (Horton et al.,
2020). However, there are no reliable glycolytic biomarkers for
predicting the prognosis of DLBCL patients.

In this study, we developed a glycolysis-related prognostic gene
signature in DLBCL patients and validated its prediction performance
in different cohorts. We then comprehensively analyzed the TIME and
immune cell infiltration at different risk levels. This study presents an
effective prognostic model and reveals new therapeutic targets for
DLBCL that are expected to promote individualized treatment of
patients.

2 Methods

2.1 Data acquisition and preprocessing

The gene expression profile and clinicopathological characteristics
of patients with DLBCL of GSE181063 (n = 1310), GSE10846 (n =
420), and GSE53786 (n = 119) datasets were downloaded from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). The
GSE181063 profile was used as the training cohort and based on the
Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip
platform (Illumina, Bethesda, MD, United States). The independent
external validation cohorts GSE10846 and GSE53786 were based on
the Affymetrix Human Genome U133 Plus 2.0 Array platform
(Affymetrix, Santa Clara, CA, United States). The inclusion criteria
of DLBCL patients were as follows: 1) histologically confirmed
DLBCL; 2) had detailed corresponding clinicopathological
information; 3) initially treated with RCHOP or CHOP regimen; 4)
overall survival (OS) time ≥30 days. The study was conducted in
accordance with the Declaration of Helsinki (as revised in 2013).

Glycolysis-related gene sets (REACTOME_GLYCOLYSIS, KEGG_
GLYCOLYSIS_GLUCONEOGENESIS, HALLMARK_GLYCOLYSIS,
BIOCARTA_GLYCOLYSIS_PATHWAY, BIOCARTA_FEEDER_
PATHWAY, GOBP_POSITIVE_REGULATION_OF_
GLYCOLYTIC_PROCESS, GOBP_NEGATIVE_REGULATION_
OF_GLYCOLYTIC_PROCESS, GOBP_GLYCOLYTIC_
PROCESS_THROUGH_FRUCTOSE_6_PHOSPHATE) were
obtained from the Molecular Signatures Database (MSigDB
v7.5.1, http://www.broad.mit.edu/gsea/msigdb/).

2.2 Glycolytic risk model construction and
validation

Cox and least absolute shrinkage and selection operator (LASSO)
regression analyses were used in the training cohort to identify the
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glycolysis-related prognostic model. Firstly, we performed the
univariate Cox regression analysis with the “survival” package in R
to identify survival-associated glycolytic genes. Genes with p <
0.01 were selected. Then, LASSO regression was carried out to
further select key glycolytic genes by using the “glmnet” package in
R. Finally, the multivariate Cox analysis was performed to establish the
glycolytic risk model. The risk model was constructed by each
glycolytic gene expression value (G) and the corresponding
coefficient (β). The risk score � ∑j

n�1(βj*Gj). Patients with DLBCL
were classified into low- and high-risk groups according to the median
value of the risk score. Heatmap of the risk gene expression, risk score
distribution plots, and survival status scatter plots of the low- and
high-risk groups were established to assess the risk model. The
predictive accuracy of the risk model was further evaluated by
Kaplan-Meier (K-M) analyses and time-dependent receiver
operating characteristic (ROC) curves by using the “survival”,
“survminer”, and “timeROC” packages in R.

GSE181063 dataset was selected as the training cohort. The
other two independent datasets, GSE510846 and GSE53786 were
used as external validation cohorts. Additionally, samples in the
GSE181063 dataset were randomly divided into two internal

validation cohorts at a 1:1 ratio by using the “caret” package in
R. Clinical features of the training and validation cohorts are
shown in Table 1. The comparison of clinical characteristics
between two internal validation cohorts is summarized in
Supplementary Table S1. The performance of the risk model
was assessed in all validation cohorts. p < 0.05 was considered
as the significance threshold.

2.3 Association between the clinical features
and glycolytic risk model

To explore whether the risk model could accurately predict
prognosis in the subgroup of clinical parameters including age,
gender, Ann Arbor stage, ECOG-PS, lactate dehydrogenase (LDH)
level, COO (cell of origin), number of extranodal sites, and B
symptoms, we compared the survival between different risk groups
based on the stratification of clinical parameters. To further figure out
the relationship between the risk model and clinical factors, we
compared the risk score distribution in subgroups of the clinical
parameters by using the “ggpubr” package in R.

TABLE 1 Clinicopathological characteristics of patients with DLBCL enrolled from the GEO database.

GSE181063 GSE10846 GSE53786

(n = 559) (n = 305) (n = 83)

Age (year), No. (%)

≤60 184 (32.9%) 146 (47.9%) 38 (45.8%)

>60 375 (67.1%) 159 (52.1%) 45 (54.2%)

Gender, No. (%)

Male 305 (54.6%) 171 (56.1%) 51 (61.4%)

Female 254 (45.4%) 134 (43.9%) 32 (38.6%)

ECOG-PS, No. (%)

<2 476 (85.2%) 230 (75.4%) 57 (68.7%)

≥2 83 (14.8%) 75 (24.6%) 26 (31.3%)

LDH, No. (%)

Normal 214 (38.3%) 157 (51.5%) 43 (51.8%)

Elevated 345 (61.7%) 148 (48.5%) 40 (48.2%)

AnnAnbor stage, No. (%)

I–II 221 (39.5%) 144 (47.2%) 36 (43.4%)

III–IV 338 (60.5%) 161 (52.8%) 47 (56.6%)

COO, No. (%)

GCB 265 (47.4%) 133 (43.6%) 31 (37.3%)

nonGCB 294 (52.6%) 172 (56.4%) 52 (62.7%)

Rituximab, No. (%)

Yes 549 (98.2%) 163 (53.4%) 49 (59.0%)

No 10 (1.8%) 142 (46.6%) 34 (41.0%)

Extranodal sites, No. (%)

<2 462 (82.6%) 282 (92.5%) 77 (92.8%)

≥2 97 (17.4%) 23 (7.5%) 6 (7.2%)

DLBCL, Diffuse large B-cell lymphoma; GEO, Gene expression omnibus; No, Number; ECOG-PS, Eastern cooperative oncology group performance status; LDH, Lactate dehydrogenase; COO, Cell of

origin; GCB, Germinal center B cell.
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2.4 Independent prognostic factors and
nomogram construction

Univariate and multivariate Cox regression analyses were applied
in the training and validation (GSE10846) cohorts to determine
whether the risk score and clinical parameters were independent
prognostic factors in DLBCL patients. Next, we developed a
prognostic nomogram to integrate independent prognostic factors
with “rms”, “foreign”, and “survival” packages in R. According to the
risk contribution to OS, prognostic factors were assigned score points.
The total score points were calculated to predict the 1-, 3-, and 5-year
prognosis of DLBCL patients. The Harrell’s concordance index
(C-index) and calibration curves were performed to evaluate the
consistency of the actual and predicted survival probabilities of
patients by using the R packages “rms”, “foreign”, and “survival”.
ROC curves were drawn and the area under the ROC curve (AUC) was
calculated to assess the prognostic performance of nomogram and IPI
by using the “survivalROC” package in R.

2.5 Tumor microenvironment (TME) and
immune cell infiltration

TME consists of tumor cells, immune cells, stromal cells, and non-
cellular components (Bader et al., 2020). Immune scores and stromal

scores were calculated in each sample using the “estimate” package in
R software (Yoshihara et al., 2013). They represented the proportion of
stromal and immune cells in TME and were incorporated as
ESTIMATE scores, to further infer the tumor purity in each
DLBCL patient. The survival was compared between different score
levels with a t.test.

To further explore immune cells (encompass activated
CD8 T cells, activated CD4 T cells, activated B cells, activated
dendritic cells, natural killer cells, and macrophages) infiltration
profile in DLBCL patients, the single-sample gene set enrichment
analysis (ssGSEA) was performed based on gene expressions of
immune cell-specific markers to quantify the enrichment level of
each immune cell type with “GSVA” package in R (Bindea et al.,
2013). The correlation between the immune cells infiltration and risk
model was evaluated with Pearson correlation coefficient and
displayed by using the “ggplot2” package in R.

2.6 Association of the immunemodulator and
glycolytic risk model

Immune checkpoint inhibitors (ICIs) prevent checkpoint proteins
from binding with the partner proteins and prompt T cells to kill
cancer cells (Galluzzi et al., 2020). The immune checkpoint molecules,
including PD-1, PD-L1, PD-L2, CTLA-4, LAG3, TIM-3, TIGIT, B7-

FIGURE 1
Identification of glycolysis-related prognostic genes in patients with DLBCL. (A)Fourteen glycolysis-related candidate genes were selected by univariate
Cox regression (p < 0.01). (B, C) Further selection of the optimal parameter (lambda) by LASSO Cox regression. (D) Establishment of the prognostic signature
with 8 glycolysis-related genes based on multivariate Cox regression analysis. DLBCL, diffuse large B-cell lymphoma; LASSO, least absolute shrinkage and
selection operator.
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H3, B7-H4, and CD47, were considered promising targets in B-cell
lymphoma in previous studies (Ansell et al., 2009; Lee et al., 2017;
Advani et al., 2018; Xu-Monette et al., 2018; Jiang et al., 2019; Hatic
et al., 2021; Shimada et al., 2021; Lee et al., 2022). The association
between immune checkpoint molecule expression and risk score were
assessed with the Pearson correlation coefficient and presented using
the “corrplot” package in R to explore the potential effect of our
glycolytic risk model in tumor immunotherapy.

2.7 Measuring the glycolytic risk genes
expression at the protein level

The immunohistochemical staining of the glycolytic risk genes in
lymphoma patients and normal controls was obtained from the
Human Protein Atlas (HPA) database (http://www.proteinatlas.org/)
(Liu et al., 2022).

2.8 Analysis of the difference of metabolites

Details of DLBCL cell lines information were downloaded from
Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.

org/ccle/data), including cell lines annotations, mRNA expression,
andmetabolites. The correlation analysis between gene expression and
metabolites were performed. Metabolites with p-value < 0.05 and |
cor| > 0.5 were selected in this study and shown in the heat map using
“ggplot2” package in R software (Sui et al., 2022).

2.9 Evaluation of the sensitivity of
chemotherapeutic agents

To predict the drug sensitivity based on the heterogenicity of
tumor samples, the half-maximal inhibitory concentration (IC50) of
DLBCL patients in high- and low-risk groups was estimated by using
the “pRRophetic” package in R. The potential anti-cancer
compounds were screened based on the drug response data in
Genomics of Drug Sensitivity in Cancer (GDSC) database (Wang
et al., 2021).

3 Gene set variation analysis (GSVA)

GSVA between high- and low-risk groups were performed by
using the “GSVA package” in R to identify commonly activated/

FIGURE 2
Construction of the glycolytic riskmodel for patients with DLBCL in the training cohort. (A)Glycolysis-related risk gene expression, risk score distribution,
and survival status of patients in high- and low-risk groups. (B) Kaplan-Meier analysis of overall survival in different risk groups. (C) Time-dependent ROC
analysis of the glycolytic risk model. DLBCL, diffuse large B-cell lymphoma; ROC, receiver operating characteristic.
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inhibited signaling pathways. The Hallmark gene set obtained from
MSigDB was used as the reference gene set. The cut-off criteria
were set as the p-value < 0.05 and the t value > 2 (Zhang et al.,
2021).

3.1 Statistical analysis

All data analyses were performed in R version 4.0.3. p < 0.05 was
considered statistically significant.

FIGURE 3
Validation of the glycolytic risk model. Kaplan-Meier analyses of overall survival for patients in high- and low-risk groups in internal validation cohorts (A, C),
GSE10846 (E), and GSE53786 (G). Time-dependent ROC analyses of the risk model in internal validation cohorts (B, D), GSE10846 (F), and GSE53786 (H). ROC,
receiver operating characteristic.
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4 Results

4.1 Patient characteristics

The study included 947 eligible patients from the training cohort
(GSE181063, n = 559) and two external validation cohorts (GSE10846,
n = 305; GSE53786, n = 83) (Lenz et al., 2008; Scott et al., 2014; Lacy
et al., 2020). Patient baseline characteristics are shown in Table 1. The
training cohort was randomly allocated into two internal validation
cohorts at a 1:1 ratio. There were no significant differences in clinical
factors between the two groups (Chi-square test, p > 0.05). Results are
shown in Supplementary Table S1.

4.2 Construction of the glycolytic risk model

We performed the univariate Cox regression analysis with the gene
expression profile and survival information of DLBCL patients in the
training cohort and identified 14 prognostic genes related toOS (p< 0.01),
including eight protective genes (hazard ratio (HR) < 1.0) and six risk
genes (HR > 1.0, Figure 1A). Lasso regression (Figures 1B, C) and

multivariate analyses (Figure 1D) were further applied to screen
prognostic genes. We established a prognostic signature composed of
eight glycolysis-related genes in DLBCL, eventually. The glycolytic risk
score for OS = (ADH1B × 0.17355739) + (ALDH2 × −0.121597937) +
(ANGPTL4 × 0.301463871) + (BPGM × 0.396173449) + (CTH ×
0.196458723) + (NUP98 × 0.655960453) + (PAM × −0.14314632) +
(PLOD2 × −0.144167963). Among these prognostic genes, ADH1B (p <
0.001),ANGPTL4 (p = 0.030), BPGM (p < 0.001),NUP98 (p < 0.001), and
PAM (p = 0.046) were independent risk factors for survival. Based on the
risk score, 559 patients were assigned into high-risk (n= 279) and low-risk
groups (n = 280) using the median risk score as the cutoff threshold. As
revealed by the heatmap, ADH1B, ANGPTL4, BPGM, CTH, and NUP98
were significantly up-regulated while ALDH2, PAM, and PLOD2 were
down-regulated in the high-risk group (all p < 0.001, Figure 2A). The risk
score distribution and survival status of the individual patient indicated
that the poor prognosis was tightly related to the high-risk score
(Figure 2A). Patients in the high-risk group had a significantly worse
survival than that in the low-risk group (p < 0.001, Figure 2B). The
corresponding OS rates at 5-year were 57.2% and 75.7%, respectively.
AUCs of the glycolytic risk model were 0.718, 0.695, and 0.688 at 1-, 3-,
and 5-year, demonstrating its excellent predictive value (Figure 2C).

FIGURE 4
Performance of glycolytic risk model in subgroups of clinical factors. Kaplan-Meier analyses of overall survival for high- and low-risk patients in the
subgroups of age (A, B), gender (C, D), ECOG-PS (E, F), stage (G, H), LDH level (I, J), COO (K, L), number of extranodal sites (M, N), and B symptoms (O, P).
ECOG-PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; COO, cell of origin.
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4.3 Validation of the risk model

To validate the prediction performance of the glycolytic risk model
in DLBCL patients, we assessed the gene signature in two external
validation cohorts and two internal validation cohorts. Similarly, high-
risk patients exhibited a significantly unfavorable prognosis, compared
to low-risk patients (Figures 3A, C, E, G; p < 0.001 for internal
validation cohorts and GSE10846; p < 0.05 for GSE53786). AUCs at 1-,
3-, 5-year ranged from 0.669 to 0.76 in two internal validation cohorts
(Figures 3B, D). The range of AUC values in two external validation
cohorts was between 0.62 and 0.70 (Figures 3F, H), which further
confirmed the predictive efficacy of the risk model.

4.4 Predictive performance of the glycolytic
risk model in clinical subgroups

To assess the predictive performance of the glycolytic risk model in
clinical subgroups, we conducted the clinical parameters stratification based
on age (≤60 vs. >60), gender (male vs. female), ECOG-PS (<2 vs. ≥2),
AnnAnbor Stage (I-II vs. III-IV), LDH (normal vs. elevated), COO (GCB vs.
nonGCB), extranodal sites (<2 vs. ≥2), and B symptoms (no vs. yes)
(Figures 4A–P). Overall, high-risk patients displayed poorer prognosis
compared with low-risk patients regardless of age, gender, ECOG-PS,

stage, LDH level, COO, number of extranodal sites, and with or
without B symptoms, indicating our risk model was effective and stable.

4.5 Distribution of glycolytic risk scores in
various clinical factors

The distribution of risk scores was analyzed among various clinical
factors in the training cohort (Figures 5A–I). Age>60 (p = 0.0017), ECOG-
PS≥2 (p < 0.001), advanced stage (p = 0.0038), elevated LDH (p < 0.001),
nonGCB (p < 0.001), and with B symptoms (p = 0.019) subgroups
contained more high-risk patients compared with age≤60, ECOG-
PS<2, early stage, normal LDH,GCB, andwithout B symptoms subgroups.

4.6 Development and validation of a
glycolysis-clinical nomogram for prognostic
prediction

By integrating the clinical factors and risk score, we constructed a
nomogram to provide a quantitative method for predicting the 1-, 3-, and
5-year individual survival probability in DLBCL patients. Univariate Cox
analysis showed that age, ECOG-PS, LDH, stage, rituximab, COO, and
glycolytic risk score were OS-related factors in both training and

FIGURE 5
Distribution of glycolytic risk score in different clinical characteristics. Comparison of the glycolytic risk score distribution between different subgroups of
age (A), gender (B), ECOG-PS (C), stage (D), LDH (E), COO (F), rituximab (G), B symptoms (H), and extranodal sites (I). ECOG-PS, Eastern Cooperative
Oncology Group performance status; LDH, lactate dehydrogenase; GCB, COO, cell of origin.
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validation cohorts (GSE10846) (Table 2, all p < 0.05). Multivariate Cox
analysis revealed that the glycolytic risk score was an independent
prognostic indicator in both cohorts (Table 2, all p ≤ 0.002). A higher
total score in the nomogram indicated worse survival (Figure 6A).
Calibration curves of the nomogram exhibited good agreement
between the predicted value and the actual value (C-index = 0.73 for
training cohort, Figure 6B; C- index = 0.73 for validation cohort,
Figure 6C). In addition, AUCs of the nomogram at 1-, 3-, and 5-year
showed its better predictive performance than IPI (Figures 6D–F for
training cohort; Figures 6G–I for validation cohort), suggesting the
glycolytic risk model improved the predictive value upon existing
clinical predictors basis in DLBCL.

4.7 Glycolytic risk model and TME

TME was represented by the stromal and immune scores (Liang
et al., 2021). Patients in the high-risk group exhibited low immune
scores, stromal scores, and ESTIMATE scores (Figures 7A–C; all p <
0.01) and high tumor purities (Figure 7D; p < 0.001), indicating the
glycolytic risk model was associated with immunosuppression. The
corresponding results of survival analysis (Figures 7E–G, all p ≤ 0.001)
were coincident with the high-risk score-related poor prognosis. To
explore the underlying mechanism, we analyzed the correlation
between the risk model and infiltration levels of immune cells. As

shown in Figure 7, the glycolytic risk score was negatively correlated
with activated CD8 T cells (Figure 7I; r = −0.12, p = 0.006), activated
dendritic cells (Figure 7L; r = −0.11, p = 0.007), natural killer cells
(Figure 7M; r = −0.18, p < 0.001), and macrophages (Figure 7N;
r = −0.09, p = 0.027), thus might explained why glycolytic risk score
had a negative influence on clinical outcomes in DLBLC patients.

4.8 Glycolytic risk model and immune
checkpoint molecules

Encouraged by plenty of achievements in antitumor
immunotherapy, we evaluated the correlations of our glycolytic risk
model and the immune checkpoint molecules PD-1, PD-L1, PD-L2,
CTLA-4, LAG3, TIM-3, TIGIT, B7-H3, B7-H4, and CD47 in DLBCL.
As shown in Figure 8, the glycolytic gene signature was negatively
associated with PD-L2 (r = −0.09, p = 0.039), CTLA4 (r = −0.18, p <
0.001), TIM-3 (r = −0.23, p < 0.001), TIGIT (r = −0.09, p = 0.028), B7-
H3 (r = −0.09, p = 0.036).

4.9 The protein expression level of risk genes

To explore the protein expression of the eight glycolytic risk
genes in patients with DLBLC, we compared the protein staining

TABLE 2 Univariate and multivariate Cox regression analyses of clinicopathological parameters in training and validation cohorts.

Training cohort Univariate analysis Multivariate analysis

HR 95%CI p-value HR 95%CI p-value

Age 2.070 1.522–2.815 <0.001 1.870 1.356–2.578 <0.001

Gender 0.777 0.601–1.003 0.053

ECOG-PS 2.004 1.710–2.347 <0.001 1.920 1.623–2.271 <0.001

LDH 1.585 1.210–2.076 <0.001 1.043 0.782–1.393 0.774

Stage 1.267 1.123–1.428 <0.001 1.137 0.979–1.320 0.092

Rituximab 2.056 1.014–4.166 0.046 4.085 1.921–8.686 <0.001

Extranodal sites 1.424 1.035–1.959 0.030 1.084 0.744–1.582 0.674

COO 2.067 1.584–2.696 <0.001 1.622 1.225–2.148 <0.001

Risk Score 2.718 2.158–3.424 <0.001 2.117 1.607–2.789 <0.001

Validation cohort HR p-value HR p-value

Age 2.085 1.434–3.030 <0.001 1.993 1.361–2.917 <0.001

Gender 1.084 0.759–1.547 0.659

ECOG-PS 1.760 1.472–2.103 <0.001 1.432 1.179–1.740 <0.001

LDH 2.460 1.692–3.577 <0.001 1.499 0.998–2.250 0.051

Stage 1.485 1.245–1.770 <0.001 1.325 1.096–1.601 0.004

Rituximab 1.864 1.271–2.732 0.001 1.892 1.283–2.790 0.001

Extranodal sites 1.857 0.993–3.471 0.053

COO 2.573 1.724–3.893 <0.001 1.523 0.979–2.369 0.062

Risk Score 1.999 1.561–2.560 <0.001 1.595 1.192–2.134 0.002

HR, Hazard ratio; 95% CI, 95% Confidence interval; ECOG-PS, Eastern cooperative oncology group performance status; LDH, Lactate dehydrogenase; COO, Cell of origin.
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intensity of these genes by using the HPA database. ADH1B, CTH,
and PLOD2 showed overexpression in the lymph node tissue of
non-Hodgkin lymphoma patients compared to normal
lymph node tissue. Unfortunately, the information of
NUP98 was not available in the HPA database. No expression
difference was found of ALDH2, ANGPTL4, BPGM, and PAM
between lymphoma patients and control samples (Supplementary
Figure S1).

5 Identified differential metabolites

Based on the expression of risk/protective genes in high- and low-
risk groups, we explored the associated metabolites and presented the
66 metabolites in the supplementary figure, such as lactate,

tryptophan, isoleucine, sarcosine, citrate etc. (Supplementary
Figure S2).

5.1 Screening of potential anti-cancer
compounds

Based on the GDSC database, we assessed the drug therapeutic
responses between high- and low-risk groups. Of note, patients in
the high-risk group were more sensitive to cytarabine,
methotrexate, vinblastine, gemcitabine, lenalidomide, and
rapamycin, while patients in the low-risk group were more
sensitive to docetaxel, bortezomib, bleomycin and LFM.A13,
which provided the reference directing clinical treatment
(Supplementary Figure S3).

FIGURE 6
Construction of prognostic nomogram for overall survival in patients with DLBCL. (A) The nomogram integrated age, ECOG-PS, use of rituximab, COO,
and glycolytic risk score to predict 1-, 3- and 5-year survival. (B, C)Calibration plots of 5-year survival probability in training cohort (GSE181063) and validation
cohort (GSE10846). ROC curves of the nomogram and IPI in training cohort (GSE181063, (D–F) for AUCs at 1-, 3-, and 5-year, respectively) and validation
cohort (GSE10846, (G–I) for AUCs at 1-, 3-, and 5-year, respectively). DLBCL, diffuse large B-cell lymphoma; ECOG-PS, Eastern Cooperative Oncology
Group performance status; COO, cell of origin; ROC, receiver operating characteristic; IPI, international prognostic index; AUC, area under the curve.
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5.2 Differential biological behaviors between
high- and low-risk groups

GSVA analysis was performed to explore the difference in
biological signaling pathways activated/inhibited between high-
and low-risk groups. Our results showed significant differences
in biological processes between high- and low-risk patients.
Notably, MYC targets V2, MYC targets V1, E2F targets, G2M
checkpoint, and unfolded protein response signaling were the
top enriched signatures in the high-risk group. In comparison,
low-risk patients were more relevant to the apical surface,
coagulation, epithelial-mesenchymal transition, angiogenesis,
and estrogen response early signaling pathways
(Supplementary Figure S4).

6 Discussion

Accurate identification of high-risk DLBCL patients is important
for prognostic prediction and decision-making regarding treatment
choices. The IPI has been used to predict prognosis of patients with
aggressive non-Hodgkin lymphoma since 1993 (Liu and Barta, 2019).
However, IPI system only includes clinical characteristics and cannot
directly reflect the biological heterogeneity of patients with DLBCL
(International Non-Hodgkin’s Lymphoma Prognostic Factors, P,
1993). Moreover, there is no conclusive information for comparing
the effects of glycolysis and OXPHOS in B-cell lymphoma. Through
biological function experiments, the effects of AZD3965 and IACS-
010759, the inhibitors of glycolysis and OXPHOS, were tested in 8 cell
lines of B cell lymphoma. It was found that AZD3965 decreased the

FIGURE 7
Association between glycolytic gene signature and tumor microenvironment. (A–D) Comparison of the immune score, stromal score, ESTIMATE score,
and tumor purity between low- and high-risk patients with DLBCL. Kaplan-Meier analyses of high- and low-immune score (E), stromal score (F), ESTIMATE
score (G), and tumor purity (H) patients. Correlation between activated CD8 T cells (I), activated CD4 T cells (J), activated B cells (K), activated dendritic cells
(L), natural killer cells (M), macrophages (N), and risk score. DLBCL, diffuse large B-cell lymphoma.
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growth of lymphoma cells from 60% to 98% in 4 cell lines and
inhibition of oxidative phosphorylation resulted in only 5%–45%
inhibition of lymphoma cell growth in all cell lines (Noble et al.,
2022). This confirmed that glycolysis regulates the proliferation of
B cell lymphoma. In this study, we constructed and validated a
glycolytic risk model in patients with DLBCL for the first time.
The glycolytic risk model showed good prediction performance for
clinical outcomes and characteristics of TIME, metabolites, activated
signaling pathways, and the sensitivity of patients to chemotherapy
and targeted therapies in DLBCL.

Glycolysis affects tumorigenesis and cancer development via
interacting with the TME (Takahashi et al., 2021). Indeed, we
found that DLBCL patients with high glycolytic risk scores were
characterized by high tumor purities and low immune scores in
this study. Sukumar et al. (2013) Showed that increased glycolytic
activity downregulated CD8+ T cell memory and antitumor function.
Previous immune cell enrichment analysis in patients with head and
neck squamous cell carcinoma showed that enhanced glycolysis
downregulated the infiltration level of T cells, dendritic cells, and
B cells, which impaired T cell activation, tumor antigen presentation,
and antibody production (Martinez-Reyes and Chandel, 2021).
Several glycolysis-related prognostic models have been established
to predict cancer survival and immune cell infiltration in the TIME
(Yu et al., 2020; Xia et al., 2021). Yu et al. (2020) constructed a
glycolysis-based risk scoring model for patients with gastric cancer.
They found that the level of immune-positive cells, such as the NK
cells, in the low-risk group was significantly higher compared with that

of the high-risk group. Particularly, the high-risk group showed high
infiltration of immunosuppressive cells (Yu et al., 2020). It was
postulated that high glycolytic gene expression induced impaired
immunity and immunosuppressive TIME, increased risk of tumor
formation, and poor prognosis (Yu et al., 2020). In hepatocellular
carcinoma, Xia et al. (2021) confirmed that the glycolysis-related
model was negatively correlated with CD8 T cells and NK cells,
indicating that the poor prognosis of high-risk group may be
driven by infiltration of various immune cells. In accord with
them, we found that the glycolytic risk score was negatively
correlated to the activated CD8 T cell, natural killer cell, and
activated dendritic cell. CD8+ T cell is the preferred immune cell
type in the process of targeting cancer cells (Farhood et al., 2019).
Natural killer cells recognize and kill cancer cells via releasing cytolytic
granules. Dendritic cells capture antigens and present them to the
T cells during the antitumor process (Galli et al., 2020). These findings
might explain the poor prognosis observed in patients of the high-risk
group in the present study. In this study, the glycolytic risk score was
positively correlated with activated B cells. According to cell-of-origin,
DLBCL was pathologically divided into germinal center B cell like,
activated B cell like, and unclassifiable subtypes. The activated B cell
like subtype exhibited a poor prognosis compared with the germinal
center B cell like subtype (Li et al., 2018). The correlation between
glycolytic risk score and activated B cells may be explained by the
pathological features of DLBCL.

The glycolytic risk model developed in our study showed excellent
prediction performance and its efficacy was verified from multiple

FIGURE 8
Association between the glycolytic risk model and immune checkpoint modulators. (A, B) Correlation between the risk score and immune checkpoint
modulators. (B) Correlation between the risk score and expression of PD-L2, CTLA4, TIM-3, TIGIT, and B7-H3.
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aspects. High-risk patients had significantly worse clinical outcomes
than low-risk patients in all cohorts. Besides, the developed risk model
still had good performance after clinical factors stratification. High-
and low-risk patients showed similar prognoses in ECOG-PS>2 group
as other groups, however, without significant difference, which might
be caused by the small number of cases in this group. An important
finding is that some specific groups, including age>60, ECOG-PS≥2,
advanced stage, elevated LDH, nonGCB, and with B symptoms,
encompassed more high-risk patients. Warburg found that cancer
cells preferred aerobic glycolysis to oxidative phosphorylation for
glucose metabolism (DeBerardinis and Chandel, 2020). However,
aerobic glycolysis is inefficient compared to oxidative
phosphorylation in terms of generating adenosine 5′-triphosphate.
Therefore, cancer cells competitively absorb more glucose than
normal cells to meet their proliferation needs (Vander Heiden
et al., 2009), and this forms the basis for clinical application of
FDG-PET/CT (El-Galaly et al., 2018). It has been reported that
aggressive lymphomas have higher maximum standardized uptake
value than indolent lymphomas, indicating that the invasion activity of
lymphoma is dependent on glucose uptake (El-Galaly et al., 2018). A
study by Lee et al. (2021) showed that high-grade renal cell carcinoma
had higher F-18 FDG uptake than low-grade tumors and F-18 FDG
uptake was positively associated with high Fuhrman grades. These
findings suggest that advanced stage and invasive disease status tend to
correlate with increased glucose metabolism than early-stage disease
and this might explain our results. However, further experiments are
needed to verify our hypothesis.

In the past decade, ICIs has revolutionized cancer therapy
(Robert, 2020). Several clinical trials have demonstrated that ICIs
can effectively treat malignant lymphoma (Li et al., 2021). However,
only a proportion of patients show satisfactory response to ICIs. To
find effective biomarkers for predicting ICI response, Hu et al.
performed a comprehensive analysis at a pan-cancer level and
found that low expression of immune checkpoint gene indicated
worse response to ICI immunotherapy, low immune infiltration, and
poor prognosis (Hu et al., 2021). Ren et al. (2018) reported that
higher PD-1 expression was correlated with favorable disease-free
survival and OS in breast cancer patients. In our study, the glycolytic
gene signature was negatively correlated with immune checkpoint
modulator gene expression, including PD-L2, CTLA-4, TIM-3,
TIGIT, and B7-H3, which might indicate that high-risk patients
with DLBCL have a poor response to the immunotherapy of these
targets. However, biomarkers for predicting the response to ICIs are
not only based on these target molecules but also on other factors like
antigen presentation, tumor mutational burden, and interferon-
gamma release (Hatic et al., 2021).

In this retrospective study, we comprehensively analyzed the
prognosis and immune environments of patients with DLBCL
based on glycolysis. However, our findings are based on the
analysis of the online databases and are short of further
experimental validation. Further large-scale and prospective cohort
studies are thus required to confirm our findings. Moreover, in-depth
in vivo and in vitro experiments are necessary to be done to elucidate
the biological function of glycolysis-related risk genes and to explore
the underlying mechanism.

7 Conclusion

In conclusion, the glycolytic risk model and the nomogram
developed in our study provided promising and stable prognostic
predictors in patients with DLBCL. Our results indicated that the
glycolytic risk model might provide potential therapeutic targets in
clinical practice and reflected immune status, giving insights into the
underlying mechanism of DLBCL.
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