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Introduction: Optical Coherence Tomography Angiography (OCTA) is a new non-

invasive imaging modality that gains increasing popularity for the observation of the

microvasculatures in the retina and the conjunctiva, assisting clinical diagnosis and

treatment planning. However, poor imaging quality, such as stripe artifacts and low

contrast, is common in the acquired OCTA and in particular Anterior Segment OCTA

(AS-OCTA) due to eye microtremor and poor illumination conditions. These issues

lead to incomplete vasculature maps that in turn makes it hard to make accurate

interpretation and subsequent diagnosis.

Methods: In this work, we propose a two-stage framework that comprises a de-

striping stage and a re-enhancing stage, with aims to remove stripe noise and to

enhance blood vessel structure from the background. We introduce a new de-striping

objective function in a Stripe Removal Net (SR-Net) to suppress the stripe noise in

the original image. The vasculatures in acquired AS-OCTA images usually exhibit

poor contrast, so we use a Perceptual Structure Generative Adversarial Network (PS-

GAN) to enhance the de-striped AS-OCTA image in the re-enhancing stage, which

combined cyclic perceptual loss with structure loss to achieve further image quality

improvement.

Results and discussion: To evaluate the e�ectiveness of the proposed method,

we apply the proposed framework to two synthetic OCTA datasets and a real AS-

OCTA dataset. Our results show that the proposed framework yields a promising

enhancement performance, which enables both conventional and deep learning-

based vessel segmentation methods to produce improved results after enhancement

of both retina and AS-OCTA modalities.

KEYWORDS

OCTA, stripe removal, image enhancement, generative adversarial networks, two-stage

framework

1. Introduction

Medical images with clean presentation, adequate contrast and informative details are

essential in medical image analysis for clinical applications: e.g., tissue segmentation, and disease

diagnosis. However, stripe artifacts or poor contrast often occur during the medical image

acquisition process (1). The accuracy of a computer-aided diagnosis system is highly dependent

on the quality of pre-processing as errors can be propagated and accumulated due to poor

imaging quality (2).
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As a functional extension of optical coherence tomography

(OCT), OCT Angiography (OCTA) is a new emerging non-invasive

imagingmodality that enables observation ofmicrovasculatures up to

capillary level (3, 4). Figure 1B demonstrates one high-quality retinal

OCTA image sample. OCTA will reveal morphological changes of

retinal vessels associated with a wide range of retinal diseases and has

shown its potential clinical applications in facilitatingmonitoring and

diagnosis of glaucoma (5), diabetic retinopathy (6), artery and vein

occlusions (7), and age-related macular degeneration (AMD) (8), to

name only the most widely occurring ones.

Recently, OCTA has also been adopted to image the vessels

in the anterior segment of the eye. Current commercial OCTA

systems are not specifically designed for the anterior segment (9),

the use of OCTA in assessments of the anterior segment has not

been fully explored. The AS-OCTA technique has been used to

quantify the vascular density and diameter in the cornea (10–13),

conjunctiva (14), and iris (15), in order to seek better treatment

options. Figures 1C, D illustrates one case of AS-OCTA imaging by

scanning conjunctival region. Overall, OCTA technique opens up a

new avenue to study the relation between ocular vessels and various

eye and neurodegenerative diseases (4).

OCTA has the ability to produce three-dimensional (3D) images

of the ocular vasculature at different depths, and the acquired 3D

data is always mapped into two-dimensional (2D) en face image

by using the maximum projection for the ease of visualization.

However, acquisition of OCTA and AS-OCTA usually takes several

seconds, e.g., 3–5 s by RTVue XR Avanti SD-OCT system

(Optovue, Inc, Fremont, California, USA), and in consequence,

OCTA images are inevitably susceptible to motion artifacts caused by

involuntary eye movements. Adjacent OCT-scans present a variety

of decorrelation and further degrades the image quality: motions

like microsaccade leads to a momentary change in the location

of the scan and produce visible horizontal or vertical white stripe

artifacts in the en face images (16), as shown by red arrows in

Figures 1A, C. These stripe artifacts lead to unpleasing visualization,

inaccurate vessel quantification, and even hinder clinical decision

making. Accelerating acquisition speed may mitigate motion

artifacts, relatively low spatial sampling rate is often used in some

devices, e.g., Topcon-DRI-OCT-1 machine (Topcon Corporation,

Japan). Unfortunately, such accelerating process requires more

complex design of the imaging systems (17), and may also lead to

the presence of sample-based speckle and non-existent vessels. Other

commercial OCTA imaging systems, e.g., RTVue XR Avanti SD-

OCT system (Optovue, Inc, Fremont, California, USA), have the

built-in motion detection and correction functions to suppress stripe

artifacts. Nevertheless, there still exist slight stripe artifacts in the

form of residual lines. Furthermore, these functions could increase

scanning time or even cause imaging failures if patients are unable

to hold their eyes still (18). In addition to stripe noise, low contrast

or intensity inhomogeneity caused by poor illumination conditions

usually leads to hardly visible or even discontinuous vasculatures.

Figure 1D demonstrates the AS-OCTA image in Figure 1C after stripe

noise removal, but the inherent poor contrast will still pose significant

challenges to subsequent medical image analysis tasks, such as blood

vessel segmentation (2) and disease/lesion detection (19).

As an alternative, it is crucial to design high-quality enhancement

methods that are able to remove stripe artifacts and enhance image

quality simultaneously, so as to enhance those details obscured in

the originals. Nevertheless, it has been proved very difficult to design

a single method that will work across a variety of different medical

imaging modalities (20). For OCTA imaging modality, there exist

two specific challenges in imaging quality improvement. On one

hand, compared with other imaging modalities such as hyperspectral

imagery, stripe artifacts in OCTA images always havemore diversified

characteristics with larger differences in intensity, length, thickness

and position, and are easily confused with the vascular structures.

Recently, there appears several deep learning based approaches for

image de-striping, but few models combine with prior knowledge

of stripe artifacts to further improve image de-striping performance.

On the other hand, for poor contrast or intensity inhomogeneity in

OCTA images, it is difficult to obtain such aligned low/high-quality

image pairs for supervised learning. However, most existing unpaired

learning frameworks have relatively insufficient constraints on local

details, which is unfavorable to restore microvasculartures with poor

contrast in OCTA images.

Thus in this paper, we propose a novel two-stage framework

for OCTA (including both posterior and anterior segment) image

enhancement. The proposed framework consists of the de-striping

stage and the re-enhancing stage, with the aim to respectively remove

stripe artifacts and improve the contrast in OCTA images. This paper

makes the following main contributions:

• In the de-striping stage, we propose a U-shape network called

Stripe Removal Net (SR-Net), which introduces a novel de-stripe

loss containing low-rank prior of stripe artifacts and constraints

on the vascular structure. To our best knowledge, this is the first

time to introduce constraints on stripe artifacts in the objective

function of a deep learning network.

• In the re-enhancing stage, we propose a novel generative

adversarial network called Perceptual Structure GAN (PS-

GAN), which integrates cyclic perceptual loss and structure loss

into a bi-directional GAN like CycleGAN. By constraints on the

vascular structure at different feature levels, both thick and thin

vessels in low-contrast OCTA images can be further enhanced.

• The proposed method has undergone rigorous qualitative and

quantitative evaluation using three datasets including OCTA

and AS-OCTA imagery. For each medical image modality,

we employ different image quality assessment schemes, and

the experimental results demonstrate the superiority of the

proposed framework.

The remainder of the paper is organized as follows.We review the

related works to the proposed method in Section 2. The methodology

of the proposed method is presented in Section 3. To validate the de-

striping effectiveness and image quality improvement of the proposed

method, we conduct extensive experiments in Sections 4, 5. We

discuss the details of the proposed method and draw our conclusion

in Section 6.

2. Related works

2.1. Stripe noise removal

Undesirable noise artifacts always exists in different medical

imaging modalities, such as optical coherence tomography (OCT),

computed tomography (CT), Ultrasound, magnetic resonance (MR)

and positron emission tomography (PET). In the past decades,
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numerous methods have been proposed for medical image denoising.

Conventional denoising approaches can be roughly divided into

the following several categories: filtering-based methods (21)

including NLM (22) and BM3D (23), transform-based methods

such as wavelets (24), shearlets (25) and curvelets (26), and

optimization-based algorithms including sparse representation (27,

28), low-rank decomposition (29, 30) and total variation (31,

32). Recently, there have appeared several methods based on

convolutional neural networks. Ma et al. (33) designed an edge-

sensitive conditional generative adversarial network for speckle

noise reduction in OCT images. Chen et al. (34) proposed a

Residual Encoder-Decoder CNN to remove noise from low-dose

CT images. Jiang et al. (35) developed a Multi-channel DnCNN

(MCDnCNN) with two training strategies to denoise MR images.

Cui et al. (36) proposed an unsupervised deep learning approaches

for PET image denoising.

As a kind of noise artifacts, stripe noise usually exists in some

imaging modalities such as remote sensing image, microscopy and X-

ray. Different from other noise artifacts such as speckle noise, stripe

noise usually appears as several parallel lines randomly distributed

through the whole image, which brings additional challenges for

image interpretation.

In recent decades, several researches have investigated image de-

striping. Conventional de-striping methods can be categorized into

three types: filtering-based, optimization-based and deep learning-

based. Filtering-based methods usually utilize Fourier transform (37,

38) or linear-phase (39) to remove the stripe or speckle artifacts

and then reconstruct a noise-free image. They are relatively

straightforward to implement and fast to process images, but they

generally perform well only on periodic stripe noise and often cause

the loss of details in the original images.

Recently, many optimization models have been proposed to

remove stripe noise. Chang et al. (40) regarded the images and stripe

noise as equally important information and used a low-rank-based

single-image decomposition model to obtain high-quality images.

He et al. (41) used TV-regularized low-rank matrix factorization to

remove stripe noise in hyperspectral images. Chang et al. (42) used

an Anisotropic Spectral-Spatial Total Variation (ASSTV) method

to preserve edge information and details in stripe spectral images.

Wu et al. (18) proposed a Cooperative Uniformity Destriping model

(CUD) and a Cooperative Similarity Destriping model (CSD) to

remove stripe noise from OCTA images by using the prior condition

of low-rank and anisotropic TV, while the CSD model considers the

association of stripes and blood vessels between different layers to

remove stripe noise. However, these optimization models require

complex numerical solutions to solve partial differential equations

(PDEs) in an iterative manner, and thus are not applicable to real-

time applications (43).

With the rapid development of deep learning, it has recently been

applied for stripe artifact removal in different imaging modalities.

Chang et al. (43) proposed a two-stage deep convolutional neural

network (CNN) with the short-term and long-term connections,

where the first stage acts as the noise subnet to guide the second

stage to obtain the denoised image. He et al. (44) proposed a CNN

model with residual learning modules to remove the synthetic stripe

noise of infrared images, where the stripe noise images are generated

from fixed pattern noise (FPN) module. Guan et al. (45) proposed

a FPNR-CNN model that includes the coarse-fine convolution unit

and the spatial and channel noise attention unit to remove stripe

noise. However, most of existing deep learning methods for stripe

removal tasks focus on exploring advanced CNN structures, such as

residual learning modules, which might only perform well in specific

types of medical images. In addition, few models formulated and

incorporated the constraints on stripe artifact removal into their deep

learning approaches. Motivated by the success of deep learning, in

this work, we first propose a convolutional neural network called

SR-Net for stripe noise removal in OCTA images. Different from

other deep learning approaches for image destriping, the proposed

SR-Net incorporates prior information of stripe distribution into its

loss function for more effective learning of stripe characteristics. To

our best knowledge, this is the first attempt to introduce constraints

on stripe distribution in a convolutional neural network.

2.2. Image enhancement

Many image enhancement methods proposed in the field

of computer vision have been applied to medical images, with

the aim of improving image quality. Well-known examples of

global enhancement methods, such as histogram equalization

(HE) (46), and contrast-limited adaptive histogram equalization

(CLAHE) algorithm (47), are widely-used methods in medical

image enhancement. They aim to stretch the dynamic range of the

input image, and adjust the intensities of pixels. However, these

methods typically enhance images uniformly, irrespective of whether

a given region is in the foreground or background. Guided image

filtering (GIF) (48) and its accelerated version Fast Guided Filter

(FGF) (49) are two promising methods proposed recently for single

image enhancement. These methods have the limitation that they

frequently over-smoothed regions close to flat, and in consequence

struggle to preserve fine details. Several medical image enhancement

models have been proposed based on the famous block matching

& 3D collaborative filtering method (BM3D) (50) and its extension

BM4D (51). These have been successfully adopted to improve the

quality of CT, MRI, and OCT imagery (52). However, we noted that

the enhanced images are often still blurred, these traditional methods

usually fail to consider the global information of the image.

Recently, deep learning has provided new insights for medical

image enhancement. LLNet (53) utilizes stacked sparse denoising

auto-encoders trained on synthetic data to enhance and denoise low-

light noisy images. MSR-Net (54) models conventional multi-scale

Retinex (MSR) methods with a deep neural network. MBLLEN (55)

extracts and fuses features at different levels in the network to

solve the image enhancement problem. However, learning-based

approaches are facing a critical challenge—it is difficult to collect

a large number of medical image pairs (low- and high-quality) for

training. Jiang et al. (56) proposed EnlightenGAN to enhance low-

light images, which includes a global-local discriminator structure,

a self-regularized perceptual loss fusion and attention mechanism.

Ma et al. (20) proposed a structure and illumination constrained

GAN (StillGAN), which enhances images from low-quality domain

to high-quality domain through structure loss and illumination

constraint. Zhao et al. (57) proposed a dynamic retinal image

feature constraint in GAN for image enhancement to improve

the quality of low-contrast retinal images. In this paper, we also

developed a bi-directional GAN called PS-GAN as the re-enhancing

stage, which incorporates cyclic perceptual loss and structure loss

to constrain the enhancement model on the vascular structure at

different feature levels.
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FIGURE 1

Illustration of four example OCTA images. (A) A retinal OCTA image with stripe noise; (B) Another retinal OCTA image without stripe noise; (C) A

conjunctival AS-OCTA image with stripe noise; (D) The conjunctival AS-OCTA image in (C) with stripe noise removed.

FIGURE 2

Overall framework of the proposed two-stage image enhancement method, which includes Stripe Removal Net and Perceptual Structural GAN for

de-striping and image enhancement respectively.

3. Proposed method

In this section, we detail the proposed two-stage image

enhancement framework which consists of a de-striping stage and a

re-enhancing stage, and its overall architecture is shown in Figure 2.

3.1. De-striping stage: Stripe removal
network

Since there exist obvious stripe noise in OCTA or AS-OCTA

images, we developed a stripe removal network (SR-Net) to remove

stripe noise, as illustrated in the de-striping stage of Figure 2. Our

SR-Net adopts an encoder-decoder architecture with symmetric skip

connections, following the general structure of U-Net (58), so that

multi-scale features can be fused to produce better stripe-free results.

The architecture of the proposed SR-Net is illustrated in Figure 3.

In our work, we assume that a given OCTA or AS-OCTA image I

can be decomposed into noise distribution map N and clean map C

in the form of I = N + C. SR-Net outputs the noise map Nout by

learning a mapping from the input image Iin to the reference stripe-

noise image Nref . And we could acquire the Nref by clean images and

stripe noise (18).

Then the output clean image Cout in the form of residual between

Iin and Nout can be obtained: Cout = max {Iin − Nout , 0}. For more

effective constraints to the de-striping framework, we construct a

de-stripe loss function Ldestripe, which consists of three terms—

reconstruction loss Lrecon, stripe loss Lstripe and anisotropic total

variation (ATV) loss LATV :

Ldestripe = αLrecon + βLstripe + γLATV , (1)

where α, β and γ are the positive weights to balance these terms

respectively.

3.1.1. Reconstruction loss
In order to constrain the dependence of spatial distribution

between the generated clean and noise distribution image, we

introduce a reconstruction loss. Based on the assumption that the

original image can be constructed by the output clean image and

noise image, the reconstruction loss Lrecon is defined as:

Lrecon =
1

2

∥

∥Iin − (Nout + Cout)
∥

∥

F
, (2)

where ‖·‖F represents the Frobenius norm, and Lrecon enables the

output noise distribution and clean image, respectively to share the

consistency in spatial distribution with the input image.
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FIGURE 3

Illustration of the Stripe Removal Net (SR-Net) for the de-striping stage. The proposed objective function Ldestripe is a combination of Lrecon, Lstripe and LATV .

3.1.2. Stripe loss
Wu et al. (18) confirmed the existence of low-rank prior in

stripe noise. According to the low-rank characteristic of stripe noise,

the number of singular values of stripe-noise images should be

approximated to zero after singular value decomposition. In order to

keep the consistence between the generated stripe-noise map and the

reference stripe-noise image of a synthesized image, we introduce a

new stripe loss Lstripe:

Lstripe =
∥

∥Stripe(Nref )− Stripe(Nout)
∥

∥

F
, (3)

where Nref represents the reference stripe-noise image.Stripe(·) is

the stripe degradation function aimed at reconstructing the primary

stripe component via a soft-thresholding operation on singular

values, which is denoted as: Stripe(N) = U · shrink(S) · VT , where

N = U · S · VT is singular value decomposition on N. shrink(·) is

the soft-thresholding operation aimed at selecting non-zero singular

values on S:

shrink(S) = diag
{

max(Sii − λ, 0)
}

, (4)

where Sii represents the diagonal element of singular value matrix S,

and λ is a small positive constant for selecting singular values.

3.1.3. ATV loss
Vessel structures are the most significant biomarkers in OCTA

or AS-OCTA images for clinical diagnosis, which are prone to be

corrupted during the de-striping process. To this end, ATV loss is

introduced to maintain the completeness of vessel structures. ATV

is able to measure the edge sharpness of an image (42) and has

been widely applied in image restoration with edge preservation. The

proposed ATV loss constrains the edge of two images and is defined

as follows:

LATV =
∥

∥ATV(Cref )− ATV(Cout)
∥

∥

F
, (5)

where Cref represents the reference clean image; ATV(·) is the

function to extract gradient information defined as:

ATV(C) =
∥

∥▽uxC
∥

∥

1
+

∥

∥

∥
▽uyC

∥

∥

∥

1
(6)

where ‖·‖1 represents the L1 norm; ▽ux and ▽uy represent the

horizontal and vertical difference operations on the image C

respectively.

Note that the proposed SR-Net was trained on our synthetic

OCTA datasets, which contain the reference stripe-noise imagesNref ,

the reference clean images Cref and corruption images synthesized

from the both.

3.2. Re-enhancing stage: Perceptual
structure GAN

Although the stripe noise can be effectively removed by the

proposed SR-Net during the de-striping stage, it will not improve

the low contrast issues between the vessels and background, which

hinders clinicians from accurate identification and quantification

of the vessels for informed diagnosis. To this end, we introduced

a re-enhancing stage to improve the perceptual contrast of vessel

structures adaptively.

In the re-enhancing stage, we proposed a novel bi-directional

GAN called Perceptual Structure GAN (PS-GAN), which

incorporates cyclic perceptual loss and structure loss into CycleGAN

architecture (59). The architecture of the re-enhancing stage is shown

in Figure 4. In this stage, low- and high-contrast images are treated as

being in two different domains, and the mapping from low-contrast

domain to high-contrast domain could be learned via PS-GAN. Our

PS-GAN framework consists of two generators GXY , GYX and two

discriminators DX , DY , where GXY (GYX) aims to translate an image

from domain X (Y) to domain Y (X), and DX (DY ) attempts to

identify whether an image is the real one from domain X (Y) or the

generated one from domain Y (X).

The baseline objective function of the proposed PS-GAN includes

adversarial loss, cycle-consistency loss and identity loss, following the

configuration of CycleGAN. Although widely applied to unpaired

image translation problems, the baseline objective function of such

bi-directional GAN has several drawbacks. On one hand, cycle-

consistency in the baseline objective function constrains generators

at image level without capitalizing on features of different levels,

which is prone to produce some unsatisfactory artifacts. On the
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FIGURE 4

Illustration of the perceptual structure GAN (PS-GAN) for the re-enhancing stage.

other hand, adversarial and cycle-consistency constraints only enable

generators to produce proper results in terms of global appearance,

which might lead to loss of some vital structural details. To this

end, cyclic perceptual loss and structure loss are integrated into our

PS-GAN and they are introduced as follows.

3.2.1. Cyclic perceptual loss
CycleGAN will prevent two generators from contradicting each

other by converting unpaired learning into paired learning via

constructing a self-supervisory signal. However, image-level cycle-

consistency of CycleGAN is not adequate to focus on both low-

and high-level features, which will lead to unsatisfactory artifacts in

the enhanced image. To overcome this shortcoming, extra feature-

level cycle-consistency called cyclic perceptual loss is introduced in

the objective function. Different from image-level cycle-consistency,

cyclic perceptual loss calculates cycle-consistency loss based on low-

and high-level features extracted from the VGG-19 (60). Cyclic

perceptual loss is defined as:

Lp(GXY ,GYX) =
∑

l=2,5

∥

∥

∥
φl(x)− φl(GYX(GXY (x)))

∥

∥

∥

2

F

+

∥

∥

∥
φl(y)− φl(GXY (GYX(y)))

∥

∥

∥

2

F

(7)

where x ∈ X, y ∈ Y , and φl(·) represents the output of the l-th

max pooling layer of the VGG-19 feature extractor pretrained on the

ImageNet. In Equation (7), features extracted from the 2nd and 5th

max pooling layer of the pretrained VGG-19 are treated as low- and

high-level ones, respectively to calculate cyclic perceptual loss.

3.2.2. Structure loss
In order to preserve vessel structures of the enhanced images,

we utilized the structure loss (20) to maintain the invariance of

vessel structures. Inspired by the structure comparison function

in structural similarity (SSIM) metrics, the structure loss measures

the dissimilarity of structure between the original image and its

enhancement in local windows and is defined as follows:

Ls(G,X) = Ex∈X[1−
1

M

M
∑

i=1

σxi ,G(x)i + c

σxiσG(x)i + c
], (8)

where M represents the number of local windows of the input

image, xi and G(x)i represent the i-th local window of an image

and its generated one respectively; σxi and σG(x)i represent the

standard deviations of xi and G(x)i respectively; σxi ,G(x)i represents

the covariance of xi and G(x)i; c is a small positive constant.

Finally, the loss function of PS-GAN can be expressed as:

LPS(GXY ,GYX ,DX ,DY ) = Lbl(GXY ,GYX ,DX ,DY )

+ξLp(GXY ,GYX)+ ρ1Ls(GXY ,X)+ ρ2Ls(GYX ,Y)
(9)

where Lbl represents the baseline objective function of PS-GAN; ξ ,

ρ1 and ρ2 are the weighted parameters of each term except for Lbl.

4. Experimental setup

4.1. Datasets

In this study, three datasets are used to validate the

proposed image enhancement framework, including an OCTA

dataset (PUTH), a public-accessible OCTA dataset (ROSE) (4),

and our in-house AS-OCTA dataset. All the datasets used

are collected under the approvals of relevant authorities

and consented by the patients, following the Declaration

of Helsinki.

PUTH is a private OCTA dataset that consists of clean and stripe

noise corrupted image groups. The clean group contains 210 en

face images from 210 eyes (including 47 with Alzheimer’s disease
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(AD), 29 with neuromyelitis optica (NMO), 29 with white matter

hyperintensities (WMH) and 105 healthy controls), which are high-

contrast and noise-free images selected by our clinicians. All en face

images were acquired at different imaging depths using RTVue XR

Avanti SD-OCT system with AngioVue software (Optovue, USA)

from the Peking University Third Hospital, Beijing, China. All these

images cover a 3 × 3mm2 field of view centered at the fovea

with 304 × 304 pixels. As the proposed SR-Net requires paired

images for training, i.e., clean image and image with stripe noise,

in this work stripe noise corrupted image groups were generated

by adding stripe noise to those noise-free images in the clean group.

In order to obtain the realistic stripe noise added to the noise-

free images, we adopted CUD method described in Wu et al. (18)

to remove real stripe artifacts from AS-OCTA images, and then

extracted the stripe noise images by substracting the corresponding

destriping results of CUD from the original stripe noise corrupted

AS-OCTA images. Furthermore, we defines the number of stripe

noise images added to one noise-free OCTA image as the stripe

noise level of the synthetic stripe noise corrupted image. In this

work, we synthesized stripe noise images with four stripe noise levels

(i = 1, 2, 3, 4) to validate destriping capability of the proposed

method for different noise levels. Figures 5A, C show a pair of

clean and its synthetic corruption image at noise level i = 2,

and Figure 5B illustrates the corresponding stripe noise. In our

implementation, 180 pairs images were used for training and the rest

for testing.

ROSE is a recently released OCTA dataset contains 229 images

with manual vessel annotations provided, as shown in Figure 6. In

this work, we selected the subset ROSE-1 for evaluation. ROSE-

1 has 117 images, which were captured by RTVue XR Avanti

SD-OCT system with AngioVue software (Optovue, USA), and

image resolution is 304 × 304 pixels. We randomly selected 10

images from ROSE-1 and added stripe noise in the same way

as above.

AS-OCTA is an in-house dataset, which has 31 conjunctival

OCTA images collected from the Peking University Third Hospital,

Beijing, China. These images were acquired by RTVue XR

Avanti SD-OCT system with AngioVue software (Optovue,

USA), with a scan area of 6 × 6mm2. All the images in

this dataset contain different levels of stripe noise, and the

reference vessel were manually annotated by an image analysis

expert using the open source software ImageJ at pixel-level (see

Figure 6).

4.2. Evaluation metrics

To verify the effectiveness of our method for stripe noise removal

and overall image quality enhancement, two validation strategies

were employed. First, we utilized the widely-used image quality

assessment metrics, peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM), to validate the proposed de-striping network.

PSNR is defined as the ratio between power of maximum signal

intensity and noise in an image and measures the image fidelity

(the larger the better). SSIM measures the similarity of structural

information between an image and its high-quality reference version

(the larger the better). These two validation approaches were only

applied on the datasets with corrupted (synthetic stripe noise added)

image, i.e., PUTH and ROSE dataset.

Second, as both the ROSE and our AS-OCTA dataset have

vessel annotations, we performed vessel segmentation on the

enhanced images to confirm the relative benefits of the proposed

framework and the other enhancement methods. Dice coefficient

(Dice), Sensitivity (Sen), and G-mean score (G-mean) metrics were

employed to evaluate the segmentation performance. These metrics

are defined as follows:

Dice =
2× TP

2× TP + FP + FN
, (10)

Sen =
TP

TP + FN
, (11)

G-Mean =
√

Sen× Spe, (12)

where Spe = FP/(FP + TN) indicates the specificity; TP, TN, FP

and FN represent the number of true positives, true negatives, false

positives and false negatives, respectively.

4.3. Implementation details

The proposed framework was implemented using PyTorch

library on the PC contained an NVIDIA GeForce GTX 3090 with 24

GB of memory.

4.3.1. SR-Net
We used the training set (n = 180) from the PUTH to train

our SR-Net. The Adam optimizer with recommended parameters was

used to optimize the model and batch size was set as 16. The initial

learning rate was 2 × 10−4 and gradually decayed to zero after 300

epochs. The hyper-parameters used in the network were λ = 0.002,

α = 0.5, β = 2 and γ = 1.

4.3.2. PS-GAN
Due to the lack of high-quality AS-OCTA images for training, and

the high similarity of contrast and structural distribution between

AS-OCTA image and corneal confocal microscopy, in this work,

we combined the training set (n = 180) of the PUTH and a

corneal confocal microscopy dataset (CCM) to form a new dataset

to train our model. The public-accessible dataset CORN-2 (20)

was used, and it contains unpaired 340 low-quality and 288 high-

quality CCM images. In the experiment, domain X consists of low-

contrast CCM, and all the images in PUTH and the high-quality

images in CORN-2 were included in domain Y . All the images

in both domains were resized to 400 × 400. The proposed PS-

GAN was optimized using Adam and batch size was set to 1. The

initial learning rate was 2 × 10−4 for the first 100 epochs and

gradually decayed to zero after the next 100 epochs. The hyper-

parameters used in the network were ξ = 0.5, ρ1 = ρ2 =

0.5.
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FIGURE 5

Illustration of paired OCTA images in PUTH dataset. (A) Clean image; (B) Stripe noise at noise level i = 2 generated by Wu et al. (18); (C) Stripe noise in (B)

added on (A).

FIGURE 6

Original OCTA images and their vessel manual annotations in ROSE and AS-OCTA dataset.

FIGURE 7

Illustrative stripe removal results using di�erent methods on a synthetic OCTA image (i = 2) with stripe noise from the PUTH dataset.

5. Experimental results

We validated individual components of our two-stage OCTA

image quality improvement framework: stripe noise removal and

image enhancement stages.

5.1. Validation of SR-Net in stripe noise
removal

5.1.1. Visual comparisons
As we mentioned in the dataset section, synthetic stripes were

added to the images in the PUTH and ROSE datasets. In order to

demonstrate the superiority of the de-striping stage, we compared

our SR-Net with the state-of-the-art de-striping methods including

CUD, CSD and CSD+ (18), as well as the baseline model (U-

Net). Figures 7, 8, top present the stripe noise removal results

produced by the different methods. As illustrated in Figure 7, top,

SR-Net removes stripe noise more faithfully without losing vessel

information comparing with other methods. CSD+ attempts to

remove the effect of stripe artifacts from the given images, but it

still contains noticeable stripe artifacts. Overall, the proposed SR-Net

generate the best performance in eliminating stripe noise, i.e., with

more visually informative results.

5.1.2. Evaluation by PSNR and SSIM
It is difficult to demonstrate conclusively the superiority of the

enhancement method purely by the above visual inspection, in this

section, a quantitative evaluation of de-striping is provided. The

PSNR and SSIM values of different methods on both the PUTH and

ROSE datasets are shown in the Table 1. As we can see, the higher

stripe noise level (i = 1, 2, 3, 4, the larger i, the stronger corruption)

usually lead to the lower PSNR and SSIM. It is evident that our SR-

Net achieves the highest PSNR and SSIM under various levels of
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FIGURE 8

Illustrative results using di�erent stripe removal methods on a synthetic OCTA image (i = 2) in ROSE dataset, and their vessel segmentation performances

by OCTA-Net (4). Top: De-striped OCTA images by di�erent methods. Bottom: vessel segmentation results. Middle: representative patches of de-striped

and vessel segmentation results.

noise corruption. For those OCTA images with low-level stripe noise,

all de-striping methods could achieve relatively high performance,

and the proposed SR-Net achieves a slightly higher PSNR and SSIM

scores than other approaches. For example, SR-Net achieves the

improvements of only 8.98, 8.86, 9.16, 1.08, 1.08, and 0.21% when,

respectively, compared with CUD, CSD, and CSD+ in terms of PSNR

and SSIM on ROSE dataset at noise level i = 2. By contrast, the

performance of CUD, CSD and CSD+ declines and the proposed

SR-Net yields better performance with relatively more significant

margins for those OCTA images with high-level stripe noise. For

example, the proposed SR-Net achieves an increase of about 31.72,

31.71, 36.63, 7.01, 7.01, and 9.11% in terms of PSNR and SSIM when,

respectively, compared with CUD, CSD, and CSD+ at noise level

i = 4. Similarly, our method also yields better performance with large

margins on the PUTH dataset when the images were corrupted by

high-level noise. It indicates that the proposed SR-Net is robust to

different stripe noise levels.

5.1.3. Evaluation by vessel segmentation
We also perform vessel segmentation over de-striped images to

confirm the relative benefits of the proposed method in comparison

to the others. For vessel segmentation in OCTA images, we employed

a recent proposed vessel segmentation network which is designed

for OCTA images in the ROSE dataset: OCTA-Net (4). We utilized

OCTA-Net to perform vessel segmentation on images with synthetic

stripe noise and images after applying different de-striping methods.

The Figure 8, bottom shows the vessel segmentation results by

different method on a noise corrupted image. The benefit of the

proposed SR-Netmethod for segmentationmay be observed from the

representative region (red patches). It can be seen that more accurate

and completed visible vessels have been identified by our SR-Net

compared with original images with stripe noise and other destriping

methods despite difficulties in small vessel detection. By contrast, a

large portion of stripe noise has been identified as vessels by OCTA-

Net in synthetic images and the de-striped images after applying other

de-striping methods. This finding is also evidenced by segmentation

results reported in Table 2. It is indeed that our SR-Net improves

the segmentation performances when compared to the results of

synthetic images: by an increase of about 7.79, 3.40, 7.80, and 8.42%

in Dice and 2.71, 1.33, 2.96, and 3.59% in G-mean, respectively with

various levels of stripe noise added in the original images. Moreover,

when compared with CUDmethod, SR-Net achieves improvement of

about 1.06, 0.79, 1.06, and 1.33% in Dice, 0.72, 0.72, 0.72, and 1.21%

in G-mean, respectively, with various levels of stripe noise added.

When compared with CSDmethod, SR-Net achieves improvement of

about 1.06, 0.93, 1.06, and 1.33% in Dice, 0.60, 0.84, 0.72, and 1.09%

in G-mean with the corruption of different noise levels. Similar to

the results of PSNR and SSIM, vessel segmentation performance gain

with larger margin has also been achieved by the proposed SR-Net

when the images were corrupted by high-level noise.

For vessel segmentation in AS-OCTA dataset, we employed the

Curvelet denoising based Optimally Oriented flux enhancement

method (COOF) (61), which was proposed for segmentation of

retinal microvasculature in OCTA images. It is worth noting that,

on one hand, no pre-trained deep learning models may be utilized

to performance the segmentation in AS-OCTA dataset, due to the

lack of high-quality AS-OCTA images. On the other hand, it is our

purpose to validate the proposed de-striping method would benefit

both deep learning-based and conventional segmentation methods.

As shown in Figure 9, bottom and the representative patches (red

box), it may be seen clearly that COOF is able to identify vessel

structures more accurately in the images with less stripe noise falsely

detected as vessels after our SR-Net is applied. We can observe that

the competing methods have retained some stripe noise in Figure 9,

top and the representative patches (yellow box), and the appearance

of stripe and vessels are of great similarity, thus the COOF method

falsely detects stripe noise as vessels. By contrast, most stripe noise

similar to vessels has been well removed by the proposed SR-Net.

Furthermore, Table 4 demonstrates the superiority of the proposed

SR-Net in improving segmentation performances. It shows that our

method yields the highest scores in terms of Dice, Sen, and G-mean.

SR-Net achieves G-mean of 0.714, with an improvement of about

5.78%, 5.62%, and 3.03% over CUD, CSD, and CSD+.

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2023.1061357
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


C
a
o
e
t
a
l.

1
0
.3
3
8
9
/fm

e
d
.2
0
2
3
.1
0
6
1
3
5
7

TABLE 1 De-striping performance in ROSE and PUTH dataset in terms of PSNR and SSIM.

Data
Noise level i = 1 i = 2 i = 3 i = 4

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PUTH

Synthesis 25.679± 1.212 0.938± 0.019 24.422± 1.799 0.898± 0.030 21.854± 1.303 0.855± 0.032 19.844± 1.141 0.813± 0.040

CUD 28.568± 0.795 0.942± 0.008 26.119± 0.910 0.924± 0.013 23.959± 0.894 0.904± 0.017 21.982± 0.984 0.883± 0.021

CSD 28.609± 0.807 0.942± 0.008 26.149± 0.918 0.924± 0.013 23.972± 0.899 0.905± 0.017 21.986± 0.984 0.884± 0.021

CSD+ 26.786± 0.988 0.955± 0.011 26.047± 1.543 0.930± 0.019 23.393± 1.163 0.899± 0.021 21.224± 1.080 0.866± 0.029

Baseline 30.746± 0.511 0.955± 0.004 28.211± 0.469 0.942± 0.004 27.702± 0.577 0.935± 0.005 27.309± 0.607 0.928± 0.004

SR-Net 31.608 ± 0.446 0.960 ± 0.008 28.907 ± 0.475 0.948 ± 0.009 29.117 ± 0.519 0.949 ± 0.008 29.371 ± 0.512 0.950 ± 0.007

ROSE

Synthesis 24.644± 1.570 0.902± 0.022 22.528± 2.186 0.871± 0.040 21.646± 1.331 0.851± 0.032 19.960± 1.109 0.811± 0.036

CUD 25.963± 1.397 0.924± 0.014 26.427± 1.050 0.926± 0.011 23.937± 1.105 0.903± 0.017 22.166± 0.889 0.884± 0.019

CSD 25.987± 1.412 0.924± 0.014 26.457± 1.059 0.926± 0.011 23.959± 1.121 0.903± 0.017 22.168± 0.896 0.884± 0.019

CSD+ 24.895± 2.042 0.917± 0.025 26.384± 1.382 0.934± 0.013 23.310± 1.262 0.898± 0.023 21.370± 0.961 0.867± 0.026

Baseline 27.705± 0.748 0.928± 0.004 28.438± 0.647 0.934± 0.007 27.640± 0.606 0.933± 0.008 27.237± 0.664 0.926± 0.008

SR-Net 28.140 ± 0.541 0.936 ± 0.014 28.801 ± 0.519 0.936 ± 0.013 29.025 ± 0.432 0.945 ± 0.012 29.197 ± 0.617 0.946 ± 0.012

The values in bold represent the best of all the comparative experimental results.

TABLE 2 Vessel Segmentation on de-striped images in ROSE dataset, in the presence of di�erent levels of synthetic stripe noise.

Methods

Di�erent levels of synthetic stripe noise

i = 1 i = 2 i = 3 i = 4

Dice Sen G-mean Dice Sen G-mean Dice Sen G-mean Dice Sen G-mean

Synthesis 0.706± 0.027 0.718± 0.035 0.813± 0.024 0.736± 0.039 0.725± 0.035 0.825± 0.027 0.705± 0.040 0.713± 0.030 0.810± 0.027 0.701± 0.027 0.705± 0.034 0.807± 0.023

CUD 0.753± 0.038 0.725± 0.037 0.829± 0.029 0.755± 0.040 0.725± 0.039 0.830± 0.029 0.752± 0.040 0.722± 0.041 0.828± 0.031 0.750± 0.041 0.720± 0.034 0.826± 0.028

CSD 0.753± 0.038 0.725± 0.041 0.830± 0.058 0.754± 0.040 0.723± 0.037 0.829± 0.029 0.752± 0.040 0.723± 0.041 0.828± 0.030 0.750± 0.042 0.721± 0.031 0.827± 0.027

CSD+ 0.741± 0.030 0.721± 0.031 0.825± 0.025 0.754± 0.039 0.727± 0.032 0.831± 0.027 0.742± 0.038 0.722± 0.032 0.825± 0.027 0.739± 0.040 0.718± 0.038 0.823± 0.030

Baseline 0.757± 0.034 0.731± 0.031 0.833± 0.025 0.760± 0.037 0.733± 0.034 0.835± 0.027 0.756± 0.035 0.733± 0.033 0.834± 0.026 0.756± 0.037 0.728± 0.033 0.831± 0.026

SR-Net 0.761 ± 0.034 0.734 ± 0.030 0.835 ± 0.024 0.761 ± 0.035 0.738 ± 0.029 0.836 ± 0.024 0.760 ± 0.035 0.733 ± 0.029 0.834 ± 0.024 0.760 ± 0.036 0.736 ± 0.037 0.836 ± 0.028

The values in bold represent the best of all the comparative experimental results.
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In summary, the proposed SR-Net is helpful in improving the

accuracy of vessel segmentation, since more stripe noise has been

removed, and it would enhance the visibility of the vascular structure

for subsequent processing.

5.2. Validation of PS-GAN in image
enhancement

5.2.1. Visual comparisons
In order to demonstrate the superiority of the re-enhancing

stage, we compared our PS-GAN with several state-of-the-

art image enhancement methods, including CycleGAN (59),

EnlightenGAN (56), CycleDehaze (62), and StillGAN (20). All these

competing methods are based on GAN, which aim to translate an

image from low-quality to high-quality domain in this work.

The Figure 10, top presents the visual enhancement results

via different methods. The results obtained by EnlightenGAN and

CycleDehaze have image distortion and blurring affect because these

methods are hard to guarantee the preservation of details in the

images. CycleGAN and StillGANproduced relative better results than

EnlightenGAN and CycleDehaze, however, they showed some side

effects such as intensity inhomogeneity and vessel discontinuity. In

contrast, the proposed method yielded more visually informative

results, i.e., relatively visual pleasing contrast and clear visibility of

vessel structures.

5.2.2. Evaluation by PSNR and SSIM
We also calculated PSNR and SSIM for quantitative evaluation

of re-enhancing stage over the PUTH and ROSE datasets. The

quantitative results of different enhancement approaches are shown

in Table 3. The proposed PS-GAN obtained the best performances in

terms of both metrics - it shows large margin when compared with

EnlightenGAN and CycleDehaze as they have changed the content of

the given images.

For example, PS-GAN achieves higher PSNR and SSIM scores

in ROSE dataset when compared with EnlightenGAN, CycleDehaze

and StillGAN if we added different levels of stripe noise, with 158.83,

54.16, 6.52, 100, 30.61, and 0.84% higher when compared with

competing methods in terms of PSNR and SSIM when noise level

i = 2. Similarly, our method also yields better performance with

largemargin in the PUTH dataset when the images were corrupted by

different noise levels. These findings also demonstrate the robustness

of PS-GAN to different stripe noise levels.

5.2.3. Evaluation by vessel segmentation
In order to confirm the impact of the re-enhancing stage on

vessel segmentation, we further performed vessel segmentation and

compared segmentation results from the enhanced images obtained

by different methods on the AS-OCTA dataset.

For the vessel segmentation in the AS-OCTA dataset, we also

employed COOF (61) as the vessel segmentation method. The

Figure 10, bottom presents the segmentation results via COOF, it

may be seen that COOF is able to identify vessel structures more

accurately on the images after our PS-GAN is applied. Because of

the hard presentation of details in the images, the segmentation

results of EnlightenGAN and CycleDehaze are deviated from the

ground truth. CycleGAN and StillGAN produced relative better

segmentation results than EnlightenGAN and CycleDehaze, however,

they showed some side effects such as intensity inhomogeneity and

vessel discontinuity of vessel segmentation results. In contrast, the

proposed PS-GAN yielded more visually informative results, COOF

detects more vessel structures. Furthermore, Table 5 demonstrate the

obvious advantage of the proposed PS-GAN in improving Dice, Sen

and G-mean of vessel segmentation compared with other competing

approaches. Moreover, our PS-GAN achieves G-mean of 0.812,

with an improvement of about 12.62%, 13.57% and 8.12% over

EnlightenGAN, CycleDehaze and StillGAN, respectively.

5.3. Ablation studies

5.3.1. SR-Net
In order to verify the effectiveness of our proposed method for

the stripe noise removal, we regarded the U-Net which shares the

same structure with SR-Net and adopts mean square error (MSE)

loss function as the baseline model and confirmed the stripe removal

effectiveness of the proposed loss function Ldestripe.

Visually For synthetic OCTA images in PUTH and ROSE

datasets, comparative results of the baseline and our SR-Net are

illustrated in Figure 7 and the top row of Figure 8, indicating that the

baseline model still contains some noticeable stripe artifacts whilst

our SR-Net can remove stripe artifacts satisfactorily. As illustrated in

Figure 9, top in AS-OCTA, our SR-Net removes stripe artifacts more

cleanly than the baseline, in addition, our method will not lose vessel

information.

Vessel segmentation For synthesis OCTA with annotations in the

ROSE dataset, the vessel segmentation results of baseline and SR-

Net are shown in Figure 8, bottom, our method preserves vascular

integrity better. This finding is also evidenced by the segmentation

results reported in Table 2. When compared with the baseline, the

proposed SR-Net achieves improvement of about 0.53, 0.13, 0.53,

and 0.53% in Dice, 0.24, 0.12, 0.00, and 0.60% in G-mean with the

corruption of different noise levels. For the AS-OCTA dataset, as

illustrated in Figure 9, bottom, our SR-Net will remove stripe artifacts

more cleanly without loss of any vessel information than the baseline.

Furthermore, Table 4 demonstrates the superiority of the proposed

SR-Net in improving segmentation performances. The proposed SR-

Net achieves an improvement of about 5.88, 1.89, and 1.71% in Dice,

Sen, G-mean over the baseline, respectively.

5.3.2. PS-GAN
In order to verify the further quality improvement on AS-OCTA

images in the re-enhancing stage, we regarded the results de-striped

by our SR-Net as the input low-quality imagesof all re-enhancing

approaches for unified comparison. CycleGAN was adopted as the

baseline and cyclic perceptual loss Lp and structure loss Ls were added

to baseline, respectively to confirm the effectiveness of the both.

Visually As shown in Figure 10, top, our method will improve the

continuity of vessel compared with the baseline, and our method will

not generate the non-existent vessels.

Vessel segmentation Illustrated in the Table 5, we also applied

COOF (61) for the vessel segmentation to verify the effectiveness

of enhancement results. Our method achieves the highest Dice,
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FIGURE 9

Illustrative stripe removal results using di�erent methods on a real AS-OCTA image and their vessel segmentation performance by COOF (61). Top:

De-striped AS-OCTA images by di�erent methods. Bottom: Vessel segmentation results.Middle: Representative patches of de-striping and vessel

segmentation results.

FIGURE 10

Results of the re-enhancing stage with PS-GAN on an AS-OCTA image. The (top) are the re-enhancing results after SR-Net and the (bottom) are the

segmentation results by COOF (61).

Sen and G-mean when compared with the baseline, Baseline+Lp
and Baseline+Ls, indicating that the proposed PS-GAN is effective

to restore more vascular information. Furthermore, as illustrated

in Table 5, the proposed PS-GAN can improve the segmentation

performances. The proposed PS-GAN achieves Dice of 0.599, with

the improvement of about 0.50, 0.84, and 0.50% over the baseline,

The baseline+Lp and baseline+Ls. Meanwhile, the proposed PS-GAN

achieves G-mean of 0.812, with the improvement of about 1.75, 2.27,

and 1.37% over the baseline, baseline+Lp and baseline+Ls.

In addition, we also validated the effectiveness of Lp and Ls on the

synthetic OCTA datasets. As shown in Table 3, PSNR and SSIM were

improved by adding Lp or Ls respectively. For example, the proposed

SR-Net achieves the improvement in PSNR and SSIM scores in the

ROSE dataset when compared with the baseline, baseline+Lp and

baseline+Ls if we added different levels of stripe noise, i.e., 3.86, 1.34,

1.07, 1.06, 0.31, and 0.42% higher in terms of PSNR and SSIM for

noise level i = 3. Similarly, ourmethod also yields better performance

in the PUTH dataset when the images were corrupted by different

noise levels. Furthermore, the proposed PS-GAN achieves the best

performance on image enhancement compared with the baseline,

baseline+Lp and baseline+Ls.

6. Discussions and conclusions

In medical imaging, it often has two main degradation factors:

imaging noise and poor contrast. The existing enhancement methods

usually address contrast adjustment and noise reduction separately.

In this paper, we have proposed a novel two stage framework that is

effective across a variety of medical imaging modalities, in addressing

noise, and poor contrast simultaneously. To this end, we introduced

a stripe loss, perceptual loss, and structure loss to constrain the

information of the stripe distribution, contrast and vessel structures

respectively, in OCTA images.

In the de-striping stage, an encoder-decoder architecture with

stripe noise constraints called SR-Net is proposed to remove stripe

noise in AS-OCTA and synthesized OCTA images. In the re-

enhancing stage, in order to obtain better quality images, a PS-GAN is

developed to translate a de-stripped image from low-contrast domain

to high-contrast domain via the cross-modality training strategy.

Our method has advantages of simple implementation, high

efficiency and wide applicability, e.g., OCTA and AS-OCTA. The

effectiveness of this enhancement framework was validated by

conventional image quality assessment metrics and the application of
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TABLE 3 Comparison of re-Enhancing performance in terms of PSNR and SSIM on the synthetic datasets.

Data
Noise level i = 1 i = 2 i = 3 i = 4

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PUTH

SR-Net 31.608± 0.446 0.960± 0.008 28.907± 0.475 0.948± 0.009 29.117± 0.519 0.949± 0.008 29.371± 0.512 0.950± 0.007

EnlightenGAN 12.033± 0.456 0.491± 0.031 12.025± 0.465 0.492± 0.031 12.019± 0.470 0.493± 0.032 12.020± 0.465 0.495± 0.032

CycleDehaze 19.611± 1.180 0.710± 0.046 19.645± 1.221 0.713± 0.044 19.572± 1.131 0.707± 0.045 19.572± 1.115 0.705± 0.044

StillGAN 29.368± 2.416 0.958± 0.013 29.088± 1.980 0.955± 0.012 28.367± 2.167 0.949± 0.014 27.843± 2.063 0.944± 0.014

Baseline 30.186± 0.871 0.956± 0.004 29.699± 0.824 0.951± 0.004 29.278± 0.710 0.947± 0.005 28.907± 0.719 0.943± 0.005

Baseline+Lp 31.407± 0.933 0.964± 0.004 30.730± 1.001 0.960± 0.003 30.190± 0.777 0.955± 0.004 29.689± 0.768 0.951± 0.005

Baseline+Ls 31.143± 0.669 0.963± 0.005 30.469± 0.583 0.958± 0.005 30.127± 0.524 0.955± 0.005 29.704± 0.507 0.952± 0.006

PS-GAN 31.736 ± 0.920 0.966 ± 0.004 30.948 ± 0.904 0.961 ± 0.004 30.562 ± 0.690 0.958 ± 0.005 30.014 ± 0.642 0.953 ± 0.004

ROSE

SR-Net 28.140± 0.541 0.936± 0.014 28.801± 0.519 0.936± 0.013 29.025± 0.432 0.945± 0.012 29.197± 0.617 0.946± 0.012

EnlightenGAN 11.854± 0.309 0.476± 0.021 11.886± 0.312 0.480± 0.021 11.868± 0.324 0.481± 0.022 11.852± 0.334 0.480± 0.024

CycleDehaze 19.916± 0.492 0.733± 0.023 19.957± 0.490 0.735± 0.025 19.862± 0.394 0.731± 0.025 19.761± 0.464 0.726± 0.027

StillGAN 29.271± 2.560 0.954± 0.017 28.882± 2.369 0.952± 0.017 29.052± 2.002 0.951± 0.014 28.194± 1.835 0.945± 0.014

Baseline 29.457± 1.120 0.951± 0.007 29.355± 1.115 0.950± 0.006 29.004± 0.968 0.946± 0.007 28.564± 1.008 0.941± 0.007

Baseline+Lp 30.463± 1.480 0.957± 0.008 30.334± 1.359 0.957± 0.007 29.727± 1.343 0.953± 0.009 29.329± 1.395 0.948± 0.010

Baseline+Ls 30.166± 0.907 0.955± 0.006 30.250± 0.790 0.955± 0.006 29.805± 0.630 0.952± 0.006 29.451± 0.654 0.948± 0.007

PS-GAN 30.810 ± 0.981 0.960 ± 0.006 30.765 ± 0.946 0.960 ± 0.005 30.125 ± 0.918 0.956 ± 0.006 29.647 ± 0.926 0.951 ± 0.007

The values in bold represent the best of all the comparative experimental results.
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TABLE 4 Vessel segmentation performance on original images in AS-OCTA

dataset and their de-striped versions via di�erent methods.

Methods Dice Sen G-mean

Original 0.442± 0.161 0.496± 0.142 0.529± 0.146

CUD 0.499± 0.168 0.485± 0.165 0.675± 0.135

CSD 0.499± 0.168 0.485± 0.165 0.676± 0.135

CSD+ 0.489± 0.159 0.511± 0.158 0.693± 0.122

Baseline 0.527± 0.174 0.528± 0.163 0.702± 0.125

SR-Net 0.558 ± 0.166 0.538 ± 0.166 0.714 ± 0.132

The values in bold represent the best of all the comparative experimental results.

TABLE 5 Vessel segmentation performance on original images in AS-OCTA

dataset, and their de-striping results of SR-Net and re-enhanced versions via

di�erent methods, and ablation study of our model.

Methods Dice Sen G-mean

Original 0.442± 0.161 0.496± 0.142 0.529± 0.146

SR-Net 0.558± 0.166 0.538± 0.166 0.714± 0.132

EnlightenGAN 0.467± 0.102 0.547± 0.078 0.721± 0.050

CycleDehaze 0.502± 0.114 0.531± 0.101 0.715± 0.071

StillGAN 0.568± 0.149 0.592± 0.156 0.751± 0.108

Baseline 0.596± 0.144 0.665± 0.122 0.798± 0.077

Baseline+Lp 0.594± 0.140 0.656± 0.116 0.794± 0.071

Baseline+Ls 0.596± 0.144 0.673± 0.130 0.801± 0.078

PS-GAN 0.599 ± 0.142 0.693 ± 0.126 0.812 ± 0.073

The values in bold represent the best of all the comparative experimental results.

vessel segmentation. Experimental results confirm that the proposed

method can remove stripe artifacts and achieve higher quality than

other state-of-the-art methods either in public or in-house datasets.

In addition, the vessel segmentation performance showed that the

proposed method yields a promising enhancement performance, that

enables both conventional and deep learning-based segmentation

methods to produce improved segmentation results across two OCT

image modalities.

We believe that our work is of the interest of the computer

vision community. Firstly, our task focuses on image enhancement

and denoising, which would find applications in the other areas of

object modeling, classification and recognition. Secondly, although

we present our work based on medical image data, our algorithm is

not medical-specific. The proposed loss functions are generalizable

and can be used to enhance the performance of other networks such

as U-Net and GAN. In the future, we will involve the research on

explanation of the models and discuss what the proposed framework

focuses on during the enhancement processing, such as regions

with stripe noise or low contrast. In addition, we will consider

combining stripe artifacts removal and image enhancement into an

end-to-end process. Furthermore, This work can also be extended

to other OCTA devices such as Zeiss and Heidelberg systems and

we will further improve stability and robustness of the model on

multi-center OCTA data. The potential application of the proposed

framework is even not limited in the medical image domain, and

can be applied in many other computer vision tasks, e.g., scratch

detection for industrial quality assurance and enhancement of remote

sensing images.
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