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Aiming at the poor robustness and adaptability of traditional control methods

for different situations, the deep deterministic policy gradient (DDPG) algorithm

is improved by designing a hybrid function that includes different rewards

superimposed on each other. In addition, the experience replay mechanism of DDPG

is also improved by combining priority sampling and uniform sampling to accelerate

the DDPG’s convergence. Finally, it is verified in the simulation environment that the

improved DDPG algorithm can achieve accurate control of the robot arm motion.

The experimental results show that the improved DDPG algorithm can converge in

a shorter time, and the average success rate in the robotic arm end-reaching task is

as high as 91.27%. Compared with the original DDPG algorithm, it has more robust

environmental adaptability.
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1. Introduction

Methodologies for control engineering have been suggested as a potential protocol for
integrating self-adaptive characteristics into software products (Li D. et al., 2021; Meng et al.,
2021; Zhang et al., 2021). Intelligent robotic applications have become more adapted with
the development of artificial intelligence (AI) technology (Wang et al., 2022c,d; Zhao et al.,
2022). Robots are widely used in modern manufacturing to complete repetitive and dangerous
manufacturing tasks.

The main obstacle to their growth is the motion control of the robotic arm. In past research,
traditional control methods such as adaptive control (Martín-Sánchez et al., 2012), fuzzy control
(Precup and Hellendoorn, 2011), and robust control (Spong, 1992) were usually used. Generally,
these control methods’ stability and accuracy are limited, making it challenging to meet the
rapidly evolving industrial needs (Wang et al., 2022a,b; Xu et al., 2022). As a result, many
researchers improved and optimized robotic arm control algorithms. Ren and Dinghui (2020)
used an adaptive sliding mode control method based on a fixed-time perturbation observer to
enable the robotic arm to track a trajectory precisely and suppress the system’s jitter efficiently.

Liang et al. (2019) adopted the Cartesian space decoupling control and the reference load
feed-forward compensation method to perform force-position hybrid control of the robotic arm,
which improved the response speed and steady accuracy of the robotic arm. Soltanpour and
Khooban (2013) proposed an optimal fuzzy sliding mode controller for robot position tracking,
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which overcame the uncertainty in robotic arm position tracking.
Lu et al. (2016) proposed a single flexible robotic arm tip control
method based on a linear quadratic regulator (LQR) based on the
Mamdani model. The adaptive change of the LQR controlled variable
R by adding a fuzzy algorithm to the conventional LQR controlled to
improve the adaptability of the control system. These classical control
methods suit industrial production environments with a single
structure, where the robotic arm follows a predetermined trajectory
to complete the production task (Hu et al., 2021). Optimization
methods, generally, bring new ideas to solve complex engineering
problems (Dong et al., 2021; Sun et al., 2022). However, traditional
control methods of robotic arms strongly depend on the environment
model and have various drawbacks when operating robotic arms in
unstructured scenarios. For example, when the environment changes,
the mathematical model of the robot arm and the environment
must be re-established, resulting in a low model reusability rate and
increased labor costs.

Deep reinforcement learning (DRL) (Wang et al., 2020)
can perceive complex inputs and learn independent policies, as
reinforcement learning has shown great potential in solving many
problems (Pan and Xu, 2016; Zhang et al., 2020; Yun et al., 2021; Kaur
and Mittal, 2022; Raheb et al., 2022). DRL makes robotic arm control
more smart, does not require accurate modeling of the environment,
and can compensate for the shortcomings of traditional motion
planning methods. Many researchers have recently investigated
robotic arm control based on the DRL approach (Iriondo et al.,
2019; Moreira et al., 2020; Jiang et al., 2021; Sekkat et al., 2021;
Yang Y. et al., 2021). Finn et al. (2016) proposed an inverse optimal
control algorithm based on the DRL approach. The algorithm can
learn complex nonlinear cost representations of the need to manually
complete feature engineering. It can be applied to high-dimensional
systems with unknown dynamics to achieve motion control of
robotic arms in realistic scenarios. Zhang et al. (2015) autonomously
learned the ability to control each joint angle of the robotic arm
based on the Deep Q Network (DQN) algorithm and using visual
perception as a state input, thus achieving reaching the target of a
three-degree-of-freedom robotic arm. Yang L. et al. (2021) proposed
a DRL-based ball-striking method. The method has spin velocity
estimation capability to predict the relative spin velocity of the ball
and accurately hit the ball back. Lee et al. (2022) developed and
tested a digital twin-driven DRL learning method for robots to
prioritize tasks efficiently in dynamic construction environments.
The deep deterministic policy gradient (DDPG) algorithm (Lillicrap
et al., 2015) is another DRL algorithm for handling high-dimensional
continuous action space tasks. The DDPG is a model-free control
method based on modeling and is suitable for robotic arm motion
control in dynamic environments. However, the original DDPG
algorithm is time-consuming and inefficient in training models
for handling control tasks in complex and variable environments.
Moreover, if the reward function of DDPG is not designed properly,
there is also a sparse reward problem (Jia et al., 2019), which prevents
the robotic arm from learning the desired control strategy during the
training process.

In recent years, DDPG algorithms have been applied in a wide
range of scenarios, such as analyzing electricity market strategies
(Liang Y. et al., 2020), battery-involved energy management (Wu
et al., 2020; Wei et al., 2021), adaptive neuro-fuzzy proportional-
integral-derivative (PID) control (Shi Q. et al., 2020), energy
harvesting wireless communication management (Qiu et al., 2019),
optimal control for batch processes (Yoo et al., 2021), target tracking

in high-altitude scenes (Liang S. et al., 2020), energy consumption
optimization for zinc electrowinning processes (Shi X. et al., 2020),
performance optimization of car-following (Yan et al., 2021), etc.
Li et al. (2019) proposed the minimax multi-agent (M3DDPG)
algorithm, which uses multi-intelligence adversarial learning to solve
the local optimum problem effectively. Li J. et al. (2021) proposed
the multiple experience pool replay twin delayed DDPG (MEPR-
TD3) algorithm to improve the training efficiency and action quality
by playing back the strategy to multiple experience pools. Han
et al. (2021) proposed a regular update deterministic policy gradient
algorithm to improve data utilization in the replay buffer. Joshi
et al. (2021) the twin-actor twin-delayed DDPG (TATD3) algorithm
was proposed by incorporating twin-actor networks in the existing
twin-delayed DDPG (TD3) algorithm for continuous control. Li
X. et al. (2021) improved the sampling strategy of the experience
pool by adopting a high-priority experience playback strategy and
proposed the efficient multi-agent deep deterministic policy gradient
(E-MADDPG) algorithm to improve the efficiency of path planning.
Zhang et al. (2019) proposed asynchronous episodic DDPG (AE-
DDPG) to achieve more efficient learning with less training time. Xie
and Zhong (2020) proposed the semi-centralized deep deterministic
policy gradient (SCDDPG) algorithm to design a two-level actor-
critic structure and a reward function with a local and global structure
based on the attributes of the bits of intelligence to improve the
learning performance of the intelligence in a stochastic environment.

This paper proposes an improved DDPG algorithm for the
intelligent control of a robotic arm to solve the problems mentioned
above. It is based on a hybrid reward strategy and an improved
experience replay mechanism.

(1) A hybrid reward function containing distance reward, sparse
reward, direction reward, and area reward is designed by combining
the robotic arm and the environment. It enables the robotic arm
to learn the strategy of reaching the target object faster and more
smoothly and improves the algorithm learning efficiency.

(2) The improved experience replay mechanism combines the
advantages of preferential sampling and uniform sampling, reduces
the correlation of sample data during training, and improves sample
data quality. It is beneficial to improve the utilization rate of sample
data and accelerate the speed of network training.

Experimental results show that the improved DDPG algorithm
converges faster in training than the original DDPG algorithm. The
final arrival of the robotic arm control model has a higher test
success rate, resulting in better environmental adaptation capability
and control accuracy of the robotic arm.

The structure of this paper is outlined as follows. Section “2.
DDPG algorithm” briefly introduces the DDPG algorithm flow
and how the Actor policy network and Critic evaluation network
are updated. Section “3. Design of improved DDPG algorithm”
details the improvements to the DDPG algorithm, including the
design of the hybrid reward function and the experience replays
mechanism. In Section “4. Analysis of experimental results,” the
parameters of the reward function are determined experimentally,
and the convergence speed and control performance of the original
and improved algorithms are compared. Section “5. Conclusion and
future works” summarizes and concludes the paper.
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2. DDPG algorithm

The Actor policy network of the DDPG algorithm is used to
explore the environment and make action decisions; the Critic
evaluation network is used to judge the merit of each action, which
guides the direction of the gradient update of the Actor policy
network. The framework structures and the specific process of the
DDPG algorithm are shown in Figure 1.

Both Actor and Critic contain two neural networks with the
same network structure, namely the online network and the target
network. Random initialization of the online Q network Q

(
s, a|θQ)

and the online policy networked µ (s|θµ) parameters of the θQ andθµ

and with the parameters θQ′
← θQ and θµ′

← θµ initialize their
corresponding target networks Q′ and µ′. The action is selected
according to the current policy at as shown in Equ. 1.

at = µ
(
st|θ

µ
)
+ Nt (1)

where at does the current policy select the executive action, st is the
current observed state, and Nt is the exploration noise.

The DDPG algorithm decision processes to perform actions in
the environment at to get the return reward value rt and a newly
observed state st+1 and the sample data is (st, at, rt, st+1) are stored in
the experience pool Replay Memory. The target Q value of the Critic
is calculated as in Equ. 2. The Critic is updated by minimizing TD
deviation as shown in Equ. 3.

yi = ri + γQ′
(

si+1, µ
′

(
si+1|θ

µ′
)
|θQ′

)
(2)

L =
1
N

∑
i

(
yi − Q

(
si, ai|θ

Q))2 (3)

where γ is the attenuation factor.

The Actor policy network updates the network parameters based
on the Policy Gradient, as shown in Equ. 4.

∇θµ J ≈
1
N

∑
i

(
∇aQ

(
s, a|θQ)∣∣

s = si,a = µ(si)
· ∇θµµ

(
s|θµ

)∣∣∣
s = si

)
(4)

where ∇θµµ(∗) is the Actor-network gradient and ∇aQ(∗) is the
Critic network gradient. ∇θµ J this allows the Actor to continuously
adjust its network parameters in the maximum direction available
reward θ µ.

The Actor’s online network is updated in real-time based on the
Critic’s online network as a guide, which is updated in real-time using
its target network as a guide. Therefore, the parameters of the online
network are up to date. In contrast, the target network parameters are
delayed based on the online network parameters using soft updates,
as shown in Equ. 5. {

θQ′
← τθQ

+ (1− τ)θQ′

θµ′
← τθµ

+ (1− τ)θµ′
(5)

where θQ′ is the target Q network parameter, θµ′ is the target policy
network parameter, and τ is the soft update constant.

The DDPG algorithm is based on the Actor-Critic framework
that constantly interacts with the environment to train its network
iteratively. This dual-network mechanism using both the online
network and the target network of parameter updates allows for
more stable parameter updates and effectively improves the learning
efficiency of the algorithm.

3. Design of improved DDPG
algorithm

The DDPG algorithm allows the robotic arm to interact with
the environment continuously and get a large amount of sample

FIGURE 1

Flowchart of the deep deterministic policy gradient (DDPG) algorithm.
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FIGURE 2

Robotic arms interacting with the environment.

data (st, at, rt, st+1) onto the update of the network parameters in
the algorithm, as shown in Figure 2. With this iterative training,
the control model of the robotic arm is finally output to achieve
intelligent control of the robotic arm.

3.1. Design of hybrid reward functions

The DDPG algorithm can reduce redundant exploration and
improves the training efficiency by setting the reward function of
output the reward value of each action of the robotic arm so that
the end of the arm can reach the target object quickly and stably
under the training of the DDPG algorithm. However, in dynamic
environments or complex tasks, the original DDPG algorithm suffers
from the problem of reward sparsity. On the one hand, the strategy of
intelligence is a random strategy at the beginning of training, and the
acquisition of reward requires a series of complex operations. Hence,
it is difficult for intelligence to obtain the reward under the initialized
strategy, leading to training difficulties. On the other hand, sparse
rewards are widely available in reinforcement learning tasks. For
example, in the robotic arm arrival task, the robot arm successfully
reaches the target through a series of complex positional controls
before it can obtain a reward, and the failure of any intermediate
step leads to the inability to obtain a reward. The sparse reward
problem can lead to slow iteration and even complex convergence of
the original DDPG algorithm. So this paper combines the robotic arm
and the environment to design a hybrid reward function, including
distance reward, sparse reward, direction reward, and area reward,
so that the improved algorithm can learn the expected strategy and
improve the learning efficiency.

3.1.1. Distance reward function
It is difficult for the robotic arm to learn effectively in an

unknown, exploratory environment with a large space. The distance
from the robotic arm of the target object gives the corresponding
reward. The smaller the distance, the larger the reward; vice versa,
the smaller the reward. This way, it can shorten the exploration time
and facilitate the algorithm’s learning to bring the robotic arm closer
to the desired target object.

The distance between the end of the robotic arm and the target
object d, is shown in Equ. 6.

d =
√

(xa−xo)
2
+
(
ya−yo

)2
+(za−zo)

2 (6)

where: the coordinates of the end of the robot arm are
(
xa, ya, za

)
and

the coordinates of the target object are
(
xo, yo, zo

)
.

In order to make this reward function generalized in different
environments, the distance d is transformed by the exponential
calculation. The specific distance reward function is shown in Equ. 7.

r1 = 2(e−0.99d
− 1) (7)

where r1 is the distance reward value; the smaller the distance value
d, the larger the reward value. Regardless of d how large it is, the r1
can be limited to the range of (−2,0), which facilitates setting other
reward functions.

3.1.2. Sparse reward function
Exploration of the robotic arm requires the identification of a

learning task. In training, sparse rewards set a clear learning goal for
the robotic arm. A large reward is given at the end of the robotic
arm only when it reaches the target object, guiding the robotic arm
to complete the desired task. Equ. 8 gives the sparse reward function.

r2 =

{
0, target is not reached
Rsparse, reaching the target

(8)

where r2 is the sparse reward value, and Rsparse is the reward value of
reaching the target object at the end of the robotic arm.

3.1.3. Directional reward function
The directional reward is designed for the movement of the

robotic arm toward the position of the target object to reduce the
blindness of the pre-exploration. If the end of the arm moves to the
next step with a tendency to move closer to the target object, a positive
reward is given, and vice versa for a negative reward. The direction of
movement toward the robot arm of each step is gradually adjusted to
the target object by smaller reward values. Equ. 9 gives the directional
reward function.

r3 =


−Rdirection, d′ > d
0, d′ = d
Rdirection, d′ < d

(9)

where r3 is the directional reward value that d′ represents the
distance between the end of the robotic arm and the target object
in the next step, and −Rdirection is the negative reward value for
the movement of the robotic arm away from the target object, and
Rdirection is the reward value for the movement of the robot arm close
to the target object.

3.1.4. Regional reward function
It suffers low exploration efficiency, only relying on sparse

rewards to complete pre-defined tasks. Area rewards can provide a
practical exploration guide in the learning process of the robotic arm,
reinforce the learning goal and improve the learning efficiency of the
algorithm. When the end of the robot arm is about to reach the target,
the corresponding reward value is given according to how close it is to
the target; that is, the closer it is to the target, the greater the reward
value with this enhanced reward r4. That allows the robotic arm to
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FIGURE 3

Improved experience pool.

explore less environment and increases the chances of reaching the
target object. Equ. 10 gives the area reward function.

r4 =

{
Rzone1 0.05 < d ≤ 0.1
Rzone2 0 < d ≤ 0.05

(10)

where r4 is the regional award value, the Rzone1 and Rzone2 are the
reward values set for the range of distances when the end of the robot
arm approaches the target object.

The final hybrid reward functions are determined by
superimposing the above four reward functions r, as shown in
Equ. 11.

r = r1 + r2+r3 + r4 (11)

3.2. Design of improved experience
replays mechanism

The experience replay mechanism is used in the DDPG algorithm
to reduce the relevance of data when training and exploring. The
experience replayed pool stores a quaternion array (st, at, rt, st+1)

that holds data samples from past robotic arm interactions with the
environment. The experience replay mechanism enables the reuse
of historical sample data and reduces wasted resources. The quality

of the sample data has an important impact on network training.
However, the original DDPG algorithm treats all the stored data
onto the experience replay pool equally, and there is no prioritization
between the data. The network parameters are trained in a uniform
sampling manner.

To address the above matters, experience pool two is added
behind the original experience pool, as shown in Figure 3. In
experience pool 2, the original stored sample data is mixed with
uniform sampling and priority sampling processing to ensure the
quality of the selected sample data and improve its utilization.

The sampling process of experience pool 2 is shown in Figure 4.
First, the sample data are ranked in descending order according to the
magnitude of their reward values; then, the data with small reward
values at the bottom part of the experience pool are eliminated. After
that, the data ranges between priority and uniform sampling and
are divided according to a certain proportion. The sampling weight
w is set, and batch_size ∗ w and batch_size∗(1− w) data are gained
in the priority sampling set and uniform sampling set, respectively.
Finally, the batch_size data are collected and used for the new batch
of network training.

The improved sampling strategy combines the advantages of
priority sampling and uniform sampling, preferentially selecting
high-quality data with large reward values and eliminating some
low-quality data onto small reference values, which is conducive to
accelerating network training and promoting algorithm convergence.

3.3. Procedure of improved DDPG
algorithm

The pseudocode of the interaction procedure of the improved
DDPG is given in Algorithm 1. The algorithm’s four network
parameters and two experience pools need to be initialized at the
beginning. Performing an action at in each step will result in the
corresponding reward value rt and the next state st+1 according
to the hybrid reward function. The sample data (st, at, rt, st+1) are
deposited into the experience pool B1. Experience pool B2 stores

FIGURE 4

Experience pool data processing and sampling.
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samples from B1 after processing the data in Figure 4. When the
experience pool B1 is full, the minimum batch samples are obtained
from the experience pool B2 according to the improved sampling
strategy, the sample data is used to update the network. The network
parameters are updated iteratively in a single step during the training
rounds. The algorithm flow chart of the improved DDPG is shown in
Figure 5.

1 Randomly initialize critic network

Q
(
s, a|θQ) and actor-network µ (s|θµ) with

weights θQ and θµ

2 Initialize target network Q′ and µ′ with

weights θQ′
← θQ, θµ′

← θµ

3 Initialize replay buffer B1 and B2

4 for episode = 1, M do

5 Initialize a random process N for

action exploration

6 Receive initial observation state S1

7 for step = 1, T do

8 Select action at = µ (st|θ
µ)+ Nt

according to the current policy and

exploration noise

9 Execute action at, observe reward rt

and next state st+1

10 Store (st, at, rt, st+1) in the replay

buffer B1

11 B2 is obtained by sorting B1 in

descending order of reward values

and then removing the data with small

reward values at the end

12 Set the weight w. batch_size ∗ w and

batch_size ∗ (1− w) transitions (si, ai, ri, si+1)

are obtained in the proportionally

divided priority sampling set and

uniform sampling set of B2,

respectively

13 Compute targets yi

= ri + γQ′
(

si+1, µ
′

(
si+1|θ

µ′
)
|θQ′

)
14 Update critic by minimizing the

loss: L = 1
N
∑

i
(
yi − Q

(
si, ai|θ

Q))2

15 Update the actor policy using the

sampled policy gradient: ∇θµ J ≈
1
N
∑

i

(
∇aQ

(
s, a|θQ)∣∣

s=si,a= µ(si)
· ∇θµµ (s|θµ)

∣∣∣
s=si

)
16 Update the target networks:

θQ′
← τθQ

+ (1− τ)θQ′

θµ′
← τθµ

+ (1− τ)θµ′

17 end for

18 end for

Algorithm 1. Improved deep deterministic policy gradient (DDPG) algorithm.

4. Analysis of experimental results

To verify the effect of the improved DDPG algorithm, this paper
builds a simulation environment based on the PyBullet platform with

a Kuka seven-degree-of-freedom robotic arm to conduct experiments
on reaching the target object position with the end of the robotic arm.
Because of the physical constraints, hardware development no usually
leads in enhanced performance in computational methods (Li, 2022;
Li and Liu, 2022). Consequently, we have utilized a typical hardware
with following details. The computer processor used for training is an
Intel Xeon Gold 5218, the graphics card is an NVIDIA GeForce RTX
3090, and the algorithm is coded based on the TensorFlow framework
on the Ubuntu operating system.

The robotic arm is placed on the operating platform, and its task
is to reach objects within the limits of the solid white line. During
the training process, the location where the target object appears is
randomly generated at the initialization of each round, as shown in
Figure 6.

4.1. Determination of reward parameters

In order to verify the performance of the improved DDPG
algorithm, it is necessary to determine the values of various
reward parameters first, including sparse reward valuesRsparse,
directional reward values Rdirection, and the regional reward
values Rzone1 and Rzone2. Figures 7–10 are the result data for each
set of 5,000 training rounds.

Figure 7 gives the convergence rounds and the number of
successes of the improved DDPG algorithm for different sparse
reward values Rsparse. The convergence rounds are the number of
rounds where the average step length stabilizes, and success counts
are the number of completions where the end of the robot arm
reaches the target object. It can be seen that the sparse reward value
of 30 converges at 800 rounds, and the number of successes is 1,557,
achieving the fastest convergence rounds and the highest number of
successes. Therefore, in the improved DDPG algorithm, the sparse
reward value Rsparse is set to 30.

Figure 8 gives the improved DDPG algorithm for the
convergence rounds and the number of successes at different values of
directional reward Rdirection. It can be seen that the directional reward
value of 0.003 converges at 900 rounds, and the number of successes
is 1,854, achieving the fastest convergence rounds and the highest
number of successes. Therefore, in the improved DDPG algorithm,
the directional reward value Rdirection is set to 0.003.

The convergence rounds and success counts of the improved
DDPG algorithm for different region reward values Rzone1 and Rzone2
are given in Figures 9, 10, respectively. It can be seen that the region
reward value Rzone1 with 1 and Rzone2 with 5 converging at around
1,000 rounds with a success number of 1,942, reaching the fastest
convergence round and the highest success number. Therefore, in
the improved DDPG algorithm, the region reward values Rzone1 and
Rzone2 are set to 1 and 5, respectively.

4.2. Comparison of convergence speed

During the practical training, the maximum number of steps to
complete the task per round was set to 1,000, and if the robotic arm
could end within 1,000 steps, it was shown that the robotic arm
reached task completion. To facilitate the comparison of training
results, all experiments were set to the same number of rounds of
5,000. The average step length used per 100 rounds was recorded
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FIGURE 5

Flowchart of the improved deep deterministic policy gradient (DDPG) algorithm.

FIGURE 6

3D simulation environment for the robotic arm.

during the training. Figure 11 gives the convergence curves for
the original and improved DDPG algorithms. The purple dotted
line is the original DDPG algorithm; the green dotted line is the
DDPG algorithm with improved reward, the red dashed line is
the DDPG algorithm with improved experience pool, and the solid

blue line is the DDPG algorithm with both improved reward and
experience pool. The original DDPG algorithm converges at 2,200
rounds, the DDPG with improved reward function and DDPG
with improved experience pool converge at around 1,100 and
1,400 rounds, respectively, and finally, the hybrid improved DDPG
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FIGURE 7

Number of successes and convergence rounds for 5,000 rounds of sparse reward training.

FIGURE 8

Number of successes and convergence rounds for 5,000 rounds of directional reward training.

FIGURE 9

Convergence rounds for 5,000 rounds of regional reward training.

algorithm reaches convergence of around 200 rounds. Moreover,
before convergence, the hybrid improved DDPG algorithm was
below the convergence curve of the other DDPG algorithms and had

higher training efficiency. Therefore, the hybrid improved DDPG
algorithm accelerates the convergence speed compared with other
DDPG algorithms.
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FIGURE 10

Number of successes in 5,000 rounds of regional reward training.

Another measure of the algorithm performance is the average
reward value per round accumulated during the algorithm’s training;
the higher the cumulative reward value, the better the algorithm
performance. Figure 12 gives the cumulative reward curves for
different DDPG algorithms, with the original DDPG algorithm in
solid purple, the DDPG algorithm with improved reward in solid
green, the DDPG algorithm with improved experience pool in solid
red, and the hybrid improved DDPG algorithm in solid blue. It
can be seen that the hybrid improved DDPG algorithm received
higher rewards, with the cumulative reward curve consistently above
the other DDPG algorithm curves and significantly ahead of the
other DDPG algorithms after 1,500 rounds. Therefore, the hybrid
improved DDPG algorithm performs better than the other DDPG
algorithms.

4.3. Comparison of control performance

To verify the robotic arm’s control performance, the DDPG
algorithm’s success rate was tested before and after its improvement
in the robotic arm reaching task. As shown in Table 1, the success
rates of the robotic arm in reaching the target object at 1,000,
2,000, and 5,000 rounds were tested, with the bold ones being the
highest success rates. It can be seen that the average success rate for
the original DDPG algorithm, the DDPG algorithm with improved
reward, the DDPG algorithm with improved experience pool, and the
hybrid improved DDPG algorithm is 43.76, 61.34, 70.96, and 91.27%,

FIGURE 11

Average stride length per 100 rounds of training.

respectively. Figure 13 gives a visual representation of the success
rates of different DDPG algorithms. The DDPG algorithm with an
improved reward and experience pool has higher average success
rates than the original DDPG algorithm. Therefore, the improvement
of the reward functions and the experience of the replay pool to
the original DDPG algorithm is effective. The success rate of the
hybrid reward function and experience replay pool improved by
47.51%. Therefore, the hybrid improved DDPG algorithm has better
performance and stronger robustness.

Figure 14 presents the success rate curves for the different DDPG
algorithms tested per 100 rounds, with the purple line being the
original DDPG algorithm, the green line being the DDPG algorithm
with improved reward, the red line being the DDPG algorithm
with improved experience pool and the blue line being the hybrid
improved DDPG algorithm. It can be seen that the success rate of
the original DDPG algorithm fluctuates between 40 and 50%, while
the success rates of both the DDPG algorithm with improved reward
and with improved experience pools fluctuate between 60 and 70%,
so the improvement of either the reward function or the experience
pool increases the success rate of the robot arm in the reaching task.
In contrast, the hybrid improved DDPG algorithm achieves a success
rate of around 90%, which is much higher than the original DDPG
algorithm and the other two improved DDPG algorithms, which
shows more stability of the robotic arm arrival task control. Thus, the
hybrid improved DDPG algorithm provides higher accuracy control
of the robotic arm.

Combining the above experimental results, it can be seen that
the improved DDPG algorithm proposed in this paper shows

FIGURE 12

Average reward accrued from training.
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TABLE 1 Comparison of robot arm arrival task success rates before and after deep deterministic policy gradient (DDPG) algorithm improvements.

Reward functions Experience
playback pool

Number of test
rounds

Number of rounds
completed

Success rate Average success
rate

Original
Original

1,000
2,000
5,000

522
875

1,766

52.20%
43.75%
35.32%

43.76%

Improvements
Original

1,000
2,000
5,000

574
1,307
3,064

57.40%
65.35%
61.28%

61.34%

1,000 707 70.70%

Original Improvements 2,000 1,481 74.05% 70.96%

5,000 3,407 68.14%

1,000 911 91.10%

Improvements Improvements 2,000
5,000

1,848
4,516

92.40%
90.32%

91.27%

Bold values indicate the experimental results for which the final improved algorithm is optimal.

FIGURE 13

Visual comparison of test success rate.

more robustness and higher learning efficiency compared to the
original DDPG algorithm for the robotic arm-reaching task in
an unknown working environment. In particular, the design of
the hybrid reward function leads the robotic arm to the target

FIGURE 14

Test success rate of robotic arm arrival tasks.

object and provides a practical learning guide for the robotic arm.
Compared to single-function rewards, it improves the exploration
efficiency of reinforcement learning for the robotic arm. Moreover,
the improvement in the experience replay mechanism, which can
reuse historical sample data and filter out high-quality samples for
network training, improves the convergence speed of the algorithm.

The improved DDPG algorithm proposed in this paper shows
high learning efficiency and success rate in the 3D robotic arm
reaching task. In addition, the experimental tasks performed in
this paper are relatively single, and further verification of the
generalization and robustness of the proposed algorithm requires
doing more tasks in different unknown working environments,
such as grasping robotic arms and other particular tasks with
more difficulty.

5. Conclusion and future works

In response to the problem that traditional control methods of
robotic arms in different environments still have poor self-adaptive
capabilities, an intelligent control method of robotic arms based on
the improved DDPG algorithm is proposed.
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(1) This paper improves the reward function and experience
replay mechanism in the original DDPG algorithm and proposes an
improved DDPG algorithm suitable for robotic arms operating in
dynamic environments.

(2) The simulation results show that both the reward function
and the experience replay mechanism improve the success rate of
the robotic arm in reaching the task. The average success rate of the
improved DDPG algorithm is as high as 91.27%, and the convergence
speed of the algorithm is accelerated.

The improved DDPG algorithm has a faster convergence speed
and higher success rate, which gives the robotic arm the flexibility to
choose the correct action and facilitates the efficient completion of a
specific task. For future work, the improved method proposed in this
paper can be tried to be applied in a physical robotic arm. Explore the
method’s effectiveness in robotic arm grasping and combine it with
vision algorithms to accomplish more complex control decision tasks.
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