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Accurate chromosome segregation is vital for cell and organismal viability. The
mitotic spindle, a bipolar macromolecular machine composed largely of dynamic
microtubules, is responsible for chromosome segregation during each cell
replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed
in which each pair of chromatids is attached to microtubules from opposite spindle
poles. In this bipolar configuration pulling forces from the dynamicmicrotubules can
generate tension across the sister kinetochores. The tension status acts as a signal
that can destabilize aberrant kinetochore-microtubule attachments and reinforces
correct, bipolar connections. Historically it has been challenging to isolate the
specific role of tension in mitotic processes due to the interdependency of
attachment and tension status at kinetochores. Recent technical and
experimental advances have revealed new insights into how tension functions
during mitosis. Here we summarize the evidence that tension serves as a
biophysical signal that unifies multiple aspects of kinetochore and centromere
function to ensure accurate chromosome segregation.
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Introduction

The mitotic spindle, a highly organized yet morphologically dynamic macromolecular
machine composed largely of microtubules and associated proteins, is essential to successfully
segregate chromosomes during each round of mitosis. The metaphase spindle has a conserved
steady-state structure, which is inherently stable in a bipolar configuration that focuses the
microtubules into two poles, crosslinks interpolar microtubules to maintain pole separation,
and attaches sister chromatids to kinetochore microtubules from opposite poles (Figure 1).

Microtubules are inherently dynamic polymers composed of tubulin protein, a heterodimer
of alpha- and beta-tubulin subunits. These dynamic microtubules are organized and
coordinated by the actions of many conserved microtubule associated proteins (MAPs). A
key aspect of spindle function is that chromatid pairs will be segregated to opposite poles, and
thus into different daughter cells, via depolymerizing microtubules, or kinetochore-fibers, by
attaching the kinetochores of sister chromatids to microtubules emanating from opposite poles.
The kinetochore is a proteinaceous complex that forms on the single centromere of each
chromosome. It serves as a physical linkage between the chromosomal centromere and the
attached microtubule. When a dynamic microtubule becomes attached to, or captured, by a
kinetochore, it can generate a pulling force that creates tension across the sister kinetochores if
they are attached to opposite spindle poles. Both the microtubule attachment status and the
tension across bipolar attached sister kinetochores serve to ensure chromosomes are accurately
segregated during anaphase.
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Several decades of work have helped elucidate what proteins mediate
the kinetochore-microtubule attachment, how unattached kinetochores act
as a signal to delay anaphase onset, and how the phosphorylation of
kinetochore proteins regulates the strength of the kinetochore-microtubule
attachment. Efforts to discern the mechanisms that sense and respond to
microtubule-generated tension at kinetochores have been comparablymore
difficult due to the interdependency of tension and attachment. Here we
provide a brief overview of our understanding of the forces in the bipolar
mitotic spindle and how those forces allow dynamic microtubule-
kinetochore attachments to generate tension across sister chromatids.
We summarize how tension acts as a unifying force that alters
kinetochore and centromere structure, mediates Aurora B activity,
corrects erroneous attachments, and regulates mitotic progression.

Forces in the mitotic spindle and
associated kinetochore-microtubule
tension

The forces acting on andwithin themitotic spindlemust be balanced to
facilitate a stable metaphase configuration with bipolar chromatid
attachments (Figure 1). Forces in the spindle can be passive, such as
friction or structural elasticity, or active, which requires energy input and
can result inmechanical output, such as rearrangements ormovement (For

a review of all spindle forces, see Nazockdast and Redemann (2020);
Dumont and Mitchison (2009). In addition to motor proteins, e.g.,
kinesins, microtubule polymerization (elongation) and depolymerization
(shortening) in the spindle can generate these active forces. Microtubule
polymerization and depolymerization are both thermodynamically
favorable reactions, relying ultimately on the energy of GTP binding to
free tubulin and subsequent hydrolysis within the microtubule polymer
(Mitchison and Kirschner, 1984).

The forces generated by a single polymerizing microtubule have been
measured to be up to 3–4 pN (Dogterom and Yurke, 1997); (Janson et al.,
2003). This force is limited in longer microtubules due to an increase in
propensity for buckling (Dogterom and Yurke, 1997), yet microtubule
bundling by MAPs can increase overall rigidity while additively increasing
their combined force-generating potential (Laan et al., 2008). The so-called
polar ejection forces are a well-characterized example of microtubule
polymerization-driven forces in the mitotic spindle. These forces, which
push chromosomes from near the poles toward the central region of the
spindle to aid in chromosome congression, are generated by a combination
of polymerizing microtubules and kinesins interacting with chromosome
arms (Brouhard and Hunt, 2005); (Ke et al., 2009). In Drosophila, polar
ejection forces are generated by microtubule polymerization, while NOD, a
kinesin-10 motor, couples growing microtubule tips with chromosome
arms supporting a polymer ratchetmechanism (Cochran et al., 2009).NOD
also has its own plus-end directed motility and plus-end tracking ability via

FIGURE 1
Models of microtubule-associated forces in metaphase and anaphase mitotic spindles. The spindle is composed of three major classes of microtubules
(interpolar, kinetochore, and astral), eachwith unique functions that contribute to the forces generated within the bipolar structure. The forces of note include
pushing and pulling forces resulting from microtubule polymerization and depolymerization, respectively, which are largely responsible for chromosome
movement (1 and 2), and resistive forces, or tension, generated across pairs of sister kinetochores and centromeres, which are coupled by centromere-
associated condensin and cohesin protein complexes (3). MAPs (microtubule associated proteins) crosslink antiparallel interpolar microtubules to create a
stable midzone that allows kinesin motor proteins to generate sliding forces that push the spindle poles apart (4). While all four types of forces are active in
metaphase spindles, tension across sisters is terminated by cohesion cleavage at the metaphase-to-anaphase transition while anaphase chromosome
movement is dominated by microtubule-generated pulling forces.
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EB1 interaction (Ye et al., 2018). Thus, NOD has two force generating
activities that contribute to polar ejection forces (Ye et al., 2018). In HeLa
cells, the kinesin-10, Kid, links polymerizing microtubule tips with
chromosome arms, while a second motor, the kinesin-4 Kif4A, regulates
microtubule growth (Stumpff et al., 2012). Another function ofmicrotubule
polymerization-derived force is to position microtubule organizing centers
within the cell. For example, microtubules pushing against opposite sides of
the cell cortex work to center the nucleus in fission yeast (Tran et al., 2001).
More recently, microtubules pushing against the cell cortex were shown to
maintain metaphase spindle positioning at the cell center in C. elegans
embryos (Garzon-Coral et al., 2016).

The forces associated with microtubule depolymerization are
significantly larger than those resulting from polymer growth. In a
pioneering study, the wave of curling protofilaments that accompanies
depolymerizing microtubules tips was measured to produce 0.5 pN on a
bead positioned on one side of the depolymerizing polymer (Grishchuk
et al., 2005). In an updated adaptation of this “wave assay”, these forces
were measured to be between 8–16 pN (Driver et al., 2017). The total
pulling force generated by all protofilaments of a depolymerizing
microtubule remains to be directly measured, but has been
extrapolated to be 30–65 pN (Grishchuk et al., 2005). Poleward-
directed movement of chromosomes on the metaphase plate and
during anaphase is driven by the depolymerization of microtubules
attached to their kinetochores (Koshland et al., 1988); (Grishchuk and
McIntosh, 2006). Indeed, purified budding yeast kinetochores attached
to a single microtubule in an end-on manner can withstand load-
bearing forces reaching up to 11 pN (Akiyoshi et al., 2010). When a
microtubule, attached end-on to a kinetochore, depolymerizes, it
generates a pulling force on that kinetochore and its associated
chromosome (Figure 2). The kinetochore proteins can oppose this
force if there is sufficient resistance to chromosome movement. In
the case where the kinetochores of sister chromatids are attached to
microtubules from opposite poles, this resistance is mediated by the
cohesin and condensin protein complexes linking the chromatids and

the elasticity of the pericentromeric chromatin. In this bipolar
configuration, the pulling forces generated at one or both
microtubule-kinetochore attachments result in a tension force across
the coupled sister kinetochores. This force is analogous to the tension
transmitted through a rope pulled from opposite ends.When evaluating
potential mechanisms involved in sensing and responding to this
tension status, it is relevant to consider that the force is transmitted
across the entire linkage, including kinetochore components,
centromeric DNA/proteins, pericentromeric chromatin, as well as
condensin and cohesin complexes. Thus, any component in this
linkage could be involved in sensing and responding to the general
tension status of the sister kinetochores.

The role of tension in accurate chromosome segregation has been a
fundamental question since the pioneering experiments in the 1960s with
the micromanipulation of chromosomes during meiotic divisions in
grasshopper spermatocytes (Nicklas and Koch, 1969). Evidence for
tension serving as a prominent force within the spindle comes from
many studies. For example, analysis of kinetochores on oscillating
metaphase chromosomes revealed sites of active and passive force
generation (Dumont and Desai, 2012). In fission yeast, severing the
microtubules on one side of the metaphase spindle causes the sister
chromatids to move toward the spindle pole on the intact side (Klemm
et al., 2018). Overall, evidence demonstrates that microtubule
depolymerization generates a pulling force on the attached kinetochore,
which, in the case of sister chromatids attached to opposite spindle poles,
results in a tension force transmitted across the sister kinetochore linkage.

Howmicrotubule-dependent forces and
kinetochore structure lead to
chromosome movement

Forces generated by depolymerizing microtubules attached to the
kinetochore are vital for creating the pulling forces responsible for

FIGURE 2
Model of a simplified yeast kinetochore-microtubule attachment with a catch bond-like connection. While many proteins comprise the kinetochore
and/or participate in themicrotubule-kinetochore attachment, two structures of note are the Ndc80 complex and the Dam1/DASH complex ring. As the end-
on microtubule depolymerizes into tubulin heterodimers, the 13 protofilaments each curve outward. These protofilaments are constrained within the collar
formed by the ring of Dam1/DASH complexes, and their bending drives the collar further onto the depolymerizing microtubule. The Dam1/DASH ring
then pulls the associated centromere/kinetochore via the Ndc80-mediated coupling. This pulling force could potentially be sensed by the Dam1/DASH
complex, Ndc80, other outer or inner kinetochore proteins, centromere-associated proteins, DNA, or proteins involved in the coupling between the sister
centromeres.
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chromosome movement during anaphase (Koshland et al., 1988);
(Grishchuk and McIntosh, 2006). In addition to depolymerization at
the microtubule ‘plus-end’, which is attached to the kinetochore, in
most organisms the kinetochore microtubules also undergo a process
called flux. This flux is driven by simultaneous polymerization of
kinetochore-associated plus-end and depolymerization of the ‘minus-
end’ at the spindle pole (Mitchison, 1989). If the depolymerization rate
at the pole exceeds polymerization at the kinetochore, it will result in a
pulling force toward that pole (Vukušić et al., 2019). The relative
contribution of plus-end depolymerization or flux to the overall force
experienced at kinetochores varies by organism (Maddox et al., 2000);
(Mallavarapu et al., 1999); (Maddox et al., 2002); (Ganem et al., 2005).
Overall, microtubule depolymerization at the kinetochore and the
poles works to shorten the distance between the spindle pole and the
attached kinetochore, thus generating the main forces responsible for
poleward chromosome movements and for increasing the tension
across bipolar attached sister kinetochores (Inoue, 1953); (Inoué and
Ritter Jr, 1975); (Salmon et al., 1976); (Asbury, 2017).

The forces that move chromosomes are significantly larger than
the thermally driven background forces in cells and are estimated at
4–5 pN in budding yeast and upwards of hundreds of piconewtons in
Drosophila cells (Chacón et al., 2014); (Ye et al., 2016). The
microtubule tip must be connected perpendicularly to proteins on
the outer face of the kinetochore, forming an end-on attachment to
withstand such high forces (Asbury, 2017); (Gudimchuk et al., 2020).
The KMN network is a group of kinetochore proteins that is essential
for forming end-on attachments, and when impaired, results in
chromosome segregation defects (Cheeseman et al., 2006); (DeLuca
et al., 2005); (DeLuca et al., 2006); (Kim and Yu, 2015); (McCleland
et al., 2003) (for review of KMN network see Varma and Salmon
(2012). The conserved protein Ndc80, one of the outermost in the
KMN network, is needed for microtubule-dependent force production
at kinetochores and specifically needed for generating end-on
attachments (Wimbish et al., 2020); (Huis in ’t Veld et al., 2019);
(Cheeseman and Desai, 2008); (Alushin et al., 2010); (Cheeseman
et al., 2006); (Tooley and Stukenberg, 2011); (Suzuki et al., 2016).
Much study has focused on the role of the unstructured tail region of
Ndc80 in forming attachments, although results indicate this may vary
among organisms. While the tail appears dispensable for generating
end-on attachments in S. cerevisiae and C. elegans (Demirel et al.,
2012); (Cheerambathur et al., 2013), recent studies using human
Ndc80 produced conflicting results (Wimbish et al., 2020); (Huis in
’t Veld et al., 2019). While the exact role of the Ndc80 tail in forming
end-on attachment in some organisms remains in question,
Ndc80 itself is essential for proper load bearing at kinetochore-
microtubule attachments across eukaryotes.

Microtubule associated proteins
strengthen load-bearing capacity of
kinetochore-microtubule attachments

In addition to central kinetochore components like Ndc80, several
less-conserved MAPs are also essential or aid in forming force-
generating microtubule attachments at kinetochores. Many of these
are recruited to kinetochores via Ndc80 and are important for
regulating the attachment to dynamic microtubules (Amin et al.,
2019). Highlighted below are MAPs or protein complexes that have
been well characterized in their roles to support robust kinetochore-

microtubule attachment. For a comprehensive review of MAPs
involved in the metaphase spindle and kinetochore-microtubule
attachment, see Amin et al. (2019).

In budding yeast, the Dam1/DASH complex is essential for
microtubule-kinetochore attachments and dependent on Ndc80 for
its kinetochore localization. Although Dam1 appears to be the main
microtubule-binding protein in the complex, the nine other DASH
subunits are also essential (Westermann et al., 2006); (Asbury et al.,
2006); (Grishchuk et al., 2008); (Janke et al., 2001). Mutations in any of
the DASH subunits lead to weakened microtubule-kinetochore
attachments (Cheeseman et al., 2001). The heterodecameric Dam1/
DASH complex oligomerizes to form a ring around the microtubule
that is required for persistent kinetochore attachment to dynamic
microtubules (Lampert et al., 2010); (Westermann et al., 2005);
(Asbury et al., 2006); (Westermann et al., 2006); (Tien et al., 2010);
(Tanaka et al., 2007); (Grishchuk et al., 2008). The ring is proposed to
function as a collar that can harness the forces produced by
depolymerizing microtubules (Figure 2) (Lampert et al., 2010);
(Westermann et al., 2005); (Asbury et al., 2006); (Westermann
et al., 2006); (Tien et al., 2010); (Tanaka et al., 2007); (Grishchuk
et al., 2008); (Kiermaier et al., 2009); (Lacefield et al., 2009); (Lampert
et al., 2013); (Miranda et al., 2005); (Umbreit et al., 2014). The rigid,
collar-like structure of the ringmaintains contact with themicrotubule
lattice and Ndc80 via flexible C-terminal extensions of the Dam1/
DASH complex (Jenni and Harrison, 2018). This flexible connection
could potentially accommodate different kinetochore-microtubule
configurations, such as lateral versus end-on attachments during
the cell cycle. In addition to mediating forces, the Dam1/DASH
complex also regulates microtubule-kinetochore attachments via its
phosphorylation status. Phosphorylation of the DASH subunit Ask1,
by Cdk1, promotes robust microtubule-kinetochore attachment, likely
by promoting Dam1/DASH complex oligomerization (Gutierrez et al.,
2020). When microtubule-kinetochore attachments are not under
sufficient tension, the budding yeast Aurora B homolog, Ipl1,
phosphorylates Dam1/DASH complex components to weaken
interactions with the microtubule and promote detachment
(discussed below) (Keating et al., 2009); (Cheeseman et al., 2002).

Two budding yeast MAPs conserved across eukaryotes also
function at force-generating microtubule-kinetochore attachments.
The first MAP is Stu2, a well-characterized member of the
XMAP215 family that has orthologs in many organisms, with
human (chTOG), fission yeast (Dis1), worm (Zyg9), and frog
(XMAP215) being among the best described (Amin et al., 2019).
XMAP215 family members play prominent roles in controlling the
dynamic behavior of microtubules in many cellular processes,
including at kinetochores (Amin et al., 2019). Work in budding
yeast has shown that Stu2 localizes to kinetochores, where it
interacts with Ndc80 (Miller et al., 2016). Disrupted
Stu2 kinetochore localization results in microtubule attachment
defects, with data indicating Stu2 functions in the establishment of
bipolar attachments and stabilizes kinetochore-microtubule
attachments under tension (Miller et al., 2019). The second MAP is
the homotetrameric kinesin-5 motor protein, Cin8. Kinesin-5 motors
are well known for their role in crosslinking and sliding interpolar
microtubules in the spindle. Cin8 also localizes to the region of
kinetochore-microtubule attachment in an Ndc80-dependent
manner (Suzuki et al., 2018). In the absence of Cin8, kinetochores
experience less tension as measured by a tension-sensitive FRET
module placed within Ndc80. Additional data suggest that
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Cin8 may promote tension by delivering Protein Phosphatase 1 (PP1)
to kinetochores, where it dephosphorylates Ndc80, thus increasing the
strength of microtubule attachments (Suzuki et al., 2018).

In metazoan cells, the Ska complex (SKA1, SKA2, and SKA3/
Rama1) significantly strengthens microtubule-kinetochore
attachments (Auckland et al., 2017); (Gaitanos et al., 2009); (Theis
et al., 2009); (Welburn et al., 2009); (Ohta et al., 2011). The Ska
complex is proposed to be a functional ortholog of the Dam1/DASH
complex in fungi (Welburn et al., 2009); (Van Hooff et al., 2017).
When Ska complex localization to kinetochores is prevented in vivo
via Ska3 depletion, cells experience a large increase in mitotic
duration, indicating difficulty in establishing robust, tension-
generating attachments (Zhang et al., 2017). In vitro work has
shown that the Ska complex increases the load-bearing capacity of
Ndc80-based attachments by binding to both Ndc80 and the
microtubule. Using Ndc80 with mutations in the tail region, which
lowers affinity for the microtubule, the Ska complex was able to
enhance the attachment strength by as much as five-fold (Helgeson
et al., 2018); (Huis in ’t Veld et al., 2019). The Ska complex can
produce robust attachment, independent of Ndc80 tail
phosphorylation status, suggesting it can compensate for the tail-
mediated regulation of microtubule binding and perhaps antagonize
Aurora B, which phosphorylates the Ndc80 tail to promote the release
of tensionless kinetochore attachments (discussed below) (Helgeson
et al., 2018); (Wimbish et al., 2020).

Another factor implicated in kinetochore-microtubule
attachments in human cells is the Astrin-SKAP complex.
Knockdown of Astrin results in disrupted spindle organization and
mitotic delay, indicating a vital role(s) in mitotic spindle formation
(Gruber et al., 2002). The Astrin-SKAP complex binds microtubules
throughout the cell cycle (Kern et al., 2016) yet only localizes to
kinetochores once they achieve bipolar attachments in late metaphase
(Fang et al., 2009); (Schmidt et al., 2010); (Friese et al., 2016); (Mack
and Compton, 2001); (Manning et al., 2010). Astrin-SKAP localization
is important for chromosome alignment and maintenance of sister
chromatid cohesion (Thein et al., 2007); (Manning et al., 2010);
(Dunsch et al., 2011). The localization and function of Astrin-
SKAP are inversely related to Aurora B activity, suggesting Astrin-
SKAP may antagonize the attachment-destabilizing activity of Aurora
B (Fang et al., 2009); (Schmidt et al., 2010). Along those lines, Astrin-
SKAP has been shown to facilitate the conversion of kinetochores
associated with the lateral side of a microtubule to the end-on
configuration (Shrestha et al., 2017). However, the conserved tail of
Astrin has been shown to direct PP1 to kinetochores, where
PP1 stabilizes microtubule-kinetochore attachments via a
mechanism that appears independent of Aurora B activity (Conti
et al., 2019). Astrin also interacts with Polo-like Kinase 1 (Plk1), whose
phosphorylation of Astrin promotes its kinetochore localization and
attachment stabilizing activity (Geraghty et al., 2021). Imaging of
mitotic cells indicates that the microtubule attachments of sister
kinetochore pairs are under higher tension in cells lacking SKAP
(Rosas-Salvans et al., 2022). Moreover, kinetochores move slower on
polymerizing and depolymerizing microtubules, and more force is
needed to convert shortening kinetochore-attached microtubules back
to growth. These observations suggest that Astrin-SKAP works to
preserve bipolar attachments by reducing friction or effectively
‘lubricating’ their kinetochore-microtubule connections (Rosas-
Salvans et al., 2022). Altogether these findings demonstrate that
there are likely multiple layers of tension-regulating mechanisms at

the kinetochore, which help to produce more robust attachments in
combination.

The roles of tension in promoting
accurate chromosome segregation

When unable to generate robust tension across sister kinetochore
attachments, cells face prolonged mitotic duration and increased risk
of chromosome missegregation, leading to aneuploidy or death.
Dynamic microtubules generate robust tension with end-on
attachments, whose coupling and regulation requires the function
of specialized kinetochore components and MAPs, prominent
examples of which are described above. Below we summarize
recent advances in understanding how tension can act as a
unifying factor, connecting events from the pericentromeric region
to the outer kinetochore. Tension can alter kinetochore and
centromere structure, regulate attachment strength, act as a
modulator of Aurora B activity, and, in conjunction with the
Spindle Assembly Checkpoint (SAC) promote timely anaphase
onset (Figure 3). Tension across sister kinetochores is a
fundamental quality of bipolar attachment that plays a key role in
multiple mechanisms and thus unifies their individual functions to
achieve accurate chromosome segregation.

Tension directly influences kinetochore and
centromere structure

The tension produced across sister kinetochores during metaphase
is a physiologically relevant force generated within the mitotic spindle
(Chacón et al., 2014); (Ye et al., 2016). It has been a long-standing
endeavour to elucidate how this tension status is sensed at
kinetochores and centromeres. Notably, the structures of both
kinetochores and centromeres are influenced by tension.
Centromeres are the singular regions of DNA where kinetochore
proteins assemble and they serve as a key connection point between
replicated sister chromatids (for a review of centromere structure, see
Lawrimore and Bloom (2022). It has long been thought that cohesion
between sister chromatid DNA strands, provided by the cohesin
complex, functions as the major mechanism for resistance to
outward forces on their centromeres. One apparent limitation is
that cohesin complexes can move relative to the associated DNA
and, thus, allow centromeres to be pulled apart with relatively little
resistance due to such DNA sliding. This challenge is met by ‘trapping’
the cohesin complexes between a pair of convergently oriented genes
on either side of the centromere, thus limiting further DNA sliding
and defining the boundaries of the pericentromeric region (Paldi et al.,
2020). A notable property of DNA is that it is relatively floppy and
easily extended, which does not generate much tension until it is
largely extended (Bloom, 2008). Although alternative models have
been proposed for the physical arrangement of the pericentromeric
DNA between sister centromeres (Paldi et al., 2020), considering the
length of DNA within the pericentromere, the bottlebrush model
perhaps best accounts for this extensible property of DNA (Lawrimore
et al., 2015). Briefly, the bottlebrush model posits that the
pericentromeric DNA is organized by condensin and cohesin
complexes into a looped loop structure with a central backbone
and extending loops resembling the bottlebrushes used to clean test
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tubes (reviewed in Lawrimore and Bloom (2022). Notably, the
bottlebrush model provides a mechanism by which the
pericentromeric DNA adopts a stiff structure that allows for
microtubule-dependent kinetochore movements to result in
relatively greater tension. Centromeric stiffness increases during
mitotic progression, with the greatest stiffness during metaphase
(Harasymiw et al., 2019). This increased centromeric stiffness in
metaphase, when tension is a vital signal for achieving bipolar
attachments, passively increases tension in response to active
microtubule-depolymerization forces, relative to centromeres with
more extendable DNA. This centromeric stiffness creates a more
sensitive mechanism to distinguish different kinetochore-
microtubule configurations and ensure bipolar attachments are
formed (Harasymiw et al., 2019). Altogether, the centromere and
associated proteins are critical for proper tension generation and for
enhancing the tension-responsive signaling that ensures bipolar
kinetochore-microtubule attachments are established.

The kinetochore itself is a mechanically rigid structure compared
to DNA. It has been proposed that specific proteins, such as Ndc80, are
physically extended by microtubule pulling forces and thus provide a
potential mechanism to report the kinetochore tension status (Suzuki
et al., 2016). A related idea is that multiple kinetochore proteins or

complexes change conformation or position relative to others in
response to pulling forces, again serving as a physical indicator of
tension (Joglekar et al., 2009); (Maresca and Salmon, 2009); (Uchida
et al., 2009); (Wan et al., 2009). Indeed, a tension-dependent change in
the shape of inner kinetochore proteins, particularly CENP-T, which
undergoes elongation, has been observed in chicken DT40 cells
(Suzuki et al., 2011). A FRET-based study using fluorescently
labelled Ndc80 and kinetochore microtubules in human U2OS cells
found that the number of Ndc80 molecules bound to kinetochore
microtubules increased with tension (Yoo et al., 2018). A similar
approach demonstrated that the Ndc80 clustering to individual
microtubules is comparable at human and yeast kinetochores
(Kukreja et al., 2020). Moreover, a distinct structural response has
been observed between kinetochores that have lost tension versus
those that lost attachment (Roscioli et al., 2020). KNL1 is shown to
unravel at the loss of tension, while NDC80 jackknives due to
microtubule detachment (Roscioli et al., 2020). This is unique to
the other outer kinetochore proteins, which have high nematic order
and do not undergo significant structural change in response to loss of
tension or attachment (Roscioli et al., 2020). Altogether this evidence
supports the idea that physical changes at the kinetochore serve as
mechanical cues for tension-dependent processes in mitosis.

FIGURE 3
Microtubule-generated tension serves as a unifying force that facilitates the processes that promote chromosome segregation during mitosis. Dynamic
microtubules generate pushing and pulling forces that move chromosomes as well as alter kinetochore/centromere structure, which may stabilize
attachments and silence spindle assembly checkpoint signaling. The tension status at kinetochores also mediates Aurora B-dependent error correction and
regulates the timing of anaphase onset.
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Tension regulates Aurora B and strengthens
bipolar attachments

Aurora B (Ipl1) is needed to respond to tensionless kinetochores
and is the major kinase involved in the associated error correction
process (Chan and Botstein, 1993); (Biggins et al., 1999); (Cheeseman
et al., 2002); (Tanaka et al., 2002). Error correction is the mechanism
by which kinetochore-microtubule attachments experiencing
insufficient tension are selectively destabilized, thus granting
another chance to establish force-generating bipolar connections. It
is mediated by Aurora B via phosphorylation of KMN proteins, such
as the tail of Ndc80 (Biggins et al., 1999); (DeLuca et al., 2006);
(DeLuca et al., 2011); (Welburn et al., 2010), as well as components of
the Dam1/DASH complex (Tien et al., 2010); (Cheeseman et al., 2002).
While Aurora B phosphorylates other spindle proteins, such as MAPs
associated with the spindle midzone, the modification of kinetochore
proteins facilitates error correction. Phosphorylation of the
kinetochore components decreases their affinity for the
microtubule, weakening the kinetochore-microtubule linkage and
promoting detachment (Welburn et al., 2010); (Sarangapani et al.,
2013). Conversely, the presence of sufficient tension avoids triggering
error correction and, thus, selectively stabilizes bipolar microtubule-
kinetochore attachments (McVey et al., 2021). In addition to avoiding
Aurora B-mediated error correction, the kinetochore-microtubule
linkage behaves like a catch bond in that its binding strength is
enhanced under pulling forces (Akiyoshi et al., 2010). As a result,
tension-generating bipolar attachments are inherently stabilized.

The mechanism by which Aurora B specifically targets tensionless
kinetochore-microtubule attachments, yet avoids those under tension,
remains elusive. There are several proposed models for Aurora B
activity in response to insufficient tension at kinetochore attachments
(for a review of models of Aurora B activity, see McVey et al. (2021).
Two well-established classes of models are the spatial dependent (Liu
et al., 2009) and the tension-sensitive activation models (Sandall et al.,
2006); (Adams et al., 2000); (Bishop et al., 2005). In the spatial
dependent models, once Aurora B is localized to the inner
centromere, it is constitutively active and will phosphorylate any
kinetochore substrate that comes within range. Thus, the
components of sister kinetochores that lack bipolar pulling forces
and the resultant tension to be sufficiently displaced away from the
centralized Aurora B, will be modified, triggering detachment.
Conversely, if microtubule-generated forces can pull sister
kinetochores far enough apart, concomitantly producing tension,
their components will be physically displaced out of the zone of
Aurora B phosphorylation, which indirectly stabilizes the
attachments. In the activation models, Aurora B activity is
modulated by the tension status rather than the proximity of
kinetochore substrates. Although Aurora B may encounter its
kinetochore substrates, its kinase activity would be inhibited by
higher tension or stimulated by low tension. In budding yeast,
tension sensing and error correction by Aurora B can occur in the
absence of its centromere localization, supporting the hypothesis that
Aurora B activation is triggered by tension status (Campbell and
Desai, 2013). Further work consistent with the activation model using
purified yeast kinetochores suggests that tension-generating
attachments can directly regulate Aurora B activity or oppose its
outcome (de Regt et al., 2022). Another emerging model, supported by
recent findings, is that Aurora B localization to the kinetochore itself,
as opposed to the inner centromere, functions to phosphorylate

substrates on low-tension kinetochores, while the kinase is evicted
from kinetochores that establish tension (Reviewed in (Broad and
DeLuca, 2020). This mechanism bears similarity to the activation
model in some respects, particularly if Aurora B would be recruited
back to kinetochores that subsequently lose tension. In addition to
canonical models where Aurora B activity mainly promotes
detachment, a recent study provides evidence that the tension
status influences the downstream effect of Aurora B
phosphorylation. Namely, under low tension Aurora B caused
kinetochore microtubules to depolymerize without detachment, but
under high tension, the microtubules detach, a difference which the
authors propose may be relevant to correcting distinct attachment
errors (Chen et al., 2021).

Tension and the spindle assembly checkpoint
work together to promote timely metaphase-
anaphase transition

Much work has been done to understand how microtubule-
generated tension at kinetochores and the SAC work together or
independently to promote accurate chromosome segregation. These
questions have been difficult to approach experimentally due to the
challenge of isolating the effect(s) of the tension status from
kinetochore attachment. Very briefly, conditions that reduce
tension can also inhibit attachment or induce error correction-
mediated detachment, while those preventing attachment also
preclude tension. In the presence of unattached kinetochore(s), the
SAC will delay anaphase onset (for a full review of the SAC, see (Lara-
Gonzalez et al., 2021). Phosphorylation of the kinetochore protein
Spc105/KNL1 at unattached kinetochores by Mps1 promotes
localization of the Bub (Bub1, Bub3) and Mad (Mad1, Mad2, and
BubR1/Mad3) proteins (London et al., 2012); (London and Biggins,
2014). This kinetochore localization leads to catalytic formation of the
Mitotic Checkpoint Complex (MCC), which inhibits the Anaphase
Promoting Complex (APC/C) by sequestering Cdc20, a required
activator of the APC (Lara-Gonzalez et al., 2021).

SAC signalling is necessary to provide sufficient time to establish
proper kinetochore-microtubule attachments yet also allows for timely
mitotic progression. Along these lines, experiments in budding yeast
suggest Bub1 works with the well-established tension-sensitive
protein, Sgo1, and the phosphatase PP2A to prevent premature
SAC silencing (Jin et al., 2017). On the other hand, recent data
indicates that Bub1 and Aurora B work cooperatively to maintain
SAC signalling once initiated, even after Mps1 activity at kinetochores
has diminished (Roy et al., 2022).

One outstanding mystery, owing to the fact that unattached
kinetochores are inherently tensionless, is whether the tension
status plays any role in the canonical SAC mechanism at
unattached kinetochores. It has been postulated that tension plays
a key role in signalling the establishment of proper attachments, and
thus silencing the SAC. Although significant work has been directed at
understanding how SAC signalling is extinguished once appropriate
conditions are met, the mechanistic basis remains largely obscure.

An important step in SAC activation is Mps1-mediated
phosphorylation, and thus, silencing the SAC could entail
preventing Mps1 phosphorylation of Spc105/KNL1. One potential
mechanism is that microtubules and Mps1 competitively bind Ndc80,
with microtubule binding displacing Mps1, thus silencing the SAC
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(Hiruma et al., 2015); (Ji et al., 2015). This competitive binding model
has been challenged by work done inDrosophila demonstrating that as
microtubule attachments are established, Mps1 localization at
kinetochores decreases, except for a small fraction that remains on
kinetochores until anaphase onset (Moura et al., 2017). Follow up
work revealed that Mps1 localization to syntelic, end-on attached
kinetochores proceeded their detachment (Hayward et al., 2022).
Mps1 transiently localizes to these kinetochores, which have high
levels of Aurora B phosphorylation, to promote timely error
correction (Hayward et al., 2022).

Another potential mechanism is that the SAC is silenced by
tension-dependent kinetochore stretching, and the sustained
deformation of kinetochore components at the attachment interface
(Maresca and Salmon, 2009); (Uchida et al., 2009). Other work in
budding yeast has posited a mechanical switch in the kinetochore
upon end-on attachment that prevents SAC signaling from persisting,
where by Mps1 is prevented from phosphorylating Spc105
(Aravamudhan et al., 2015). In this model, Dam1 acts as a barrier
preventing Mps1 access to Spc105 (Aravamudhan et al., 2015).

In general, it is thought that extinguishing SAC signaling,
regardless of mechanism, entails either eviction of Mps1 from the
kinetochore or a decrease in Mps1 activity. In Drosophila,
Mps1 activation is regulated by PP1-87B phosphatase activity that
antagonizes the increased Mps1 activity resulting from T-loop
autophosphorylation (Moura et al., 2017). In human cells, this
T-loop autophosphorylation, as well as phosphorylation by Aurora
B that impacts Mps1 kinetochore localization and activation, is
antagonized by PP2A-B56 (Hayward et al., 2019). In both cases, a
decrease in phosphatase activity leading to persistent Mps1 T-loop
phosphorylation and Mps1 activity resulted in prolonged mitotic
arrest (Moura et al., 2017); (Hayward et al., 2019). Altogether,
phosphoregulation of Mps1, resulting in its activation or
kinetochore localization, is mediated via PP1-87B and PP2A-B56
to promote SAC silencing and timely anaphase onset.

Recent work has generated conflicting evidence for whether
tension is needed to silence the SAC or if microtubule attachment
alone is sufficient. PP1 is a phosphatase that antagonizes Mps1 activity
at the kinetochore via dephosphorylation of kinetochore substrates. In
HeLa cells, intra-kinetochore stretching is diminished in monopolar
spindles, leading to decreased PP1 recruitment to kinetochores
(Uchida et al., 2021). At these PP1 deficient kinetochores,
downstream SAC proteins remained, leading to delayed anaphase
onset, irrespective of Mps1 localization (Uchida et al., 2021). This
work suggests that tension is needed for kinetochore stretching to
silence the SAC. On the other hand, evidence indicates that a lack of
tension can, in certain cases, activate the SAC. In HAP1 cells with
deficient Kif18A, a kinesin-8 motor, the resulting lack of tension
activates the SAC (Janssen et al., 2018). At Mad1 positive kinetochores
in these cells, tubulin/microtubule signal was equivalent to that in
control cells, demonstrating that kinetochores were fully attached even
though the SAC was active (Janssen et al., 2018). These findings
indicate that insufficient tension can activate the SAC, regardless of
attachment status (Janssen et al., 2018). In budding yeast, deletion of
the conserved kinesin-5, Cin8, results in a delay in anaphase onset due
to a lack of tension via Ndc80 (Suzuki et al., 2018). This reduced
tension is associated with sustained error correction-mediated
phosphorylation of Ndc80 due to disrupted kinetochore
recruitment of PP1 to antagonize Ipl1 activity, resulting in
detachment and SAC activation (Suzuki et al., 2018). Together

these studies reveal that the tension generated by end-on
attachments is a signal that potentially facilitates multiple
mechanisms that activate or silence the SAC.

Contrary to tension being a central signal, other evidence suggests
that attachment is the major signal needed to satisfy or silence the
SAC. Cells expressing a non-phosphorylatable Ndc80 tail mutant
(Hec1-9A) can establish stable end-on attachments. Notably, when
these cells are induced to form monopolar spindles, they are unable to
generate the normal tension associated with bipolar attachments yet
still establish stable end-on connections (Etemad et al., 2015).
Although the SAC appears functional in these cells, the low-
tension attachments can sufficiently satisfy the checkpoint (Etemad
et al., 2015). In another study, Hec1-9A and wild type cells were
treated with low dose nocodazole to deplete poleward pulling forces
(Tauchman et al., 2015). While nocodazole treatment arrested wild
type cells, the Hec1-9A cells satisfied the SAC and entered anaphase,
which was corroborated by a decrease in Mad1 positive kinetochores
(Tauchman et al., 2015). Additional evidence in human cells show that
low kinetochore-microtubule occupancy, or fewer microtubules
bound to a kinetochore compared to the typical number at those
“fully attached”, does not impact SAC silencing (Etemad et al., 2019).
SAC proteins were almost undetectable at kinetochores, despite only
about half the total possible microtubules bound to kinetochores
(Etemad et al., 2019). This body of work suggests that
microtubule-kinetochore attachment is sufficient to silence the
SAC, regardless of maximum kinetochore occupancy or tension-
generating status. These experiments represent significant technical
advances that continue to take us closer to understanding how tension
contributes to signalling at kinetochores. They also highlight the
intricate relationship between attachment and tension at
kinetochores, and the challenges in elucidating the role of each in
SAC activation or silencing.

While it remains unclear how or if tension contributes to SAC
signalling, the tension status can impact anaphase onset independently
of SAC silencing. Work in budding yeast shows Bub1 and
Bub3 function outside of their canonical SAC role to delay
anaphase onset in response to low-tension but attached
kinetochores (Proudfoot et al., 2019). Thus, a tension-sensitive
mechanism may provide extra time for kinetochores to come
under tension prior to anaphase or to trigger error correction to
sample for a bipolar attachment (Proudfoot et al., 2019). Altering the
level of tension generated in the spindle by deleting specific MAPs
(Cin8, Kip1, Ase1) has been shown to produce a graded response,
where detachment mediated by kinetochore protein phosphorylation
via Aurora B is enhanced by decreasing centromeric tension
(Mukherjee et al., 2019). This work reveals that tension-sensitive
signalling mechanisms can be sensitive to the magnitude of forces
experienced.

While phosphorylation has been a widely investigated post-
translational modification that mediates signalling at centromeres
and kinetochores, SUMOylation of proteins has recently been
found to also play a role. The SUMOylation status of Sgo1, a well-
established tension-sensitive protein, influences the timing of
anaphase onset (Su et al., 2021). Sgo1 is recruited to the
pericentromeric region during metaphase by phosphorylation of
S121 on histone H2A (Fernius and Hardwick, 2007); (Yamagishi
et al., 2010). This positioning allows Sgo1 to promote chromosome
biorientation by facilitating Chromosome Passenger Complex (CPC)
localization to the centromere and recruiting cohesin and condensin
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(Nerusheva et al., 2014); (Verzijlbergen et al., 2014); (Peplowska et al.,
2014). Sgo1 SUMOylation is needed to keep sister chromatids in a
stable bioriented state. Metaphase arrested cells harbouring a mutation
in the coiled-coil region of Sgo1 (sgo1-4R) that reduces SUMOylation
display cycles of biorientation, loss of tension, detachment, then
reattachment to become bioriented again (Su et al., 2021). Even
with multiple rounds of unnecessary error correction, these cells
have significantly lower chromosome missegregation levels than
those lacking Sgo1. Together the results suggest that SUMOylation
of Sgo1 and the CPC component Bir1 work to decrease
Sgo1 localization, and thus dampen Aurora B (Ipl1)-mediated error
correction to selectively stabilize bioriented kinetochore-microtubule
attachments and promote timely anaphase onset (Su et al., 2021).
More work is needed to understand how the tension status is
transmitted to these downstream effectors.

Concluding remarks

While multiple classes of microtubule- and motor-dependent
forces contribute to formation of the bipolar metaphase spindle,
microtubule depolymerizing forces at end-on kinetochore
attachments are vital for ensuring accurate chromosome
segregation. The tension generated across bipolar attachments
serves as a unifying factor linking events from the centromere to
the outer kinetochore, including 1) modulating centromere and
kinetochore structure, 2) mediating Aurora B activity, and 3)
working with the SAC to regulate the timing of anaphase onset.
While we have made significant advances in understanding the role
of tension in chromosome segregation, there are many questions that
remain to be answered. For example, what is the mechanism by which
tension status is converted to cellular signalling? How does the tension
status initiate, sustain, and/or silence the SAC? To what extent are the
mechanisms that sense attachment and tension shared or
independent? Despite over 50 years since the importance of tension
in chromosome segregation first captivated biologists, elucidating its
role(s), both mechanistically and at the molecular level remains
challenging. Further advances in genetic and experimental

approaches will likely be needed to clearly discriminate the roles of
tension and attachment at the kinetochore.
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