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Introduction: Using MRI to synthesize CT and substitute its function in radiation
therapy has drawn wide research interests. Currently, deep learning models have
become the first choice for MRI—CT synthesis because of their ability to study
complex non-linear relations. However, existing studies still lack the ability to learn
complex local and global MRI–CT relations in the same time , which influences the
intensity and structural performance of synthetic images.

Methods: This study proposes a hybrid multi-scale model to explore rich local and
global MRI—CT relations, relations, namely, the hybrid multi-scale synthesis network
(HMSS-Net). It includes two modules modelling different resolution inputs. In the
low-resolution module, the Transformer method is applied to build its bottleneck
part to expand the receptive field and explore long-range MRI—CT relations to
estimate the coarse distribution of widely spread tissues and large organs. In the
high-resolution module, residual and dense connections are applied to explore
complex local MRI—CT relations under multiple step sizes. Then, the feature spaces
of two modules are combined together and utilized to provide synthetic CT. HMSS-
Net also introduces themulti-scale structural similarity indexmeasure loss to provide
multi-scale supervision during training.

Results: The experimental results on head and neck regions of 78 patients showed
that HMSS–Net reduced the average of 7.6/3.13 HU on the mean absolute error and
increased the average of 2.1/1.8% on the dice coefficient of bone compared with
competing image–to–image synthesis methods.

Conclusion: The results imply that HMSS–Net could effectively improve the intensity
and structural performances of synthetic CT.
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1 Introduction

Magnetic resonance imaging (MRI) is an important medical imaging modality as it presents
a clear soft-tissue structure of the human body without introducing ionizing radiations like in
computed tomography (CT) [1]. Currently, MRI is widely used in clinical diagnosis and tumor
or organ delineation. However, since MRI cannot reflect the electron density of the human
body, CT is still essential in the current radiation therapy (RT) workflow for a dose plan [2]. For
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increasing the efficiency of RT and prevent additional ionizing
radiation to patients, studies were carried out to investigate the
possibility of using MR images to synthesize CT and replace its
function in RT [3].

In recent years, deep learning (DL) has become the first choice for
MRI–CT synthesis because deep network models have the ability to
study complex non-linear relationships [4]. An early study by Han et al.
[5] used a deep convolutional neural network (CNN) model to
synthesize CT from MRI with pretrained VGG weights as
initialization, and their work proved that the DL-based method is a
feasible solution to MRI–CT synthesis. With the rapid development of
DL, researchers began to introduce more complex frameworks and
powerful models to this task. For example, as Han’s work only applied
L1-loss tomeasure the distance between synthetic and real CT that tends
to produce blurry results, the generative adversarial network (GAN) was
applied to add authenticity and detailed patterns to synthetic CT images
in the study of Dong et al. [6]. Maspero et al. [7] further introduced a
conditional GAN model called ‘pix2pix’ that pays more attention on
high-frequency features to improve the performance on local structures.
While the aforementioned studies are trained under registeredMRI–CT
data, the CycleGAN framework was introduced in the work of
Wolterink [8] to provide unpaired training for the affection of the
MRI–CT registration error. However, owing to the lack of constraints,
unpaired training is difficult to preserve structural consistency between
synthetic and real CT; hence, Yang et al [9] proposed a structure-
consistency loss function in their study to solve this problem.
Meanwhile, with the concept of ‘more modality brings more
information’, some researchers turned to collect multiple MRI
sequences to synthesize CT [10, 11]. The study of Mengke et al. [11]
thoroughly analyzed the performance of using four MRI sequences
together with a multi-channel pix2pix model. In addition to the overall
framework, there are studies focusing on detailed network structures.
For example, Haley [12] applied the Inception V3 [13] block to replace
the conventional convolutional block, which could aggregate
convolutions under various kernel sizes together and study different
types of patterns. Dinkla [14] introduced the dilated convolution to
MRI–CT synthesis to enlarge the receptive field of the model for
studying contextual correlations between different regions.

Although aforementioned studies obtained considerable results, they
have the limitation of learning multi-scale MRI–CT relations.
Considering the intensity and structure of a CT image are both
essential to calculate the attenuation of X-ray beams inside a patient’s
body, both local and global properties of CT should be well-synthesized.
In more recent cross medical-imaging synthesis studies, such a problem
has been addressed by introducing a multi-scale learning framework. For
example, the work of Boni et al. [15] introduced the ‘pix2pixHD’model
for MRI–CT synthesis, which is a multi-scale version of pix2pix. It
contains two synthesis modules to model the low-resolution and high-
resolution inputs to extract global and local relations, respectively.
According to the results, pix2pixHD successfully outperformed
pix2pix on the performance of synthetic CT. In another work was by
Xuzhe et al. [16], the authors designed a multi-scale transformer-based
model for cross-MRI synthesis. However, as convolution is efficient to
extract local image patterns and the transformer focuses more on long-
range image patterns [17], pure convolution- or transformer-based
models could not utilize the strength of the other method.

In this study, we propose a hybrid multi-scale model for MRI–CT
synthesis aiming to explore rich local and global MRI–CT relations,
which is called the hybrid multi-scale synthesis network (HMSS-Net).

HMSS-Net has two synthesis modules for pyramidal inputs like
pix2pixHD, but each module has a different design targeting at the
local or global information. Specifically, in the global synthesis
module, the transformer [18] is applied to the bottleneck part of
the network to expand the receptive field for long-range MRI–CT
relations and estimate the coarse distribution of widely spread tissues
and large organs; in the local synthesis module, the residual and dense
connections [19] are applied to aggregate local patterns under the
gradually enlarged step size and explore MRI–CT relations on
complex local anatomical structures. Afterward, the local and
global features are combined to provide synthetic CT. In addition
to the designs in network architecture, HMSS-Net also applies a
combination of loss functions during training to provide
supervision from different aspects, including the L-1 loss on
intensity performance, the adversarial loss on local detailed
performance, and the multi-scale structural similarity index
measure (MS-SSIM) loss [20] on luminance, contrast, and
structural performances on local-to-global perspectives.

The main contributions of HMSS-Net could be summarized as
follows:

1) HMSS-Net proposes a hybrid convolution- and transformer-based
multi-scale synthesis model to enhance the learning of local and
global MRI–CT relations, which could leverage the advantages of
both methods to improve the intensity and structural
performances of synthetic CT.

2) HMSS-Net proposes a new combination of loss functions to
supervise the learning procedure; moreover, for the first time, it
introduces the MS-SSIM loss to provide multi-scale supervision.

The rest of the paper is organized as follows. We first provide a
detailed explanation of HMSS-Net; then, we present the experimental
results to evaluate the performance of HMSS-Net, and finally we
discuss the results and draw the conclusion.

2 Materials and methods

2.1 Data

This study included a total of 78 nasopharyngeal carcinoma (NPC)
patients who received intensitymodulation radiation therapy (IMRT) at
Sun Yat-sen University Cancer Center from 2010 to 2017. Their head
and neck MRI and CT data were scanned under head and neck
immobilization with a mask in a supine position. For MRI, standard
T1-weighted images were acquired using a Philips MRI simulator
(Ingenia, Philips) under 3T magnetic field strength, 4.9–5.0 ms echo
time (TE), and 2.4–2.5 ms repetition time (TR) and were reconstructed
to a spatial resolution of (0.7–0.975) × (0.7–0.975) × 3 mm3. CT images
were acquired using a spiral CT scanner (SOMATOM Definition AS,
Siemens) at a 140 kVp tube voltage and were reconstructed to a spatial
resolution of 0.975 × 0.975 × 3 mm3.

2.2 Multi-scale synthesis network

In this paper, we propose the multi-scale synthesis network
(HMSS-Net) for MRI–CT synthesis. It is a multi-scale learning
framework that contains two synthesis modules on pyramidal
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inputs and a discriminator to distinguish the synthetic and real CT. Its
overall structure is presented in Figure 1. The high-resolution
synthesis module models the original MR image, and the low-
resolution synthesis module models the down-sampled MR image
whose resolution is half of the original resolution. The down-sampling
operation is carried out via the average pooling layer. The detailed
description of each module is provided in the following subsections.

2.2.1 Low-resolution synthesis module
The low-resolution synthesis module is designed to extract global

patterns in MRI–CT synthesis that could represent MRI–CT relations
on widely spread tissues and large organs, thus providing a coarse
anatomical background for synthetic CT. Therefore, the synthesis
module should have a large receptive field to explore long-range
patterns. In this module, instead of using a pure convolutional

architecture whose receptive field is limited, we apply the concept
of transformer to its bottleneck part. Transformer is a convolution-
free model that solely relies on the attention mechanism to study
contextual dependencies in the natural language processing (NLP)
task, and it could analyze the correlations between every word in a
sentence regardless of the distance. Vision transformer (VIT) [21] has
expanded its usage to image processing with an embedding procedure
to translate the image feature space to the semantic feature space and a
decoding procedure as the reverse translation. Based on VIT, we build
the transformer bottleneck whose detailed structure is presented in
Figure 2. In addition to the bottleneck, the low-resolution synthesis
module also contains a convolutional encoder and a convolutional
decoder. The encoder consists of three convolutional blocks with a 3 ×
3 convolutional layer, instance normalization, and Gaussian error
linear unit (GELU). The average pooling layer is used between each

FIGURE 1
Overall structure of HMSS-Net. It contains two synthesis modules with pyramidal inputs; the low-resolution synthesis module would model down-
sampled MR images whose resolution is half of that of the original images; the high-resolution synthesis module would model MR images of original
resolution. These two modules have different designs to enrich the learning of local or global information. After synthesis, the synthetic CT and its
corresponding real CT would be fed into the discriminator module for adversarial learning.

FIGURE 2
Detailed structure of the transformer bottleneck in the low-resolution synthesis module.

Frontiers in Physics frontiersin.org03

Li et al. 10.3389/fphy.2023.1088899

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1088899


convolution block to down-sample the feature size. The decoder
consists of two convolutional blocks with the same structure as
that of the encoder, and bilinear interpolation is used after each
convolutional block to up-sample the feature size. In the end, the
output of the low-resolution synthesis module is delivered to the high-
resolution synthesis module and concatenated with the latter’s
feature map.

2.2.1.1 Transformer bottleneck
We provide more details of the transformer bottleneck to show

how it studies the contextual correlations from its input feature
map. As shown in Figure 2, it contains three procedures,
i.e., embedding, transformer layer, and decoding.

Embedding: The embedding procedure aims to translate the
input feature map to a sequence of semantic tokens, and each token
would reflect the content information of a small patch on the
original image. It contains several steps; first, the input feature map
is separated into small feature patches. Then, the patches are
flattened into vectors, and they further form the rows of a
matrix whose height equals the number of patches and width
equals the dimension of flattened patches. Given an input
feature map x ∈ RC×H×W where C, H, and W are the channel,
height, and width, respectively, the output matrix under patch size
P and patch stride s (as the patch could be non-overlapped or
overlapped) could be defined as xp ∈ RN×(P2 ·C), where N � HW

s2 .
Then, each row of this matrix is linear-projected to tokenize the
patches and compress the dimension from (P2 · C) to a latent
dimension ND, and ND is a fixed integer predefined before
training. A positional encoding function Epos ∈ RN×ND is also
added to provide weak localization information. Let
E ∈ R(P2 ·C)×ND denote the weight matrix of linear projection. The
final embedded matrix could be formulated as

z0 � xpE + Epos . (1)
Transformer layer: The embedded matrix is then modeled by

several transformer layers to study the contextual information. Each
transformer layer is a cascaded structure of multi-head self-attention
(MSA) andmulti-layer perceptron (MLP). Let zl−1, zl be the input and
output of the l th transformer layer (l � 1, 2, . . . , L). The formula
between them could be written as

z*l � MSAl LN zl−1( )( ) + zl−1, (2)
zl � MLPl LN z*l( )( ) + z*l , (3)

where LN is the layer normalization and MSAl and MLPl are the
multi-head self-attention and multi-layer perceptron in the l th layer,
respectively.

The multi-head self-attention is a group of single-head self-
attention, where each single-head self-attention independently
studies the contextual correlations between every token-pair from
the embedded matrix. Let SAi, i � 1, 2, . . . , Nh denote the i th single-
head self-attention, where Nh is the total number of attention heads.
WQi, WKi, and WVi denote three weight matrices introduced by SAi.
zml−1 and znl−1 are the m th and n th tokens of zl−1, respectively. Then,
the relevance between zml−1 and znl−1 is defined as follows:

rel zml−1, z
n
l−1( ) � σ

zml−1W
m
Qi

( ) znl−1W
n
Ki

( )T���
ND

√⎛⎝ ⎞⎠, (4)

where Wm
Qi

and Wn
Ki

are m th and n th columns of WQ and WK,
respectively, and σ is the SoftMax activation function.

The relevance is further multiplied with (znl−1Wn
Vi
), which could be

regarded as attaching the information provided by znl−1. If we fix z
m
l−1,

calculate its relations with every token in zl−1, and summarize the
results together, we could obtain the single-head self-attention result at
zml−1, given by

SAi zml−1( ) � ∑N
n�1

σ
zml−1W

m
Qi

( ) znl−1W
n
Ki

( )T���
ND

√⎛⎝ ⎞⎠ znl−1W
n
Vi

( ) . (5)

Such calculation could be carried out in parallel for all tokens
in zl−1 through matrix multiplication. The output is called
the scaled dot-product attention, which could be written as
follows:

SAi zl−1( ) � σ
Ql,iKl,i

T���
ND

√( )Vl,i, (6)

where Ql,i, Kl,i, and Vl,i are matrix multiplication values between zl−1
and WQi, WKi, and WVi.

The output of MSA is the concatenation of all single-head output,
formulated as follows:

MSA zl−1( ) � SA1 zl−1( ); SA2 zl−1( ); . . . ; SANh
zl−1( )[ ] . (7)

The MLP contains two fully connected layers; the first layer would
double the dimension of MSA-modified tokens, and the second layer
would compress the dimension back; this structure could analyze the
interactions within each modified token and extract useful
information.

Decoding: After modeling by the transformer layers, the output
matrix zL needs to be translated back to the input feature space; hence,
the transformer bottleneck contains a decoding procedure which
reverses the embedding procedure. First, each token would be
linear-projected again and transformed to its original resolution,
which is realized by multiplying a weight matrix E* ∈ RND×(P2 ·C).
Then, each token would be de-flattened to RC×P×P and placed in its
original location. For the overlapped condition, we would take the
mean value on the overlapped region.

2.2.1.2 Module details
As presented in Figure 1, the convolutional encoder of the low-

resolution synthesis module has 64, 128, and 256 filters in each
convolutional layer. The decoder has 128 and 64 filters in each
convolutional layer. In the transformer bottleneck, the input
feature is separated with a patch size 3 and stride 1, and the
dimension of embedded tokens ND equals to 512. The number of
transformer layers L equals 6. The number of single attention heads
Nh equals 8.

2.2.2 High-resolution synthesis module
The high-resolution synthesis module is designed to explore local

MRI–CT relations to synthesize detailed anatomical structures on the
output of the low-resolution synthesis module. In order to enhance the
learning of local structural properties, conventional convolutional
blocks are replaced by residual dense blocks (RDBs), which are
able to aggregate convolutional features under gradually enlarged
receptive fields that could represent local patterns based on
multiple step sizes.
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Figure 3 presents the detailed structure of the RDB. Each block
contains two densely connected 3 × 3 convolutional layers with
instance normalization and GELU and an additional 1 ×
1 convolutional layer to adjust the channel size to the predefined
number. The dense connection would combine the features from
preceding layers together with the current layer, and as 3 ×
3 convolution would enlarge the receptive field by two pixels, the
output would contain features under the gradually enlarged receptive
field. The RDB also contains a residual connection that adds the input
and output of RDB, which is designed to prevent gradient vanishing. If
the input and output have different channel sizes, the input would be
further modified by a 1 × 1 convolutional layer.

The structure of the high-resolution synthesis module is given in
Figure 1. It contains an encoder and a decoder. The encoder contains
three blocks; the first block is a conventional convolutional block with
a 3 × 3 convolutional layer, instance normalization, and GELU; the
number of filters is 32; the second and third blocks are RDBs; the
number of filters of each 3 × 3 convolutional layer is 16 and 32 in each
RDB, respectively; their output channels are controlled to 64 and 64.
The decoder contains three blocks; the first and second blocks are
RDBs; the number of filters of each 3 × 3 convolutional layer is 64 and
64 in each RDB, respectively; their output channels are controlled to
128 and 64. The third block of the decoder is a convolutional block
with a 1 × 1 convolutional layer to combine all channels together and a
sigmoid function as non-linear activation.

2.2.3 Discriminator
As presented in Figure 1, the low-resolution synthesis module and

high-resolution synthesis module are connected through feature
concatenation. These modules together form the generator part of
HMSS-Net. Designed as a GAN framework, HMSS-Net also contains
a discriminator model to provide adversarial learning. During
training, it would try to distinguish the synthetic and real CT and
compete against the generator to reach the Nash equilibrium.
Specifically, HMSS-Net introduced the PatchGAN discriminator
from pix2pix [22]. It consists of five convolutional blocks; the first
three blocks contain a convolutional layer with kernel size 4, stride size
2, and padding size 1; the rest of the blocks contain a convolutional
layer with kernel size 4, stride size 1, and padding size 1. Instance
normalization is used after the second, third, and fourth convolutional
blocks. Consequently, an input image with shape 256 × 256 would be
transformed to a 30 × 30 matrix by PatchGAN; each element of the

matrix represents the discriminator’s judgement on a 70 × 70 sub-
region from the input image. The number of filters of each
convolutional block is 32, 64, 128, 256, and 1.

2.3 Loss function

During training, the performance of synthetic CT is supervised by
the loss functions; then, the results are back-propagated through
HMSS-Net to update its parameters. In this study, the total loss
function is a combination of L1-loss, adversarial loss, and multi-
scale structural similarity index measure (MS-SSIM) loss. They could
provide supervision from a different scale and different aspects. For
L1-loss, it focuses on the global intensity performance of synthetic CT;
for adversarial loss, it focuses on the local detailed synthesis
performance; for MS-SSIM loss, it measures the similarities on
three predefined aspects including luminance, contrast, and
structure under five different scales [20]. Their formulas are
provided as follows:

Adversarial loss: We used the LS-GAN method [23] to calculate
the adversarial loss. Let G represent the generator of HMSS-Net, D
represent the discriminator of HMSS-Net, and syn and real be the
synthetic and real CT, respectively. The adversarial losses of G and D
are defined as follows:

LGadv
syn, real( ) � MSE D syn( ), 0( ) / 2, (8)

LDadv
syn, real( ) � MSE D syn( ),−1( ) +MSE D real( ), 1( )[ ] / 2,

(9)
where −1, 0 , 1 are matrices with the same size of the output of the
discriminator, whose elements are all equal to -1, 0, and 1, respectively.
Herein, MSE represents the mean square error, and the definition is as
follows:

MSE X, Y( ) � 1
N
∑

i∈N
Xi − Yi( )2, (10)

where N is the total number of elements in X and Y.
L1-loss: L1-loss is a direct way to evaluate the intensity

difference between the synthetic and real CT, and its definition
is as follows:

L1 syn, real( ) � 1
N
∑

i∈N
syni − reali
∣∣∣∣ ∣∣∣∣ , (11)

where N is the total number of elements in synthetic or real CT.
MS-SSIM Loss: SSIM is a widely used metric to evaluate the

similarity between two images. Compared with the mean absolute
error (MAE) or mean squared error (MSE), SSIM is more
comprehensive as it combines the similarities of luminance,
contrast, and structure. These similarities are quantified by the
mean value, standard deviation, and co-variance on image patches
with step size 1 × 1 across the whole image region. Between synthetic
and real CT patches, they are defined as follows:

l syn, real( ) � 2μsynμreal + C1

μ2syn + μ2real + C1
, (12)

c syn, real( ) � 2σsynσreal + C2

σ2syn + σ2real + C2
, (13)

s syn, real( ) � σsyn,real + C3

σsynσreal + C3
, (14)

FIGURE 3
Detailed structure of the residual dense block in the high-
resolution synthesis module.
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where l, c, s represent the similarity of the luminance, contrast, and
structure, respectively; μsyn, σsyn, μreal, and σreal are the mean value
and standard deviation from synthetic and real CT patches,
respectively; σsyn,real is the co-variance between synthetic and real
CT patches;C1, C2, C3 are small constants to prevent division by zero.

Then, the SSIM of the patch is defined by multiplying l, c, s
together, which is as follows:

SSIM syn, real( ) � l syn, real( )c syn, real( )s syn, real( ) . (15)
Finally, the SSIM between synthetic and real CT images is defined as
the mean value of all patches.

Typically, SSIMuses a 11 × 11 Gaussian kernel as a slidingwindow to
convolute input images and obtain patches. However, single-window size
might not be suitable to measure the similarity of the complex anatomical
structure of the human body. In this study, we introduced theMS-SSIM as
the loss function which could accumulate similarities from different scales
and provide more comprehensive supervision to the performance of
synthetic CT. It uses a set of standard deviations 0.5, 1, 2, 4, 8{ } to
determine different kernel sizes. The relation between the standard
deviation σ and kernel size k is given by k � 6σ. In statistics, the
defined Gaussian kernel well-samples the corresponding Gaussian
distribution according to the three-sigma rule. Therefore, a different
standard deviation provides SSIM between synthetic and real CT on a
different scale. For example, σ0 � 0.5 represents a relatively small
receptive field which provides local supervisions to detailed structures
and sharp edges such as the nasal cavity. As the standard deviation is
doubled, the corresponding Gaussian kernel also expands and provides a
larger receptive field. In addition, σ4 � 8 defines a Gaussian kernel with
the size of 48 × 48, which calculates the SSIM from a large receptive field
that could supervise relatively flat regions on large organs such as the
cerebrum. The formula of MS-SSIM is then given by

MS SSIM syn, real( ) � l4 syn, real( ) ·∏4
j�0

cj syn, real( )sj syn, real( ),
(16)

where l4 is the luminance similarity according to σ4 and cj and sj are
the contrast and structural similarities according to σj, respectively

Finally, the MS-SSIM loss is defined as follows:

lMS SSIM syn, real( ) � 1 −MS SSIM syn, real( ) . (17)
Total Loss: The total loss function is the weighted summary of the

aforementioned loss functions, given by

ltotal � L1 syn, real( ) + λadv LGadv
syn, real( ) + LDadv

syn, real( )[ ]
+λMS SSIMlMS SSIM syn, real( ) ,

(18)
where λadv and λMS SSIM are fixed coefficients to balance the loss
functions and are set to be 0.1 and 5, respectively.

2.4 Evaluation metrics

To provide quantitative evaluations to the performance of synthetic
CT, this study introduced five kinds ofmetrics, namely, themean absolute
error (MAE), peak signal-to-noise ratio (PSNR), dice similarity coefficient
of bone (Bone_DSC), SSIM, and MS-SSIM. The metrics could judge the
performance of synthetic CT from multiple angles. The meaning and

definition of SSIM and MS-SSIM have been given in the aforementioned
section. The MAE and PSNR mainly focus on the intensity performance
of synthetic CT. The Bone_DSC evaluates the structural performance
using bone as the representative. Their definitions are given as follows:

MAE � 1
N
∑

i∈N
syni − reali
∣∣∣∣ ∣∣∣∣ , (19)

MSE � 1
N
∑

i∈N
syni − reali( )2, (20)

PSNR � 10log10

MAX 2

MSE
, (21)

Bone DSC � 2 bonesyn ∩ bonereal
∣∣∣∣ ∣∣∣∣
bonesyn
∣∣∣∣ ∣∣∣∣ + bonereal| | , (22)

where N is the number of valid pixels on the head and neck regions;
MAX is the maximum intensity value of real CT; bonesyn and bonereal
are binary masks of the bone region on synthetic and real CT,
respectively; they are obtained by a threshold of >300 HU.

2.5 Implementation details

Before training, the MR and CT images were preprocessed with
several steps. First, each slice was resampled to the spatial resolution of
1 × 1 mm2; then, the unnecessary background region was cropped to
unify the size to 256 × 256 for the deep network input. Each patient’s
MRI was aligned rigidly to the corresponding CT under 3D
registration by the ‘ANTs’ package [24]. N4BiasFieldCorrection
[25] and histogram matching [26] procedures were also applied to
MR images to correct the intensity inhomogeneity and reduce the
intensity variance among different patients. Finally, the maximum
values of MR and CT images were cut off to 800 and 1400 HU,
respectively, and the images were then scaled to [0, 1].

The 78 patients were randomly sampled into three datasets for
training, validation, and test by 80%, 10%, and 10%, respectively, and
the corresponding numbers were 62, 8, and 8. During training, the
network parameters that yielded the best performance on the
validation set were saved and used to evaluate the performance on
the test set. Before training, the data augmentation method was
applied to the training set to increase the robustness of the model,
which contained random shift, flip, and rotation.

The proposed study was implemented using PyTorch 1.7.1 on the
Python 3.8 platform by a NVIDIA GeForce GTX 1080 Ti GPU that
contains 11 GB memory. The hyperparameters of the network were
listed as follows: the maximum training epoch was 120, the batch size
was set to be 3, the Adam optimizer was set to use with β_1 = 0.5 and
β_2 = 0.9, and the initial learning rate was 10–4. The learning rate was
automatically controlled by a method called ‘ReduceLROnPlateau’,
when the performance of the validation set did not improve within
10 epochs, and the learning rate would decay by 30%.

3 Results

3.1 Comparison with state-of-the-art
methods

In order to evaluate the performance of HMSS-Net, we conducted
several comparative studies between it and two state-of-the-art
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methods. The first method is the pix2pixHD that has shown its
effectiveness on MRI–CT synthesis in the work of Boni et al. [15].
As an improved version of pix2pix, pix2pixHD is designed as a coarse-
to-fine model that enables the multi-scale learning, which is purely
built on convolution-based models. The second method is the PTNet
that was proposed for cross-MRI synthesis in the work of Zhang et al
[16]. It is also a multi-scale learning framework but is purely based on
the Transformermethod. Compared with them, HMSS-Net is a hybrid
structure with convolution- and transformer-based designs targeting
at the learning of local and global MRI–CT relations, respectively.

Table 1 summarizes the quantitative evaluations on the
performance of synthetic CT by HMSS-Net, pix2pixHD, and
PTNet in the test set. Numerical results are displayed by the mean
(±standard deviation). The two-tailed paired t-test between HMSS-
Net and othermodels on each evaluationmetric was applied to analyze
the significances of the results, and corresponding p-values are also
displayed in Table 1. It is evident that HMSS-Net achieved the best
performances on all metrics, as it reduced the mean MAE of 7.6/
3.13 HU, increased the mean PSNR of 1.41/0.97 dB, increased the
mean Bone_DSC of 0.021/0.018, increased the mean SSIM of 0.031/
0.006, and increased the mean MS-SSIM of 0.038/0.016 compared

with pix2pixHD/PTNet. Moreover, these improvements were all
statistically significant with p-value < 0.05.

We also provided qualitative evaluations of HMSS-Net, pix2pixHD,
and PTNet. Figure 4 presents two slices of synthetic CT by pix2pixHD
(a1 and a5), PTNet (a2 and a6), HMSS-Net (a3 and a7), and the
corresponding real CT (a4 and a8) which is labeled as the ‘ground truth.’
To present the difference between synthetic and real CT, difference
maps under two display windows are also given in Figure 4, where one
ranges from -100 HU to 100 HU to highlight the soft-tissue difference
and the other ranges from -1000 HU to 1000 HU to highlight the bone
difference. The display windows are shown in (b4 and b8) and (c4 and
c8). The difference maps are placed in (b1, b5, c1, and c5) for
pix2pixHD, (b2, b6, c2, and c6) for PTNet, and (b3, b7, c3, and c7)
for HMSS-Net. It is evident that all difference maps of HMSS-Net have
lighter color than those of pix2pixHD and PTNet, which means that
HMSS-Net provided more accurate synthetic results on the intensity of
both tissues. In addition, the difference map (c3) of HMSS-Net has a
thinner deep region around the skull than (c1 and c2), while (c7) has a
smaller deep region around the spine than (c5 and c6). This finding
could suggest that HMSS-Net reduced the structural differences on
tissue boundaries.

TABLE 1 Quantitative evaluations of HMSS-Net, pix2pixHD, and PTNet. The down arrow means that the lower number of this metric indicates better performance; the
up arrow means that higher number of this metric indicates better performance.

MAE↓ PSNR↑ Bone_DSC↑ SSIM↑ MS-SSIM↑

Mean (±std)

HMSS-Net 53.88 ± 3.33 26.24 ± 0.46 0.881 ± 0.027 0.849 ± 0.010 0.715 ± 0.017

pix2pixHD 61.48 ± 3.26 24.83 ± 0.48 0.860 ± 0.027 0.818 ± 0.011 0.677 ± 0.019

PTNet 57.01 ± 2.52 25.27 ± 0.53 0.863 ± 0.029 0.843 ± 0.011 0.699 ± 0.018

p-value (vs. HMSS-Net)

pix2pixHD 6.26E-04 2.61E-06 1.17E-06 2.86E-07 6.08E-08

PTNet 0.02 8.00E-05 1.44E-06 7.32E-06 1.92E-05

FIGURE 4
Synthetic results of pix2pixHD, PTNet, and HMSS-Net with two kinds of difference maps for qualitative comparison. All CT images are displayed with a
soft-tissue window [-125, 225] HU to provide a clear visualization of the tissues.
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Figure 5 presents the zoomed-in CT regions to evaluate the
local synthetic performance. (a1 and a5), (a2 and a6), and (a3 and
a7) are two slices of synthetic CT by pix2pixHD, PTNet, and
HMSS-Net, respectively, and (a4 and a8) are the corresponding
real CT. (b1~b8) are the zoomed-in regions in the red box on
(a1~a8). The first slice is in a layer containing the eyeball; we could
see that pix2pixHD and PTNet did not provide a smooth bone
structure pointed by the green arrows in (b1 and b2). The second
slice is in a layer containing the nasal cavity, pix2pixHD, and
PTNet-synthesized discontinuous bone structure pointed by the
green arrows in (b5 and b6), whereas HMSS-Net provided good
synthetic performances shown in (b3 and b7), illustrating its ability
to provide more accurate detailed structures.

From the quantitative and qualitative evaluations, we could
find their accordance to demonstrate the ability of HMSS-Net on
MRI–CT synthesis. This implies that HMSS-Net is able to enhance
the learning of local and global MRI–CT relations and utilize them
to improve the intensity and structural performances of
synthetic CT.

3.2 Ablation study

HMSS-Net is designed to enhance the learning and utilization of
multi-scale information through the following parts: 1) the
transformer bottleneck in the low-resolution synthesis module
which enables the learning of global contextual correlations; 2) the
RDB in the high-resolution synthesis module which could combine
the local patterns under different step sizes; and 3) the MS-SSIM loss
which could provide multi-scale supervision. To verify the
contribution of each part to the performance of synthetic CT, we
conducted three ablation studies: 1) replacing the transformer
bottleneck by the conventional convolutional bottleneck, which is
denoted as ‘w/o TB’; 2) replacing each RDB by a conventional
convolutional block, which is denoted as ‘w/o RDB’; and 3)
removing the MS-SSIM loss during training, which is denoted as
‘w/o MS-SSIM.’

Table 2 presents the quantitative evaluations of the ablation
studies with HMSS-Net. First, when the transformer bottleneck is
replaced, the mean MAE is increased by 2.25 HU, PSNR is

decreased by 0.81 dB, Bone_DSC is decreased by 0.007, SSIM is
decreased by 0.011, and MS-SSIM is decreased by 0.031. The sharp
reduction on the performance of synthetic CT could demonstrate
the importance of the transformer bottleneck in HMSS-Net, and it
also implies that the transformer bottleneck is better at learning
global MRI–CT relations than conventional convolution blocks.
Second, when the RDB is replaced, the mean MAE is increased by
0.73 HU, PSNR is decreased by 0.28 dB, Bone_DSC is decreased by
0.007, SSIM is decreased by 0.009, and MS-SSIM is decreased by
0.017. These numbers indicate that RDB is also important to
HMSS-Net for enriching local MRI–CT relations. Moreover, as
RDB focuses more on the local patterns, its influence on the global
intensity performance might be less than that of the transformer
bottleneck, which could be inferred from the comparisons on MAE
and PSNR. Finally, when training without the MS-SSIM loss, the
mean MAE is increased by 0.57 HU, PSNR is decreased by 0.06 dB,
Bone_DSC is decreased to 0.003, SSIM is decreased by 0.003, and
MS-SSIM is decreased by 0.007. The changes on metrics are small
compared with those of other ablation studies; however, the use of
MS-SSIM loss still has a positive influence on the overall
performance of synthetic CT.

4 Discussion

In this study, we proposed a new MRI–CT synthesis model with a
multi-scale learning framework. Before our study, some multi-scale-
based studies used similar network architectures to model different
scales of an input image, including a pure convolution-based model
like pix2pixHD and a pure transformer-based model like PTNet.
Different from them, the proposed HMSS-Net is a hybrid model
with proper designs to take advantage of both methods and fully
exploit local and global MRI–CT relations. In the comparisons
between HMSS-Net with pix2pixHD and PTNet, we showed that
our method could significantly improve the intensity and structural
performance of synthetic CT. We also demonstrated the contribution
of eachmethod through ablation studies. Alongside the framework, we
introduced the MS-SSIM loss to MRI–CT synthesis to provide multi-
scale supervision, and the experimental results have proven its
contribution to the performance of synthetic CT.

FIGURE 5
Results of pix2pixHD, PTNet, HMSS-Net, and the corresponding real CT with the zoomed-in detailed structure for qualitative comparison.
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An important finding in our study is the dice of the bone
between synthetic and real CT. In current studies, the synthesis of
the bone structure is one of the most challenging parts, not only
because bone has complex structures but also because its signal on
conventional MRI sequences is very low, which makes it hard to be
distinguished with air. Meanwhile, accurately synthesizing its
structure has great clinical significance because bone could
easily absorb X-rays. According to existing MRI–CT synthesis
studies, the dice between synthetic and real CT was not very
satisfying, even though the authors have introduced techniques
to enrich its pattern learning. For example, the work of Haley et al.
achieved 0.764 under an Inception V3-based convolutional
network; the work of Yang et al. [27] achieved 0.83 under a
densely connected convolutional network; the work of Dinkla
et al. [14] achieved 0.85 under a dilated convolution-based
network. Compared with them, the proposed HMSS-Net showed
a stronger ability to study the property of bone and translate it from
MRI to CT by increasing the dice to 0.883. Therefore, our method is
competing on bone synthesis and has significant potential for
clinical usage.

As our experiment was based on clinical data, a small portion of
the set contains artifacts that influence the original MR or CT
image. In Figure 6, we presented the CT and MR images of a patient
from the test set who had dental filling issues, and the severe artifact
around the filling region is clearly observed on the CT image. We
could find that our method was not sensitive to this situation; it
treated the input MR image the same way as normal data and
provided synthetic CT with the artifact being ‘corrected’. The main
reason might be that only three of 62 patients in the training set
have this issue, and it only affects 1–2 slices in each patient, which is

not sufficient to train a deep learning model. As shown in the
difference map, the artifact region has a larger intensity difference
between synthetic and real CT, which lowers the calculation
numbers. In addition, it is hard to say whether the ‘corrected’
result is more useful in the clinic because it might mis-inform
doctors about the actual dental condition. In further study, we hope
to design a more proper approach to deal with data with the artifact
and provide two versions of synthetic CT so that one keeps the
artifact and one automatically removes the artifact for different
usage.

Although HMSS-Net has achieved considerable results, it still
has some limitations. This model uses a single MRI sequence to
synthesize CT, which should be extended to multi-MRI sequences
because more MRI sequences could bring more structural
information to enrich MRI–CT relations [11]. In addition,
HMSS-Net uses paired MRI and CT data for training, which
introduces the MRI–CT registration error. To solve this
problem, it could be designed to the CycleGAN framework [28]
which could train unpaired data. Finally, HMSS-Net could benefit
from 3D networks to preserve vertical continuity, but we need
larger GPU memory for whole 3D inputs with the consideration
that a 3D image patch like 32 × 32×32 [6] makes no sense to the
learning of global contextual information in the transformer
bottleneck.

5 Conclusion

We propose a hybrid multi-scale model for MRI–CT synthesis,
which enhances the learning of local MRI–CT relations with residual

TABLE 2 Quantitative evaluations of the ablation studies and HMSS-Net.

Method MAE↓ PSNR↑ Bone_DSC↑ SSIM↑ MS-SSIM↑

w/o TB 56.13 ± 3.42 25.43 ± 0.37 0.874 ± 0.024 0.838 ± 0.013 0.684 ± 0.021

w/o RDB 54.61 ± 3.70 25.96 ± 0.56 0.874 ± 0.026 0.840 ± 0.010 0.698 ± 0.017

w/o MS-SSIM 54.45 ± 3.38 26.18 ± 0.62 0.878 ± 0.025 0.846 ± 0.009 0.708 ± 0.016

HMSS-Net 53.88 ± 3.33 26.24 ± 0.46 0.881 ± 0.027 0.849 ± 0.010 0.715 ± 0.017

FIGURE 6
Example of data with the dental artifact. The patient’s real MRI, real CT, and synthetic CT by HMSS-Net and the difference map under the [-1,000, 1,000]
display window are provided from the left column to the right column.
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and dense connections and the learning of global MRI–CT relations
with the transformer bottleneck. In addition to the network structure,
the proposed HMSS-Net is supervised by MS-SSIM loss that enables
multi-scale supervision. The comprehensive evaluations show the
ability of HMSS-Net on providing accurate intensity and structural
performances of synthetic CT. HMSS-Net, therefore, has the potential
for clinical applications.
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