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Background: Encephalopathy is a severe co-morbid condition in critically ill patients
that includes different clinical constellation of neurological symptoms. However, even
for the most recognised form, delirium, this medical condition is rarely recorded in
structured fields of electronic health records precluding large and unbiased
retrospective studies. We aimed to identify patients with encephalopathy using a
machine learning-based approach over clinical notes in electronic health records.
Methods: We used a list of ICD-9 codes and clinical concepts related to
encephalopathy to define a cohort of patients from the MIMIC-III dataset. Clinical
notes were annotated with MedCAT and vectorized with a bag-of-word approach or
word embedding using clinical concepts normalised to standard nomenclatures as
features. Machine learning algorithms (support vector machines and random forest)
trained with clinical notes from patients who had a diagnosis of encephalopathy
(defined by ICD-9 codes) were used to classify patients with clinical concepts related
to encephalopathy in their clinical notes but without any ICD-9 relevant code. A
random selection of 50 patients were reviewed by a clinical expert for model validation.
Results: Among 46,520 different patients, 7.5% had encephalopathy related ICD-9
codes in all their admissions (group 1, definite encephalopathy), 45% clinical
concepts related to encephalopathy only in their clinical notes (group 2, possible
encephalopathy) and 38% did not have encephalopathy related concepts neither in
structured nor in clinical notes (group 3, non-encephalopathy). Length of stay,
mortality rate or number of co-morbid conditions were higher in groups 1 and 2
compared to group 3. The best model to classify patients from group 2 as patients
with encephalopathy (SVM using embeddings) had F1 of 85% and predicted 31%
patients from group 2 as having encephalopathy with a probability >90%. Validation
on new cases found a precision ranging from 92% to 98% depending on the criteria
considered.
Conclusions: Natural language processing techniques can leverage relevant clinical
information that might help to identify patients with under-recognised clinical
disorders such as encephalopathy. In the MIMIC dataset, this approach identifies with
high probability thousands of patients that did not have a formal diagnosis in the
structured information of the EHR.
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Introduction

Encephalopathy is an umbrella term that comprises a constellation

of neurocognitive conditions ranging from an acute confusional state

(delirium) to a decrease of consciousness or more subtle acute

changes in personality (1). It can be the result of a primary brain

disorder such as inflammation (encephalitis) and is also a frequent

complication of severe toxic-metabolic disorders such as sepsis. It is

particularly prevalent among patients needing intensive care,

aggravating the outcome when it occurs as comorbidity. Delirium

prevalence varies considerably by patient group and setting. The

prevalence of delirium is relatively high in intensive care unit (ICU)

patients; 32% in ventilated and non-ventilated intensive care unit

(ICU) patients and 50%–70% in mechanically ventilated patients (2).

Recognizing the disorder and understanding its pathophysiology has

important clinical implications since acute encephalopathy is

associated with a higher risk of death, longer hospital stay, and

disability, in particular dementia (2). Nevertheless, diagnosis of

encephalopathy in the clinical setting is challenging for several

reasons, greatly because there are no formal criteria to establish a

diagnosis with encephalopathy and because the phenotype depends

on the underlying physiopathology and severity. This poses an

important limitation when trying to leverage knowledge in

retrospective studies. In fact, previous studies have been focused on

detecting and predicting either delirium (3, 4), a syndrome with

well-characterized clinical criteria (5) and specific screening tools (6),

or coma, the most severe form of encephalopathy. However,

persistent cognitive impairment at 12 months after intensive care

unit (ICU) discharge occurs also in patients that have not received a

diagnosis with delirium (7). Neglecting intermediate forms of

encephalopathy may introduce bias in predictive studies and miss a

complete perspective of the implications of encephalopathy.

A further limitation addressing studies with encephalopathy is that

diagnostic codes for encephalopathy in the electronic health record

(EHR) are not reliable, and even the most recognizable syndromic

presentation (delirium) is underrepresented in the structured

diagnostic information of patients as International Classification of

Diseases (ICD) (8) codes (9–11). As an alternative, some authors

have used the Confusion Assessment Method for ICU (CAM-ICU),

the most widespread scale to screen for delirium (12).

To address the issues of misclassifications, imprecision and

omissions in diagnostic codes, recent studies have exploited

machine learning methodologies to detect risk of encephalopathy

and delirium (ED) based on patient information recorded in

electronic health records (EHRs) (10, 11, 13–16). For example,

Corradi et al. used a Random Forest model based on demographic

data, comorbidities, medications, procedures, and physiological

measures to predict ED (15), and Racine et al. showed that

machine learning methods can be used to identify patients at high

risk of developing delirium after surgery (16). These methods have

largely focused on modeling structured EHR data, i.e., entries with

a pre-defined format such as patient demographics and lab tests.

However, EHRs contain rich information describing all aspects of

the health and care of hospitalized patients in the form of

unstructured free text, such as clinical notes. It is likely that

disclosing this information may enrich predictors or classifiers,

because the semiology (the group of signs and symptoms that
Frontiers in Digital Health 02
characterize ED), or clinical scales regarding ED are generally only

recorded in clinical notes when clinicians make assessments.

To unlock the potentials of clinical text and address the

aforementioned limitations of using structured clinical information,

Natural language processing (NLP), a set of methods and techniques

for the computational processing of text, and machine learning have

fast evolved in recent years so the aforementioned limitations of using

structured clinical information might be partially overcome. In the

field of ED, NLP has demonstrated that neither ICD codes or specific

delirium clinical scales are sensitive enough to capture all the

phenotypic range of encephalopathy. In particular, behavioural

disturbances captured by NLP encloses more patients at risk of

receiving antipsychotic medications or having higher morbimortality

rates in the ICU than the group of patients defined by the CAM-ICU

(17). Recent approaches have tried to incorporate keywords related to

the delirium semiology into machine learning classifiers to label

patients with delirium (10, 18). For example, Coombes et al. used 8

words from the clinical notes text (“AMS”, “mental status”, “deliri”,

“hallucin”, “confus”, “reorient”, “disorient”, “encephalopathy”) among

other changes in clinical actions manually selected (10). However,

predefined keywords can hinder the discovery of new insights and

cannot be seamlessly generalized to other datasets due to potentially

different language use in other settings. Also, keyword matching

cannot take contextual meaning of a term into account and hence

can return irrelevant information such as misspelling and ambiguous

language in EHR (e.g., “AIDS” can refer to “Acquired Immune

Deficiency Syndrome” but also hearing aids).We aim to investigate in

this study the potential of state-of-the-art NLP, to identify patients

with encephalopathy in EHRs of patients admitted to intensive care

units. We hypothesize that considering all clinical concepts contained

in the free text (not only those related to the delirium semiology) and

a more complex language model representation to capture semantic

similarities (word embeddings instead of string matching) (19, 20)

could yield better results to detect patients with different phenotypes

of encephalopathy besides delirium.
Materials and methods

Figures 1, 2 summarise the flowchart of methods applied.
Patients and source of data

We analysed the MIMIC-III dataset (21), a freely accessible

critical care database of 46,520 patients admitted between 2001 and

2012 in a single centre in the United States. From the available

data, we used both the unstructured text notes in the “noteevents”

table and the structured diagnosis recorded as ICD-9 codes from

the “diagnoses_icd9” table from all patients with at least 1 clinical

note in the “noteevents” table without exclusion criteria.

Encephalopathy was defined based on ICD diagnostic codes (see

next paragraph). For expert validation, “encephalopathy” was

considered when a change in mental state was reported, including

progressive cognitive dysfunction of more than 1 cognitive domain,

personality changes, inattention, or consciousness impairment

(from somnolence to coma).
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FIGURE 1

Cohort definition. Flowchart representing the classification of patients from MIMIC-III dataset, based on their encephalopathy status. Groups 1 + 3 were used
as positive/negative label to train the model in a binary classification task. The best model was applied to unseen cases with possible encephalopathy.
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List of clinical concepts related to
encephalopathy (CCRE)

From an initial list of signs, symptoms, and ICD-9 diagnostic

codes indicative of encephalopathy selected by a clinical expert,

these concepts were mapped into a standardized vocabulary,

Unified Medical Language System (UMLS) (22)), and further

expanded to include child concepts of the terms from the initial

list using Clinical Knowledge Graph (23). This process (Figure 1

and Supplementary Material S1) generated 2 final lists of clinical

concepts related to encephalopathy that were used to classify

MIMIC’s patients, one containing relevant ICD-9 codes (CCRE-

ICD-9, Table 1), and a second one containing 1,498 UMLS

concept unique identifiers (CUIs) for encephalopathy (CCRE-CUIs).
Feature extraction from clinical notes

All clinical text notes in the MIMIC-III database (“noteevents”)

were automatically annotated by MedCAT, a NLP tool that extends

sciSpaCy for Named Entity Recognition of clinical concepts,
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linking these to the standard nomenclatures SNOMED Clinical

Terms and UMLS (24). MedCAT also generates “status” labels for

each annotation to ensure that annotated concepts are contextually

relevant. For example, extracted concepts may need to be ignored

if they appeared in the past or are negated. We used a public

MedCAT model that was pre-trained based on all text data in the

MIMIC-III database using a vocabulary of medical concepts

defined in UMLS. The MedCAT has been validated using real-

world EHR data from 3 large London hospitals (including both

acute and mental health hospitals) and has shown consistently

good performance across hospitals, datasets and medical concept

types and it achieved precision rates (F1) above 0.90 for extracting

21 common physical comorbidities in an independent study (25).

Concepts that were mentioned in a clinical notes, identified as

CUIs by MedCAT, were used as features of the note. Based on

these notes’ features, we represent a patient profile through two

widely used approaches. The first one is the Bag-of-Words

presentation, in which the frequency of each CUI in all clinical

notes of a patient is used as a feature of the patient’s profile. The

second approach is a word embedding presentation, in which each

CUI in a patient’s clinical notes is mapped to an embedding vector

and vectors of all CUIs are aggregated by an average operation. To
frontiersin.org
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FIGURE 2

Flowchart of pre-processing, cohort definition and classification. Graph that sumarises the flowchart of processing of the data, from the inclusion criteria to
the final binary classification task to identify encephalopathy among patients without a formal diagnosis.
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TABLE 1 List of CCRE-ICD-9.

No. CUIs Name ICD9

1 C0859643 Senile dementia with delusional or depressive
features

290.2

2 C0154315 Senile dementia with delirium 290.3

3 C0154319 Other specified senile psychotic conditions 290.8

4 C1457889 Unspecified senile psychotic condition 290.9

5 C0001957 Alcohol withdrawal delirium 291.0

6 C0152128 Drug withdrawal 292.0

7 C0152129 Pathological drug intoxication 292.2

8 C1456296 Delirium due to conditions classified elsewhere 293.0

9 C0154333 Subacute delirium 293.1

10 C1456302 Unspecified transient mental disorder in
conditions classified elsewhere

293.9

11 C0085584 Encephalopathy, not elsewhere classified 348.3

12 C0154309 Presenile dementia with delirium 290.11

13 C0236651 Vascular dementia, with delirium 290.41

14 C0236652 Vascular dementia, with delusions 290.42

15 C1456286 Drug-induced psychotic disorder with delusions 292.11

16 C1456732 Drug-induced psychotic disorder with
hallucinations

292.12

17 C0154326 Drug-induced delirium 292.81

18 C1456288 Drug-induced persisting dementia 292.82

19 C1456297 Psychotic disorder with delusions in conditions
classified elsewhere

293.81

20 C0029226 Psychotic disorder with hallucinations in
conditions classified elsewhere

293.82

21 C1456298 Mood disorder in conditions classified elsewhere 293.83

22 C1456299 Anxiety disorder in conditions classified elsewhere 293.84

23 C0154334 Other specified transient mental disorders due to
conditions classified elsewhere, other

293.89

24 C0006112 Metabolic encephalopathy 348.31

25 C1260408 Other encephalopathy 348.39

26 C0149504 Toxic encephalopathy 349.82

27 C0221539 Transient alteration of awareness 780.02

28 C0221540 Other alteration of consciousness 780.09

29 C0278061 Altered mental status 780.97

30 C0018524 Hallucinations 780.1

31 C0009421 Coma 780.01

32 C0752304 Hypoxic-ischemic encephalopathy (HIE) 768.7

33 C0752304 Hypoxic-ischemic encephalopathy, unspecified 768.70

34 C0019151 Hepatic encephalopathy 572.2

35 C0302369 Alcohol-induced psychotic disorder with
hallucinations

291.3

36 C0236656 Alcohol-induced persisting dementia 291.2

37 C0085584 Encephalopathy, unspecified 348.30

(continued)

TABLE 1 Continued

No. CUIs Name ICD9

38 C0151620 Hypertensive encephalopathy 437.2

39 C2712360 Severe hypoxic-ischemic encephalopathy 768.73

40 C1269750 Senile dementia with delusional features 290.20

Ariño et al. 10.3389/fdgth.2023.1085602
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reduce dimensionality of the resulting sparse matrix, we performed

feature selection based on a minimum threshold of occurrence in

the whole corpus (counts≥ 10) or through an off-the-shelf meta-

transformer for selecting features based on importance weight with

the “mean” as threshold for selection (“SelectFromModel” method

of Scikit Learn). Here, we used cui2vec, an embedding model

pre-trained on a large collection of multimodal medical data (26).
Analysis

Admissions were aggregated by unique patients and patients were

classified into 4 groups based on findings of CCRE across their

admissions: Group 1) definite encephalopathy cohort: those with a

formal diagnosis of encephalopathy defined as CCRE-ICD-9

(Table 1) in all episodes, Group 2) possible encephalopathy cohort:

patients with CCRE-CUIs in their clinical notes but without a

formal diagnosis in their structured fields (no CCRE-ICD-9),

Group 3) non-encephalopathy cohort: patients with no relevant

concepts neither in the structured nor the unstructured

information, Group 4) mixed cohort: patients having more than 1

episode with discordant criteria between episodes who cannot be

classified in any of the above. This latest group was expected to be

similar to group 1 in terms of demographic features, however

downstream supervised machine learning tasks were performed

using admissions (not patients) as independent instances and this

group of patients with mixed type of admissions were excluded.

Non-parametric hypothesis tests (Mann–Whitney U test and

Kruskal–Wallis test) were used to evaluate differences in

proportions and median values for descriptive analysis of the

different groups of patients. Machine learning classifiers [support

vector machines with different kernel options (linear, RBF, and

sigmoid) and random forest algorithms with different feature

selection strategies] to predict patients with a high probability of

having encephalopathy. For this binary classification task at the

admission level a formal diagnosis of encephalopathy during an

admission (meaning having at least 1 CCRE-ICD-9, group 1) was

considered the gold-standard for positive class, while those

admissions from patients that were never diagnosed with

encephalopathy or never had any related clinical concept in their

notes (group 3) were label as negative cases. Given the

predominance of negative cases (6:1), we created a balanced dataset

(1:1) after a random selection of negative cases to develop different

classifiers by cross-validation (train-test sets: 80%–20%).The best

predictive model was selected based on its F1 measure in the test

set and applied to classify unseen and unlabeled cases over a

random selection of potential admissions with encephalopathy

(group 2, those patients with CCRE in clinical texts but not a

formal diagnosis). We classified patients with encephalopathy when
frontiersin.org
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the probability of the model output was 90% or higher and validation

of this output was done by a clinical expert (neurologist) in a random

sample of 50 cases.

Python 3 was used for the analysis. Some of the partial results of

the pipeline can be reached in a public repository (https://github.

com/skwgbobf/Publication).
Results

MIMIC cohort

There were 46,520 different patients admitted to ICU with 58,976

different admissions. CCRE-ICD-9 codes were retrieved in 16,693

(28.3%) admissions and 7,927 (17%) different patients from structured

fields. Among all admissions, CCRE-CUIs were found in 28,620

(61.5%) patients’ clinical notes. Table 2 summarizes the different

cohorts of patients based on the combination of these findings and

some basic epidemiological data. In general terms, patients from

Groups 1 and 2 were older, had longer stays, a wider list of different

diagnoses during the episode, and higher mortality rates compared to

patients without encephalopathy (Group 3). This suggests on the one

hand that patients with encephalopathy have higher clinical complexity

and severity, and on the other hand, that patients with only

unstructured information regarding encephalopathy had similar

features to the cohort of patients with CCRE-structured information.
Text features

To use clinical notes as input in classifiers for encephalopathy, we

used the output of the default MedCAT annotation. A validation

exercise annotating 50 documents demonstrated a good

performance of the MedCAT model in identifying medical

concepts from clinical text (Supplemental Material). We obtained

a total number of 43,186 different CUIs (94 CCRE-CUIs, 0.2%).

Both groups of patients had a similar number of clinical notes,

that were written in its majority by nursing staff. However, the
TABLE 2 Classification of MIMIC patients based on their structured and unstru

Group 1
(definite E)

Group 2
(possible E)

Group
(non-E

Patients, n (% over total
cohort)

3,506 (7.5%) 20,906 (44.9%) 17,687 (38.

Age, median (IQR) 66.23 (52.3–79.2) 66.05 (50.0–78.9) 49.94 (0–6

Gender, F (%) 1,481 (42.2%) 9,281 (44.4%) 7,694 (43.5

Ethnicity, white (%) 2,653 (73.1%) 14,786 (70.6%) 11,734 (66.

Mortality, n (%) 1,528 (43.6%) 8,889 (42.5%) 3,016 (17.1

Length of stay, median days
(IQR)

12 (7–21) 9 (5–16) 6 (4–10

Re-admission, n (%) 163 (4.6%) 1,975 (9.4%) 978 (5.5%

Diagnosis, median (IQR)
number of different ICD9/
admission

9 (7–14) 16 (11–21) 7 (4–10
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structured cohort had a higher number of annotated clinical

concepts and a slightly higher frequency of physician’s notes

compared to Group 2.

Regarding CCRE-CUIs, a short list encompassed the majority of

counts. The top ten in each group accounted over 90% of all the

counts, and the list of the most prevalent CUIs was very similar

between the 2 groups, as 8 of the 10 CUIs were shared by both

groups. (Table 3).
Classifying cases with a high probability of
encephalopathy based on the unstructured
information

We used supervised machine learning to build a binary classifier

to determine whether a patient had encephalopathy. The classifiers

were trained on a cohort of 7,308 admissions (6,922 unique

patients from groups 1 and 3) using CUIs (not only CCRE) of

clinical notes as features either in a Bag-of-Words or Embeddings

representation.

We applied different feature selection strategies to reduce the

high dimensionality and sparsity of the resulting matrix in the

Bag-of-Words representation and kept the 500-dimensional

embeddings resulting from the cui2vec transformation. Among all

models explored, we found that a Support Vector Machine with

Linear or RBF Kernel with cui2vec features achieved the highest F1

and precision scores in the 5-fold cross-validation (highlighted in

bold in Table 4), and called the “best model” from now on.

The application of the best model to a random sample of 7,155

admissions (5,710 unique patients) from Group 2 predicted 4,735

(66.2%) admissions (3,871 unique patients) with a probability of

>50%, and 1,980 (27.7%) admissions (1,771 unique patients) with a

probability of >90% among them. The random sample rather than

the entire Group 2 was used due to the limit of computational

resources in processing the entire dataset. These results lead to an

estimation of 31.1% (95% CI: 29.8%–32.2%) of encephalopathy

prevalence among patients admitted in the ICU without a

formal diagnosis.
ctured information.

3
)

Group 4 (both
type of
episodes)

p-value among the
4 groups (χ2-test or

Kruskal–Wallis)

p-value between
groups 1&2 (χ2-test
or U Mann–Whitney)

0%) 4,421 (9.5%) n/a n/a

8.2) 64.54 (52.5–76.1) <0.001 <0.001

%) 1,943 (43.9%) 0.069 0.018

2%) 3,350 (73.2%) <0.001 0.011

%) 2,326 (52.6%) <0.001 0.246

) 8 (5–15) <0.001 <0.001

) 4,421 (100%) <0.001 1.89

) 12.6 (9–16.5) <0.001 <0.001
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TABLE 3 Comparison of text features between structured and unstructured cohorts.

Group 1 (structured) Group 2 (only unstructured) p-value between groups 1&2
(χ2-test or U Mann–Whitney)

Median number of clinical notes/patient,
IQR

24 (12–48) 22 (12–46) 0.008

Median number of CUIs/note, IQR 67 (37–134) 49 (20–86) <0.001

Distribution of type of clinical notes <0.001

Physician, n (%) 21,171 (13.8%) 67,632 (6.8%)

Nursing, n (%) 61,534 (40.2%) 597,211 (60%)

Radiology, n (%) 42,969 (28.1%) 194,259 (19.5%)

ECG, n (%) 11,248 (7.3%) 62,994 (6.3%)

Others, n (%) 16,134 (10.5%) 72,637 (7.3%)

Top 10 CCRE-CUIs (% of total CCRE-
CUIs)

1. C0085631_[Agitation] 1. C0085631_[Agitation]

2. C0278061_[Abnormal mental state] 2. C0009676_[Confusion]

3. C0011206_[Delirium] 3. C0023380_[Lethargy]

4. C0009676_[Confusion] 4. C0278061_[Abnormal mental state]

5. C0023380_[Lethargy] 5. C0011206_[Delirium]

6. C0237284_[unresponsive behavior] 6. C0237284_[unresponsive behavior]

7. C0019151_[Hepatic Encephalopathy] 7. C0039070_[Syncope]

8. C0001957_[Alcohol Withdrawal
Delirium]

8. C0233407_[Disorientation]

9. C0236663_[Alcohol withdrawal
syndrome]

9. C0001957_[Alcohol Withdrawal
Delirium]

10. C0085584_[Encephalopathies] 10. C0236663_[Alcohol withdrawal
syndrome]

(92.2%) (92.8%)

TABLE 4 Models to classify encephalopathy.

Model Feature selection Number
of features

F1 (5-fold
cross

validation)

Precision
for class 1

Linear SVM ≥10 counts 10,238 82% 83%

Linear SVM ≥10 counts,
“SelectFromModel”

1,224 78% 80%

Linear SVM cui2vec 500 85% 84%

RBF SVM cui2vec 500 85% 84%

Sigmoid SVM cui2vec 500 83% 77%

Random Forest ≥10 counts 10,238 82% 81%

Random Forest cui2vec 500 83% 81%

Ariño et al. 10.3389/fdgth.2023.1085602
Validation of this model was performed by a clinical expert in a

random sample of 50 patients selected among those without relevant

structured information (group 2) and a predicted probability above

90%. This validation found that 49/50 had symptoms suggestive of

encephalopathy (precision of 98%). However, 3 of them were very

transient symptoms (“confused”, “agitated”) in the context of pain

or decreased level of consciousness (“lethargic”) in the context of

pharmacological sedation which probably represent physiological

reactions to drugs or nociceptive stimuli rather than a pathological
Frontiers in Digital Health 07
mental state, so only 46 patients would be considered

encephalopathic by a clinical expert (precision of 92%). Among

these 50 patients, only 21 (42%) had an acute brain or intracranial

process that could justify the abnormal mental state.
Discussion

The results of this study suggest that: (1) encephalopathy is

poorly coded in the structured diagnosis even in a high-risk

context such intensive care units; (2) that word embeddings

pretrained over clinical concepts (Clinical Concept Embeddings)

are more accurate to capture the semantics related to

encephalopathy than a Bag-of-Words representation, and that (3)

the off-the-shelf library MedCAT for Named Entity Recognition

and linkage can be used to annotate concepts in clinical texts

providing meaningful results even without fine tuning.

We annotated (and normalized to a standard ontology) clinical

concepts from over 40 thousand patients admitted in the ICU,

with a median number of 23 clinical notes per patient and

around 50 clinical concepts per note, with a minimum effort. A

pre-defined list of keywords only allows to select a limited

amount of data by hypothesis driven feature selection. This
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would preclude necessary steps to escalate this methodology such

as merging sources of data with different feature format (different

languages, for example) in a federate learning framework or to

validate this model in external datasets. Although the accuracy

of the raw MedCAT model was over 90% in different meta-

annotation metrics (see Supplementary Material), it is likely

that a fine-tune step could yield better results, especially in the

NER + L task.

Among the models explored, those using clinical word

embeddings obtained the best performance. We used pretrained

embeddings, learned using an extremely large collection of

multimodal medical data, which can vectorize 108,477 clinical

concepts from its UMLS identifier (CUI) and permit a quick

feature extraction for medical concepts, independent of the

language. This ready-to-use tool poses an important advantage in

contexts of scarce labeled healthcare data unable to provide enough

contextual information to encode semantics in new trained clinical

embeddings (26). In combination with MedCAT, it might

overcome the barriers to share data in different languages.

Moreover, it offers at the same time a dimensionality reduction

solution. The result is an output of a 500-dimensional embedding

per concept, in contrast to higher dimensional vectors resulting

from one-hot encoding (in our case, 43,186 CUIs). Representing

documents as aggregated vectors keeps this low-dimensionality in

favour of more efficient models, at the expense of explainability.

We could not explore which clinical concepts are more important

to predict the label encephalopathy.

However, they served to correctly classify patients with

encephalopathy. We first screen those clear negative patients

without any suspicion of encephalopathy given the absence of any

relevant ICD code or any relevant clinical concept (CCRE-CUIs)

in clinical notes. After defining cohorts with definite, possible and

absence of encephalopathy, we trained classic machine learning

algorithms and could classify patients with high probability of

having encephalopathy among those without a formal diagnosis in

their structured fields (those patients with possible encephalitis).

Previous studies used biological validation to evaluate the

reclassification of patients as delirium, by clinically meaningful

outcomes such as mortality) (10). Besides that, here we use a

domain-expert validation to evaluate the performance of the model

over new data. Although the best model had a precision of 84% in

the test set, selecting a high threshold (probability of the prediction

of 90% or more) enhanced the precision in the application of the

model to unseen data. We reclassify around 30% of new patients

without a previous formal diagnosis of encephalopathy, meaning

thousands of patients of the MIMIC-III cohort. This confirms that

ICD codes, that were designed for billing purposes, are not a good

criteria for cohort definition used in retrospective research studies

(27, 28). Moreover, our study suggests that encephalopathy is

associated with higher mortality either the patient receives a formal

diagnosis or not, so this disorder shouldn’t be overlooked. For this

model to further develop into a real-time computer-aided alarm

system, we should explore the generalizability of these results in

new clinical settings. We don’t know how representative the

clinical notes from patients in this dataset. Other authors have

used the MIMIC-III dataset to validate models developed in a

different institution in the United States (13), but it is likely that
Frontiers in Digital Health 08
higher discrepancies with critically ill patients in other countries

beyond the United States with different assistance protocols exist.

In addition, the performance of different NER + L methods can

vary on different datasets.

To conclude, we show here how state-of-the-art NLP techniques

can help to identify patients with under-reported clinical disorders

such as encephalopathy. In the MIMIC dataset, this approach

identifies with high probability thousands of patients that did not

have a formal diagnosis in the structured information of the EHR.
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