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The conventional battery for genotoxicity testing is not well suited to assessing the
large number of chemicals needing evaluation. Traditional in vitro tests lack
throughput, provide little mechanistic information, and have poor specificity in
predicting in vivo genotoxicity. New Approach Methodologies (NAMs) aim to
accelerate the pace of hazard assessment and reduce reliance on in vivo tests
that are time-consuming and resource-intensive. As such, high-throughput
transcriptomic and flow cytometry-based assays have been developed for
modernized in vitro genotoxicity assessment. This includes: the TGx-DDI
transcriptomic biomarker (i.e., 64-gene expression signature to identify DNA
damage-inducing (DDI) substances), the MicroFlow

®
assay (i.e., a flow

cytometry-based micronucleus (MN) test), and the MultiFlow
®

assay (i.e., a
multiplexed flow cytometry-based reporter assay that yields mode of action
(MoA) information). The objective of this study was to investigate the utility of
the TGx-DDI transcriptomic biomarker, multiplexed with the MicroFlow

®
and

MultiFlow
®
assays, as an integrated NAM-based testing strategy for screening

data-poor compounds prioritized by Health Canada’s New Substances
Assessment and Control Bureau. Human lymphoblastoid TK6 cells were
exposed to 3 control and 10 data-poor substances, using a 6-point
concentration range. Gene expression profiling was conducted using the
targeted TempO-Seq™ assay, and the TGx-DDI classifier was applied to the
dataset. Classifications were compared with those based on the MicroFlow

®
and

MultiFlow
®

assays. Benchmark Concentration (BMC) modeling was used for
potency ranking. The results of the integrated hazard calls indicate that five of
the data-poor compounds were genotoxic in vitro, causing DNA damage via a
clastogenic MoA, and one via a pan-genotoxic MoA. Two compounds were likely
irrelevant positives in the MN test; two are considered possibly genotoxic causing
DNA damage via an ambiguous MoA. BMC modeling revealed nearly identical
potency rankings for each assay. This ranking was maintained when all endpoint
BMCs were converted into a single score using the Toxicological Prioritization
(ToxPi) approach. Overall, this study contributes to the establishment of a
modernized approach for effective genotoxicity assessment and chemical
prioritization for further regulatory scrutiny. We conclude that the integration of
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TGx-DDI, MicroFlow
®
, and MultiFlow

®
endpoints is an effective NAM-based strategy

for genotoxicity assessment of data-poor compounds.
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Introduction

There is an urgent need to improve the efficiency and predictivity of
the existing toxicology testing paradigms to address the immense backlog
of chemicals requiring evaluation by regulatory bodies worldwide
(USNRC, 2007; Schoeters, 2010; Barton-Maclaren et al., 2017; Council
of Canadian Academies, 2017). One of the main challenges is the large
number of chemicals with no or very limited experimental toxicology
data, known as “data-poor compounds” (Barton-Maclaren et al., 2017).
To address the paucity of experimental data, integrated data streams from
higher-throughput methodologies are being applied for chemical
prioritization and risk assessment. This includes New Approach
Methodologies (NAMs), defined broadly as in silico, in chemico and
in vitro assays, that avoid the use of animals to identify chemical hazards
(ECHA, 2016; Kavlock et al., 2018). NAMs seek to modernize traditional
toxicology testing strategies by addressing the current limitations with
conventional assays to accelerate the pace of hazard assessment and
reduce reliance on animal tests that are time-consuming and resource-
intensive (Pfuhler et al., 2014; Kavlock et al., 2018).

Genotoxicity testing is a critical component of all chemical hazard and
risk assessments. Chemicals that induce genetic damage may cause long-
term adverse health outcomes including cancer, heritable genetic
disorders, and other degenerative conditions (Phillips and Arlt, 2009;
Heflich et al., 2020). The conventional genotoxicity test battery generally
includes a bacterial reverse mutation test (i.e., Ames test) and an in vitro
mammalian cell chromosomal damage test and/or mutation assay (ICH,
1998; USFDA, 2007; OECD, 2017). Depending on the results obtained
and/or decision-making context, one or more in vivo tests may also be
required (ICH, 1998; Thybaud et al., 2007; OECD, 2017). However, this
test battery is not well suited to assessing the large number of data-poor
chemicals needing evaluation. Most of the in vitro tests used are generally
lower-throughput, provide little mechanistic information, and have a
limited ability to predict effects in vivo. Chromosome damage assays, in
particular, often yield positive calls for chemicals that do not pose an
appreciable mutagenic risk to humans; these hazard calls can lead to
unnecessary, costly, and time-consuming in vivo follow-up (Kirkland
et al., 2006; Kirkland et al., 2007; Thybaud et al., 2007; Nesslany, 2017).
Thus, in recent years there have been efforts to develop modernized
in vitro genotoxicity testing tools that address these limitations. To meet
this demand, toxicogenomic (TGx) and flow cytometric-based
approaches have been developed for high-throughput and high-
content assessment of DNA damage in human cells.

Transcriptional profiling can identify early molecular markers of
toxicological mode of action (MoA) and/or effects (Thomas et al., 2013;
Farmahin et al., 2017; Yauk et al., 2019). Since analysis of the large data
sets produced by transcriptomics is complex, transcriptomic biomarkers
have been developed to more efficiently and objectively predict toxicity
from these data (Krewski et al., 2020). For example, Li et al. (2015)
developed the TGx-DDI transcriptomic biomarker. The TGx-DDI
biomarker is comprised of 64 genes; it is used to classify chemicals as
DNA damage-inducing (DDI) or non-DDI by analyzing changes in gene

expression following in vitro exposure of cultured mammalian cells. The
64 genes were identified from gene expression profiles of humanTK6 cells
exposed to a reference set of 28 chemical agents spanning a wide range of
known DDI and non-DDI mechanisms including aneugenicity
(i.e., change in chromosome number) (Li et al., 2015). The biomarker
has been extensively validated and confirmed to be amenable to use with
numerous gene expression technologies (Li et al., 2017; Cho et al., 2019;
Buick et al., 2021). A variety of proof-of-concept studies have shown its
potential utility for hazard identification, chemical prioritization, and
potency comparisons (Buick et al., 2015; Moffat et al., 2015; Li et al., 2017;
Cho et al., 2019; Li et al., 2019; Buick et al., 2020; Buick et al., 2021).

A series of miniaturized flow cytometry-based assays have been
developed to accelerate in vitro genotoxicity testing [Bryce et al. (2008),
Bryce et al. (2010), Bryce et al. (2013), Bryce et al. (2014), Bryce et al.
(2017)]. The in vitroMicroFlow® assay applies an automated approach to
score micronucleus (MN) frequency to identify chromosomal damage
induced by chemicals (Bryce et al., 2008; Bryce et al., 2010; Bryce et al.,
2013). This approach has been thoroughly validated and is now part of
existing test guidelines (TG 487) as an option for MN scoring (OECD,
2017). The MultiFlow® DNA Damage assay uses several multiplexed
biomarker responses to further classify genotoxic activity based on the
MoA. This includes the measurement of: phosphorylation of histone
H2AX (ɣH2AX), which is indicative of DNA double strand breaks;
phosphorylation of histone H3 (p-H3) to identify mitotic cells; nuclear
p53 localization to identify DNA damage responses; and the frequency of
8n DNA content to detect polyploidization (Bryce et al., 2014; Bryce
et al., 2016; Bryce et al., 2017). Responses in specific MultiFlow®

biomarkers can classify genotoxic agents into two main MoAs: 1)
clastogenicity, which is characterized by chromosomal insertions,
deletions, or rearrangements that form via breakage (i.e., DNA
double stand breaks); or 2) aneugenicity.

Published case studies have explored the integration of the
aforementioned assays to assess the genotoxicity of prototypical
compounds with promising results (Buick et al., 2020; Smart et al.,
2020; Avlasevich et al., 2021). Buick et al. (2020) applied the TGx-
DDI biomarker in parallel with the MicroFlow® assay in HepaRG™
cells (Buick et al., 2020). Avlasevich et al. (2021) evaluated the
performance of the in vitro MicroFlow® and MultiFlow® genotoxicity
endpoints (Avlasevich et al., 2021). These case studies demonstrate that
integrating several in vitro genotoxicity assays provides amore robust and
accurate hazard assessment, with a limited number of irrelevant positives.
As such, all three assays have been incorporated into the
GeneTox21 research program at Health Canada to establish an
effective in vitro platform for genotoxicity assessment (Felter et al., 2021).

Herein we explore the utility of the TGx-DDI transcriptomic
biomarker, multiplexed with the in vitro MicroFlow® assay and the
MultiFlow® DNA damage assay, as a NAM-based integrated test
strategy for assessing the genotoxicity of data-poor compounds
prioritized by Health Canada’s New Substances Assessment and
Control Bureau (NSACB). The data-poor compounds were flagged by
regulatory partners as having carcinogenicity/genotoxicity structural
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alerts using the Organisation for Economic Co-operation and
Development (OECD) Quantitative Structure-Activity Relationships
(QSAR) Toolbox (Dimitrov et al., 2016). Human lymphoblastoid
TK6 cells were exposed to ten NSACB data-poor substances in
conjunction with two positive and one negative control chemicals.
Cells were exposed with or without exogenous metabolic activation
(i.e., rat liver S9) to a range of concentrations. Gene expression
profiling was conducted using the targeted TempO-Seq™ assay
(Yeakley et al., 2017; Mav et al., 2018) and the TGx-DDI classifier was
applied to the dataset. Classifications were compared with those based on
the MicroFlow® and MultiFlow® assays. Benchmark Concentration
(BMC) modeling of the genotoxicity endpoints was used to rank the
test chemicals by their potencies. The Toxicological Prioritization (ToxPi)
software (Reif et al., 2013; Marvel et al., 2018) was used to integrate the
multiplexed endpoint BMCs and create a visual toxicological profile.
Overall, we demonstrate how this novel NAM-based in vitro testing
strategy provides a robust and efficient approach to identify genotoxic
data-poor substances and assess potency for further prioritization.

Materials and methods

Chemicals investigated

Test chemical information (including the solvent control) and
their respective abbreviations, CAS RN, and source are presented in
Table 1.

Cell culture

All experiments were performed with human lymphoblastoid TK6
(IVTG strain) cells (ECACC #13051501) purchased from Sigma-
Aldrich Canada (Oakville, ON). Cells were grown in

RPMI1640 cell culture medium (ThermoFisher Scientific, Ottawa,
ON) supplemented with 10% horse serum (ThermoFisher Scientific,
Ottawa, ON), 2 mM L-glutamine (ThermoFisher Scientific, Ottawa,
ON), 1.8 mM sodium pyruvate (ThermoFisher Scientific, Ottawa,
ON), and 100 U/mL of penicillin and streptomycin (ThermoFisher
Scientific, Ottawa, ON). Cells were incubated at 37°C with 5%CO2 and
maintained below 1 x 106/mL and >90% viability.

Viability assessment

Cells were adjusted to a density of 1.5 x 105/mL, aliquoted in 96-
well plates, and exposed to 1 µL of test chemical (1% v/v, final
volume 100 µL) solubilized in DMSO at a range of concentrations.
For test chemicals requiring metabolic activation the medium was
supplemented with 10 µL of 5% S9 Mix (0.5% v/v) containing
Aroclor-1254 Induced Mutazyme® (Moltox, Boone, NC). Treated
cells were then incubated at 37°C with 5% CO2 for 4H. Cells were
collected via centrifugation at 300 x g for 5 min, washed with
Dulbecco’s phosphate buffered saline (DPBS) (ThermoFisher
Scientific, Ottawa, ON), resuspended in fresh media, and
incubated at 37°C with 5% CO2 for 20 h. The viable cell count
was quantified via propidium iodide fluorescence analysis with the
Miltenyi Biotec MACSQuant ® Analyzer 10 flow cytometer with
integrated 96-well MiniSampler device. Instrument settings:
autolabel PI. The fluidics parameters were as follows: sample
volume of 100 μL at a medium mix rate, followed by a sample
uptake volume of 25 µL analyzed at a medium flow rate. The screen
mode was used to rinse the probe between samples. Top
concentrations were selected (Table 2) up to 10 mM or lower
due to solubility (OECD, 2016). If cytotoxic, top concentrations
were selected for each assay that induce: approximately 40%
viability (i.e., 60% cytotoxicity) for the TGx-DDI assay and
in vitro MicroFlow® assay (Bryce et al., 2008; OECD, 2016), and

TABLE 1 Information on test chemicals used in this study.

Chemical Abbreviation CAS no. Source

2-amino-5-chlorobenzophenone NSACB 1 719-59-5 Sigma-Aldrich (Oakville, ON)

2-amino-4-methylphenol NSACB 2 95-84-1 Sigma-Aldrich (Oakville, ON)

3,5-dimethylpyrazole-1-methanol NSACB 3 85264-33-1 Sigma-Aldrich (Oakville, ON)

3-diethylaminophenol NSACB 4 91-68-9 Sigma-Aldrich (Oakville, ON)

2,6-diaminopyridine NSACB 5 141-86-6 Sigma-Aldrich (Oakville, ON)

2-methoxy-4-nitrophenol NSACB 6 3251-56-7 Sigma-Aldrich (Oakville, ON)

2-[(3-amino-4-methoxyphenyl)amino]ethanol NSACB 7 83763-47-7 Best of Chemicals (BOC) Sciences (Shirley, NY)

2-[(4-methyl-2-nitrophenyl)amino]ethanol NSACB 8 100418-33-5 Toronto Research Chemicals Inc (North York, ON)

4-[(3-hydroxypropyl)amino]-3-nitrophenol NSACB 9 92952-81-3 Toronto Research Chemicals Inc (North York, ON)

1-(1-methyl-2-propoxyethoxy)-2-propanol NSACB 10 29911-27-1 Sigma-Aldrich (Oakville, ON)

7,12-dimethylbenz[a]anthracene DMBA 57-97-6 Sigma-Aldrich (Oakville, ON)

Etoposide EPEG 33419-42-0 Sigma-Aldrich (Oakville, ON)

D-mannitol DMANN 69-65-8 Sigma-Aldrich (Oakville, ON)

Dimethyl sulfoxide DMSO 67-85-5 Sigma-Aldrich (Oakville, ON)
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20% viability (i.e., 80% cytotoxicity) for the MultiFlow® DNA
Damage assay (Bryce et al., 2016).

Exposure for TGx-DDI assay

Cells were adjusted to a density of 1.5 x 105/mL, aliquoted in 96-
well plates, and exposed to 1 µL of test chemical (1% v/v, final volume
100 µL/well) solubilized in DMSO in a six-point concentration range
on a half-log distribution scale in duplicate (Table 2). Six DMSO
solvent controls were included per plate. For test chemicals requiring

metabolic activation, the medium was supplemented with 10 µL of 5%
S9 Mix (0.5% v/v) containing Aroclor-1254 Induced Mutazyme®

(Moltox, Boone, NC). Treated cells were incubated at 37°C with
5% CO2 for 4H. Cells were collected via centrifugation at 300 x g
for 5 min, washed with DPBS, and resuspended in 1X TempO-Seq™
Enhanced Lysis buffer (BioSpyder Technologies, Carlsbad, CA,
United States) in DPBS (40 µL/well) (ThermoFisher Scientific,
Ottawa, ON). If treated with 0.5% rat liver S9, cells were collected
via centrifugation at 300 x g for 5 min, washed with DPBS
(ThermoFisher Scientific, Ottawa, ON), resuspended in fresh
media, and incubated at 37°C with 5% CO2 for a 3 h recovery

TABLE 2 Experimental information for the data-poor chemicals and controls used in this study.

Chemical S9 condition TGx-DDIa MultiFlow/MicroFlowa

Top concentration–Lowest concentration Top concentration–Lowest concentration

6 concentrations (70.71% spacing) 10 concentrations (70.71% spacing)

NSACB 1 -S9 135–24.0 µM 382–16.9 µM

+S9 95.5–16.9 µM 270–11.9 µM

NSACB 2 -S9 - 884–39.0 µM

+S9 156–28.0 µM 884–39.0 µM

NSACB 3 -S9 - 884–46.0 µM

+S9 65–12 µM 185–8.00 µM

NSABC 4 -S9 - 1250–55.00 µM

+S9 55–10 µM 1768–78.00 µM

NSACB 5 -S9 - 10000–442.00 µM

+S9 5000–884.0 µM 10000–442.00 µM

NSACB 6 -S9 - 10000–442.00 µM

+S9 5000–884.0 µM 10000–442.00 µM

NSACB 7 -S9 35–6.0 µM 142–6.30 µM

+S9 100.1–17.70 µM 400–17.7 µM

NSACB 8 -S9 1250–221.0 µM 3536–156.3 µM

+S9 1250–221.0 µM 3536–156.3 µM

NSACB 9 -S9 2356–417.0 µM 6665–295.0 µM

+S9 2600–460.0 µM 6665–295.0 µM

NSACB 10 -S9 10000–1768.0 µM 10000–442.00 µM

+S9 10000–1768.0 µM 10000–442.00 µM

EPEG -S9 0.16–0.028 µM 0.63–0.028 µM

+S9 - 0.63–0.028 µM

DMBA -S9 - 750–33.0 µM

+S9 4.1–0.73 µM 23.4–1.04 µM

DMANN -S9 10000–1768.0 µM 10000–442.00 µM

+S9 10000–1768.0 µM 10000–442.00 µM

AMP -S9 4957–876.0 µM 4957–219.0 µM

+S9 4957–876.0 µM 4957–219.0 µM

aConcentrations with <20% viability for MultiFlow® and <40% viability for TGx-DDI, and MicroFlow® assays were excluded from analysis.
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period. Based on preliminary data select compounds were only tested
in one metabolic condition. Following incubation, cells were collected,
washed, and resuspended in 1X TempO-Seq™ Enhanced Lysis buffer
(BioSpyder Technologies, Carlsbad, CA, United States) in DPBS
(ThermoFisher Scientific, Ottawa, ON) (40 µL/well) and frozen
at −80°C.

TempO-Seq™, library purification and
sequencing

The TempO-Seq™ Human Surrogate + Tox Panel (S1500+) v2.0
(BioSpyder Technologies, Carlsbad, CA, United States) assay was
completed following the manufacturer’s instructions in a 96-well
plate format. Each 96-well plate included three assay controls in
duplicate: a negative no-cell lysate (1X TempO-Seq™ Enhanced
Lysis buffer only), Human Reference Total RNA (Takara Bio, CA,
United States), and Human Brain Reference Total RNA (Takara Bio,
CA, United States). Briefly, for each treatment, 2 µL of cell lysate in 1X
TempO-Seq™ Enhanced Lysis buffer was hybridized to the Human
S1500 + Surrogate detector oligo (DO) probe mix (V2.0), incubated at
70°C for 10 min, then ramped down to 45°C over 50 min (0.5°C/min). A
nuclease digestion followed to remove excess or incorrectly bound DOs
at 37°C for 1 h. The bound DO pairs were then ligated together at 37°C
for 1 h and 15 min at 80°C to generate templates for amplification. A
10 µL aliquot of amplification template was transferred to its respective
well in the TempO-Seq™ PCR Pre-Mix and Primers plate and amplified
on the CFX96 thermocycler (Bio-Rad, Mississauga, ON, Canada) with
the following program: 37°C for 10 min, 95°C for 1 min; 25 cycles of
95°C for 10 s, 65°C for 30 s, 68°C for 30 s; 68°C for 2 min. For library
building and purification, three 96-well plates (288 sample libraries)
were pooled together (5 µL per sample) and purified using the
Macherey-Nagel NucleoSpin® Gel and PCR Cleanup Kit (Clontech
Laboratories Inc., Bethlehem, PA, United States) with the
adjustments specified by the TempO-Seq™ Assay User Guide. The
pooled purified TempO-Seq™ libraries were then diluted, quantified,
and assessed for quality using the Agilent High Sensitivity
D1000 TapeStation (Agilent Technologies, Santa Clara, CA,
United States) and the qPCR KAPA Library Quantification Kit
(Universal qPCR Master Mix) for Illumina NextSeq 500. Samples
were sequenced on a total of two NextSeq® 500/550 High Output
(75-cycle) flow cells using an Illumina NextSeq® 500 Sequencing
Platform (Illumina, San Diego, CA, United States). A separate pool
was completed for a fourth plate and an additional 96 sample libraries
were added to the sequencing data for subsequent analysis.

Sequencing data preprocessing and
alignment

Sequencing data are accessible in the National Centre for
Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database under accession number GSE213454. Briefly,
bcl2fastq (v2.20.0.422) was used to demultiplex the raw sequencing
data and assign each data set to its respective sample files. The data
were filtered using fastp (v0.20.0) to eliminate reads shorter than 50 bp
and remove low-quality sequences. The BioSpyder TempO-SeqR
v3.0 analysis script, implemented as part of our transcriptomics
data processing pipeline (https://github.com/R-ODAF/R-ODAF_

Health_Canada), was used to align the FASTQ files for each
sample to the reference sequences for the TempO-Seq™ Human
Surrogate + Tox Panel (S1500+) v2.0 probes producing a table of
counts per probe per sample. A study-wide quality control analysis
workflow adapted from Harrill et al. (2021) was applied to the count
matrix; 7/276 samples (i.e., S1_pool2, S2_pool2, S31, S79, S95_pool2,
S109, S119) were removed due to low quality.

Statistical analyses for TGx-DDI classification

The count matrix underwent log2(CPM +1) normalization to
account for read-depth variability between samples. TGx-DDI genes
with multiple probes were averaged. For each compound, sample
replicates were averaged and the log2 fold changes were estimated for
each concentration. Samples that were cytotoxic (viability <40%), or
did not achieve a minimum read depth, were removed from the
analysis.

Detailed information regarding the TGx-DDI classification
statistical analyses has been described previously (Yauk et al., 2016;
Buick et al., 2017; Buick et al., 2021). Briefly, to classify chemicals as
DDI or non-DDI, a three-pronged statistical approach was applied.
Each analysis compares the sample biomarker responses to those of
training set compounds with known DDI and non-DDI mechanisms.
The three analyses are listed below.

1) The Nearest Shrunken Centroids Probability Analysis (NSC-PA)
method was conducted (Tibshirani et al., 2002) using the pamr()
function in R. This summarized the training dataset by
calculating a standardized centroid (SC) for the DDI and non-
DDI chemicals in the training set. The SC represents the average
expression for each gene in a class relative to its within-class
standard deviation. To create the NSC, the SCs were shrunken in
the direction of the overall centroid. To classify each
concentration for each chemical, the expression profiles were
compared to the training set NSCs (Li et al., 2017) and assigned to
a class (DDI or non-DDI) based on the probability that class
membership was >0.90 (else it was not classifiable). This analysis
was visualized as a heatmap.

2) Principal Component Analysis (PCA) was conducted using the
prcomp() function in R (Venables and Ripley, 2002). The PCA
estimated the principal components (PC) of the training set data
and the PCA loadings were applied to the experimental samples.
The sample and training set data were visualized in a scatterplot.
Chemical concentrations with a negative PC1 were classified as
DDI and with a positive PC1 were classified as non-DDI.

3) 2-Dimentional hierarchical clustering (2-DC) based on average
linkage with Euclidean distances (Becker et al., 1990) was generated
for the training set and experimental data using the hclust()
function in R. Clustering on the main branch with non-DDI
agents or on the main branch with DDI agents led to non-DDI
or DDI calls for those chemical concentrations, respectively. If the
sample was on a branch outside the main DDI and non-DDI
clusters, that concentration could not be classified.

If a chemical had a positive call in one of the three statistical
analyses (NSC-PA, PCA, 2-DC) at any concentration, the overall call
assigned was DDI. Conversely, if none of the three analyses produced a
positive call, the overall call assigned was non-DDI.
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Exposure for the MultiFlow and MicroFlow
assays

Cells were adjusted to a density of 2.0 x 105/mL and cells were
aliquoted in 96-well plates. Cells were exposed to 2 µL of solubilized test
chemical (1% v/v, final volume 200 µL/well) in a ten-point
concentration range on a half-log distribution scale in (Table 2). All
chemicals were also tested in the presence of S9 applying the conditions
described previously. Treated cells were incubated at 37°C with 5%
CO2 for 4H. At the 4H timepoint, aliquots of cells were collected for the
MultiFlow® DNA Damage assay (Litron Laboratories, Rochester, NY,
United States). The remaining cells were collected via centrifugation at
300 x g for 5 min, washed with DPBS (ThermoFisher Scientific, Ottawa,
ON), resuspended in fresh media, and incubated at 37°C with 5% CO2.
These cells were incubated for an additional 20H for the second time
point of the MultiFlow® DNA Damage assay and for the in vitro
MicroFlow® assay (Litron Laboratories, Rochester, NY, United States).

In vitro MicroFlow
®
assay processing and

analysis

At 24-h post-exposure cells were collected via centrifugation at
300 x g for 6 min. The supernatant was carefully removed and freshly
prepared Complete Nucleic Acid Dye A (50 µL/well) was added. The
plate was then placed under a visible light source on ice for 30 min, 1X
Buffer Solution (150 µL/well) was added, cells were collected via
centrifugation at 300 x g for 6 min, and the supernatant was
carefully removed. Cells were resuspended in Complete Lysis
Solution 1 (100 µL/well), mixed thoroughly, and incubated at room
temperature for 1 h. Completed Lysis Solution 2 was added (100 µL/
well) and the plate was rocked gently to mix. The plate was then
analyzed via flow cytometry with the Miltenyi Biotec MACSQuant®
Analyzer 10 flow cytometer with an integrated 96-well MiniSampler.
The mixing and fluidics parameters were as follows: sample mixing of
50 μL at a medium mix rate, followed by a sample uptake volume of
50 µL that was analyzed at a medium flow rate. The fast mode was used
to rinse the probe between samples. Instrument settings followed
instructions stated in the MicroFlow® MicroNucleus Analysis kit (In
Vitro, 96 well) (Litron Laboratories, Rochester, NY) to detect
fluorochromes SYTOX Green® in the FITC channel and ethidium
monoazide (EMA), in the PerCP-Cy5.5 channel. An analysis stop gate
of 5,000 EMA-negative nuclei per well was applied.

The in vitro MicroFlow® results were analyzed using the analysis
template provided by Litron Laboratories (Rochester, NY). The %MN
was calculated using the count of MN events relative to the count of
nucleated events. Results for graphical and statistical representations
were expressed as a relative fold-change from the average plate-specific
DMSO solvent control normalized to 1.

%MN � MNEvents

Nucleated Events
x 100

Cytotoxicity was determined using the Relative Survival (RS)
equation. Treatments with RS values less than 40% and %EMA-
positive nuclei values greater than 4-fold over solvent controls were
removed from analysis.

RS � Nuclei in treated culture/mL

Nuclei inmean solvent control/mL
x 100

Fold EMA � %Apoptotic/Necrotic

Mean%Apoptotic/Necrotic of solvent controls
x 100

A positive call was indicated by a 2.50-fold increase in %MN and a
statistically significant (p < 0.05) %MN increase relative to solvent
controls in at least one non-cytotoxic concentration (Avlasevich et al.,
2021). Statistical significance was determined using a Poisson
regression with a Holm-Sidak multiple correction procedure.

MultiFlow DNA damage assay processing and
analysis

At 4H and 24H sampling times, fresh complete labeling solution
was prepared; solution containing nuclei release solution, DNA stain,
RNase solution, ɣH2AX Alex Fluor® 647, phosphor-histone antibody
PE, and p53 antibody conjugated to fluorescein isothiocyanate (FITC)
(Litron Laboratories, Rochester, NY) was added (50 µL/well) to a fresh
96-well plate. Treated cells were gently resuspended and 25 µL/well
was mixed thoroughly with the labeling solution. The plate was
incubated for 30 min at room temperature shielded from light. The
cells were then analyzed via flow cytometry with the Miltenyi Biotec
MACSQuant® Analyzer 10 flow cytometer with an integrated 96-well
MiniSampler. Instrument settings followed the MultiFlow® Smart
Start Guide (Litron Laboratories, Rochester, NY) to detect
fluorescence emissions from fluorochromes FITC (in the
B1 channel), PE (in the B2 channel), propidium iodide (in the
B3 channel) and Alexa Fluor® 647 (in the R1 channel). The mixing
and fluidics parameters were as follows: sample mixing of 40 μL at a
mediummix rate, followed by a sample uptake volume of 20 μL, which
was analyzed at a medium flow rate. The fast mode was used to rinse
the probe between samples (Bernacki et al., 2016; Bryce et al., 2016).

The MultiFlow ® DNA Damage assay results were analyzed using
the analysis template provided by Litron Laboratories (Rochester, NY).
The γH2AX and p53 endpoints were measured based on their median
fluorescence intensity (i.e., mean channel fluorescence or MCF) relative
to the DMSO solvent control. The p-H3 and polyploidy endpoints were
measured based on their frequencies among all events (i.e., all 2n–4n
and polyploidy (8n) DNA content). The equations for calculating
γH2AX shift, nuclear p53 shift, % polyploidy, and % p-H3 positive
events are shown below. Results for graphical and statistical
representations were expressed as a relative fold-change from the
average plate-specific DMSO solvent control normalized to 1
(Bernacki et al., 2016; Bryce et al., 2016).

γH2AX shift � MCFof treated culture

MeanMCF of solvent control

Nuclear p53 shift � MCFof treated culture

MeanMCF of solvent control

%Polyploidy � # events polyploidy 8n( )DNAcontent

# events 2n, 4n andpolyploidyDNAcontent
x 100

%pH3 events � # events pH3positive 4n and greaterDNA content

# events 2n, 4n andpolyploidyDNA content
x 100

Latex microspheres were used as counting beads to determine
nuclear density. Cytotoxicity was determined using the Relative Nuclei
Count (RNC) equation, with cytotoxicity = 100%—RNC at 24H
(Bernacki et al., 2016; Bryce et al., 2016):
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RNC � Density of nuclei in treated culture

Density of nuclei inmean sovent control
x 100

Litron developed Global Evaluation Factors (GEF) to identify a
biologically significant increase in select biomarker levels. The
determined GEFs, expressed as fold-change (FC) increase over
solvent control, are as follows (Bryce et al., 2017).

• For clastogenic biomarkers: 4H γH2AX, 1.51 FC; 24H γH2AX,
2.11 FC; 4H p53, 1.40 FC; 24H p53, 1.45 FC.

• For aneugenic biomarkers: 4H p-H3, 1.71 FC; 24H p-H3,
1.52 FC; 24H polyploidy, 5.86 FC; 24H p53, 1.45 FC.

A clastogenic or aneugenic call required two successive
concentrations that met or exceeded the GEFs in at least 2 of the
4 respective MoA biomarkers. Chemicals that met or exceeded two
GEFs in a single non-cytotoxic concentration were designated as
“weak” responses. In cases where both clastogen and aneugen
biomarkers exceeded the GEF the MoA was considered pan-
genotoxic. In cases where less than two biomarkers met the GEFs,
the call was non-genotoxic. Exposure concentrations that resulted in
greater than 80% cytotoxicity were excluded from MoA classification.

Benchmark concentration modeling of TGx-
DDI biomarker genes

Gene expression data were used for BMCmodeling as described by
Buick et al. (2021). Briefly, the read counts were log2 normalized.
Groups where N = 1 were removed and filtered to exclude probes
with fewer than 5 reads. The log2 transformed data were run with the
BMDExpress V2.3 software following the guidelines outlined by the US
National Toxicology Program (NTP) Approach to Genomic Dose-
Response Modeling report (USNTP, 2018). The log2 data were
prefiltered using a Williams Trend Test applying a permutation
p-value cutoff <0.05 with 500 permutations and linear fold change
of ≥1.5. The pre-filtered data were analyzed using EPA BMDS
parametric models to derive BMCs. This included: the Exponential
2, 3, 4, and 5 models, Linear, 2° Polynomial, and the Restricted Power
(≥1). The benchmark response factor (BMR) was set to 1 standard
deviation. The “Best BMC” was selected based on the best-fit model
[i.e., model with the lowest Akaike Information Criterion (AIC)]. The
upper (BMCU) and lower (BMCL) 95% confidence limits of the BMCs
were calculated. The calculated gene BMCswere filtered and removed if:
the model fit was insufficient (p-value <0.1), BMC/BMCL ratio ≥20,
BMCU/BMC ≥20, or BMCU/BMCL ≥40. Applying a bootstrapping
method described in detail by Buick et al. (2021), the median BMC of
the TGx-DDI biomarker genes was derived to represent an overall TGx-
DDI BMC for each compound. The 95% confidence intervals were
calculated from the bootstrapped distribution of the BMC median.

Benchmark concentration modeling of
MultiFlow

®
and MicroFlow

®
endpoints

BMC modeling was done on test chemicals with positive
MultiFlow® and/or MicroFlow® calls. The modeling was performed
with the PROAST R package (V70.3) developed by the RIVM
(i.e., Dutch National Institute for Public Health and the

Environment). To model the continuous concentration-response
data, a single 5-parameter exponential model (y = a*[c(1−exp(−x/b)̂d)])
was applied (White et al., 2020). For the MicroFlow® assay, the %
induction of MN relative to test chemical concentration was modeled;
a BMR of 1.0 (i.e., 100% increase in response relative to control) was
applied (Long et al., 2018; White et al., 2020; Avlasevich et al., 2021).
For the MultiFlow assay, the fold change in response for each
biomarker (e.g., 4H and 24H p53; 4H and 24H ɣH2AX) relative to
test chemical concentration was modeled. A BMR of 0.5 (i.e., 50%
increase) was applied (Avlasevich et al., 2021). The lowest BMC of the
MultiFlow biomarkers was selected as the overall BMC.

ToxPi visualization

The calculated endpoint BMCs were integrated and converted into
a single visual profile for each compound using the Toxicological
Prioritization Index (ToxPi) software (v2.3) (Reif et al., 2013; Marvel
et al., 2018). The BMC, BMCL, and BMCU values for each compound
were formatted in Excel using the templates provided by ToxPi and
saved as a comma-separated value (csv) file. A value of 10,000 µM
(i.e., 10 mM) was entered when an infinite upper confidence interval
or a BMC could not be calculated for a particular endpoint; or if a
calculated BMC value was greater than the actual top passing/valid
concentration. Differential weighting was assigned to the slices. TGx-
DDI and MN were assigned 1/3 of the profile each; the four p53 and
ɣH2AX timepoints were assigned 1/12 of the profile each to make up
1/3. The BMCL and BMCU values were assigned to their respective
slices and were −log10 transformed. The ToxPi analysis was run to
derive ToxPi scores. First, the BMCL and BMCU values for each
endpoint were summed and transformed into a single slice score for
each compound. This was achieved by normalizing the summed BMC
values to a [0, 1] interval by dividing by the slice maximum (USNRC,
2014). Thus, in this case, values closer to 1 (i.e., maximum unit score)
denoted a higher potency. Alternatively, values closer to 0 (closer to
the origin) denoted a lower potency; and values that did not extend
from the origin were denoted as inactive. The overall ToxPi score was
calculated by combining all weighted slice scores for each compound
and the 95% confidence intervals were calculated. The ToxPi
hierarchical clustering algorithm was applied to cluster like-
chemical ToxPi profiles. ToxPi analysis figures (i.e., profiles, rank
plot, and hierarchical clustering) were downloaded.

Results

Human lymphoblastoid TK6 cells were exposed to ten data-poor
chemicals across a range of concentrations alongside solvent controls,
as well as three reference control chemicals. Genotoxicity was assessed
using three in vitro assays: 1) the TGx-DDI transcriptomic biomarker,
2) the in vitroMicroFlow® assay, and 3) the MultiFlow® DNA Damage
assay. Potency ranking for chemical prioritization was conducted on
chemicals with positive hazard flags using BMC modeling and
compared across the assays. A single genotoxicological profile
integrating all endpoint BMCs was created using the ToxPi software.

Prior to assessing genotoxicity, concentration ranges were
identified using viability studies ± S9 to select top concentrations
for each assay. Cell viability was quantified at 24 h via propidium
iodide fluorescence analysis (Supplementary Figure S1). Both positive
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controls, EPEG and DMBA, caused a decline in viability; whereas, the
negative control, DMANN, showed no decrease in viability. NSACB
chemicals #1–9 caused concentration-dependent decreases in viability
both ± S9. NSACB #10 did not impact viability up to the highest
concentration of 10 mM.

TGx-DDI biomarker classification

To classify test compounds as DDI or non-DDI using the TGx-
DDI biomarker, transcriptional profiles were generated using
TempO-Seq™ S1500 + sequencing. A trio of independent

statistical analyses, 2-DC, PCA, and NSC-PA, were used to derive
the overall TGx-DDI classifications (Figure 1; Supplementary
Figures S2, S3). To ensure a conservative assessment of genotoxic
potential, if one of the analyses classified a test compound as DDI,
the overall call given was DDI. The biomarker correctly classified the
three control chemicals: DMBA and EPEG were classified as DDI;
the negative control DMANN was classified as non-DDI.

Eight out of ten NSACB compounds were identified as DDI, with
varying potencies. NSACB compounds #5 and #7 showed the
strongest responses. The trio of statistical analyses identified
NSACB #5 as DDI across all concentrations (2-DC was
inconclusive at the highest four concentrations); and NSACB

FIGURE 1
TGx-DDI classification of NSACB data-poor compounds. The heatmap on the left depicts the 28 reference chemicals used as a training set to generate
the biomarker. The color scale indicates the average gene expression fold changes of two replicates relative to solvent control: up-regulated genes are shown
in red, down-regulated genes are shown in green, genes with no change are shown in black. Three analyses: 1) 2-dimensional hierarchical clustering (2-DC),
2) principal component analysis (PCA), and 3) nearest shrunken centroid probability analysis (NSC-PA) were used to determine classification probabilities
shown for all treatment conditions using red (DDI), blue (non-DDI), and grey (inconclusive) boxes. The overall calls are also shown at the top of each column:
“+” signifies a positive DDI call, “−” signifies a non-DDI call. D1 represents the lowest concentration tested, D6 the highest. Cytotoxic concentrations (<40%
relative survival) were removed from the analysis. The results are presented −S9 for compounds that had a positive DDI call in −S9 conditions (i.e., #7, 9, EPEG).
All other results are presented +S9 (i.e., #1, 2, 3, 4, 5, 6, 8, 10, DMBA, DMANN). Additional results can be found in Supplementary Figure S2.
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FIGURE 2
In vitroMicroFlow

®
assay results for tenNSACB data-poor substances (#1–10). Fold-change in %micronucleus (% FCMN) compared to vehicle control is

depicted by black diamonds. The dashed red line shows the threshold (i.e., 2.5-fold increase in %MN) required to yield a positive classification. Statistically
significant (p < 0.05) increases in %MN in comparison with the concurrent vehicle control are designated by an asterisk (*). Cytotoxic concentrations (<40%
viability) were removed from the analysis. Error bars denote standard deviation from mean. N = 2. For comparison, the S9 condition presented for each
compound is as denoted in Figure 1. Additional results can be found in Supplementary Figure S4.
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#7 was DDI across all concentrations except the lowest. The strength
of this response can be visualized in Figure 1, i.e., when comparing the
similarity of the heatmaps of NSACB #5 and #7 to those DDI
compounds in the training set. NSACB #9 had a moderate DDI
response; the 2-DC statistical analysis identified #9 as DDI for the
majority of concentrations, but the NSC-PA and PCA analyses only
identified this compound as DDI at the highest non-cytotoxic
concentration. NSACB compounds #1, 2, 3, 4, and 8 were also
classified as DDI. However, these were considered weaker DDI
responses as these compounds were only positive at the highest
non-cytotoxic concentrations and the DDI calls were not consistent
across the statistical analyses (with the exception of #3). NSACB
compounds #6 and 10 were classified as non-DDI; all three analyses
yielded non-DDI calls across all concentrations.

In vitro MicroFlow
®
assay classification

Chromosome damage was assessed using the in vitro MicroFlow®

assay for the test chemicals (Figure 2, Supplementary Figure S4). A
positive result was designated by at least one concentration that
induced >2.5 fold-increase in %MN and was statistically significant
(p < 0.05) compared to vehicle controls. Both positive controls, EPEG
and DMBA, exhibited significant fold-increases in %MN, whereas this
was not observed with the negative control DMANN (Supplementary
Figure S4).

All ten NSACB chemicals met the classification criteria for a
positive call in at least one S9 condition (i.e., with/without S9)
(Figure 2; Supplementary Figure S4). The majority were positive
without S9, but #8 and #10 only tested positive with S9 conditions.
NSACB #1, 5, 6, 7, 8, and 9 showed a robust fold-increase in %MN
with a clear concentration-response relationship. NSACB #2 and
#3 displayed variable responses with a significant increase observed
only at the highest concentration. NSACB #4 and #10 exhibited a
concentration-response pattern at the lowest concentrations before
decreasing or plateauing at the higher concentrations.

MultiFlow
®
DNA damage assay classification

To provide insight into the MoA, the test compounds were
assessed with the MultiFlow® assay. The assay data were visualized
using radar plots that depict the fold changes in the MultiFlow®

biomarkers following chemical exposure (Figure 3, Supplementary

Figure S5). If a test chemical induced a significant increase in two out
of four clastogen-specific biomarkers (i.e., 4H and 24H p53, and
ɣH2AX), a clastogenic MoA was predicted. Similarly, significant
responses in two out of four aneugen-specific biomarkers (4H
p-H3, 24H p53, p-H3, and polyploidy) predicted an aneugenic
MoA. If both of these criteria were met, a pan-genotoxic MoA was
predicted. If none of these criteria were met the chemical was classified
as non-genotoxic.

The control chemicals produced the expected results
(Supplementary Figure S5). Positive controls, EPEG and DMBA,
had concentration-dependent increases in the clastogen biomarkers
(EPEG: 4H p53, 24H p53, and 4H ɣH2AX; DMBA: 4H & 24H
ɣH2AX).

In total, six of the ten NSACB compounds were classified as
genotoxic using the MultiFlow® assay. NSACB compounds #2, 3, 5, 7,
and 9 exhibited concentration-dependent increases in MultiFlow®
clastogen-specific biomarkers and were therefore classified as
clastogens (Figure 3). NSACB #3, 5, and 7 induced responses in
4H p53 and 4H ɣH2AX; NSACB #2 induced responses in 4H
ɣH2AX and 24H p53; and NSACB #9 induced responses in 4H
and 24H ɣH2AX. NSACB #2, 5, and 9 had the most robust
increases, whereas NSACB #3 and 7 had more moderate responses.
NSACB #4 was the only test chemical classified as a pan-genotoxicant.
This compound displayed significant increases in clastogen
biomarkers 4H p53 and 4H ɣH2AX, as well as aneugen marker 4H
p-H3 and pan-genotoxic biomarker 24H p53. The remaining
compounds, NSACB #1, 6, 8, and 10 were classified as non-
genotoxic. Three of these compounds (#1, 6, and 10) had a
moderate to robust response increase in one of the aneugenic
biomarkers (i.e., 4H p-H3) at more than one concentration.
However, without an increase in any other biomarker, an
aneugenic call could not be made.

Summary of hazard calls

An overview of the TGx-DDI, MicroFlow®, and MultiFlow®

classification calls for the test chemicals is depicted in Table 3. The
control chemicals performed as expected. EPEG and DMBA were
positive across all three assays; DMANN tested negative in all three
assays. For the data-poor compounds, eight out of ten (NSACB #1, 2,
3, 4, 5, 7, 8 and 9) were classified as DDI by the TGx-DDI
transcriptomic biomarker in at least one S9 condition. In contrast,
all ten NSACB compounds were positive for MN induction in at least

TABLE 3 Summary classifications for the ten data-poor compounds and control chemicals.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 EPEG DMBA DMANN

TGx-DDI -S9 - + - + - + -

+S9 + + + + + - + + + - + -

MicroFlow® -S9 + + + + + + + - + - + + -

+S9 + + + + + + + + + + + + -*

MultiFlow® -S9 - - + C + C + C - + C - + C - + C - -

+S9 - + C + C + C/A + C - + C - + C - + C + C -

The classifications are as follows for each assay: red boxes with a “+” signify a positive call, blue boxes with a “-” signify a negative call, and dark grey boxes were not tested. For the MultiFlow® DNA,
Damage assay C, clastogen; A, aneugen; C/A, pan-genotoxicant. *Data leveraged from Litron Laboratories.
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FIGURE 3
MultiFlow

®
DNA Damage assay classification results for ten NSACB data-poor substances (#1–10). Each radar plot shows the seven biomarkers

predicting the predominant mode of action (MoA) for each chemical. Clastogen MoA biomarkers are on the right of each radar plot: 4H p53, 4H ɣH2AX, 24H
p53, and 24H ɣH2AX. Aneugen MoA biomarkers are on the left of each radar plot: 4H p-H3, 24H p-H3, 24H Polyploidy, and 24H p53. The biomarker data are
expressed as a fold-increase over the mean vehicle control for each non-cytotoxic concentration (>20% viability) represented by lines with different
colour intensities (as shown in the legend). The line colour in each plot represents the classification call: clastogens are red, non-genotoxicants are blue, and
pan-genotoxicants are green. Chemicals meeting or exceeding the Global Evaluation Factors (GEFs) in at least one concentration in two MoA-specific
biomarkers were classified as aneugenic or clastogenic, or classified as pan-genotoxic if both the aneugen and clastogen criteria were met. For comparison,
the S9 condition presented for each compound is as denoted in Figures 1, 2. Additional results can be found in Supplementary Figure S5.

Frontiers in Toxicology frontiersin.org11

Fortin et al. 10.3389/ftox.2023.1098432

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1098432


one S9 condition. Using MultiFlow®, five were classified as clastogens
and one was classified as a pan-genotoxicant in at least one
S9 condition.

Overall, six compounds (i.e., NSACB #2, 3, 4, 5, 7, and 9) were
positive in all three assays. NSACB #1 and #8 were positive in the TGx-
DDI and MicroFlow® assays, but were classified as non-genotoxicants
by the MultiFlow® assay. The remaining compounds, NSACB #6 and
#10, only tested positive in theMicroFlow® assay, and were classified as
non-DDI and non-genotoxicants by the TGx-DDI and MultiFlow®
assays, respectively.

Independent BMC analysis of TGx-DDI
biomarker genes, MicroFlow

®
and MultiFlow

®

assay endpoints

In addition to hazard calls, quantitative analyses of genotoxicity
data can be applied for chemical potency ranking and subsequent
prioritization. To assess the relative potency of the NSACB
compounds with positive hazard flags, we conducted BMC
modeling to derive BMC values for the TGx-DDI biomarker gene
set, and the MicroFlow® and MultiFlow® assay endpoints

FIGURE 4
Comparison of potency rankings derived from each assay based on the respective Benchmark Concentrations (BMCs) for the NSACB compounds with
concordant positive hazard flags. (A) The potency ranking from the TGx-DDI transcriptomic biomarker based on the bootstrappedmedian gene BMC, (B) the
ranking from the in vitroMicroFlow

®
assay, and (C) the potency ranking fromMultiFlow

®
assay based on the lowest clastogen biomarker BMC. The BMCU and

BMCL represent the upper and lower 95% confidence limits of the BMC, respectively.
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(Supplementary Figure S6). To evaluate the consistency of the potency
rankings derived from each assay, the NSACB compounds with
concordant positive hazard calls (i.e., #2, 3, 4, 5, 7, and 9) were
compared (Figures 4A–C). The most to least potent chemicals based
on the TGx-DDI BMC ranking was (Figure 4A): EPEG (lowest median
gene BMC) > DMBA > NSACB 7 > NSACB 4 > NSACB 2 > NSACB
3 > NSACB 9 > NSACB 5 (greatest median gene BMC). Two main
groupings for the NSACB compounds can be observed. The first
group, NSACB #7, 4, 3, and 2, have confidence intervals (CIs) that
overlap and are thus are not significantly different from each other.
The second group, NSACB #9 and #5, also have CIs that overlap, but
are in a distinct, less potent, group from NSACB #7, 4, 3, and 2.
MicroFlow® BMC analysis yielded a highly similar potency ranking
(Figure 4B): EPEG > DMBA > NSACB 7 > NSACB 3 > NSACB 4 >
NSACB 2 > NSACB 9 > NSACB 5. However, due to the overlapping
confidence intervals, all the data-poor compounds are not significantly
different from each other. Finally, MultiFlow® BMCs were evaluated

and the lowest BMC of the clastogen biomarkers was selected as the
point of departure (Figure 4C). This analysis revealed the following
potency ranking: EPEG > DMBA > NSACB 7 > NSACB 3 > NSACB
4 >NSACB 2 >NSACB 9 >NSACB 5. As with TGx-DDI, two distinct
groups can be observed for the data-poor compounds. 1) NSACB #7,
3, 4, and 2 make up one group with overlapping CIs, and 2) NSABC
#9 and 5, also with overlapping CIs, make up a distinct, less potent,
group. Overall, BMC modeling of the endpoints in the proposed
in vitro testing strategy yielded nearly identical potency rankings for
the genotoxic NSACB compounds.

Integration of concentration-response data
for a singular chemical prioritization strategy

The ToxPi software was used to integrate all endpoint BMC
metrics into a single score; the scores were subsequently used to

FIGURE 5
ToxPi visualization of multiplexed BMCs for the NSACB compounds with concordant positive hazard flags. (A) ToxPi score rankings and profiles for the
data-poor compounds. For the ToxPi profiles, the distance of each slice from the origin indicates the slice score and endpoint potency (i.e., −log10 BMC).
Slices represent the following endpoints: teal is TGx-DDI BMC, blue is MicroFlow

®
BMC, pink and purple are the MultiFlow

®
BMCs (i.e., dark pink is 24H p53,

light pink is 4H p53, dark purple is 24H ɣH2AX, light purple is 4H ɣH2AX). Lower and upper bound confidence intervals are indicated by lighter shaded
areas at the periphery of each slice. The width of each slice indicates the assigned endpoint weight. The TGx-DDI, MicroFlow

®
, and combined MultiFlow

®

endpoints each represent 1/3 of the profile. (B) Hierarchical clustering of the ToxPi profiles. The ToxPi algorithm groups substances with similar toxicological
profiles.
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rank the NSACB compounds and visualize mechanistic information
regarding their genotoxic hazards (Figure 5; Supplementary Figure
S7). With respect to the latter, the analyses generated toxicological
profile graphics for each compound. The endpoints are represented by
the coloured pie slices; the radius of each slice denotes the relative
effect size expressed as −log10 BMC. Thus, a lower (i.e., more potent)
BMC is indicated by greater protrusion from the origin. To compare to
the independent endpoint BMC rankings displayed in Figure 4, the
compounds with concordant positive hazard flags were first ranked
based on their overall ToxPi scores for all endpoints (Figure 5A). The
higher the overall ToxPi score, the more potent the compound. In this
case, the most potent to least potent ranking was: EPEG > DMBA >
NSACB 7 > NSACB 4 > NSACB 2 > NSACB 3 > NSACB 9 > NSACB
5. More specifically, based on the presented ToxPi profile (Figure 5A),
EPEG is the most potent for five of the six endpoints examined: TGx-
DDI, MN, 4H ɣH2AX, 24H p53 and 4H p53. In contrast, except for a
small 4H p53 slice, NSACB #5 had almost no slices protruding from
the center. The majority of the compounds, with the exception of
NSACB #4, 2, and 9, lacked a 24H ɣH2AX slice. Comparisons of
multiplexed ToxPi profiles (Figure 5B) showed that compounds #7, 3,
4, and 2 clustered together on a single branch; NSACB #9 and
5 clustered separately. This clustering is similar to the compound
groupings observed in Figures 4A, C.

An additional ToxPi analysis was conducted for all NSACB
compounds (Supplementary Figure S7), including those with
discordant results (i.e., #1, 6, 8 and 10). In this case, the most
potent to least potent ranking was: EPEG > DMBA > NSACB 7 >
NSACB 4 > NSACB 1 > NSACB 2 > NSACB 3 > NSACB 8 > NSACB
9 > NSACB 6 > NSACB 5 > NSACB 10. The ToxPi profile of
compound #1 clustered with #7, 3, 4 and 2, while the profiles of
compounds #6, 8, and 10 clustered with #9 and 5.

Discussion

TGx biomarkers are envisioned to provide a powerful NAM for
modernizing toxicological testing by enabling rapid extraction of
mechanistic information from data-rich transcriptomic datasets (Li
et al., 2017). Preliminary data support that pairing TGx biomarkers,
such as TGx-DDI, with additional markers of DNA damage (e.g.,
in vitro MN assay and high-throughput CometChip®) is a highly
effective approach for accurate and efficient genotoxicity assessment
(Buick et al., 2017; Buick et al., 2020; Buick et al., 2021). Flow-
cytometry based assays have been developed to detect and quantify
increases in markers of genotoxicity (i.e., MN, p53, ɣH2AX, p-H3,
polyploidy). The integrated analysis of these endpoints has
demonstrated efficacy in enhanced genotoxicity assessment (Smart
et al., 2020; Avlasevich et al., 2021). Herein we combined the TGx-DDI
transcriptomic biomarker in high-throughput format with the
MicroFlow® and MultiFlow® DNA damage assays to explore
application as an integrated test strategy for genotoxicity
assessment of data-poor compounds. Human-relevant TK6 human
lymphoblastoid cells were exposed to 10 data-poor test chemicals
prioritized by Health Canada’s NSACB in conjunction with 3 control
chemicals. We established hazard calls and potency ranking for each
assay and then explored concordance and integration of the tests. Our
results indicate that all ten NSACB compounds were positive in at least
one assay. Six NSACB compounds (#2, 3, 4, 5, 7, and 9) had
concordant results between all three assays, and four were

discordant. NSACB #1 and #8 were positive in the TGx-DDI and
MicroFlow® assays, but were identified as non-genotoxicants by the
MultiFlow® assay. NSACB #6 and #10 tested positive only in the
MicroFlow® assay and were classified as non-DDI and non-
genotoxicants by the TGx-DDI and MultiFlow® assays. Though
they provided critical insight individually, our work demonstrates
the value of integrating these assays to strengthen confidence in hazard
identification and chemical potency ranking.

To establish that the assays were performing as expected, the
results of three reference control chemicals were examined. EPEG was
identified as positive by the TGx-DDI biomarker, had significant
concentration-dependent fold-increases in MN, and induced the
clastogen biomarkers 4H/24H p53 and 4H ɣH2AX. As a
topoisomerase II inhibitor, EPEG inhibits DNA synthesis and
causes double-strand breaks (Montecucco et al., 2015). Similarly,
the positive control chemical DMBA displayed a strong TGx-DDI
response, MN induction, and increases in the clastogen biomarkers 4H
and 24H ɣH2AX. DMBA is metabolized into 3,4-diol-1,2-epoxide that
reacts with DNA to form bulky adducts (RamaKrishna et al., 1992);
DMBA has been shown to induce chromosome damage in vitro
(Matsushima et al., 1999; Von Der Hude et al., 2000) and in vivo
(De Boeck et al., 2005). In contrast, the negative control, DMANN, did
not yield any positive calls in any of the assays. It is well established
that DMANN is non-genotoxic; and it is a negative control for
assessing the performance of new or improved genotoxicity tests
(Kirkland et al., 2016). Thus, the results obtained by the test
strategy were in line with expectations based on the positive and
negative controls included in the study.

We then explored the hazard calls made for the data-poor
NSACB compounds. Eight out of ten (NSACB #1, 2, 3, 4, 5, 7,
8, and 9) were classified as DDI; all ten were positive for MN
induction; five were identified as clastogens (NSACB #2, 3, 5, 7, 9);
and one was identified as a pan-genotoxicant (NSACB #4) in at
least one S9 condition. Six of our data-poor compounds (NSACB
#2, 3, 4, 5, 7, and 9) had concordant results; i.e., DDI, MN inducing,
and clastogenic calls for the TGx-DDI, MicroFlow®, MultiFlow®

assays, respectively. Thus, we conclude that these compounds are
genotoxic in vitro, causing DNA damage via a clastogenic MoA.
Although these are data-poor compounds, there are a few
supporting reports for these findings. For example, NSACB
#7 caused a statistically significant and biologically relevant
increase in the frequency of %MN with S9 (OECD 487) and an
equivocal result without S9 (SCCP, 2006). Similarly, we observed a
stronger %MN frequency in the +S9 condition at the highest
concentration (Supplemental Figure S4). NSACB #5 and 9 were
positive in previous studies using the in vitro mammalian
chromosomal aberration test (OECD 473) (SCCP, 2007; SCCS,
2013). NSACB #5 was clastogenic following a short-term (6H)
treatment with S9 and after continuous treatment (24H) without S9
(SCCS, 2013). This aligns with our MultiFlow® results showing a
strong response in clastogen-related biomarkers in both
S9 conditions for multiple concentrations (i.e., 4H ɣH2AX, 4H
p53). NSACB #9 induced structural chromosomal aberrations in
the presence of S9 and the results were equivocal without S9 (SCCP,
2007). In our MultiFlow® results, we observed strong fold-increases
in clastogenic biomarkers (i.e., 4H and 24H ɣH2AX) in both
S9 conditions. Overall, our results contribute to the weight-of-
evidence for the genotoxicity of these compounds and provide new
evidence for those where little toxicological data, if any, exist.
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Conversely, there were four instances of discordant test results
across the three assays. Two compounds, NSACB #6 and #10, were
identified as non-DDI by TGx-DDI but yielded positive results in the
MN test (NSACB #10 + S9 only, NSACB #6 −S9 and +S9). Since MN
can result from mechanisms affecting cell division/mitotic machinery
leading to aneuploidy (i.e., aneugenicity) (Luzhna et al., 2013), we
speculated that these compoundsmay be aneugens. An example of this
is colchicine, a known aneugenic agent, which is positive for MN but
negative (non-DDI) by TGx-DDI (Buick et al., 2020). An advantage of
integrating the MultiFlow® assay into the test strategy is that it can
differentiate clastogenic from aneugenic mechanisms. The MultiFlow®

assay classified both NSACB #6 and #10 as non-genotoxicants. Thus,
the MultiFlow® results suggest that NSACB #6 and #10 are likely
irrelevant positives in the MN test. It is well established that
genotoxicity tests in mammalian cells have low specificity in
predicting genotoxic effects manifested in vivo, often reporting
irrelevant positives that do not pose an appreciable mutagenic risk
in humans (Kirkland et al., 2007; Guyton et al., 2009; Dearfield et al.,
2011). Indeed, Kirkland et al. (2005), Kirkland et al. (2006) determined
that mammalian in vitro chromosome damage tests in particular had
specificity for rodent carcinogenicity of <45%. This could be due to
several factors. For example, at high concentrations some chemical
agents induce mammalian cell death, and certain types of cell death
(e.g., apoptosis) cause nuclear condensation and fragmentation as part
of this process. These nuclear fragments can be detected as
micronuclei, even though they were formed as a result of cellular
metabolism, and not as a direct DNA-damaging mechanism induced
by chemical agents (Williams et al., 1974). Apoptosis is a known
confounder for the micronucleus assay that can produce an irrelevant
positive in vitro genotoxicity call (Avlasevich et al., 2021). Known
apoptogens such as carbonyl cyanide m-chlorphenyl hydrazone
(CCCP), brefeldin A, and thapsigargin, have been shown to induce
MN in the MicroFlow® assay, but were correctly classified as non-
genotoxicants by a follow-up MultiFlow® assay; thus, resulting in an
improved assay specificity (Avlasevich et al., 2021). Moreover, the
TGx-DDI transcriptomic biomarker was originally designed to
provide biological relevance as a complement to positive
chromosome damage assay results by identifying changes in gene
expression that predict a DDI mechanism (Li et al., 2017). In
subsequent works, Li et al. (2017) have demonstrated the utility of
the biomarker for this purpose. When ten known irrelevant positive
compounds that were positive in the in vitro chromosome damage
assay were tested with the TGx-DDI biomarker, TGx-DDI correctly
identified 9 out of 10 compounds as negative. Therefore, it is plausible
from our results that NSACB #6 and #10 are irrelevant positives
inducing in vitro positive MN as a result of apoptosis.

The last two compounds, NSACB #1 and #8, were identified as
weakly DDI by TGx-DDI (both in +S9 conditions only) and MN-
inducing by MicroFlow® (#1 in both S9 conditions, #8 only +S9).
However, they were both also identified as non-genotoxicants by the
MultiFlow® assay. Given that both the TGx-DDI biomarker and
MultiFlow® assay are DNA damage reporter assays that rely on
transcriptional and cellular changes, respectively, in DNA damage
response pathways (i.e., p53 and related genes), we expected to see a
high correlation in hazard calls between these two assays. Of the 13 test
chemicals, 11 (i.e., 85%) had concordant calls between these two
assays; NSACB #1 and #8 are the only two where this was not the case.
However, it is important to note the weakness of the DDI calls for
these two compounds. NSACB #1 had one DDI call at the highest

concentration in the NSC-PA only. NSACB #8 had two DDI calls at
the highest concentration by NSC-PA and PCA. In addition, the PCA
call was visibly borderline, with the concentration grouping with the
training set DDI compounds just left of the classification line on the
PCA plot (Supplemental Figure S3K). Moreover, in both cases the
highest concentration analyzed was very close to the viability
threshold of 40% (i.e., 43% for NSACB #1 +S9, and 46% for
NSACB #8); thus, high cytotoxicity could be leading to a
misclassification. Alternatively, the discordant results between TGx-
DDI andMultiFlow® could be due to different assay sensitivities. Non-
etheless, both compounds induced strong concentration-dependent
increases in %MN. Therefore, although these results are somewhat
ambiguous, in order to be conservative further analyses should be
considered to explore their DDI potential. This could include
mutagenicity testing in vitro; alternatively, their transcriptomic
profiles could be examined for further mechanistic insights. One
advantage of using the TempO-SeqTM assay for the TGx-DDI
classification is that the transcriptomic dataset is not limited to the
64 biomarker genes; there are a total of 2,730 genes in the TempO-
Seq™ S1500 + set (Mav et al., 2018). Thus, applying high-throughput
transcriptomic test strategies, such as the one developed by Harrill
et al. (2021), could also be used to identify biological perturbations via
pathway analyses and derive transcriptional biological pathway
altering concentrations (BPACs) to provide more insight into the
toxicity of NSACB compounds #1 and #8.

In addition to determining qualitative genotoxicity calls
(i.e., hazard identification), there has been a growing momentum
in quantitative analyses of genotoxicity concentration-response data
to derive potency metrics for potency ranking and regulatory decision-
making (Johnson et al., 2014; MacGregor et al., 2015; White et al.,
2020). BMC modeling aims to determine the concentration required
to elicit a predefined change in response in relation to background.
Herein, we investigated the consistency of potency rankings based on
BMC analysis across these in vitro assays. In order to directly compare
the rankings we limited our analysis to the six compounds and two
controls that were positive across all three assays. First, we derived an
overall BMC for the TGx-DDI biomarker by calculating a bootstrap
BMC confidence interval. Previous work has established that
transcriptomic BMD values correlate well with those from apical
endpoints in vivo (Thomas et al., 2011; Thomas et al., 2013;
Farmahin et al., 2017). Moreover, as shown by Buick et al. (2021),
the bootstrap median BMC enables more biomarker genes to be
modeled, allows for the generation of 95% confidence intervals,
and resulted in identical potency rankings between TGx-DDI and
the in vitro high-throughput comet assay for six compounds. Second,
to calculate an overall MultiFlow® BMC, the four clastogen biomarkers
(i.e., 4H/24H p53, 4H/24H ɣH2AX) were modeled for each
compound. The biomarker with the lowest BMC was selected as
the BMC for potency ranking since this would represent the most
sensitive, and thus, conservative, endpoint. Using this approach, the
potency ranking for all the assays were nearly identical. The only
exception was NSACB #3, which was slightly more potent in the TGx-
DDI assay, surpassing NSACB #4 and #2. However, the confidence
intervals overlapped for these three compounds and thus they were
not significantly different from each other. Two main groupings
(i.e., NSACB #7, 4, 2, 3 and NSACB # 9, 5) were observed for both
the TGx-DDI andMultiFlow® chemical rankings. For MicroFlow®, the
confidence intervals were larger resulting in one group encompassing
all data-poor compounds that were not significantly different from
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each other. Due to the differences in confidence interval ratios, the
TGx-DDI and MultiFlow® assays provided better potency
discrimination compared to the MicroFlow® assay. Overall,
independent quantitative analyses derived concordant potency
rankings and groupings across the assays.

It should be noted that the quantitative metrics (i.e., BMCs)
generated in this study can be converted into administered
equivalent doses (AEDs) by applying in vitro to in vivo
extrapolation (IVIVE) using high-throughput toxicokinetic (HTTK)
models. AED values represent the estimated oral dose required to
generate a steady state concentration in the plasma (i.e., in vivo) that is
equivalent to the genotoxic concentration in vitro. The values can be
employed to calculate margin of exposure values (e.g., bioactivity
exposure ratios (BERs)) that can be used in risk assessment (Kuo et al.,
2022). In this study, a different benchmark response (BMR) was
applied to each assay making it difficult to directly compare the
BMC values derived for each compound in order to select one for
IVIVE modeling. Generally, the BMC values derived from the TGx-
DDI and MicroFlow® assays were similar and markedly more
conservative than those derived from the MultiFlow® assay. Thus,
for each compound, AEDs could be determined for all BMCs and used
to calculate and display a range of BER values. Although, as the
compounds studied are data-poor, it may be challenging to derive
AEDs and BERs in this case. HTTK data would likely need to be
generated from in vitro plasma protein binding and metabolic
clearance assays to predict in vivo effects (Judson et al., 2014).
Moreover, it is not clear if there would be enough exposure
information on these compounds to derive BERs for risk
assessment activities.

As modernized in vitro test strategies are being developed and
applied for qualitative and quantitative analysis there is a growing
need to supplement this work with new approaches that combine and
interpret the large amounts of data generated for decision making.
Prioritization software tools, such as ToxPi, that combine results from
multiple data streams and reduce it to one metric have been used for
this purpose. Avlasevich et al. (2021) explored the integration of
quantitative BMC modeling with the ToxPi software to combine
and visualize concentration-response data from MultiFlow® and
MicroFlow® endpoints to derive a unitless ToxPi score for a
singular chemical prioritization strategy. We applied a similar
approach to our genotoxicity assessment by aggregating all
endpoint BMC metrics into ToxPi scores to rank the NSACB
compounds and visualize their genotoxic hazards. To adequately
compare to the individual assay potency rankings, only the
concordant positive compounds were modeled (Figure 5).
Remarkably, we observed a highly similar ToxPi pattern to the
individual assay potency rankings. EPEG and DMBA were the
most potent and the NSACB compound rankings were identical to
the TGx-DDI assay ranking. It is important to note that we eliminated
the 24H ɣH2AX endpoint for many compounds. This is due to a lack
of a robust response in this endpoint resulting in an incalculable BMC
or infinite BMCU; thus, for a meaningful ToxPi score comparison it is
important to have a set of chemicals that elicit robust responses for
each endpoint.

It is important to highlight one major caveat with the ToxPi
approach. For each analysis, the ToxPi scores are derived as a relative
comparison of the compounds in the dataset. Thus, each score is only
meaningful in the context in which it was produced (USNRC, 2014).
Consequently, comparing ToxPi scores from separate analyses with

different sets of compounds would be misleading; a new analysis
would need to be completed with all the compounds in question to
accurately compare their potencies.

For the test strategy investigated in this study to be applied for
further screening of data-poor compounds, it will first be essential
to establish scientific confidence in this NAM-based approach for
regulatory acceptance. Increasing numbers of new testing methods
are being developed to improve chemical (geno) toxicological
assessment; however, there is a growing bottleneck when it
comes to implementation of these methods for risk assessment
activities. Traditional validation processes, including the OECD
Guidance Document (OECD GD 34) on the Validation and
International Acceptance of New or Updated Test Methods for
Hazard Assessment (OECD, 2005) can be time-consuming and
complicated to implement. Thus, there is growing recognition that
updated frameworks, such as the ones described by van der Zalm
et al. (2022) and Parish et al. (2020), are urgently needed to
increase confidence in NAMs, thereby supporting accelerated
regulatory uptake that is nevertheless aligned with the key
principles employed for traditional validations (Parish et al.,
2020; van der Zalm et al., 2022). As such, in this case study we
have defined and demonstrated the context-of-use for the
proposed integrated NAM-based test strategy described herein
as the screening of data-poor compounds for genotoxicity hazard
identification and prioritization. Future work will need to conduct
technical characterization to assess the performance
(i.e., accuracy) and reproducibility of the multiplexed NAM, as
well as to establish human relevance of the endpoints examined
[e.g., endpoints relevant to adverse outcome pathways (AOPs)].
Performance studies are underway within the GeneTox21 research
program to evaluate the proposed integrated NAM-based test
strategy (in addition to three other modernized in vitro assays)
with four classes of reference compounds with diverse
mechanisms.

In summary, this study demonstrates that the integration of an
established transcriptomic assay (i.e., TGx-DDI transcriptomic
biomarker) and two flow cytometry-based assays (MultiFlow®

DNA Damage Assay and in vitro MicroFlow®) enabled an
effective in vitro-only assessment of genotoxicity and revealed
detailed mechanistic insights for ten data-poor compounds that
were prioritized for evaluation by in silico screening. The
considerable genotoxicity data generated in this study will provide
regulators with additional information regarding the hazard of these
data-poor NSACB compounds. Moreover, comparison of BMC
values derived from modeling concentration-response data
enabled potency ranking of these compounds for further
prioritization. Ultimately, this work applies a modernized NAM-
based approach for effective genotoxicity assessment, including
chemical prioritization for further regulatory scrutiny.
Importantly, the result of this work can be used to assess these
assays and the proposed test strategy by applying a NAMs confidence
framework, a critical step in order to advance adoption and
implementation of NAMs for chemical risk assessment.

Data Availability Statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession

Frontiers in Toxicology frontiersin.org16

Fortin et al. 10.3389/ftox.2023.1098432

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1098432


number(s) can be found below: https://www.ncbi.nlm.nih.gov/geo/,
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