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Multimodal bipedal locomotion
generation with passive dynamics
via deep reinforcement learning

Shunsuke Koseki*, Kyo Kutsuzawa, Dai Owaki and

Mitsuhiro Hayashibe

Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai,

Japan

Generating multimodal locomotion in underactuated bipedal robots requires control

solutions that can facilitate motion patterns for drastically di�erent dynamical modes,

which is an extremely challenging problem in locomotion-learning tasks. Also, in

suchmultimodal locomotion, utilizing bodymorphology is important because it leads

to energy-e�cient locomotion. This study provides a framework that reproduces

multimodal bipedal locomotion using passive dynamics through deep reinforcement

learning (DRL). An underactuated bipedal model was developed based on a passive

walker, and a controller was designed using DRL. By carefully planning the weight

parameter settings of the DRL reward function during the learning process based on a

curriculum learning method, the bipedal model successfully learned to walk, run, and

perform gait transitions by adjusting only one command input. These results indicate

that DRL can be applied to generate various gaits with the e�ective use of passive

dynamics.

KEYWORDS

bipedal walking and running, gait transition, deep reinforcement learning, underactuated

robot, embodiment

1. Introduction

Humans exhibit multimodal gait patterns such as walking, running, skipping, and jumping

(Diedrich and Warren, 1995; Alexander, 1996; Minetti and Alexander, 1997). Moreover, the

gait transition between walking and running is observed at the speed boundaries, known as the

preferred transition speed (PTS) (Sharbafi and Seyfarth, 2017). With the PTS as the boundary,

walking at low speeds and running at high speeds are gaits with optimal energy efficiency in

each speed domain (Diedrich andWarren, 1995; Alexander, 1996; Minetti and Alexander, 1997;

Srinivasan and Ruina, 2006; Sharbafi and Seyfarth, 2017). To achieve such situation-dependent

multimodal bipedal locomotion, not only neural control systems but also bodymorphology plays

a crucial role based on the concept of embodiment (Pfeifer and Scheier, 2001; Owaki et al.,

2008). Reproducing such human multimodal behaviors in a robot can broaden its locomotion

ability as well as improve the understanding of the underlying mechanisms of human gaits and

their transitions.

Despite the overwhelming complexity of their inherent dynamics, human locomotion can

be represented as a simple conceptual model (Sharbafi and Seyfarth, 2017). Specifically, human

walking can be represented as an inverted pendulum (IP) model (Kuo, 2007). During walking,

the stance leg behaves as an inverted pendulum that rotates around the ankle joint. Additionally,

the changes in the kinematic and potential energies are out-of-phase (i.e., when one is at

its positive peak, the other is at its negative peak), whereas the mechanical energy remains

almost constant (Cavagna et al., 1976, 2000; Cavagna and Legramandi, 2020). In contrast,

the body dynamics of human running are different in that the changes in the kinematic and

potential energies are in-phase (i.e., they reach their corresponding phases at the same time)
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(Cavagna et al., 1976; Cavagna, 2006). When both the kinematic

and potential energies decrease, some amount of energy is stored as

elastic energy in the spring-like elements of the body, such asmuscles,

tendons, and ligaments (Farley and Gonzalez, 1996). Inspired by

such biomechanical processes, the spring-loaded inverted pendulum

(SLIP) model (Blickhan, 1989; Dickinson et al., 2000) has been

adopted to explain and analyze running.

Passive dynamic walking is also based on the inverted pendulum

mechanism (McGeer, 1990). In passive walking, a bipedal machine

can walk down a gentle slope stably by using only its body dynamics

without any actuators. The behavior is purely generated through the

interaction between its body and the environment, and the control

system is not involved in it. By generating motions exploiting its

body morphology, a certain amount of computation for generating

the behaviors can be offloaded to the body (Owaki et al., 2008; Pfeifer

andGómez, 2009). This reduces the computational cost to the control

system and leads to energy-efficient locomotion (Collins and Ruina,

2005; Pfeifer and Gómez, 2009; Bhounsule et al., 2012). Thus, to

realize these benefits, it is necessary to use passive dynamics and

exploit the body morphology to generate movements.

However, despite the importance of passive dynamics in bipedal

locomotion control, it has not been sufficiently investigated in

previous bipedal walking and running robots (Hodgins, 1991; Kwon

and Park, 2003; Nagasaka et al., 2004; Tajima et al., 2009; Sreenath

et al., 2013; Kobayashi et al., 2016; Siekmann et al., 2021). There are

two possible reasons for this: (1) Robots with passive joints are more

difficult to control than fully actuated robots because there is less

scope for the control system to intervene inmotion generation. (2) As

previouslymentioned, walking and running are dynamically different

locomotion modes; hence, it is difficult to reproduce multimodal

locomotion from a single controller (Smit-Anseeuw et al., 2017;

Okajima et al., 2018). Because body dynamics is partially determined

by passive joints, generating dynamically different locomotionmodes

using passive dynamics is a challenging problem.

To address this issue, this study utilized deep reinforcement

learning (DRL). In recent years, DRL has attracted attention as a

promising technique for generating gaits in robotic systems. The

advantage of DRL is that it learns locomotion skills with minimal

craftsmanship and does not require careful modeling of the robot

dynamics (Haarnoja et al., 2018a; Hwangbo et al., 2019). Previous

studies have demonstrated that DRL can acquire controllers for

multimodal gait in legged robots. Siekmann et al. (2021) presented a

reward specification framework and demonstrated multimodal gaits

in bipedal robots, including walking, running, hopping, and their

transitions without prior knowledge. Fu et al. (2021) proposed a

method for generating the walking, trotting, and bouncing gaits,

and achieved smooth gait transitions in a quadrupedal robot by

using a single controller via a stage-wise distillation approach.

Shao et al. (2021) used imitation learning with the guided phase

generated by the central pattern generator on a quadruped robot,

and demonstrated multiple gaits and smooth transitions. Moreover,

DRL can facilitate the realization of controllers for challenging

locomotion skills in bipedal robots. Xie et al. (2020) presented a

general learning scheme for navigating stepping stones. The bipedal

robots in the simulation environment succeeded in walking on

terrains consisting of discrete foot placements without falling or

stopping. Yu et al. (2018) demonstrated realistic and smooth walking

and running through simulation even though they did not make use

of prior knowledge for training. In addition, the controllers generated

through DRL are robust to variations in system dynamics, such as

sensory delays, uneven terrain, and blind conditions (Xie et al., 2018;

Castillo et al., 2021; Kang and Lee, 2021; Li et al., 2021).

The purpose of this study is to generate multimodal gaits such

as walking, running, and their transitions using passive dynamics

through DRL. For this, a bipedal model based on a passive walker

was developed using numerical simulation. Subsequently, a reward

function and learning scheme was designed for the DRL. The trained

controller could achieve walking, running, and their transitions by

adjusting only one input command. This study makes two significant

contributions to the state of the art. The first contribution is that it

established DRL as a promising technique for generating multimodal

gaits using passive dynamics. The second contribution is that it

presents a learning framework for training a simple control policy

for a bipedal robot to switch between walking and running based on

only a speed parameter without reference motion.

2. Methods

2.1. Bipedal model

The bipedal model employed in this study is shown in Figure 1.

The model parameters are presented in Table 1. The basic mechanical

structure is based on the passive dynamic bipedal model from our

previous studies (Owaki et al., 2008, 2011). Motion is constrained

in the sagittal plane. Notably, the hip joints are passive, i.e., they do

not have actuators. Thus, the model needs to indirectly control hip

joints such that the controller effectively exploits its body dynamics

to swing its legs and move forward. Each leg has a linear actuator

with a maximum magnitude of force F that moves the thigh segment

up and down along the leg axis (red dotted line in Figure 1B).

These actuators can push off the ground to generate a propulsion

force in the stance phase and lift the corresponding leg to generate

ground clearance of the foot in the swing phase. The hip joints (blue

dotted line in Figure 1B) are passive rotational joints with torsional

springs (khip) and dampers (chip). The spring generates rotational

forces to swing the leg forward and backward, and prevents it from

opening too widely (Owaki et al., 2011). In addition, a wobbling

mass mechanism (Yue and Mester, 2002; Nikooyan and Zadpoor,

2011) consisting of three linear springs (k1, k2, k3), two dampers

(c1, c2), and a mass (mtibia) was employed, as shown in Figure 1B.

This mechanism contributes to reducing the impact between the foot

and ground during foot–ground contact. The model has arc-shaped

rigid feet with radius r = l/3 (Hansen et al., 2004), where l is the

leg length. Each foot in the model consists of 20 small spheres. The

state variables of the model are the hip segment positions x and z,

hip segment orientation θ , leg angles ϕj, displacements of the thigh

segments hj, contractions of legs dj, and their time derivatives. Here,

suffix j denotes the leg (j = r: right and j = l: left).

2.2. Deep reinforcement learning

In this study, we designed a controller that outputs actuator

signals for the input model states and a speed command, as shown

in Figure 2. This system diagram can be seen in a previous study

(Saputra et al., 2020). The controller was trained through deep

reinforcement learning (DRL). DRL learns an action that maximizes
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FIGURE 1

Structure of the bipedal model. The motions are constrained in the x–z plane, i.e., the sagittal plane. (A) Left: Oblique view of the bipedal model in

MuJoCo simulator. Center: Side view of mechanical structure of the model. Right: Front view of mechanical structure. (B) Left: Schematic of wobbling

mass mechanism. Right: Active linear actuators and passive rotational springs were implemented to thigh segments and hip joints, respectively.

TABLE 1 Parameters of the bipedal model.

Parameter Unit Value Parameter Unit Value

l [m] 0.8 khip [Nm/rad] 25

r [m] 0.27 chip [Nms/rad] 2

mhip [kg] 20 k1 [N/m] 6,000

mthigh [kg] 6 k2 [N/m] 6,000

mtibia [kg] 3 k3 [N/m] 10,000

mfoot [kg] 1 c1 [Ns/m] 300

c2 [Ns/m] 650

F [N] 600

the expected cumulative reward for the observed state through

numerous trial-and-error iterations. This study adopted a soft actor-

critic (SAC) (Haarnoja et al., 2018b), which is a model-free DRL

algorithm for continuous control tasks, because it is the state-of-the-

art technique and is better in terms of exploration. In this algorithm,

a bonus reward αH(π) is added, where H(π) is the entropy of the

policyπ . This term improves the exploration and provides robustness

to policies (Haarnoja et al., 2018b). A stochastic policy π is obtained

to maximize the objective function J(π):

J(π) =
T

∑

t=0

E(st ,at)∼ρπ
[γ t(r(st , at)+ αH(π(·|st)))], (1)

where γ is the discount rate, r denotes the reward function (described

in detail later), and α is the temperature parameter, which determines

the emphasis of the entropy term. st and at denote the states and

actions, respectively. In this study, st ∈ R
14 comprises model states

and a command parameter ωv (details of which are provided in

Section 2.3.2), and at ∈ R
2 comprises the linear actuator signals

ar ∈ [ − 1, 1] and al ∈ [ − 1, 1]. Each actuator produces a force

ajF (Figure 1A).

2.3. Learning methods

The objective is to realize a single controller that can achieve

walking, running, and their transitions. In this section, we propose

a learning framework for realizing a controller that generates

multimodal gaits according to an input speed commandωv, as shown
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in Figure 2, without any reference motions. We explain the design of

the reward function and the learning scheme for DRL.

2.3.1. Design of reward function
In this study, the following reward function was used:

r(st , at) =
1

1+ ωv
(−ωE|Et −Et−1| +ωvẋ+ fforward + falive+ fsupport),

(2)

fforward =
{

0 (ẋ ≥ 0)

−C1 (ẋ < 0)
, (3)

falive = C2, (4)

Where ωi represents the weight coefficients used to determine the

relative significance of each term, Et is the total energy, i.e., the

sum of the potential, kinematic, and elastic energies of the model

in t steps, ẋ is the velocity of the hip segment in the horizontal

direction, and C1 and C2 are constant values. The first term−ωE|Et−
Et−1| represents the penalty for the total energy variation. When the

actuator injects excessive energy into the model, or when the energy

lost at touchdown is significant, this term assigns a negative reward.

The second term ωvẋ is the reward for the forward velocity of a

bipedal robot. The term fforward represents a reward for maintaining

the model in forward motion, where a large negative constant C1 is

added if the model does not move forward after a step. As presented

later, the weight coefficient of the velocity term varied as ωv ∈ [0, 2.5]

during the training. We set fforward because when ωv = 0, there is no

factor to determine the movement direction in the reward function.

The term falive prevents the model from falling over. The episode

is terminated if |θ | > 1.4 rad, i.e., the model tilts by more than

80◦, even if the maximum length of the step for an episode is not

reached. Therefore, if the model does not fall over, this term will

always provide a positive reward, and the agent can obtain a larger

cumulative reward. The term fsupport enables more efficient learning

by adding other rewards during the learning process as follows:

fsupport = ωlfleg + ωsfsym, (5)

fleg = min(|ϕ̇r − ϕ̇l|,C3), (6)

fsym = −|π(st)− 9a(π(9o(st)))|2, (7)

where the term fleg enables the legs to swing effectively, and ϕ̇r − ϕ̇l

is the time derivative of the angle between the right and left legs

(see in Figure 1A). C3 is a constant with an upper limit to prevent

an excessive outward swing of the legs. Because the hip joints are

passive and cannot be driven directly, the agent had difficulty in

finding the movement to swing the legs. fleg encourages the policy

to swing the legs and leads to efficient exploration. The term fsym
(Yu et al., 2018) introduces symmetry to the policy for movement

generation to reproduce human-like symmetric movements during

normal walking and running. 9a and 9o are functions that map

the actions at and st , respectively, into their mirrored versions.

As we will see later, the input for the policy st is described as

TABLE 2 Parameters for the reward function.

ωv ωE ωl ωs C1 C2 C3

LP1 [0, 1.0] 0.06 0.2 0 1.0 1.0 0.5

LP2 [0, 1.0] 0.2 0.2 0.15 1.0 1.0 0.5

LP3 [0, 2.5] 0.2 0.2 0.15 1.0 1.0 0.5

st = {ẋ, θ , θ̇ , hr , ḣr , hl, ḣl,ϕr , ϕ̇r ,ϕl, ϕ̇l, ḋr , ḋl,ωv}. 9o maps st to

the state smirror
t , where the right and left legs are interchanged.

smirror
t = 9o(st) = {ẋ, θ , θ̇ , hl, ḣl, hr , ḣr ,ϕl, ϕ̇l,ϕr , ϕ̇r , ḋl, ḋr ,ωv}. 9a

swaps the values of the right and left leg actuator outputs. 9a(at) =
9a({aright , aleft}) = {aleft , aright}. fsym penalizes the square deviation

between the current state and mirrored state (for details, see Yu et al.,

2018). 1/(1 + ωv) was set to reduce the inter-reward variability. The

reward function calculates widely different values depending on the

given variable ωv ∈ [0, 2.5]. Assuming that the bipedal model moved

to 2.5m/s, if 1/(1 + ωv) is not included, the agent is rewarded up to

1.6 for ωv = 0 and 7.85 for ωv = 2.5. If 1/(1 + ωv) is included, the

agent is rewarded up to 1.6 for ωv = 0 and 2.25 for ωv = 2.5. Thus,

we can reduce the variance among the rewards. The ranges of ωv and

constant valuesωE,ωl,ωs, C1, C2, and C3 were set as shown in Table 2

through trial and error.

2.3.2. Learning scheme
This study aimed to generate multimodal gait patterns by

learning appropriate actuator outputs according to the input

command ωv values, which are the weight coefficients of the velocity

term in the reward function in Equation (2). ωv determines the

relative significance of the forward velocity in the reward. For

instance, assuming that the model moves in ẋ = 2.0 m/s again,

the velocity term in the reward function, i.e., ωvẋ, adds 5.0 to the

reward when ωv = 2.5 and 0 when ωv = 0. Thus, a higher ωv

helps an agent learn high-speed locomotion. An agent was trained

by changing the ωv value per epoch, which was 1,000 time steps

in this study. The bipedal model was set back to the initial state

when an epoch ended or when the model fell, i.e., the model tilted

forward by more than 80 degrees. We add ωv to the state variables st :

st = {ẋ, θ , θ̇ , hr , ḣr , hl, ḣl,ϕr , ϕ̇r ,ϕl, ϕ̇l, ḋr , ḋl,ωv} ∈ R
14.

Some hyperparameters for the reward function, including the

range of ωv, were changed depending on the learning phases inspired

by curriculum learning (Brendan et al., 2020). Learning was divided

into three phases: “Learning Phase 1 (LP1),” “Learning Phase 2 (LP2),”

and “Learning Phase 3 (LP3),” where the agent was trained using

different parameters, as shown in Table 2. In LP1, we set ωE = 0.06

andωs = 0, and a relatively small range ofωv ∈ [0, 1.0]. In this phase,

the agent was encouraged to learn a forward-motion movement by

swinging its legs. In LP2, ωE was increased to 0.2 and ωs to 0.15

to penalize large variations in the total energy and nonsymmetric

movement. In LP3, the range of ωv ∈ [0, 2.5] was expanded, such

that an agent can learn a wide range of velocities.

2.4. Simulation environment

MuJoCo (Todorov et al., 2012) was used as the physics

simulation engine. MuJoCo provides a fast and accurate simulation

environment. Thus, they are widely used in the fields of robotics
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FIGURE 2

Bipedal model control in a simulation environment and the basic diagram of the control system. The inputs for the controller include a command ωv . The

value of ωv can be changed through the ωv adjuster. st consists of the model states (ẋ, θ , θ̇ ,hr , ḣr ,hl, ḣl,ϕr , ϕ̇r ,ϕl, ϕ̇l, ḋr , ḋl) and ωv .

FIGURE 3

Snapshots of the generated gaits. (A) Walking (ωv = 0) snapshot

captured every 0.16 s. (B) Running (ωv = 2.5) snapshot captured every

0.08 s.

and biomechanics. The MuJoCo simulator can reproduce complex

dynamic systems with many contact points.

3. Simulation results

The hyperparameters for the SAC were set to α = 0.2 and γ =
0.99. The neural networks used in the actor and critic had two hidden

layers of 100 nodes.We empirically selected a small number of hidden

layers and nodes for efficient learning. The actor accepts the current

state st ∈ R
14 and outputs the actuator signals at ∈ R

2. The critic

accepts the current state st ∈ R
14 and action at ∈ R

2. Reinforcement

learning was run for ten million steps; LP1 was performed in the

FIGURE 4

Time evolution of energies during walking and running: kinetic (blue),

potential (orange), elastic (green), and total (red) energies. The dotted

lines represent locomotion velocity. The pink and sky blue colored

areas represent the right and left single stance phase, respectively. The

purple and white colored areas represent the double stance (DS) phase

and the flight (F) phase. (A) Walking (ωv = 0). (B) Running (ωv = 2.5).

initial 500 thousand time steps, LP2 in the next 2.5 million time

steps, and LP3 in the remaining 7 million time steps (Table 2). At

each time step, the policy was updated by using a replay buffer with

the recent one million samples, with a mini-batch size of 256. The

maximum length of each episode was set to 1,000. The time required

for training was approximately 2 days on a Lenovo ThinkPad E470

20H2S04L00. The generated gait can be seen in the video available as

Supplementary material.

3.1. Generated steady gaits

In this section, the gaits generated in the numerical simulations

are presented. Figure 3 shows the snapshots of the generated steady
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FIGURE 5

The average model velocities for the input ωv . The purple and gray

points denote the ratio of the DS and F phase in the gait cycle

respectively. The controller generated steady gaits in the bipedal

model for 0 ≤ ωv ≤ 2.93, even though we did not train with

2.5 ≤ ωv ≤ 2.93 (orange hatched area). This graph shows the plots

when the input command ωv was given in the range of 0.0–2.93 in

0.01 intervals. For each ωv , the biped model locomoted for a distance

of 30 m from the initial state.

gaits for Figure 3A ωv = 0 and Figure 3B ωv = 2.5. Figure 4 shows

the time evolution of the kinematic, potential, and elastic energies for

both cases; the upper and lower graphs correspond to the cases in

Figures 3A, B, respectively. Walking and running are defined as gaits

that progress through a periodic double stance (DS) phase when both

legs are on the ground, and through periodic flight (F) phases when

both legs are in the air, respectively, Diedrich and Warren (1995)

and Alexander (1996). The upper graph of Figure 4 indicates the

periodic DS phases (purple areas), whereas the lower graph indicates

the periodic F phases (white areas). The results indicate that the gait

generated for ωv = 0 exhibited an out-of-phase relationship between

the kinematic and potential energies, whereas the gait generated for

ωv = 2.5 exhibited an in-phase relationship in the single stance

phase. In humanwalking, the kinetic and potential energies exhibit an

out-of-phase relationship, with potential energy being the maximum

in the mid-stance phase and kinetic energy being the maximum in

the DS phase (Cavagna et al., 1976, 2000; Cavagna and Legramandi,

2020). In human running, the kinetic and potential energies change

in-phase during the single stance phase, both decreasing from initial

contact to the mid-stance phase and increasing from the mid- to

late-stance phase (Cavagna et al., 1976; Cavagna, 2006). Therefore,

the phase relationship between the kinematic and potential energies

in the generated gaits reflects the features of the human gaits.

Furthermore, considering that the bipedal model weight (40 kg) is

roughly half the weight of an adult, the magnitude of kinetic energy

in both walking and running is in good agreement with the human

measurement data (Cavagna, 2006; Cavagna and Legramandi, 2020).

Figure 5 illustrates the average velocities and the DS and F phase

ratios of a single gait cycle in response to the value ωv ∈ [0, 2.93]. The

controller generated a running gait for parameters ωv ∈ [2.5, 2.93]

outside the training range ωv ∈ [0, 2.5]. The speed range observed in

this bipedal model was 0.51 ≤ ẋ ≤ 3.02m/s. A periodic DS phase

was observed for 0 ≤ ωv ≤ 0.1, while an F phase was not observed.

In the range ωv ≃ 0.1, the ratio of the DS phase suddenly decreased;

then, for 0.1 ≤ ωv ≤ 1.2, transient gait patterns with nonperiodic DS

and F phases were found. For ωv ≥ 1.2, neither DS nor periodic F

phases were found.

FIGURE 6

The rate of steady gait was maintained when noise was applied.

ẋ, θ , θ̇ ,ϕ, ϕ̇,h, ḣ, ḋ are the input parameters for the controller. For each

of these seven states, we added Gaussian noise during steady walking

and running and checked whether the bipedal model maintains the

gaits. We conducted 10 locomotion trials for each condition and

judged the success case when the bipedal model was able to move

10m in the walking gait and 20m in the running gait after noise was

applied.

TABLE 3 Standard deviation of gaussian noise.

σwalk ẋ 0.3476 [m/s] σrun ẋ 0.6743 [m/s]

σwalk θ 0.2757 [rad] σrun θ 0.3053 [rad]

σwalk θ̇ 0.7986 [rad/s] σrun θ̇ 1.0773 [rad/s]

σwalk h 0.1942 [m] σrun h 0.3007 [m]

σwalk ḣ 0.5596 [m/s] σrun ḣ 0.9818 [m/s]

σwalkϕ 0.4433 [rad] σrunϕ 0.5628 [rad]

σwalk ϕ̇ 0.9192 [rad/s] σrun ϕ̇ 1.664 [rad/s]

σwalk ḋ 0.3110 [m/s] σrun ḋ 0.4349 [m/s]

Because the scales of the observation states were not consistent, the standard deviation values

of the noise depended on the states. We measured the time evolution of each observation state

during steady walking (ωv = 0) and running (ωv = 2.5) and calculated standard deviations.

Then we set these values as the standard deviations of the Gaussian noise.

We identified the parameters essential for the steady walking

and/or running gaits by adding noise to the model state inputs for the

controller. Asmentioned, the observedmodel states for the controller

comprises the model velocity ẋ, hip segment orientation θ and its

change rate θ̇ , leg angles ϕ and their change rate ϕ̇, displacements

of the thigh segments h and their change rate ḣ, and leg contraction

rates ḋ. For each of these seven observation states, we examined

whether steady walking (ωv = 0) and running (ωv = 2.5) could be

maintained when Gaussian noise with the mean 0 and the standard

deviation σ was added. Since each observation state has a different

scale, calculating the noise with the same standard deviation is

not reasonable. Therefore, we measured the time evolution of each

observation state during steady walking (ωv = 0) and running

(ωv = 2.5) and calculated standard deviations, then set these values

as the standard deviation of the noise; the detailed values are shown in

Table 3. Figure 6 shows the noised parameters; the rates of gait were

maintained (i.e., the model did not all down). Both generated walking

and running are susceptible to noise at θ̇ , ϕ, and ϕ̇. Moreover, in the

running gait, the bipedal model was vulnerable to noise at h and θ .
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FIGURE 7

Time evolution of energies for the inputs ωv = 0 and ωv = 2.5 during training. The colored lines denote the kinematic (blue), potential (orange), elastic

(green), and total (red) energies. The shaded areas denote the right single stance phase (pink), left single stance phase (sky blue), DS phase (purple), and F

phase.

3.2. Generated gaits during training

In this section, we show the gaits generated during training for

the inputs ω = 0 and ω = 2.5. Figure 7 shows the time evolution

of the energies at 500 thousand (at the end of LP1), 3 million (at

the end of LP2), 5 million, 7.5 million, and 10 million (at the end

of training) training time steps. The upper figures show the generated

gaits for ω = 0 and the lower figures show the generated gaits for

ω = 2.5. For the input ω = 0, the walking gait was already generated

at the 500 thousand training time steps. Thereafter, the total energy

variation reduced as the training progressed, and at the middle of

the training (i.e., 5 million training time steps), the time evolution

of the energies was almost the same as that at the end of the training.

For the input ω = 2.5, the bipedal model kept falling down until 3

million training time steps. The running gait appeared at the middle

of the training. However, it was asymmetric, as evidenced by the

relatively short DS phase (white area) after the right single stance

phase (pink area). As training progressed, the duration of the DS

phase became almost the same. In addition, elastic energy (green)

began to be used during the left single stance phase (sky blue area).

The gaits generated during training can be seen in the video available

as Supplementary material.

3.3. Energetics

The speed range obtained in this bipedal model was 0.51 ≤ ẋ ≤
3.02m/s, and the Froude number (Fr) was 0.18 ≤ Fr ≤ 1.08,

using Fr = ẋ√
gl
. In this study, we investigated the energetics of

the generated gaits, which can be divided into three gait patterns

according to the measured locomotion velocity shown in Figure 5:

walking gait for 0.51 ≤ ẋ ≤ 0.63m/s, transient gait for 0.63 ≤
ẋ ≤ 1.81m/s, and running gait for ẋ ≥ 1.81m/s. As mentioned

before, walking and running gaits are gait patterns with periodic DS

and F phases, respectively. Transient gait is defined as a gait pattern

with both DS and F phases; however, these phases are not periodic.

Here, we numerically evaluated the energy efficiency using the cost

of transport (CoT) (Ruina et al., 2005), which is described by the

following equation:

CoT =
1W

mg1x
=

1

mg1x

∑

j∈r,l

∫ tend

t0

max(Fa,j(t)ḣj(t), 0)dt, (8)

Where 1W denotes the total energy consumption, m is the model

mass, g is the acceleration due to gravity, 1x is the distance traveled,

Fa,j(t) is the force of each actuator, and ḣj(t) denotes the displacement

velocity of each thigh segment. Figure 8A shows the CoT profile as

a function of the measured velocity. A lower CoT value indicates

energy-efficient locomotion.

Moreover, we defined the variation of energy (VoE), which is the

time integral of the total energy variation, as follows:

VoE =
1E

mg1x
=

1

mg1x

∫ tend

t0

|Et − Et−1|dt, (9)

Where 1E is the sum of the total energy changes from t0 to

tend. For a lower CoT (i.e., energy-efficient) gait, the VoE also

tends to be lower because the energy injected from the actuators

and the energy lost at touchdown are small and the total energy

remains constant. Hence, there is a high correlation between the

VoE and CoT. Figure 8B illustrates the relationship between the

measured locomotion velocities and the VoE. A comparison of

Figures 8A, B shows that the change in CoT against the measured

velocity demonstrates a trend similar to that of VoE except for the

range of 1.7 ≤ ẋ ≤ 1.9m/s, for which the CoT shows a downward

convex trajectory. We can see that the trajectory of the VoE can

be clearly divided for each of the three gait patterns. The VoE for

the walking gait and transient gait can be approximated by different

quadratic curves (red lines), as shown in Figure 8B. The VoE for the

running gait is a linear line proportional to the velocity.

3.4. Adaptability to environmental changes

We investigated whether the trained controller could adapt to

environmental changes. For this purpose, we set up a stepped

environment, where steps of a constant height h appeared every 50

cm, as shown in Figure 9. We verified the steady walking (ωv = 0)

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1054239
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Koseki et al. 10.3389/fnbot.2022.1054239

FIGURE 8

(A) Cost of Transport (CoT) vs. measured velocities ẋ. The scatter

graphs here include data from a 10 to 30 m distance locomotion in

the ωv range from 0.0 to 2.93 in 0.01 intervals, similar to Figure 5. (B)

Variation of Energy (VoE) vs. measured velocities ẋ. Gaits can be

divided into three patterns: (1) walking 0.51 ≤ ẋ ≤ 0.63m/s, (2)

transient gait 0.63 ≤ ẋ ≤ 1.81m/s, and (3) running gait ẋ ≥ 1.81m/s.

The vertical dotted lines describe the borders at ẋ = 0.63m/s (left) and

ẋ = 1.81m/s (right). The VoE for walking gait and transient gait can be

approximated by quadratic curves (red lines) of

VoEw = 0.0694ẋ2 − 0.075ẋ+ 0.0229 and

VoEt = 0.0022ẋ2 − 0.0058ẋ+ 0.0059, respectively. For the running gait

mode, a straight line represents the function

VoEr = 0.00018ẋ+ 0.00246.

and steady running (ωv = 2.5) performance in this environment.

We judged the success case as the condition in which the bipedal

model successfully covered a distance of 30m. The bipedal model can

move without falling down up to h = 1.0 cm in the walking gait and

h = 0.8 cm in the running gait. The attachedmovie shows the bipedal

model walking and running in a changing environment.

3.5. Gait transitions

To evaluate the gait transition ability of the acquired policy, the

gait pattern was observed under a change in the command value

ωv during locomotion. In this simulation, the input ωv was linearly

increased from 0.0 to 2.5 at 0.6 s in Figure 10A, whereas ωv was

linearly decreased from 2.5 to 0.0 at 0.6 s, as shown in Figure 10B.

For both changes in ωv, the acquired policy could successfully

achieve gait transition. Note that the transition from walking to

running was successfully completed in less than two steps, whereas

the transition from running to walking required approximately four

steps. Moreover, not only single transitions such as walk-to-run and

run-to-walk, but also multiple transitions such as walk-to-run-to-

walk were achieved.

Figure 11 illustrates the x–z CoM trajectories of the right thigh

segment with respect to the hip joint position (Figure 1) for 12 s

(before and after the ωv change). As shown in Figure 11, ωv changed

linearly from 0 to 2.5 in Figure 11A and from 2.5 to 0 in Figure 11B in

0.6 s. In the steady-state motion, it can be observed that walking and

running converge to different limit cycles, smaller ones to the right

and larger ones to the left, respectively. This limit cycle analysis also

confirmed that the transition from walking to running was achieved

smoothly and stably, while that from running to walking required

more time steps.

Figure 12 shows the time evolution of the hip segment orientation

θ (see Figure 1) during gait transitions. The gait patterns generated

by the learned policy show that the bipedal model maintained a

relatively perpendicular posture to the ground (θ ≈ 0) when

walking, whereas the model moved with a forward leaning posture

(θ > 0) when running. This can also be observed in the

snapshots of the generated gaits (Figure 3). The difference between

Figures 3A, B in the gait transition duration may be due to the

difference in body posture during walking and running: the transition

from upright walking to leaning forward running is physically

easy, whereas the transition process from leaning forward to

upright walking requires the posture to return to upright, which

requires more energy; thus, the physical state transition takes more

time steps.

3.6. Comparison with partially modified
reward function and learning scheme

To investigate the factors contributing to effective multimodal

locomotion learning, the agents were trained with partially modified

reward functions. Figure 13 shows the representative learning curves

for Figure 13A our proposed method; Figure 13B excluding 1(1+ωv)

from Equation (2) not to reduce inter-reward variability; Figure 13C

the range ofωv in LP1 and LP2was set to [0,2.5]; Figure 13D the range

of ωv in LP1 and LP2 was set to [1.5,2.5]; Figure 13E trained without

LP2; and Figure 13F trained without LP1. In these figures, cumulative

rewards close to 0 imply that the bipedal model did not move forward

or immediately fell. Note that there was a significant amount of

variance in the cumulative rewards even after the completion of

training. This was because the reward function calculated widely

different values depending on the given ωv ∈ [0, 2.5], which changed

randomly during the training.

Figure 13B shows that the cumulative rewards gradually dropped

to 0 after training for 6 million time steps. It was observed that for

relatively small ωv, the bipedal model exhibited steady locomotion

by the 6-million-time-step training; however, it became unstable

around 7 million time steps and fell immediately after 8 million time

steps. Note that the results in Figure 13B were obtained by excluding

1/(1 + ωv) from the reward function; hence the range of cumulative

rewards is different from that in the other subfigures.

In Figure 13C, ωv was fixed to [0, 2.5] through training, and

the agent acquired only walking gaits and fell after a few steps for

a relatively large ωv. In Figure 13D, the value of ωv in LP1 and

LP2 was increased; the agent obtained only running gait; they could

not find walking gait and fell immediately for a relatively small ωv.

In Figure 13E, it can be observed that training the agent without

LP2 took more time steps to learn the appropriate outputs for ωv
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FIGURE 9

Environmental changes introduced using steps in a simulation environment and its diagram.

FIGURE 10

Gait transition between walking and running with changes in the ωv value. The graph shows the time evolution of kinetic (blue), potential (orange), elastic

(green), and total (red) energies during the gait transition. The dotted lines represent locomotion velocity. The pink and sky blue areas represent the right

and left single stance phase, respectively. The purple and white areas represent the double stance (DS) and flight (F) phases. We linearly changed the ωv in

the shaded period. (A) From ωv = 0.0 to 2.5. (B) From ωv = 2.5 to 0.0.

compared to Figure 13A. From Figure 13F, the agent trained without

LP1 failed to find control solutions for steady locomotion; it fell

from the start position. A comparison of these results suggests that

LP1 is an essential phase for learning the basic gait pattern from an

unlearned state, while LP2 is necessary for learning a more stable gait

pattern from the initially acquired gait pattern.
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FIGURE 11

x–z CoM trajectories of the right thigh segment in (A) walk-to-run

transition and (B) run-to-walk transition for 12 s (before and after the

ωv change). In the figures, we linearly changed ωv at 4 s.

4. Discussion

This study demonstrated that a trained controller can generate

walking, running, and transient gaits in a bipedal model using

passive dynamics. We also found that the trained controller was

adaptable to environmental changes during steady walking and

running. Moreover, the bipedal model with the trained controller

exhibited gait transitions by changing a single parameter ωv. These

results suggest that DRL can be applied to generate multimodal

bipedal locomotion using passive dynamics. Additionally, the energy

efficiency of the locomotion generated by the policy acquired

through DRL was verified, including the reliability of learning

using curriculum learning (Brendan et al., 2020), i.e., the parameter

planning for the settings of the weights for the rewards during the

learning process.

Here, Equation (2) was used as the reward function. The first

term −ω1|Et − Et−1| significantly contributed to the generation

of continuous locomotion in the bipedal model. Before this term

was included, no control solutions were found for walking and

running, and the bipedal model exhibited acyclic, velocity-unstable,

and fall-prone movements. Humans generate walking and running

motions with small energy fluctuations by effectively using their

body dynamics. During walking, humans behave like an inverted

pendulum and exchange kinematic and potential energy to conserve

mechanical energy. During running, humans store potential and

kinematic energy in the spring elements of their bodies to reduce

energy loss, resulting in less energy fluctuations. From Figure 4, it

FIGURE 12

Hip segment orientation (θ ) during gait transition. The gait patterns

generated by the learned policy show that the bipedal model

maintained a relatively perpendicular posture to the ground (θ ≈ 0)

when walking, while the model moved with a forward leaning posture

(θ > 0) when running. (A) From ωv = 0.0 to 2.5. (B) From ωv = 2.5 to 0.0.

can be observed that the presented bipedal model employed the

same strategy for the body dynamics observed in humans. An out-of-

phase relationship was observed between kinetic and potential energy

in the walking gait. In the running gait, during the initial single

stance phases, elastic energy increased sharply, whereas both the

kinematic and potential energies fell. Subsequently, the elastic energy

gradually decreased with kinematic and potential energy increments.

We consider that the first term in the reward function contributes

to achieving walking and running in the bipedal model because this

term helps the model mimic the energy variation in time, similar to

how humans generate walking and running motions.

The constant parameters in the reward function, ωE, ωl, and C3,

need to be set carefully. When ωE, which determines the penalty

for the total energy variation, is set to a small value, the generated

gaits appear awkward, as shown in the time evolution of energies for

five thousand samples in Figure 7. Additionally, when ωE is set to

a large value from the beginning, no gait is generated, as shown in

Figure 13F, because of the excessive penalty for the movement. We

consider the approach of acquiring the basic gait pattern with a small

penalty for energy in the initial phase, and acquiring the learning

movements with a large penalty for energy as the training progresses,

as effective in generating efficient gaits. When either ωl or C3 was

set to a very small value, the agent did not tend to acquire a steady

gait. However, when either ωl or C3 was set to a very large value, the

trained controller exhibited a high kicking gait. fleg ensures efficient

learning but needs to be set carefully.

Figure 6 shows that although the generated walking was robust

to the noise applied to the observed displacements of the thigh
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FIGURE 13

Comparison of learning curves. We evaluated the policies every 1,000 training time steps by testing the performance for one episode (the maximum

length being 1,000 time steps). (A) Proposed method. (B) Excluding 1/(1+ ωv ) from Equation (2), i.e., the reward function was changed to

r(st, at) = −ωE|Et − Et−1| + ωv ẋ+ fforward + falive + fsupport. 1/(1+ ωv ) normalizes the value among the rewards that vary widely due to velocity term ωv ẋ. (C)

The range of ωv in LP1 and LP2 was set to [0,2.5]. The agent was trained to learn appropriate outputs for ωv ∈ [0, 2.5] from the beginning. (D) The range of

ωv in LP1 and LP2 was changed to [1.5,2.5]. The agent was trained to learn appropriate outputs for larger ωv first than smaller ωv . (E) Without LP2. The

reward function was set with LP1 parameters in the initial 500 thousand training time steps and with LP3 parameters in the rest of 9.5 million training time

steps. (F) Without LP1. The reward function was set with LP2 parameters in the initial 3 million training time steps and with LP3 parameters in the rest of 7

million training time steps.

segments h, the generated running was extremely susceptible to the

noise applied to h. In the IP model, which is a simple conceptual

walking model, the stance leg is rigid and its length remains constant.

However, in the SLIP model, which is a simple conceptual running

model, the stance leg is represented as a spring and the leg length

varies. Therefore, it can be inferred that the parameter h, which

indicates the length of the leg of the biped model, is an important

parameter in generating the running gait.

The gait speed obtained using the bipedal model was 0.51 ≤
ẋ ≤ 3.02m/s. The proposed bipedal model has a wide range

of speeds. These results indicate that by utilizing body dynamics

effectively, the bipedal model can move over a wide range of

speeds. It should be emphasized that the hip joints of the

proposed bipedal model are completely passive. The actuation

of the hip joint has a significant effect on locomotion velocity

(Dzeladini et al., 2014; Bailey et al., 2017). For example, humans

change the activity pattern of the muscles around the hip joint,

e.g., gluteus maximus and rectus femoris, depending on their

speed (Cappellini et al., 2006). To move faster, the proposed

bipedal model leaned its body forward and vigorously moved its

legs up and down to obtain a larger propulsion force in the

stance phase.

Interestingly, the required time for the transition to the

other limit cycles of the gait was different between the walk-to-

run transition and run-to-walk transition: walk-to-run was faster,

whereas run-to-walk required additional time steps. Moreover,

Figure 10A shows that the kinetic energy increases with increase inωv

in the walk-to-run transition, despite the time delay between the start

of decrease in ωv and decrease in the kinetic energy peak in the run-

to-walk transition, as shown in Figure 10B. These observations can be

attributed to hysteresis, i.e., the transition process dynamics depend

on the previous gait pattern, which is attributed to the transition

between different attractors (Diedrich and Warren, 1995). As shown

in Figure 12, the differences in body posture owing to gait dynamics

were confirmed. We assume that these differences in the attractor

dynamics owing to the gait characteristics resulted in differences in

the convergence process.

Comparing Figures 13A, B, it can be observed that reducing

inter-reward variability improved the reliability of policy learning

in multimodal locomotion. This is because the reward function

without 1/(1 + ωv) calculates widely different values, depending on

the given ωv as mentioned in designing the reward function. The

agent was trained with a bias toward relatively high ωv to obtain

higher cumulative rewards. This fact suggests that the variation
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among rewards should be as small as possible during the policy-

learning process to eliminate bias. The results also indicated that

the ωv range of the training progress affected the performance of

the learned controller. It was also observed that the model failed to

learn the walking gait when the value of ωv was set to high in the

initial learning stage (Figure 13D). Additionally, learning locomotion

with a wide range of ωv from the beginning makes training difficult

(Figures 13C, E). These facts suggest that training to learn low-speed

locomotion initially and then gradually transferring to high-speed

locomotion is the key to effective multimodal locomotion learning.

In this study, the proposed method was validated exclusively

through simulations. Therefore, building a hardware and verifying

its feasibility in the real world would be of primary interest in future

studies. Because the controller realized in this study is simple and

is able to adapt to a new surface containing steps, we believe that

the trained controller can be applied to suitable hardware. However,

the gaps between the simulation environment and hardware need to

be solved. A major gap is control latency. In this study, we did not

consider the time delay between the sensors, controller, and actuators.

In addition, as shown in Figure 6, some of the input parameters of the

controller, namely, θ̇ , ϕ, ϕ̇, h, and θ were sensitive to noise in steady

gait. Therefore, the hardware must be designed to accurately measure

these parameters. Moreover, the bipedal model motion was achieved

only in a forward straight line. Hence, the extension of the motion

space into three dimensions and designing of a learning framework

that can change the motion direction are other important issues that

need to be resolved.

5. Conclusion

Gait generation in underactuated robots requires control

solutions that can achieve stability with input from a limited number

of active actuators. To reproduce multimodal locomotion, it is

necessary to provide control solutions that generate motion patterns

for drastically different modes in terms of dynamics, which is

an extremely challenging optimization problem. Thus, multimodal

locomotion using passive dynamics is an extremely challenging

problem. Despite being limited to physical simulation, this study

provided evidence that a bipedal model with completely passive hip

joints was able to learn various motions, including walking, running,

and gait transition, through DRL. Therefore, we believe that this

study provides a framework that will enable walking and running

with the efficient use of body morphology in bipedal robots.
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