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Marine invertebrates are the backbone of marine biodiversity and play a pivotal role

in the marine ecosystem. The life cycle of most marine invertebrates includes the

settlement and metamorphosis stage, which is induced by marine biofilms, but the

mechanism is still enigmatic. In the present study, we constructed the capsular

polysaccharide (CPS) synthesis gene capC-deleted mutant of Pseudoalteromonas

marina by gene knockout and then compared the phenotype, the biofilm-forming

ability, the effect on settlement and metamorphosis of Mytilus coruscus, and the

exopolysaccharide and CPS levels between the mutant and the wild-type strains to

explicate the relationship between bacteria and mussels. The study presented that

the phenotype and biofilm-forming ability between the wild-type and DcapC
strains had no significant difference, but the inducing activity of DcapC biofilms

on larval settlement and metamorphosis decreased significantly (p < 0.05).

Compared with the wild-type, the CPS content of DcapC strain significantly

decreased by 38.07%, accompanied by the increase of c-di-GMP. Meanwhile,

the biomass of a-polysaccharides and b-polysaccharides on DcapC biofilms

decreased significantly (p < 0.05). Thus, the CPS synthesis gene could modulate

c-di-GMP, which regulates bacterial polysaccharide secretion, and then impact

larval settlement andmetamorphosis of mussels. This work brings an entry point to

deeply understand the interaction between bacterial polysaccharide and

larval recruitment.

KEYWORDS

Mytilus coruscus, settlement and metamorphosis, biofilm, capsular polysaccharide,
capC gene
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1 Introduction

Marine invertebrates are of great ecological value in the marine

biodiversity system (Lotze, 2021). Marine bivalve shellfish, a major

representative class of marine invertebrates, are distributed in coastal

and estuarine areas of the whole world and often become the

dominant group of local biological communities. Mytilus coruscus is

a major economic shellfish in East Sea, China (Chang, 2007; Wang

et al., 2012). The life history of M. coruscus is similar to that of most

marine invertebrates, settlement and metamorphosis are the essential

steps for motile larvae to become adults (Cavalcanti et al., 2020),

which can contribute to the persistence ofM. coruscus. This process is

often induced by chemical signals within marine biofilms (Zardus

et al., 2008; Hadfield, 2011; Liu et al., 2022).

Biofilms exist in almost all of the matrix surfaces in the marine

environment, the chemical cues within biofilms, such as extracellular

polymeric substances and c-di-GMP, can induce larvae settlement

and metamorphosis (Hadfield, 2011; Cavalcanti et al., 2020;

Dobretsov and Rittschof, 2020; Rischer et al., 2022). For instance,

the exopolysaccharide secreted by a marine Pseudomonas sp. could

promote Ciona intestinalis larvae to metamorphose (Szewzyk et al.,

1991). Bao et al. (2007) found that exopolysaccharides or

glycoproteins on the biofilm surface may participate in the

metamorphosis of Mytilus galloprovincialis by binding with lectins

(Bao et al. , 2007). Freckelton et al . (2022) found that

lipopolysaccharides in the OMVs produced by Cellulophaga lytica

could induce the metamorphosis of Hydroides elegans (Freckelton

et al., 2022). Moreover, our previous work demonstrated that some

polysaccharide biosynthesis genes of marine bacteria promote or

inhibit larval settlement and metamorphosis through regulating the

content of biofilm extracellular polymeric substances (Zeng et al.,

2015; Liang et al., 2020; Peng et al., 2020; Liang et al., 2021). It is worth

noting that a point mutation in AT00-17125 of Pseudoalteromonas

resulted in a translucent morphology and showed less capsular

polysaccharide (CPS) by phenotypic observation, and the biofilm

formed by the mutant inhibited larvae metamorphosing to post-

larvae (Zeng et al., 2015), but the mechanism of CPS regulating larval

settlement and metamorphosis is still unclear.

CPS is an essential component of bacterial capsule in the outer

membrane polysaccharides, and it makes a difference in the formation

of bacterial biofilm (Badel et al., 2011). CPS can inhibit biofilm

formation by preventing adhesion molecules on cell surface (Nagar

and Schwarz, 2015). Previous studies have found that the mutants of

Vibrio vulnificus (Lee et al., 2013), Pasteurella multocida (Petruzzi

et al., 2017) and Bacteroides thetaiotaomicro (Bechon et al., 2020) with

defected capsular CPS can enhance the adhesion and cell aggregation

capacity of the non-biological surface, and the mutant strain produce

more biofilms. However, the interaction between CPS and

recruitment of marine benthic animals remains little known.

In this study, we investigated the involvement of CPS synthesis

gene capC of Pseudoalteromonas marina (Yang et al., 2013; Peng

et al., 2018) in biofilm development andM. coruscus larval settlement

and metamorphosis. It provides a supplement for the mechanism of

the interaction between bacteria and marine invertebrates and

provides a new sight for the study of marine biodiversity

conservation from a microscopic perspective.
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2 Materials and methods

2.1 Larval culture

Mussel larvae used in larval induction bioassays were all produced

in Shengsi Islands (122°76 E; 30°72 N), Zhenjiang, China. The

method of larval culture was the same as in a previous study (Liang

et al., 2021). Basically,M. coruscus developed into swimming straight-

hinge veliger larvae within 2 days after fertilization, and then usually

need to be cultivated at 16-20°C for about 20 days to develop into

pediveliger stage. During the temporary culture in the laboratory, the

larvae was cultured at 18°C in darkness, and fed with Isochrysis

zhanjiangensis every day. The larval induction test was organized

when the shell length of pediveligers was longer than 300 mm.
2.2 Strains and plasmids

The tested bacterium P. marina was isolated from the natural

biofilms and stored at −80°C. The wild-type and DcapC were both

cultured in Zobell 2216E medium (2216E, Sigma, St Louis, MO, USA)

at 25°C (Peng et al., 2018). The Escherichia coli WM3064 was grown

in Luria-Bertani (Sigma, St Louis, MO, USA) at 37°C (Peng et al.,

2020). When culturing strains containing the pK18mobsacB-ery

plasmid, kanamycin and erythromycin should be added to maintain

the resistance of the strain (Wang et al., 2015). Other relevant

information is shown in Table 1.
2.3 Construction of DcapC mutant strains

A mutant strain of P. marina with the deletion of capC gene was

built by homologous recombination technology (Wang et al., 2015).

The upstream and downstream primers used to amplify the target

gene capC were shown in Table 2. Recombinant plasmids are built by

restriction enzyme ligation and transferred into E. coliWM3064. The

suicide plasmid in E. coli WM3064 was transferred into P. marina,

and colonies that could grow on Zobell 2216E medium which

contained erythromycin were chosen and verified by single-
TABLE 1 Strains and plasmids.

Strains or
plasmids

Correlation properties References or
source

Pseudoalteromonas
marina
ECSMB14103

Wild-type (Peng et al., 2018)

Escherichia coli
WM3064

RP4(tra) in chromosome, DAP (Peng et al., 2020)

DcapC The mutant strain with the deletion
of capC gene

This lab

pK18mobsacB-ery (Peng et al., 2020) (Wang et al.,
2015)

pK18mobsacB-ery-
capC

Recombinant plasmid This study
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crossover primer pairs capC-SF/LR and capC-LF/SR. The correct

DcapC strains were screened on 20% sucrose plates and validated by

utilizing four primer pairs: capC-SF/capC-LR, capC-LF/capC-SR,

capC-SF/capC-SR, capC-LF/capC-LR.
2.4 Effects of capC gene deletion on
phenotype of P. marina

The experimental methods referred to Zeng et al. (Zeng et al.,

2017) and Hu et al. (2021). P. marina and DcapC strains were

cultivated in Zobell 2216E for 16 - 18 h (200 r/min, 25°C), diluted

and coated the bacterial fluid on Zobell 2216E solid plate according to

concentration gradient, and then cultured at 25°C for 2 - 5 days

for observation.
2.5 Biofilm formation of experimental strains

The wild-type and DcapC biofilms were produced in accordance

with previous studies (Wang et al., 2012). The culture conditions of

P. marina and DcapC strains used to form biofilms were identical to

those described previously (Peng et al., 2020). Bacterial cells were

obtained by centrifuging at 1600 × g for 15 min, washed with

autoclaved filtered seawater (AFSW) and diluted to 50 mL.

According to the obtained bacterial density, the corresponding

amount of bacterial solution was added to a sterile petri dish

(64.0 mm (F) × 19.0 mm) which contained sterile glass slide

(12.7 mm × 38.1 mm), and the AFSW was added to obtain 1×108,

3×108, 5×108, and 1×109 colony-forming unit (CFU) mL−1 as initial

concentrations. The culture dishes were placed at 18°C for 48 h to

develop biofilms.
2.6 Cell density of biofilms

The pre-treatment steps of the glasses used to calculate the

bacterial density of the biofilm were identical to those described

previously (Peng et al., 2020). Briefly, after the biofilms were soaked in

5% formaldehyde solution for 24 h, then rinsed with aseptic saline

(0.9% NaCl) once, and stained with acridine orange solution (0.1%)

for 5 min. There were 10 fields of view (random observation) were
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selected under a microscope at 1000 × magnification to calculate the

final density of biofilms, and each biofilm pattern contained

three duplicates.
2.7 Settlement and metamorphosis
bioassays

With regard to detecting whether the larvae have the ability of

settlement and metamorphosis, 10-4 mol L−1 of epinephrine (EPI) was

used as inducers (Yang et al., 2013). The biofilm slide and 20 larvae

were added into a sterile glass Petri dish equipped with 20 mL of

AFSW, and the slides without biofilms were built as blank control.

Nine repetitions were operated in each test group. After being placed

at 18°C without light, the number of post-larvae was recorded at 24,

48, 72, and 96 h.
2.8 Effects of capC gene deletion on growth
ability of P. marina

The growth of P. marina and DcapC strains was measured by

turbidimetry. The two strains were grown overnight for 16 - 18 h.

When the OD600 absorbance reached 1.0, 5 mL of bacterial solution

was sucked into 5 mL of culture medium respectively (200 r/min, 25°

C). Then the OD600 absorbance of 2, 4, 6, 9, 12, 15, 18, and 24 h was

measured by a spectrophotometer, respectively.
2.9 Swimming motility assay

P. marina and DcapC strains were grown for 16 -18 h in a table

concentrator (200 r/min, 25°C). To observe the swimming trajectory,

the bacterial solution (1 mL) from P. marina and DcapC strains were

pointed on the swimming medium (Marine Broth 2216E medium,

0.3% agar), respectively, and kept at 25°C for 18 h. The test consisted

of 9 iterations per strain.
2.10 The thickness of biofilms

The morphology of biofilm cells was maintained by 5% formalin

solution (30 min). After being dyed with iodide solution (5 g/L) for

20 min in complete darkness, the stained biofilms were washed three

times with 0.9% NaCl. To determine the thickness of biofilms, the

confocal laser scanning microscopy (CLSM) images were conducted

using Leica TCS SP8 with LAS X software. The confocal microscope

and software were set to objective magnification of 63 ×, z-step of 0.2

µm and pixels of 1024×1024. Imaging analysis was performed on 9

randomly chosen fields of view.
2.11 Extraction of bacterial CPS

The method of bacterial CPS extraction was identical to that of

a previous study (Zhang et al., 2013; Zhang et al., 2017; Lin et al.,
TABLE 2 Primers used to construct DcapC strain.

Primer name Sequence (5′!3′) Product length (bp)

capC-up-S AGGGAGTTGTTGCCAGTTCA 514

capC-up-A TACTAGCAAGGTGTTTAAAT 514

capC-down-S AATAACGTTATTTACGACTG 914

capC-down-A TACGCACCAAAGGACCCAAG 914

capC-SF CATCTGGCTGGTTTGTAC 284

capC-SR GTGACGCACTCGTTATTG 148

capC-LF TTTGGAGGGAGTTGTTGC 519

capC-LR AGCTCGCCAGGTGAAGGT 587
frontiersin.org

https://doi.org/10.3389/fmars.2023.1089024
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


He et al. 10.3389/fmars.2023.1089024
2018). Typically, 4 mL of sterile saline was added to each Zobell

2216E agar medium to dissolve the bacterial cells. Bacteria from 24

plates were collected for each strain. The bacterial suspension was

centrifugated for 30 min at 12000 × g, then the bacterial sediments

were collected for resuspended in 30 mL of sterile buffered saline

(10 mM EDTA, 0.9% NaCl). After stored at 4°C for 2 h, the

bacterial suspension was centrifugated for 30 min at 12000 × g at

4°C. To eliminate bacteria from the supernatant, the 0.22 mm
vacuum filters were utilized to filter the liquid. Next, the filtration

liquid was concentrated through 10 kD ultrafiltration and 3 times

the volume of anhydrous ethanol was added to the mixture. After

cooled at 4°C for 12 h, the mixture was centrifugated (4°C, 1800 ×

g) for 30 min to remove nucleic acid impurities. Then added 4-

times the volume of anhydrous ethanol into the supernatant, and

stored at 4°C for 24 h. Next, the suspension was centrifugated for

1h (4°C, 1800 × g), and the polysaccharide precipitation was

collected and washed with anhydrous ethanol and acetone twice,

respectively. After lyophilized, the polysaccharide was dissolved

into a 5% aqueous solution and 1/3 volume of Sevage (Chloroform:

N-butanol = 4: 1, v/v) was added. After shaking for 25 min, the

mixture was centrifuged for 10 min (4°C, 1800 × g), then the

protein precipitation was discarded. The supernatant was dialyzed

for 48 h and freeze-dried to obtain CPS.
2.12 Quantification of bacterial CPS
and c-di-GMP

The bacterial CPS quantification method was identical to that

of a previous study (Zhang et al., 2017), and the extracted CPS

powder was dissolved in 5 mL sterilized distilled water to form a

stock solution. The stock solution was diluted 10 folds with

distilled water as a test solution. Then, 1 mL distilled water, 1

mL 3% phenol and 5 mL sulfuric were successively added into a

sterile tube containing 1 mL test solution. And 2 mL of distilled

water served as a blank control. The samples were allowed to react

for 20 min at 80°C. Then, the samples were kept at 25°C, and the

OD485 values of samples were detected. Three replicates were

performed for each sample. The value of the A485 was

calculated using a glucose concentration standard curve to

calculate the content of the CPS in the sample. The c-di-GMP

content was quantitatively analyzed by LC-MA/MS with reference

to Peng et al. (2020).
2.13 Analysis of biofilm exopolysaccharide
content scanning by CLSM

Biofilms of experimental strains were dyed as in a previous study

(Peng et al., 2020; Hu et al., 2021). Confocal images of the processed

samples were acquired using CLSM and LAS X software with the

same conditions as described in 2.10. Three replicate samples were

prepared for wild-type and mutant biofilms, respectively. Each

experimental sample consisted of three randomly chosen fields of

vision. The Image J software (NIH, Madison, WI, USA) was utilized
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to analyze confocal images and calculate the content of

polysaccharides in extracellular products of biofilms.
2.14 Data statistical analysis

Data analysis was carried out using JMP™ software (Liang

et al., 2021).
3 Results

3.1 Effects of capC deletion on phenotype
and growth ability of P. marina

To understand the effect of P. marina gene capC on settlement

and metamorphosis of M. coruscus larvae, a mutant with deletion of

CPS synthesis gene was created (Figure 1A). The phenotypic

observation revealed that the formats of the wild-type and DcapC
strains were smooth and circular (Figures 1B, C). Compared with P.

marina, the growth of DcapC strain increased significantly during 3 –

12 h (p < 0.05, Figure 1D). When it entered the stationary phase, the

growth situation of the two strains was similar.
3.2 DcapC strain reduced larval settlement

The results demonstrated that the inductive ability of DcapC
biofilms to M. coruscus larvae was significantly reduced at each

initial bacterial concentration (p < 0.05). Compared with wild-type

biofilms, the largest reduction was 23.1% (p < 0.05, Figure 2A),

whereas the bacterial cell density of DcapC biofilms did not differ

significantly (p > 0.05, Figure 2B). There was no significant

correlation between biofilm-inducing activity and bacterial density

of biofilms (p > 0.05, Table S1).
3.3 Effects of capC deletion on swimming
motility and biofilm thickness

The swimming motility of DcapC strain was not significantly

different from P. marina by observing (Figure 3A) and calculating the

formation of the migration zone (p > 0.05, Figure 3B).

The CLSM scanned data indicated that the bacterial aggregation of P.

marina and DcapC biofilms was similar (Figures 4A, B). Biofilms were

formed separately by the two strains with the initial density of 5×108 cells

mL−1 (p > 0.05, Figure 4C). The rate of post-larvae showed no significant

correlation with the thickness of biofilms (p > 0.05, Table S1).
3.4 Comparison of content of bacterial CPS
extraction and c-di-GMP

According to the results of the bacterial CPS analysis, the DcapC
strain generated significantly less CPS (38.07% decrease) than P.
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marina (p < 0.05, Figure 5A). The CPS content significantly correlated

with the inducing capacity of biofilms on the settlement and

metamorphosis rate (r = 0.592, p < 0.05, Table S1). The results of

bacterial c-di-GMP analysis showed that the c-di-GMP produced by

DcapC strain was significantly higher than P. marina, and the increase

was 1.94 times higher (p < 0.05, Figure 5B).
3.5 CLSM images of DcapC biofilms
exopolysaccharide

CLSM scanned images exhibited that the production of

exopolysaccharide was different between DcapC biofilms and wild-

type biofilms (Figure 6A). There was also a significant difference in

biomass between the two strains (p < 0.05, Figure 6B). The content of
Frontiers in Marine Science 05
a-polysaccharides and b-polysaccharides produced by DcapC
biofilms was 35.93% and 35.85% less than that in biofilms of P.

marina, respectively (p < 0.05, Figure 6B).
4 Discussion

Marine invertebrates and marine microorganisms are crucial

components of marine ecosystems (Falkowski, 1998; Paredes

et al., 2021), and participate in the maintenance of marine

biodiversity. Many studies have shown that the larval settlement

and metamorphosis of various marine invertebrates are influenced by

the chemical cue on marine biofilms (Dworjanyn and Pirozzi, 2008;

Tamburri et al., 2008; Webster et al., 2011; Whalan and Webster,

2014). CPS, as a bacterial polysaccharide, has been demonstrated to
FIGURE 1

Construction of DcapC strain and the colony morphology and growth of wild-type and DcapC strains. (A) PCR verified the deletion of the capC gene. M:
DNA Maker III; 1: capC-LF/LR, 1 835 bp; 2: DcapC-LF/LR, 1 106 bp; 3: capC-LF/SR, 1 396 bp; 4: DcapC-LF/SR, 667 bp; 5: capC-SF/LR, 1 600bp; 6: DcapC-SF/
LR, 871 bp; 7: capC-SF/SR, 1 161 bp; 8: capC-SF/SR, 435bp. The orf (open reading frame) length of capC is 729 bp. (B, C) Bacterial colony characteristics of
experimental strains. (D) Growth curve of experimental strains at 25°C. The * indicates a significance level of p < 0.05. The same as below.
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affect the formation of bacterial biofilms (Petruzzi et al., 2017; Eberle

et al., 2020), whether CPS synthesis gene regulates biofilm formation

of marine bacterial biofilm and larval settlement and metamorphosis

is still undefined. Here, a capC deletion strain of P. marina was

created, and it was found that the DcapC strain with lower CPS

production and lower exopolysaccharide on DcapC biofilms

significantly prevented mussel settlement and metamorphosis. This

revealed that capC gene regulates the production of bacterial CPS,

which participate in larval settlement and metamorphosis (Figure 7).

CPS is a major structural component outside the bacterial cell wall,

appearing in many Gram-positive bacteria and Gram-negative bacteria

(Whitfield, 2006; Cuthbertson et al., 2009). The general biosynthesis

pathway of CPS is wzy dependent pathway, monosaccharide passes

through the flipper enzyme to the outer periplasmic, and the high-level

polymerization of CPS requires the alternation of phosphorylation of

tyrosine kinase and homologous phosphatase (Wugeditsch et al., 2001;

Hagelueken et al., 2009). It is reported that in E. coli, tyrosine kinase wzc

and homologous phosphatase wzb have been proved to be pivotal genes

during CPS synthesis and assembly (Wugeditsch et al., 2001;

Cuthbertson et al., 2009). In Streptococcus Pneumoniae, the cpsCD

complex is considered to be similar to wzc, and phosphatase cpsB is its

corresponding homologous phosphatase (Grangeasse et al., 2007). In this

study, homologous sequence alignment found that the capC gene of P.

marina was similar to cpsB, and the deletion of capC gene led to a

significant reduction in CPS content. Thus, it can be speculated that the
Frontiers in Marine Science 06
capC gene plays a role in homologous phosphorylation in the P. marina

CPS synthesis.

Previous studies have shown that the deletion of CPS synthesis gene

can promote the formation of biofilms (Petruzzi et al., 2017; Eberle et al.,

2020). The deletion of wza gene of V. vulnificus CPS transfer protein

caused that the CPS in bacterial capsule cannot be secreted to

extracellular surface, and the formation of biofilms was significantly

increased. (Wright et al., 1999; Wright et al., 2001). During the formation

of S. Pneumoniae bacterial biofilm, the decrease of cps3A gene expression

led to the reduction of CPS content and promoted the formation of

biofilms (Hall-Stoodley et al., 2008). Nevertheless, this study showed that

the deletion of capC gene of P. marina did not alter the final growth

ability, motility, colony morphology and bacterial density of biofilms, as

well as biofilm thickness. It was showed that the capC gene of P. marina

did not influence the ability of biofilm formation. Considering previous

studies, it was speculated that the function of CPS synthesis gene is

different in various bacteria. This situation may be caused by various

bacterial characteristics and living environments. Furthermore, the

analysis of CLSM images confirmed that the deletion of capC gene of

P. marina resulted in a significant decline in a-polysaccharides and b-
polysaccharides of biofilms. These findings showed that the effects of

capsular polysaccharide biosynthesis genes on biofilm formation ability

were different from those found in previous studies, the deletion of capC

gene in this study only altered the exopolysaccharide secretion of P.

marina biofilms, without affecting the ability of bacteria to aggregate.
BA

FIGURE 2

The biofilms of DcapC reduced the inducing activity. (A) The effects of biofilms generated by experimental strains on larval settlement and
metamorphosis (96h). (B) Biofilm density produced by experimental strains with diverse initial CFU.
BA

FIGURE 3

The swimming motility of experimental strains. (A) The swimming motility phenotypes of P. marina and DcapC strains. (B) The migration zone diameter
of P. marina and DcapC strains.
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Exopolysaccharide is the main component of bacterial

biofilms, and it has great biological activity (Sutherland, 2001;

Flemming et al., 2016; Moradali and Rehm, 2020). Many studies

have found that a variety of exopolysaccharides in biofilms can
Frontiers in Marine Science 07
regulate the larval settlement and metamorphosis in marine

invertebrates (see Table S2) (Kirchman et al., 1982; Liang et al.,

2021; Freckelton et al., 2022). The settlement and metamorphosis

of Janua brasiliensis larvae is thought to be caused by the
BA

FIGURE 5

Difference in CPS secretion (A) and c-di-GMP (B) of experimental strains.
FIGURE 4

Biofilm-forming ability of experimental strains. (A, B) The CLSM images of wild-type and DcapC biofilms. (C) Quantitative results of biofilm thickness of
wild-type and DcapC biofilms.
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associated exopolysaccharides on the bacterial surface, rather than

the water-soluble metabolites of the bacteria (Kirchman, 1982).

Szewzyk et al. (1991) found that the decrease in the content of

exopolysaccharide in Pseudomonas sp. (strain S9) reduced the

settlement response of the larvae of C. intestinalis. Holmström

et al. (1992) predicted the involvement of exopolysaccharide in

larval settlement by analyzing the effects of 40 strains

of marine bacteria on Balanus amphitrite and Ciona integrinalis

(Holmström et al . , 1992). And in the mutant strain of

Pseudoalteromonas lipolytica AT00-17125 gene, the bacterial

capsule became thinner, the content of colanic acid decreased,

and significantly reduced the inducing activity on M. coruscus

(Zeng et al., 2015). These above studies indicated that different

polysaccharides have different inducing effects on the settlement

and metamorphosis of marine invertebrate larvae.
Frontiers in Marine Science 08
This current investigation demonstrated that the knockout of CPS

synthesis gene capC caused the increasing the bacterial c-di-GMP and

reduction of the secretion of CPS and exopolysaccharide of biofilms, and

the inducing activity of DcapC biofilms to M. coruscus larvae decreased

significantly. Our previous work also found that bacterial colanic acid

concentration nearly quadrupled after deleting gene 01912 associated to

polysaccharide biosynthesis, accompanied with increasing c-di-GMP

caused the significant upregulation in mussel larval settlement and

metamorphosis (Peng et al., 2020). In addition, knockout

cellulose synthesis gene bcsQ caused significantly a reduction in

exopolysaccharide (including cellulose) and c-di-GMP, and inhibited

the settlement of M. coruscus larvae (Liang et al., 2021). Thus, these

findings suggested that bacterial c-di-GMP mediates polysaccharide

secretion and subsequent changed the inducing capability of biofilm on

larval recruitment. Further molecular basis is needed.
B

A

FIGURE 6

The CLSM analysis of exopolysaccharide in wild-type and DcapC biofilms. (A) Distribution of extracellular polysaccharides in two experimental biofilms.
(B) Analysis of exopolysaccharide.
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5 Conclusion

The present findings indicated that deletion of the gene capC in P.

marina bring about the decrease in exopolysaccharides and CPS of

biofilms, upregulation of bacterial c-di-GMP and significantly lower

levels of biofilm-inducing activity. Thus, the CPS synthesis gene could

modulate mussel recruitment via c-di-GMP and CPS. This study

contributes a fresh insight to our understanding of the molecular

processes that lead to the production of bacterial exopolysaccharides

and recruitment of marine invertebrates.
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