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Obesity is increasingly becoming a global epidemic of concern and is considered a

risk factor for several endocrine-related cancers. Moreover, obesity is associated

with cancer development and poor prognosis. As a metabolic abnormality, obesity

leads to a series of changes in insulin, IGF-1, sex hormones, IGFBPs, and

adipokines. Among these factors, IGF-1 plays an important role in obesity-

related endocrine cancers. This review describes the role of obesity in

endocrine-related cancers, such as prostate cancer, breast cancer and

pancreatic cancer, focusing on the mechanism of IGF-1 and the crosstalk with

estrogen and adipokines. In addition, this review briefly introduces the current

status of IGF-1R inhibitors in clinical practice and shows the prospect of IGF-1R

inhibitors in combination with other anticancer drugs.
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1 Introduction

Obesity is a risk factor for several chronic diseases, such as hypertension, type 2 diabetes,

dyslipidemia and cardiovascular disease. Epidemiological studies have shown that obesity is

also a risk factor for certain types of cancer, such as postmenopausal breast cancer, prostate

cancer, endometrial cancer, pancreatic cancer and thyroid cancer. Furthermore, a growing

number of studies indicate that obesity predicts unfavorable outcomes for cancers (1).

Obesity, a clinical marker of insulin resistance and metabolic syndrome, is associated with

multiple biological metabolic changes, such as hyperinsulinemia, an increase in free fatty acid

levels and triglycerides and hypoHDL-cholesterol. Hyperinsulinemia induces a decrease in

insulin-like growth factor binding protein-1 and 2 (IGFBP-1 and 2) and reduces sex hormone

binding globulin (SHBG) levels, resulting in an increase in free estrogen and androgen and

insulin-like growth factor-1 (IGF-1) levels (2). The IGF system plays an important role in

normal growth and development as well as in a variety of pathological situations, particularly
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tumorigenesis. Obesity is associated with an increased incidence of

cancers arising from tissues responsive to estrogenic stimulation,

including the endometrium, breast, and prostate (3). In

postmenopausal women, elevated bioavailable plasma estrogen

levels are related to an increased risk of breast cancer and

endometrial cancer (4). Sex steroid alterations are associated with

prostate cancer development and progression. This review will focus

on the effects of IGF-1 on the relationships between obesity and

endocrine-related cancer, especially on prostate cancer, breast cancer

and pancreatic cancer.
2 Insulin-like growth factor-1

Insulin-like growth factors (IGFs) were first described in the late

1950s as skeletal growth factors produced in the liver in response to

pituitary growth hormone (GH), and these growth factors play a

fundamental role in regulating somatic growth according to

nutritional conditions. IGFs, a group of polypeptide substances with

growth-promoting effects, consist of IGF-1 and IGF-2. IGF-1 is

produced in the liver, secreted into the circulation and acts in target

tissues. In addition to the liver, IGF-1 is also produced in most

extrahepatic tissues and functions as an endocrine, autocrine and

paracrine growth stimulator to regulate cell growth (5). IGF-1 is a

major target gene of growth hormone, and its product mediates many

of the actions of growth hormone on growth and development. IGF

action is also important in the development of specific organs, such as

in the nervous system, in which IGF signaling regulates neuronal

proliferation, apoptosis and cell survival. However, the IGF system

has been implicated in various pathophysiological conditions and

plays a particularly prominent role in the development and

progression of human cancer (6) . A growing body of

epidemiological data suggests that high levels of circulating IGF-1

constitute a risk factor for the development of breast, prostate, colon,

and lung cancer.

IGF-1 receptor (IGF-1R) is not mutated in most cancers and has a

high degree of structural homology with insulin receptor (INSR),

particularly in the tyrosine domain, which can form a heterodimer

with each other and signal through many common mediators, but the

two receptor signaling axes exhibit marked functional variance (7, 8).

In addition, the expression levels of IGF-1R and INSR are predictive

of cancer outcome. Experimentally, the modulation of IGF-1R activity

affects the growth of many types of tumor cells. As a result of these

findings, intensive effort is being directed toward investigating the

utility of the IGF system as both a diagnostic marker and a therapeutic

target in cancer therapy (6).

Six high-affinity IGF-binding proteins (IGFBP) are described at

present. They are synthesized by several cell types, mostly from the

fibroblast lineage, which regulate IGF-1 and IGF-2. In this family,

IGFBP-3 is the most abundant IGFBP in blood, and IGFBP-2 is the

second most abundant IGFBP. The IGF-1-IGFBP-3 complex and

IGF1-IGFBP-5 complex bind to a third protein termed the acid labile

subunit (9, 10). IGFBP-4, 5 and 6 are present in lower concentrations

and appear to be less important for the regulation of free IGF

concentrations in serum (5). More than 99% IGF-1 is bound to

IGFBPs, which can increase the half-life of IGF to some extent, and

their binding affinity for IGF is nearly 10 times higher than that for
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IGF-1R (10, 11). Therefore, the function and concentration of IGFBPs

are critical to regulate the biological actions of IGFs.
3 Endocrine-related cancer

Circulating insulin and IGF-1 increase in the obese state, and sex

hormones, adipokines and other inflammatory factors also vary (12).

Both IGF and insulin can increase the expression of IGF-1R and

INSR, which forms a functional network of interactions. In addition,

IGFBPs are produced at lower levels, which reduces their inhibitory

effects on insulin/IGF. IGF-1 has been studied more frequently in

prostate cancer. In addition to IGF-1, estrogen is critical in breast

cancer, and adiponectin is receiving increasing attention in pancreatic

cancer; leptin and adiponectin have been relatively less studied in

endocrine-related cancers. To varying degrees, these biological factors

play a role in endocrine-related cancers.
3.1 Prostate cancer

A correlation between obesity and prostate cancer risk has been

reported in a number of studies, especially in abdominal obesity, with

a linear relationship between increasing BMI and prostate cancer

(13). Moreover, obesity is associated with an increased risk of

recurrence after treatment, advanced cancer progression and

prostate cancer-specific mortality for prostate cancer patients (14,

15) Obesity and chronic hyperinsulinemia are known to reduce the

production of IGFBPs and increase IGF-1 biological activity (16). The

insulin/IGF-1 axis is associated with obesity-induced prostate

carcinogenesis via the phosphatidylinostitol-3 kinase (PI3K)/Akt/

mTOR pathways. Using Hi-Myc/HIT mice, Wang et al. showed

that IGF-1 promotes prostate cancer and that the IGF-1/AKT/

FOXO3A/BIM pathway plays an important role (17). Prostate

cancer cells overexpress IGF-1R and INSR (18). In vitro and in vivo

experiments suggest that both IGF-1R and INSR promote

angiogenesis in prostate cancer (19). Sayeed et al. showed that IGF-

IR signaling strictly regulates prosurvival signaling in prostate cancer

by controlling the expression of a5b1 integrin, which indicates that

IGF-1R and INSR promote the growth and invasion of prostate

cancer (20). Therefore, changes in IGFS in obese people may

increase the potential risk of prostate cancer.

According to a recent study by Markers et al., the serum levels of

steroid hormones were not associated with prostate cancer risk in

obese men, which is consistent with most previous studies (21).

However, many studies have indicated that low testosterone and

elevated estrogen levels in obese men are correlated with the

development of prostate cancer (22). To clarify these contradictory

results, further investigation of the underlying mechanisms is still

needed. Leptin has prostate cancer-promoting effects and is positively

correlated with fat mass, while adiponectin has anticancer effects and

is negatively correlated with BMI (23, 24). The ratio between leptin

and adiponectin is imbalanced in obese individuals, leading to

abnormalities in the AMPK and mTOR signaling pathways, which

may influence prostate cancer development (25). In addition, adipose

tissue itself is also associated with prostate cancer. Periprostatic

adipose tissue secretes a variety of inflammatory factors and creates
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a tumor microenvironment that promotes the development of

prostate cancer (26–29).
3.2 Breast cancer

Obesity is associated with the occurrence and progression of

breast cancer, especially postmenopausal ER+/PR+ breast cancer (30,

31). According to a systematic evaluation, higher levels of IGF-1,

IGFBP-3 and leptin and lower levels of adiponectin among obesity-

associated protein biomarkers are correlated with an increased breast

cancer risk (32). The association between IGFBP-3 and breast cancer

risk is reportedly due to its interaction with IGF-1, and this

interaction can be eliminated by the adjustment of IGF-1,

suggesting that IGF-1 itself is an inducing factor of breast cancer (33).

In addition to the direct regulation of estrogen and these obesity-

associated protein biomarkers on breast cancer cells, these biological

factors exhibit crosstalk. The role of IGF-1 is mediated by IGF-1R,

which is overexpressed in breast cancer (34, 35). IGF-1R promotes

breast cancer by altering the expression of proliferation and survival

genes through the Ras/Raf/MAPK and PI3K/Akt signaling pathways

(36, 37). Insulin can also promote breast cancer via these signaling

pathways (38). The estrogen-induced production of ROS leads to

DNA damage, while estrogen itself inhibits the DNA damage

response and can promote cell proliferation, which is the

background of estrogen-induced breast cancer (39–41).

Postmenopausal adipose tissue is an important site of estrogen

production. The rate of estrogen conversion is higher in obese

postmenopausal women, and obesity increases estrogen levels in ER

receptor-positive breast cancer tissue, which increases the risk

associated with breast cancer (42, 43). This risk is further increased

by a reduction in SHBG in the liver of individuals with obesity and an

increase in the concentration of non-SHBG-bound estradiol (E2, the

most abundant and active estrogen) (44, 45). Similar to IGF-1,

estrogen can also play a role in breast cancer through the MAPK

and PI3K/Akt signaling pathways, and estrogen and IGF-1 exhibit

crosstalk. E2 accelerates and enhances the binding of ERa to IGF-1R,

and ERa, activated by the Ras-MAPK cascade of the growth factor

signaling pathway, induces the phosphorylation of Akt and ERK1/2

after rapid binding to IGF-1R, thereby enlarging IGF-1R signaling

(46). Leptin, which is associated with estrogen, also contributes to

breast cancer. It may upregulate the PI3K/Akt pathway, MAPK

pathway and STAT3 pathway, the downstream signaling pathways

of Ob-R, which stimulate oncogenesis (47). Interestingly, elevated

cAMP may inhibit leptin-induced migration of highly aggressive

breast cancer cells MDA-MB-231 by suppressing ERK1/2 and

STAT3 signaling pathway (48, 49). Leptin also promotes the

proliferation of breast cancer cells by activating the Wnt/b-catenin
pathway (50). Aromatase is the rate-limiting enzyme for estrogen

synthesis, and leptin can induce aromatase expression through COX-

2 expression in breast cancer cells and increase estrogen synthesis,

promoting the progression of breast cancer (51, 52). Zahid et al.

showed that the increase in aromatase expression in the obese state

may be mediated by leptin via the P53-HIF1a/PKM2-aromatase axis

(53). In addition, Morad et al. suggested that estrogen can in turn

increase the expression of leptin and leptin receptors (54). In ERa-
negative breast cancer, adiponectin inhibited IGF-1-induced cell
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migration, whereas in ERa-positive breast cancer, low

concentrations of adiponectin promoted IGF-1R phosphorylation

and thus enhanced IGF-1/IGF-1R signaling (55, 56). The

concentration of adiponectin tends to decrease in obese states,

which may reduce the protective effect and increase the risk of

breast cancer. In conclusion, in obese women, especially

postmenopausal women, the role of estrogen and obesity-associated

protein biomarkers in breast cancer is complicated due to their own

changes and crosstalk.
3.3 Pancreatic cancer

Epidemiological surveys show that obesity is associated with

pancreatic cancer morbidity and mortality, and the morbidity of

pancreatic cancer increases with increasing BMI (57, 58). Since

approximately 90% of pancreatic cancers are pancreatic ductal

carcinoma (PDAC), many models have been built with PDAC.

Various events are considered to elevate the risk of pancreatic

cancer in obesity, such as the increase in IGF-1. A survey including

105 patients showed that IGF-1R was overexpressed in more than half

of the PDAC samples (59). Du et al. indicated that high IGF-1R

expression was associated with shorter overall survival and relapse in

patients (60). In PDAC, both insulin and IGF-1 are considered to play

a role in cancer development and progression, with the PI3K and

MAPK signaling pathways as its central pathways, and these signals

are enhanced in obesity (61, 62). Tian et al. inhibited the PI3K/Akt

signaling pathway by knocking down the IGF-1R gene, thereby

inhibiting the proliferation of pancreatic cancer cells and increasing

the sensitivity of anticancer drugs, which to some extent proves the

role of IGF-1 in pancreatic cancer (63). Oncogenic KRAS mutation

occurs in approximately 90% of PDAC, and MEK/ERK is one of the

main effector pathways of KRAS signaling (64). MEK/ERK-

stimulated IGF-1R signaling is required for murine pancreatic

epithelial cell transformation, which suggests a critical role for IGF-

1R signaling in pancreatic carcinogenesis (65). In addition, leptin,

adiponectin and inflammatory factors also play an important role in

the association between obesity and pancreatic cancer (66, 67).

Adiponectin acts by binding to AdipoRs to activate downstream

signaling pathways and AdipoRon is a synthetic small molecule

AdipoR agonist that binds to the AdipoR1 and AdipoR2. AdipoRon

induces pancreatic cancer cell death by activating ERK1/2, however,

obesity weakens this anti-cancer effect (68, 69). Messaggio et al.

demonstrated that leptin promotes pancreatic tumor growth

through altered pathways of STAT3 and PI3K/AKT signaling,

whereas AdipoRon inhibits leptin-induced STAT3 activation and

pancreatic tumor growth in vivo (70, 71). Recently, Ragone et al.

combined gemcitabine, a first-line agent for pancreatic cancer, with

AdipoRon to enhance growth inhibition in human PDAC cell lines,

which may be associated with the AdipoRon mediated p44/42 MAPK

(ERK1/2) pathway (72).
3.4 Other endocrine-related cancers

Ovarian, endometrial and thyroid cancers are also associated with

obesity. In ovarian cancer, epidemiological studies show that obesity
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may promote the peritoneal dissemination of ovarian cancer and

increase patient mortality (73, 74). Ignacio et al. suggest that obesity

may accelerate the peritoneal dissemination of ovarian cancer by

producing more proinflammatory chemokines and recruiting

macrophages (75). Leptin helps maintain the cancer stem cell-like

properties of ovarian cancer cells and stimulates the migration and

invasion of ovarian cancer cells (76). IGF-IR mediates TGFb for

the maintenance of EMT transformation, angiogenesis and

extracellular matrix remodeling (77). Together, these factors

contribute to the development of ovarian cancer. In endometrial

cancer, epidemiological studies have shown that obesity is associated

with an increased incidence of endometrial cancer and is correlated

with recurrence and death in patients with endometrial cancer (78).

Merritt et al. indicated that estrogen, insulin, and IGF-1 are associated

with the multistage process of endometrial carcinogenesis (79).

Estrogen can stimulate cell proliferation by increasing IGF-1

synthesis and IGF-IR expression in the uterus via ERa (80). In

addition, in the absence of IGFBP-1 synthesis in obesity, IGF-1

may further induce the abnormal proliferation of endometrial cells,

which is a possible pathway for endometrial cancer formation (81). In

thyroid cancer, a cohort study collected more than 450,000 samples

from 1995 to 2015 and suggested that being overweight and obesity

may be important causes of the increased incidence of thyroid cancer

(82). IGF-1 may play a role in the association between obesity and

thyroid cancer (83). IGF-1 is positively associated with the risk of
Frontiers in Endocrinology 04
developing thyroid cancer (84). Yang et al. suggested that IGF-1

promotes the proliferation and invasion of thyroid-like carcinoma

through the STAT3 pathway (85). Studies have also indicated a role

for the IGF axis in thyroid tumorigenesis (86).
4 Therapies targeting the IGF family

In the face of increasing cancer incidence, researchers have

targeted the IGF axis for therapeutic intervention due to its role in

cancer.Three main approaches are used to target IGFs, including IGF-

1R monoclonal antibodies, IGF-1R tyrosine kinase inhibitors (TKIs)

and IGF-1/-2 blocking monoclonal antibodies. IGF-1R monoclonal

antibodies (IGF-1R mAb, such as cixutumumab, figitumumab and

ganitumab) function mainly by blocking ligand-receptor action,

inducing the internalization/degradation of IGF-1R and partially

downregulating IGF-1R/INSR hybrid receptors (87, 88). Among

IGF-1R TKIs, ATP-competitive TKIs act by competing for the

binding site of the IGF-1R kinase domain to ATP, which inhibits

both IGF-1R and INSR. However, non-ATP competitive IGF-1R

inhibitors do not influence INSR (89, 90). IGF-1/-2 blocking mAb

blocks IGF-1R and INSR-A and their hybrid receptors from

transducing proliferative/anti-apoptotic signals by binding IGF-1

and IGF-2 without affecting INSR-B and insulin function (91). For

more than a decade, researchers have conducted numerous clinical
TABLE 1 Clinical trials of IGF-1 inhibitors as single agents.

Cancer type Drug Drug
Type

Clinical
trial
Phase

Number of
patiens

Response Trial ID Ref.

Postmenopausal women
with hormone receptor–
positive breast cancer

Cixutumumab Anti-IGF-
1R mAb

II n=93(31 in the
cixutumumab alone
group)

No significant clinical effect observed with
cixutumumab alone

NCT00728949 (92)

Advanced hepatocellular
carcinoma

Cixutumumab Anti-IGF-
1R mAb

II Qnly stage 1 was
accrued: n= 24

No significant clinical effect NCT00639509 (93)

Refractory Solid Tumors Cixutumumab Anti-IGF-
1R mAb

II n=116 Limited objective single-agent activity of
cixutumumab was observed;
PR:20%(neuroblastoma with only MIBG
evaluable disease ), SD:15%(patients with a
variety of solid tumor types)

NCT00831844 (94)

Recurrent or refractory
TETs

Cixutumumab Anti-IGF-
1R mAb

II n=49(37
thymomas;12
thymic carcinomas)

PR :14%,SD :76%(thymoma cohort);
PR:0,SD:42%(thymic carcinoma cohort)

NCT00965250 (95)

Rhabdomyosar-coma;
Leiomyosarcoma;
Adipocytic sarcoma;
Synovial sarcoma; Ewing
family of tumours
(including ES-1 and
peripheral
neuroectodermal tumour)

Cixutumumab Anti-IGF-
1R mAb

II n=113(all tiers
except adipocytic
sarcoma were closed
after stage 1 due to
futility)

PFR:12%(rhabdomyosarcoma, n = 17),
14%( leiomyosarcoma, n=22), 32%
(adipocytic sarcoma, n=37), 18%(synovial
sarcoma, n=17), 11%(Ewing family of
tumours, n=18)

NCT00668148 (96)

Ewing sarcoma,
osteosarcoma and other
sarcomas

Figitumumab Anti-IGF-
1R mAb

I/II Phase Iportion
n=31, phase II
portion n=107

phaseIIportion ORR=14.2% NCT00560235 (97)

Neuroendocrine tumor MK-0646 Anti-IGF-
1R mAb

II n=25 inactive as a single agent NCT00610129 (98)

(Continued)
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trials on these three classes of inhibitors due to the role of IGF-1 in

tumor development (Table 1). Unfortunately, the results of most

clinical trials targeting single-agent activity were disappointing. Some

IGF-1R inhibitors have been discontinued or abandoned from

development; for example, Pfizer decided to discontinue

figitumumab (CP-751871) in 2010, and Roche shifted to

teprotumumab to treat ophthalmic disease.

One possible reason for the resistance of cancer cells to IGF-1R

inhibitors is the compensatory activation of RTK signaling; therefore,

several combination therapies have recently emerged to improve

efficacy (104, 105), such as IGF-1R inhibitors in combination with

other RTK inhibitors. EGFR is an important factor in the RTK

signaling pathway, and the IGF-1/2 neutralizing antibody m708.5

exhibits a strong synergistic effect with gefitinib, which shows benefit

in the treatment of neuroblastoma and breast cancer (106). IGF-1R

inhibitors are valuable in endocrine-related tumors. For example, the

activation of the IGF-1R pathway is associated with tamoxifen

resistance, while the elimination of IGF-1R signaling with linsitinib

could restore the sensitivity of endocrine therapy (107). Combined

IGF-1R/mTOR inhibition also shows synergistic effects. In ACC, in

vitro assays showed stronger antiproliferative activity in combination

with sirolimus or everolimus than with linsitinib (108). A phase I

clinical trial of ridaforolimus in combination with anti-IGF1R mAb

dalozumab also demonstrated clinical activity in advanced cancer

(109). Some experimental support also exists for the combination of

IGF-1R inhibitors with therapeutic approaches to induce DNA

damage. Most invasive breast cancers have insulin/IGF-1R signaling

activation, and xentuzumab in combination with paclitaxel can

effectively reduce metastasis incidence and metastatic burden in

preclinical mouse models (110). IGF-1R is also involved in

radiotherapy resistance. Low IGF-1R expression was demonstrated
Frontiers in Endocrinology 05
to increase the sensitivity of CRC to radiation therapy when treated

with NVP-ADW742 in CRC cells (111, 112). Some anticancer drugs

containing IGF-1R inhibitors have entered in phase III clinical trials,

but clinical benefit is not significant. More clinical trials are needed to

prove the effectiveness of the combination therapy.
TABLE 1 Continued

Cancer type Drug Drug
Type

Clinical
trial
Phase

Number of
patiens

Response Trial ID Ref.

Previously treated, locally
advanced or metastatic
NSCLC of the SCC or
AC subtypes

AXL1717 IGF-1R TKI II n=99(58 in the
AXL1717 group)

12-week PFS: 25.9%(AXL1717 group),
39.0%(docetaxel group),without any
statistically significant differences

NCT01561456 (99)

Adrenocortical carcinoma Linsitinib IGF-1R/
INSR TKI

III n=135 No difference in overall survival was noted
between linsitinib and placebo

NCT00924989 (100)

Metastatic castrate
resistant prostate cancer

Linsitinib IGF-1R/
INSR TKI

II n=18 No significant PSA or objective response;
without any effect on circulating tumor
cells or survival benefit

NCT01533246 (101)

advanced/metastatic solid
cancers

Xentuzumab IGF-1/IGF-
2-
neutralizing
Ab

I Study 1280.1:n=61;
Study 1280.2:n=64

Preliminary anti-tumour activity;
Study 1280.1 part 1:PR(n=2),SD(n=3);
Study 1280.1 part2:
SD(n=3);
Study 1280.2: no objective responses;
SD(n=2 in part1)

NCT01403974;
NCT01317420

(102)

advanced solid tumors xentuzumab IGF-1/IGF-
2-
neutralizing
Ab

I n=21 Preliminary anti-tumour activity;
ORR=9.5%
SD=19.0%

NCT02145741 (103)
frontier
IGF-1R, insulin-like growth factor receptor 1; INSR, insulin receptor; PR, partial response; SD, stable disease; ORR, objective response rate; AE, most common grade 3-4 adverse events; MIBG,
meta-iodo-benzyl-guanidine; PFR, progression-free survival rate; TETs, thymic epithelial tumors; TKI, tyrosine kinase inhibitor; NSCLC, non-small cell lung cancer; SCC, squamous cell
carcinoma; AC, adenocarcinoma; PFS, progression-free survival.
FIGURE1

Relationships and roles in endocrine-related cancer. cAMP, cyclic
adenosine monophosphate; ObR, leptin receptor; STAT3, signal
transducer and activator of transcription 3; FOXO3a, Forkhead box
O3; IGF-1, insulin-like growth factor; IGF-1R, insulin-like growth
factor receptor 1; P13K/Akt, phosphatidylinositol 3-kinase/protein
kinase B; ERa, estrogen receptor a; MAPK,mitogen-activated protein
kinase;MEK,mitogen-activated protein kinase;ERK, extractor signal
regulated kinase.
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5 Conclusion

Obesity has been called the disease of modern civilization and

is a heavy disease burden for society. Disorders of insulin, IGF-1,

sex hormones, adipokines and inflammatory factors have been

observed in numerous studies in the presence of obesity. Obesity is

also recognized as a factor associated with cancer, and adipose

tissue, which is an active endocrine organ, strengthens the link

between obesity and endocrine-related cancers. IGF-1 plays an

important role in obesity-associated endocrine-related cancers,

promoting cancer development mainly through the PI3K/AKT

and MAPK pathways. Insulin, IGF-1, sex hormones and

adipokines also exhibit crosstalk to synergistically function in

this process. The relationships among them and their roles are

shown in Figure 1. Investigators have conducted a series of clinical

trials targeting IGFs; however, most of them failed to demonstrate

single-agent efficacy. Although drug combinations perform better

in preclinical studies, fewer patients benefit from clinical trials.

The following issues remain in the study of obesity and endocrine-

related cancers: 1. the mechanism of action of obesity-related

biologic factors in cancer and the crosstalk among them still

need to be studied further; 2. whether obesity-related biologic

factors can be used as biomarkers to evaluate endocrine-related

cancers has not been fully investigated; 3. suitable predictive

biomarkers urgently need to be identified in clinical trials to

design reasonable joint therapeutic strategies accordingly. If

these problems are solved in the future, IGF inhibitors can play

a larger role in clinical practice and provide more treatment

options for cancer patients.
Frontiers in Endocrinology 06
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