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Estradiol-independent restoration
of T-cell function in post-
reproductive females
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Nathan K. Johnson1 and Jeffrey B. Mason1*

1Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of
Veterinary Medicine, Utah State University, Logan, UT, United States, 2Utah Veterinary Diagnostic
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Aging leads to a general decline in protective immunity. The most common age-

associated effects are in seen T-cell mediated immune function. Adult mice whose

immune systems show only moderate changes in T-cell subsets tend to live longer

than age-matched siblings that display extensive T-cell subset aging. Importantly,

at the time of reproductive decline, the increase in disease risks in women

significantly outpace those of men. In female mice, there is a significant decline

in central and peripheral naïve T-cell subsets at the time of reproductive failure.

Available evidence indicates that this naïve T-cell decline is sensitive to ovarian

function and can be reversed in post-reproductive females by transplantation of

young ovaries. The restoration of naïve T-cell subsets due to ovarian

transplantation was impressive compared with post-reproductive control mice,

but represented only a partial recovery of what was lost from 6 months of age.

Apparently, the influence of ovarian function on immune function may be an

indirect effect, likely moderated by other physiological functions. Estradiol is

significantly reduced in post-reproductive females, but was not increased in

post-reproductive females that received new ovaries, suggesting an estradiol-

independent, but ovarian-dependent influence on immune function. Further

evidence for an estradiol-independent influence includes the restoration of

immune function through the transplantation of young ovaries depleted of

follicles and through the injection of isolated ovarian somatic cells into the

senescent ovaries of old mice. While the restoration of naïve T-cell populations

represents only a small part of the immune system, the ability to reverse this

important functional parameter independent of estradiol may hold promise for the

improvement of post-reproductive female immune health. Further studies of the

non-reproductive influence of the ovary will be needed to elucidate the

mechanisms of the relationship between the ovary and health.
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Background

In human females, a strong relationship exists between

chronological life span, reproductive life span and health.

Chronological life span in humans has been expanded dramatically

over the last century (1), but over the same period, the timing of

menopause or the end of the reproductive life span has remained

relatively constant (2). Prior to ovarian failure, females hold a

significant health advantage over males of the same age. However,

increases in disease risks in women at the time of reproductive decline

significantly outpace those of men (3). This connection between

reproductive function and the maintenance of health is magnified

in women with premature ovarian failure, who suffer from increased

rates of disease at a much younger age than in women with traditional

menopausal timing (4). Ovarian failure prior to 40 years of age can

sharply increase mortality rates (5, 6), compared with women that

report natural menopause at ages 50–54 (7–9).

Aging also leads to a general decline in protective immunity.

Immunosenescence is a general decline in the overall function of the

immune system, which often results in poor responses to vaccines, the

emergence of latent diseases and increased duration and/or severity of

illness after infection (10). The most common effects are usually in T-

cell-mediated immune function, which can be a result of aging-related

changes in many cells and tissues, including a decline in thymic

function and thymic involution/atrophy. T-cell-mediated immune

function contributes to many aspects of defense against viral and

microbial infections. There is strong evidence for an age-associated

decline in the naïve subset of T-cells that have not been exposed to a

stimulatory antigen, and a consequent age-associated increase in

memory T-cells with at least one cycle of antigen-stimulated

activation and proliferation (11, 12).

Having an adequate number of naïve T-cells is crucial for the

immune system to respond to novel pathogens. Changes in T-cell

subsets are often thought to be gender-specific and influenced by a

potential connection between sex hormones and the immune system.

While there are not many studies exploring gender-specific

immunosenescence, in the female mice we study, there is a

significant decline in CD4+ and CD8+ central and peripheral naïve

T-cells at the time of reproductive failure (13, 14).

While the value of ovarian hormones in female health is

unquestionable, efforts to replace the hormonal milieu of actively

cycling ovaries in peri- and post-menopausal women have struggled

to reliably restore the health benefits enjoyed by young,

reproductively cycling women with young ovaries. Menopausal

ovarian fai lure is t ied to the loss of ovarian oocytes .

Hypophysectomy in the mouse significantly retards, but does not

prevent, the loss of oocytes from the ovary (15, 16). The aging process,

as it affects the ovary of the mouse, is therefore retarded when the

pituitary is removed. Immunological function peaks at puberty,

declines by 50% during the post-reproductive life span in mice and

humans (17, 18). In the adult female rat, 8 weeks after ovariectomy,

atrophy of the thyroid was apparent along with hypertrophy of the

pituitary (19, 20), supporting the role of the ovary in

immune function.

Our studies with normal, non-transgenic aged mice demonstrated

that transplanting young ovaries into old mice increases health and
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lifespan after ovarian transplant. These novel findings indicate that

young ovarian tissue can provide factors that slow/reverse the aging

process. Prevailing views speculate that the positive effects of

transplanting young ovaries into old mice are due to restoration of

cyclic hormonal activity. However, we showed that depleting the

hormone-regulating follicles prior to transplantation also increased

health and produced an even greater lifespan extension in recipient

animals. Additionally, our most recent study with transplantation of

isolated young ovarian somatic cells to old endogenous ovaries

revealed that these cells alone are sufficient for extension of health

span. This strongly suggests that additional factors other than ovarian

germ cells and/or cyclic ovarian steroids are responsible for the health

benefits of ovarian tissue. Here, we specifically examined the influence

of young ovarian tissues on immune function in post-reproductive

female mice in the presence or absence of ovarian follicular influence.
Influence of age and ovarian function
on T-cell subsets

The evidence supporting an age-associated decline in the naïve

subset of T-cells and a consequent decrease in the ratio of naïve-to-

memory T-cells is robust (21, 22). Adult mice with only moderate

changes in T-cell subsets live longer than age-matched siblings that

have more extensive T-cell subset aging (23). We previously reported

a significant, age-associated decline in both CD4+ and CD8+ central

and peripheral (effector) naïve T-cells from 6 to 16 months of age in

CBA/J female mice (CBA/J female mice normally become

reproductively senescent at approximately 11 months of age, 13, 24,

Table 1). The change in the naïve: memory T-cell ratios was

predominately due to a change in naïve subsets and not memory

subsets, as both CD4+ and CD8+ central and peripheral memory T-

cells did not change or tended to slightly increase during the period

from 6 to 16 months. In addition, the ratio of CD4+ to CD8+ cells

declined in parallel to the decline in naïve cells. More recent T-cell

data from older mice (21mo) suggests that the trends established to 16

months continue until very old age (mean age at death is 644d/21mo

in CBA/J female mice) and that the effects on CD8+ cells, which

appear somewhat delayed, compared to the effects on CD4+ cells to

16 months, are accelerated at advanced ages. The influence on T-cell

subsets seen in CBA/J female mice was also seen in C57BL/6 female

mice, albeit at slightly older ages. (C57BL/6 female mice in our colony

are normally reproductively competent at 11 months of age). The

pathology reports for aged mice normally listed the thymus as

involuted/consisting of fat/missing (Dr. Stephen Griffey, School of

Veterinary Medicine, University of California, Davis and Dr. Yuji

Ikeno, Barshop Institute for Longevity and Aging Studies and

Department of Pathology at UTHSCSA). Thymic involution, which

is directly related to T-cell development is exacerbated at puberty,

slowed by castration and is accelerated by exogenous estradiol (25).

Our FD and OSC recipients were not cycling and none of our

recipient mice demonstrated changes in estradiol from age-matched

controls. Our pathology reports for all aged mice normally listed the

thymus as involuted/consisting of fat/missing in all old groups

regardless of treatment, suggesting an extra-thymic mechanism of

T-cell influence in transplant recipients.
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What is often viewed as an inevitable increase in disease

associated with the menopausal transition may be more malleable

than formerly thought. The replacement of young ovarian tissues in

old, reproductively-senescent female mice has demonstrated

significant restoration of many health span parameters (13, 14, 26–

35). The naïve T-cell decline seen in control mice (Table 1) was

strongly reversed in 16-month-old females by ovarian transplantation

with young, 60d transplanted ovaries at 11 months of age (13,

Table 2). In this scenario, both 7-month-old control females and

16-month-old transplant recipients possessed 7-month-old ovaries.

Interestingly, the pathology reports for the thymus of aged, transplant

recipient mice were similar to untreated controls and were most often

listed as consisting of fat/missing. The restoration of naïve T-cell

subsets by ovarian transplantation was dramatic, but represented only

a limited restoration of T-cell function of that seen at 6 months of age.

Therefore, the ovarian-dependent change in immune function was

likely an indirect effect moderated by other physiological functions.

Based on current dogma, a likely ‘other physiological function’ would

be the hormone estradiol.

Following this dogma, we originally hypothesized that this

restoration of naïve T-cells was driven by germ cell-stimulated

ovarian hormone production from the young, transplanted ovaries.
Ovarian function and estradiol

A prevailing view in mammalian aging is that estrogen represents

the only important reproductive influence on health. The dramatic
Frontiers in Endocrinology 03
changes observed in the health of old mice that received new ovaries

(33, Figure 1) could be easily dismissed as a simple restoration of

circulating estrogen levels. Estradiol is the most widely cited

hormonal influence on post-reproductive female health. The

influence of estradiol is very different in post-reproductive females,

compared with young females and the results of estrogen

supplementation in post-reproductive females have historically been

ambiguous. In a recent study replicated independently by three

laboratories (36), 17-a-estradiol did not affect female life span

when fed from 10 months of age. This is certainly not the same

hormone as the more well-known 17-b-estradiol, but many of the

health-associated effects of estrogen have been ascribed to 17-a-
estradiol signaling (37). The beneficial effects of 17-a-estradiol are
often thought to be due to actions independent of the classical

estrogen receptor (38). Both 17a and 17b estradiol can alter

adaptive immune T cell subsets, but 17-a-estradiol can suppress

IFNa, in contrast to increased IFNa from 17-b-estradiol exposed
mice, which may exacerbate the autoimmune inflammatory processes

in females (39). T cells facilitate maternal immune tolerance of the

fetus during pregnancy and may protect against autoimmune diseases

(women are more prone to autoimmune diseases, 52). Estrogen

therapy has been shown to have both positive and negative

influences on many age-related pathologies in post-menopausal

women and clearly does not possess the same influence in post-

menopausal women as it does in young women.

While germ cell/follicle estrogen production is critical for

reproduction, at menopause, germ cell-depleted ovaries still possess

health-promoting attributes, as removal of the post-reproductive
TABLE 1 Percent change from 6 month old control mice-aging/treatment effects.

CD4 C
Naive/memory

CD4 P
Naive/memory

CD8 C
Naive/memory

CD8 P
Naive/memory

CD4/CD8

6mo CTL 100% 100% 100% 100% 100%

11mo CTL 51% 29% 103% 65% 72%

19mo CTL 18% 7% 28% 20% 49%

29mo CTL 16% 7% 16% 7% 38%

21mo FC 41% 25% 47% 37% 90%

21mo FD 58% 28% 56% 43% 67%

19moOSC 71% 64% 72% 33% 79%
fr
CTL, control mice; FC, transplanted with follicle-containing young 60d ovaries at 13mo of age; FD, transplanted with follicle-depleted young 60d ovaries at 13mo of age; OSC, transplanted with
FC, transplanted with follicle-containing young 60d ovaries at 13mo of age; FD, transplanted with follicle-depleted young 60d ovaries at 13mo of age; OSC, transplanted with isolated young
isolated young 60d ovarian somatic cells at 13mo of age.
TABLE 2 Percent decrease of T cell ratios from 6 month mice-treatment effect.

CD4 C Naïve/memory CD4 P Naïve/memory CD8 C Naïve/memory CD8 P Naïve/memory CD4/CD8

19mo CTL >75% >75% >50% >75% >50%

21mo FC >25% >50% >50% >25% <25%

21mo FD >25% >50% >25% >25% >25%

19moOSC >25% >25% >25% >25% <25%
FC, transplanted with follicle-containing young 60d ovaries at 13mo of age; FD, transplanted with follicle-depleted young 60d ovaries at 13mo of age; OSC, transplanted with FC, transplanted with
follicle-containing young 60d ovaries at 13mo of age; FD, transplanted with follicle-depleted young 60d ovaries at 13mo of age; OSC, transplanted with isolated young isolated young 60d ovarian
somatic cells at 13mo of age.
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ovaries further increases rates of mortality. It has been documented

that if the reproductively-senescent ovaries are absent in post-

menopausal women, then the rate of all-cause mortality (including

age-related diseases) increases (40, 41). If the processes influencing

longevity are evolutionarily conserved, evidence from model

organisms argues against an estrogen-only mechanism for health

span extension in mammals. In both worms and flies, gonadal germ

cells act in the adult to influence lifespan. In the hermaphroditic

worm C. elegans, removal of the germ cells, while leaving the somatic

gonad intact results in increased lifespan, but removal of the entire

gonad, including the somatic tissue yields no change (51). Similar

results are found in the fly, D. melanogaster (42). In both species, the

somatic gonad promotes health span, whereas the germ components

of the gonad act to suppress it.

Because of the notable differences in reproductive physiology

between mice and C. elegans and D. melanogaster, any observed

experimental differences are challenging to interpret. While the

influence of the gonad on longevity does appear to be

evolutionarily conserved in mammals (35), determining the role of

germ cells, and importantly cyclic sex hormones in this phenomenon

would be necessary to interpret more clearly our earlier results and

would require separation of germ line and somatic gonadal tissues in a

mammalian model and removing the germ cell influence from

the ovaries.

Since the germ cells in the young, transplanted ovaries could be

contributing more than just estradiol/cyclic hormones, we chemically

depleted the germ cells/follicles from the young ovaries (using 4-

vinylcyclohexene diepoxide) prior to transplantation. In this way we

removed cyclic hormone production and any other signaling factors

that may be produced by the germ cells/follicles. Chemically depleting

the germ cells/follicles from young ovaries exposes the young mice to

the toxic effects of VCD, which would make it difficult to separate the

effects of loss of germ cells from the toxic effects of VCD. However,
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removing the ovaries from the toxin-treated mice and placing the

VCD-treated ovaries in a non-VCD treated recipients avoids the

complications associated with systemic VCD toxicity (43). Mice that

received follicle-depleted young ovaries (FD) demonstrated the same

or, in many cases better recovery of naïve T-cell function than that

seen in mice that received young intact ovaries (with intact follicles-

FC). To further separate this ovarian somatic function from the

structure of the ovary, we isolated single somatic cells from young

ovaries and injected them directly into the senescent ovaries of

reproductively-senescent mice. Mice that received isolated young

ovarian somatic cells (OSC) whilst retaining their old, senescent

ovaries again demonstrated the same or, in most cases better

recovery of naïve T-cell function than that seen in mice that

received FC or FD young ovaries (Table 1). These observations

further question the role of senescent ovaries in the decline of

female health.

Removal of the follicles eliminated the possibility of the

transplanted ovaries/cells from producing cyclic hormones (44).

While the follicles direct cyclic hormone production, it is the

somatic cells that produce the hormones, so while follicle depletion

will remove cyclic hormone production, it is possible that acyclic

hormone production could still occur in the young ovarian somatic

cells (28). Previous work has documented that estradiol decreases

with age/loss of ovarian function in mammals (45, 46). As expected in

our mice, estradiol was decreased with age/loss of ovarian function.

To explore this relationship further, we next looked at estradiol in the

young ovary/cell transplant recipient groups (FC, FD and OSC).

Estradiol levels in the FD and OSC groups were very low, as was seen

in the age-matched control mice (28). Surprisingly, estradiol in the FC

group also was low, not increased, although AMH was increased in

this group (supporting the presence of primary or further advanced

follicles) compared to the other transplant groups and the age-

matched controls. Unlike the FD and OSC groups, the FC group
FIGURE 1

Aging and ovarian-associated changes in estradiol and T cell function. Estradiol remained low while T cell function improved with exposure to young
ovarian tissue in aged female mice. FC, transplanted with follicle-containing young 60d ovaries at 13mo of age; FD, transplanted with follicle-depleted
young 60d ovaries at 13mo of age; OSC, transplanted with isolated young 60d ovarian somatic cells at 13mo of age.
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had initially resumed irregular reproductive cycling post-

transplantation, but were acyclic 4 months post-operatively. In

humans, orthotopic heterotopic transplantation of ovarian tissue

most often results in some restoration of endocrine function (47–

50). The transplant recipient mice all had young ovarian tissues, but

they also had an old hypothalamus and pituitary, which likely

compromised hormone signaling and prevented a significant rise in

estradiol, even with the ovarian potential to do so. This raises the

possibility that the beneficial health influence of the young

transplanted ovarian tissues may be independent of hypothalamic-

pituitary-gonadal axis signaling.
Summary

As has been seen previously, increased aging in female mice leads

to decreased immune function and more specifically, to a decreased

availability of naïve T-cell subsets and decreased estradiol signaling

(21, 22). Increased exposure to young ovarian somatic tissues

improved T-cell function in post-reproductive recipient mice and

appeared to do so independent of changes in estradiol levels. Our

results suggest that the production of naïve T-cells is improved in

post-reproductive female mice by exposure to young ovarian tissue.

An alternative explanation may be that the survival of naïve T-cells is

extended. In our mice and in other studies, IL-7, which can prolong

naïve T-cell longevity decreased with age, but increased significantly

in transplant recipients (12, 14), suggesting that preservation rather

than restoration was responsible for the increase in naïve T-cells.

While the interactions between hormones and immune function are

complex and support a correlation between endocrine function and

immune response, the evidence presented here suggests the presence

of additional, age and gender-specific influences on health and

immune function. The molecular mechanisms behind the ovarian-

dependent and estradiol-independent restoration of naïve T-cell

function in post-reproductive female mice is currently being

investigated further and holds promise for the future restoration of

health in post-reproductive females and in females with early

ovarian failure.
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